1
|
Gil-Gonzalo R, Durante-Salmerón DA, Pouri S, Doncel-Pérez E, Alcántara AR, Aranaz I, Acosta N. Chitosan-Coated Liposome Formulations for Encapsulation of Ciprofloxacin and Etoposide. Pharmaceutics 2024; 16:1036. [PMID: 39204381 PMCID: PMC11359655 DOI: 10.3390/pharmaceutics16081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer and bacterial infections rank among the most significant global health threats. accounting for roughly 25 million fatalities each year. This statistic underscores the urgent necessity for developing novel drugs, enhancing current treatments, and implementing systems that boost their bioavailability to achieve superior therapeutic outcomes. Liposomes have been recognised as effective carriers; nonetheless, they encounter issues with long-term stability and structural integrity, which limit their pharmaceutical applicability. Chitosomes (chitosan-coated liposomes) are generally a good alternative to solve these issues. This research aims to demonstrate the effective individual encapsulation of ciprofloxacin (antibacterial, hydrophilic) and etoposide (anticancer, hydrophobic), within chitosomes to create more effective drug delivery systems (oral administration for ciprofloxacin, parenteral administration for etoposide). Thus, liposomes and chitosomes were prepared using the thin-film hydration technique and were characterised through ATR-FTIR, Dynamic Light Scattering (DLS), zeta potential, and release profiling. In both cases, the application of chitosomes enhanced long-term stability in size and surface charge. Chitosome-encapsulated ciprofloxacin formulations exhibited a slower and sustained release profile, while the combined effect of etoposide and chitosan showed heightened efficacy against the glioblastoma cell line U373. Therefore, coating liposomes with chitosan improved the encapsulation system's properties, resulting in a promising method for drug delivery.
Collapse
Affiliation(s)
- Rubén Gil-Gonzalo
- Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain; (R.G.-G.); (S.P.)
| | - D. Alonzo Durante-Salmerón
- Department of Chemistry in Pharmaceutical Science, Pharmacy Faculty, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; (D.A.D.-S.); (A.R.A.)
| | - Saeedeh Pouri
- Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain; (R.G.-G.); (S.P.)
| | - Ernesto Doncel-Pérez
- Neural Regeneration Group, Hospital Nacional de Parapléjicos (SESCAM), E-45071 Toledo, Spain;
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Science, Pharmacy Faculty, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; (D.A.D.-S.); (A.R.A.)
| | - Inmaculada Aranaz
- Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain; (R.G.-G.); (S.P.)
- Department of Chemistry in Pharmaceutical Science, Pharmacy Faculty, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; (D.A.D.-S.); (A.R.A.)
| | - Niuris Acosta
- Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain; (R.G.-G.); (S.P.)
- Department of Chemistry in Pharmaceutical Science, Pharmacy Faculty, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; (D.A.D.-S.); (A.R.A.)
| |
Collapse
|
2
|
Arshad M, Sarwar HS, Sarfraz M, Jalil A, Bin Jardan YA, Farooq U, Sohail MF. Cholic Acid-Grafted Thiolated Chitosan-Enveloped Nanoliposomes for Enhanced Oral Bioavailability of Azathioprine: In Vitro and In Vivo Evaluation. ACS OMEGA 2024; 9:32807-32816. [PMID: 39100346 PMCID: PMC11292647 DOI: 10.1021/acsomega.4c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/08/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
The purpose of the present study was to develop a cholic acid-grafted thiolated chitosan (CA-CS-TGA) polymeric biomaterial for attaining improved permeation via attaching thiol groups and cholic acid moieties. For this purpose, a CA-CS-TGA graft was prepared, and modification was confirmed via FTIR analysis. The prepared CA-CS-TGA graft was used to coat the azathioprine-loaded nanoliposomes (ENLs), with subsequent characterization in terms of zeta size, zeta potential, and SEM analysis. Pharmaceutical evaluation was carried out in terms of drug release studies, and ex vivo permeation and in vivo oral bioavailability were studied. The particle size and zeta potential of CA-CS-TGA coated nanoliposomal formulation CA-CS-TGA-NLs were found to be 245 ± 15.6 and +22.4 ± 0.58, respectively, compared to that of nonenveloped nanoliposomal formulation 165.7 ± 12.3 and -21.8 ± 0.14, respectively, indicating successful coating. CA-CS-TGA-NLs indicated 64% of drug release in 24 h at pH 7.4. Ex vivo permeation enhancement and relative oral bioavailability studies indicated a 2.84-fold enhanced permeation and 6-fold enhanced oral bioavailability of CA-CS-TGA-NLs compared to Azathioprine suspension. Based on the results, it can be concluded that grafting the CA-CS-TGA polymer onto nanoliposomes seems to be a promising strategy to enhance the oral bioavailability of Azathioprine.
Collapse
Affiliation(s)
- Muqeeza Arshad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, 54660 Lahore, Pakistan
| | - Hafiz Shoaib Sarwar
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, 54000 Lahore, Pakistan
| | - Muhammad Sarfraz
- Al-Ain
University, Al Ain Campus, 64141 Al Ain, United Arab Emirates
| | - Aamir Jalil
- Faculty
of Pharmacy, Bahauddin Zakariya University, 60000 Multan, Pakistan
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, 12372 Riyadh, Saudi
Arabia
| | - Umer Farooq
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, 54000 Lahore, Pakistan
| | - Muhammad Farhan Sohail
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, 54660 Lahore, Pakistan
| |
Collapse
|
3
|
Li M, Fang G, Zahid F, Saleem R, Ishrat G, Ali Z, Naeem M, Din FU. Co-delivery of paclitaxel and curcumin loaded solid lipid nanoparticles for improved targeting of lung cancer: In vitro and in vivo investigation. Heliyon 2024; 10:e30290. [PMID: 38720725 PMCID: PMC11076978 DOI: 10.1016/j.heliyon.2024.e30290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The objective of this study was to develop nanotechnology-mediated paclitaxel (PAC) and curcumin (CUR) co-loaded solid lipid nanoparticles (PAC-CUR-SLNs) for the treatment of lung cancer, which is a leading cause of death worldwide. Around 85 % cases of lungs cancer constitute non-small cell lung cancer (NSCLC). PAC-CUR-SLNs were prepared via high pressure homogenization. The in vitro drug release of PAC-CUR-SLNs was checked followed by their in vitro cytotoxic investigation using adenocarcinomic human alveolar basal epithelial cells (A549) cell lines. Anticancer effects along with side effects of the synergistic delivery of PAC-CUR-SLNs were studied in vivo, using BALB/c mice. PAC-CUR-SLNs were nano sized (190 nm), homogeneously disseminated particles with %IE of both PAC and CUR above 94 %. PAC-CUR-SLNs released PAC and CUR in a controlled fashion when compared with free drug suspensions. The cytotoxicity of PAC-CUR-SLNs was higher than individual drug-loaded SLNs and pure drugs. Moreover, the co-delivery displayed synergistic effect, indicating potential of PAC-CUR-SLNs in lung cancer treatment. In vivo tumor investigation of PAC-CUR-SLNs exhibited 12-fold reduced tumor volume and almost no change in body weight of BALB/c mice, when compared with the experimental groups including control group. The inhibition of tumor rate on day 28 was 82.7 % in the PAC-CUR-SLNs group, which was significantly higher than the pure drugs and monotherapies. It can be concluded that, encapsulating the co-loaded antitumor drugs like PAC-CUR in SLNs may help in improved targeting of the tumor with enhanced anticancer effect.
Collapse
Affiliation(s)
- Mao Li
- Guangxi Higher Education Key Laboratory for the Research of Du-related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Gang Fang
- Guangxi Higher Education Key Laboratory for the Research of Du-related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Fatima Zahid
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Raheela Saleem
- College of Pharmacy, Liaquat University of Medical and Health Sciences Jamshoro, Pakistan
| | - Ghazala Ishrat
- Department of Pharmaceutics, Faculty of Pharmacy, Salim Habib University, Karachi, Pakistan
| | - Zakir Ali
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Muhammad Naeem
- National University of Medical Sciences, Rawalpindi, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| |
Collapse
|
4
|
Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2777. [PMID: 38140117 PMCID: PMC10748026 DOI: 10.3390/pharmaceutics15122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
Collapse
Affiliation(s)
- Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Mohamed El-Tanani
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | |
Collapse
|
5
|
Xiong Y, Xie L, Tang L, Xiao D, Shi W, Wang Y, Li Y, Han X, Ying X, Zheng Y. A liposomal etoposide with a sustained drug release effectively alleviated the therapy-related leukemia. Int J Pharm 2023; 646:123437. [PMID: 37741559 DOI: 10.1016/j.ijpharm.2023.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Etoposide (VP16) can induce therapy-related leukemia, which is reported to occur less frequently with a prolonged dose schedule. Therefore, we hypothesized that nanocarriers could decrease the VP16-induced leukemogenesis by reducing the rate of VP16 exposure via a sustained drug release. To test our hypothesis, the VP16-loaded liposome with a slow drug release behavior was constructed by encapsulating a rapidly-cleaved VP16-maleimide conjugate into liposomes using a glutathione-gradient loading method, and its toxicities and in vivo antitumor efficacy were compared with free VP16 in the LLC lung cancer xenograft. It was found that the repeated injection of free VP16 induced severe splenomegaly, lymphocytosis, and extensive lymphocyte infiltration in various tissues, indicating a sign of VP16 therapy-related leukemia. By contrast, the liposomal VP16 not only remarkably alleviated the syndrome of leukemogenesis, but also exhibited significantly enhanced antitumor activity as compared with free VP16 at the same dose. These results highlighted that the liposomal VP16 having a sustained drug release could effectively decrease the toxicity of leukemogenesis, which provided a new warranty to develop liposomal VP16 as a safe alternative to the commercial VP16 injection.
Collapse
Affiliation(s)
- Yan Xiong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, China
| | - Lei Xie
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Lingfeng Tang
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Danling Xiao
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Wenhao Shi
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Yang Wang
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Yang Li
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xue Han
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China.
| | - Xue Ying
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China.
| | - Yaxin Zheng
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
6
|
Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S, Pandey S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur J Med Chem 2023; 259:115676. [PMID: 37499287 DOI: 10.1016/j.ejmech.2023.115676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Etoposide (ETO), a popular anticancer drug that inhibits topoisomerase II enzymes, may be administered more effectively and efficiently due to nanomedicine. The therapeutic application of ETO is constrained by its limited solubility, weak absorption, and severe side effects. This article summarizes substantial progress made in the development of ETO nanomedicine for the treatment of cancer. It discusses various organic and inorganic nanostructures used to load or affix ETOs, such as lipids, liposomes, polymeric nanoparticles (NPs), dendrimers, micelles, gold NPs, iron oxide NPs, and silica NPs. In addition, it evaluates the structural properties of these nanostructures, such as their size, zeta potential, encapsulation efficiency, and drug release mechanism, as well as their in vitro or in vivo performance. The article also emphasizes the co-delivery of ETO with other medications or agents to produce synergistic effects or combat drug resistance in the treatment of cancer. It concludes with a discussion of the challenges and potential avenues for clinical translation of ETO nanomedicine.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98613-35856, Iran.
| | - Aghdas Ramezani
- Faculty of Medical Science, Tarbiat Modares, University, Tehran, Iran
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|
7
|
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review. Curr Med Chem 2023; 30:335-355. [PMID: 34375182 DOI: 10.2174/0929867328666210810160901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Rouhani Ivari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khandan Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Guo Q, Kong F, Pan X, Cao S. Co-delivery of docetaxel and p53 gene from cationic nanoparticles based on poly (l-lactide) and low-molecular-weight polyethyleneimine (PEA). Pharm Dev Technol 2022; 27:1049-1056. [PMID: 36398607 DOI: 10.1080/10837450.2022.2149793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Recent findings revealed that low-concentration paclitaxel(DTX) could enhance cytotoxicity by upregulating p53 expression in lung cancer cell lines. So, co-delivery of DTX and RFP-p53 gene with PEA nanoparticles (NPs) was studied. The prepared DTX loaded PEA NPs (PEA/DTX) were characterized by particle size distribution, morphology, zeta potential, and crystallography and cytotoxicity. Results showed that the PEA/DTX NPs had a mall particle size (≤100 nm), moderate zeta potential (≥40 mV) and drug loading of 9.0%, DTX was released from PEA/DTX NPs in an extended period in vitro. More important, agarose gel electrophoresis showed that PEA/DTX cationic NPs were able to completely bind RFP-p53 gene with mean particles size and zeta potential. Studies on cellular uptake of (PEA/DTX)/RFP-p53 NPs demonstrated that both drug and gene were effectively taken up by A549 tumor cells. It was found that intravenous injection of (PEA/DTX)/RFP-p53 NPs efficiently inhibited growth of subcutaneous A549 carcinoma in vivo (p < 0.05) and was significantly less side effect than that of mice treated with the other groups. Therefore, the (PEA/DTX)/RFP-p53 NPs might be a promising candidate for A549 cancer therapy.
Collapse
Affiliation(s)
- Qingfa Guo
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, China
| | | | - Xiaoru Pan
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, China
| | - Shuhua Cao
- Library, Weifang University, Weifang, China
| |
Collapse
|
9
|
Elkomy MH, El Menshawe SF, Kharshoum RM, Abdeltwab AM, Hussein RRS, Hamad DS, Alsalahat I, Aboud HM. Innovative pulmonary targeting of terbutaline sulfate-laded novasomes for non-invasive tackling of asthma: statistical optimization and comparative in vitro/ in vivo evaluation. Drug Deliv 2022; 29:2058-2071. [PMID: 35801404 PMCID: PMC9272939 DOI: 10.1080/10717544.2022.2092236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asthma represents a globally serious non-communicable ailment with significant public health outcomes for both pediatrics and adults triggering vast morbidity and fatality in critical cases. The β2-adrenoceptor agonist, terbutaline sulfate (TBN), is harnessed as a bronchodilator for monitoring asthma noising symptoms. Nevertheless, the hepatic first-pass metabolism correlated with TBN oral administration mitigates its clinical performance. Likewise, the regimens of inhaled TBN dosage forms restrict its exploitation. Consequently, this work is concerned with the assimilation of TBN into a novel non-phospholipid nanovesicular paradigm termed novasomes (NVS) for direct and effective TBN pulmonary targeting. TBN-NVS were tailored based on the thin film hydration method and Box-Behnken design was applied to statistically optimize the formulation variables. Also, the aerodynamic pattern of the optimal TBN-NVS was explored via cascade impaction. Moreover, comparative pharmacokinetic studies were conducted using a rat model. TBN elicited encapsulation efficiency as high as 70%. The optimized TBN-NVS formulation disclosed an average nano-size of 223.89 nm, ζ potential of −31.17 mV and a sustained drug release up to 24 h. Additionally, it manifested snowballed in vitro lung deposition behavior in cascade impactor with a fine particle fraction of 86.44%. In vivo histopathological studies verified safety of intratracheally-administered TBN-NVS. The pharmacokinetic studies divulged 3.88-fold accentuation in TBN bioavailability from the optimum TBN-NVS versus the oral TBN solution. Concisely, the results proposed that NVS are an auspicious nanovector for TBN pulmonary delivery with integral curbing of the disease owing to target specificity.
Collapse
Affiliation(s)
- Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Shahira F El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amany M Abdeltwab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Raghda R S Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Clinical Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Doaa S Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
10
|
Guo L, Qin X, Xue L, Yang JY, Zhang Y, Zhu S, Ye G, Tang R, Yang W. A novel form of docetaxel polymeric micelles demonstrates anti-tumor and ascites-inhibitory activities in animal models as monotherapy or in combination with anti-angiogenic agents. Front Pharmacol 2022; 13:964076. [PMID: 36091776 PMCID: PMC9449419 DOI: 10.3389/fphar.2022.964076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Malignant ascites (MA) is caused by intraperitoneal spread of solid tumor cells and results in a poor quality of life. Chemotherapy is a common first-line treatment for patients with MA. Taxotere ® (DTX) is widely used in solid tumor therapies. However, the low water solubility and side effects caused by additives in the formulation restrict the clinical application of docetaxel. HT001 is a clinical stage docetaxel micelle developed to overcome the solubility issue with improved safety profiles. To support clinical development and expand clinical application of HT001, this study used in vitro and in vivo approaches to investigate the anti-tumor effects of HT001 when applied as monotherapy or in combination with anti-angiogenic agents. HT001 demonstrated comparable anti-proliferative activities as docetaxel in a broad range of cancer cell lines in vitro. Furthermore, HT001 suppressed tumor growth in a dose-dependent manner in A549, MCF-7, and SKOV-3 xenograft tumor mouse models in vivo. In a hepatocellular carcinoma H22 malignant ascites-bearing mouse model, HT001 presented a dose-dependent inhibition of ascites production, prolonged animal survival, and reduced VEGF levels. When dosed at 20 mg/kg, the HT001-treated group exhibited curative results, with no ascites formation in 80% of mice at the end of the study while all the mice in the vehicle control group succumbed. Similar results were obtained in HT001 treatment of mice bearing malignant ascites produced by human ovarian cancer ES-2 cells. Notably, the combination of HT001 with Endostar not only significantly reduced ascites production but also prolonged survival of H22 ascites-bearing mice. HT001 showed similar PK and tissue distribution profiles as DTX in non-rodent hosts. Collectively, these results demonstrate potent anti-tumor activity of HT001 in multiple solid tumor models or malignant ascites models, and reveal synergistic effects with anti-angiogenic agents, supporting the clinical development and clinical expansion plans for HT001.
Collapse
Affiliation(s)
- Leilei Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Xiaokang Qin
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Liting Xue
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Janine Y. Yang
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Yumei Zhang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shunwei Zhu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Gang Ye
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
- *Correspondence: WenQing Yang, ; Renhong Tang,
| | - WenQing Yang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
- *Correspondence: WenQing Yang, ; Renhong Tang,
| |
Collapse
|
11
|
Kumar K, Chawla R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Pakdaman Goli P, Bikhof Torbati M, Parivar K, Akbarzadeh Khiavi A, Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Formulation and clinical perspectives of inhalation-based nanocarrier delivery: a new archetype in lung cancer treatment. Ther Deliv 2021; 12:397-418. [PMID: 33902294 DOI: 10.4155/tde-2020-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous research in targeted delivery and specific molecular inhibitors (gene delivery), cytotoxic drug delivery through inhalation has been seen as a core part in the treatment of the lung cancer. Inhalation delivery provides a high dose of the drug directly to the lungs without affecting other body organs, increasing the therapeutic ratio. This article reviews the research performed over the last several decades regarding inhalation delivery of various cancer therapeutics for the treatment of lung cancer. Nevertheless, pulmonary administration of nanocarrier-based cancer therapeutics for lung cancer therapy is still in its infancy and faces greater than expected challenges. This article focuses on the current inhalable nanocarrier-based drugs for lung cancer treatment.
Collapse
|
14
|
Jo MJ, Lee YJ, Park CW, Chung YB, Kim JS, Lee MK, Shin DH. Evaluation of the Physicochemical Properties, Pharmacokinetics, and In Vitro Anticancer Effects of Docetaxel and Osthol Encapsulated in Methoxy Poly(ethylene glycol)- b-Poly(caprolactone) Polymeric Micelles. Int J Mol Sci 2020; 22:E231. [PMID: 33379376 PMCID: PMC7794789 DOI: 10.3390/ijms22010231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
Docetaxel (DTX), a taxane-based anticancer drug, and osthol (OTH), a coumarin-derivative compound, have shown anticancer effects against different types of cancers through various mechanisms. However, these drugs have low solubility in water and low oral bioavailability, and thus their clinical application is difficult. To overcome these problems, we encapsulated DTX and OTH in methoxy poly(ethylene glycol)-b-poly(caprolactone) (mPEG-b-PCL) and conducted studies in vitro and in vivo. We selected a 1:4 ratio as the optimal ratio of DTX and OTH, through combination index analysis in A549 cancer cells, and prepared micelles to evaluate the encapsulation efficiency, drug loading, particle size, and zeta potential. The in vitro drug-release profile showed that DTX/OTH-loaded mPEG-b-PCL micelles could slowly release DTX and OTH. In the clonogenic assay, DTX/OTH-loaded mPEG-b-PCL micelles showed 3.7 times higher inhibitory effect than the DTX/OTH solution. Pharmacokinetic studies demonstrated that micelles in combination with DTX and OTH exhibited increased area under curve and decreased clearance values, as compared with single micelles.
Collapse
Affiliation(s)
- Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Yu Jin Lee
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Youn Bok Chung
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea;
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| |
Collapse
|
15
|
Islam N, Richard D. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers. Curr Cancer Drug Targets 2020; 19:162-178. [PMID: 29793407 DOI: 10.2174/1568009618666180525083451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at a low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Derek Richard
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,Translational Research Institute (TRI), Brisbane, Australia
| |
Collapse
|
16
|
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol 2020; 69:349-364. [PMID: 32088362 DOI: 10.1016/j.semcancer.2020.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the leading cause of death in both men and women in the world. Lung cancer is heterogeneous in nature and diagnosis is often at an advanced stage as it develops silently in the lung and is frequently associated with high mortality rates. Despite the advances made in understanding the biology of lung cancer, progress in early diagnosis, cancer therapy modalities and considering the mechanisms of drug resistance, the prognosis and outcome still remains low for many patients. Nanotechnology is one of the fastest growing areas of research that can solve many biological problems such as cancer. A growing number of therapies based on using nanoparticles (NPs) have successfully entered the clinic to treat pain, cancer, and infectious diseases. Recent progress in nanotechnology has been encouraging and directed to developing novel nanoparticles that can be one step ahead of the cancer reducing the possibility of multi-drug resistance. Nanomedicine using NPs is continuingly impacting cancer diagnosis and treatment. Chemotherapy is often associated with limited targeting to the tumor, side effects and low solubility that leads to insufficient drug reaching the tumor. Overcoming these drawbacks of chemotherapy by equipping NPs with theranostic capability which is leading to the development of novel strategies. This review provides a synopsis of current progress in theranostic applications for lung cancer diagnosis and therapy using NPs including liposome, polymeric NPs, quantum dots, gold NPs, dendrimers, carbon nanotubes and magnetic NPs.
Collapse
Affiliation(s)
- Christopher Woodman
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Gugulethu Vundu
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, United Kingdom; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
17
|
Choudhury H, Maheshwari R, Pandey M, Tekade M, Gorain B, Tekade RK. Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘Etoposide’. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110275. [DOI: 10.1016/j.msec.2019.110275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
|
18
|
Osama H, Sayed OM, Hussein RRS, Abdelrahim M, A. Elberry A. Design, optimization, characterization, and in vivo evaluation of sterosomes as a carrier of metformin for treatment of lung cancer. J Liposome Res 2019; 30:150-162. [DOI: 10.1080/08982104.2019.1610434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hasnaa Osama
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ossama M. Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Raghda R. S. Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Abdelrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A. Elberry
- Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
Co-delivery of siRNA and etoposide to cancer cells using an MDEA esterquat based drug delivery system. Eur J Pharm Sci 2019; 127:142-150. [DOI: 10.1016/j.ejps.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022]
|
20
|
Gao X, Guo L, Li J, Thu HE, Hussain Z. Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: Critical appraisal of newer developments and challenges to clinical transition. J Control Release 2018; 292:29-57. [PMID: 30359665 DOI: 10.1016/j.jconrel.2018.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/13/2023]
Abstract
Lung cancer (LC) is the second most prevalent type of cancer and primary cause of mortality among both men and women, worldwide. The most commonly employed diagnostic modalities for LC include chest X-ray (CXR), magnetic-resonance-imaging (MRI), computed tomography (CT-scan), and fused-positron-emitting-tomography-CT (PET-CT). Owing to several limitations associated with the use of conventional diagnostic tools such as radiation burden to the patient, misleading diagnosis ("missed lung cancer"), false staging and low sensitivity and resolution, contemporary diagnostic regimen needed to be employed for screening of LC. In recent decades, nanotechnology-guided interventions have been transpired as emerging nanoimaging probes for detection of LC at advanced stages, while producing signal amplification, better resolution for surface and deep tissue imaging, and enhanced translocation and biodistribution of imaging probes within the cancerous tissues. Besides enormous potential of nanoimaging probes, nanotechnology-based advancements have also been evidenced for superior efficacy for treatment of LC and abolishing pulmonary metastasis (PM). The success of nanotherapeutics is due to their ability to maximise translocation and biodistribution of anti-neoplastic agents into the tumor tissues, improve pharmacokinetic profiles of anti-metastatic agents, optimise target-specific drug delivery, and control release kinetics of encapsulated moieties in target tissues. This review aims to overview and critically discuss the superiority of nanoimaging probes and nanotherapeutics over conventional regimen for early detection of LC and abolishing PM. Current challenges to clinical transition of nanoimaging probes and therapeutic viability of nanotherapeutics for treatment for LC and PM have also been pondered.
Collapse
Affiliation(s)
- Xiaoling Gao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lihua Guo
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jianqiang Li
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hnin Ei Thu
- Department of Pharmacology and Dental Therapeutics, Faculty of Dentistry, Lincoln University College, Jalan Stadium, SS 7/15, Kelana Jaya, 47301 Petaling Jaya, Selangor, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
21
|
Yadav MR, Kumar M, Murumkar PR, Hazari PP, Mishra AK. Gemini Amphiphile-Based Lipoplexes for Efficient Gene Delivery: Synthesis, Formulation Development, Characterization, Gene Transfection, and Biodistribution Studies. ACS OMEGA 2018; 3:11802-11816. [PMID: 30320274 PMCID: PMC6173565 DOI: 10.1021/acsomega.8b01014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Some quaternary gemini amphiphiles (GAs) were synthesized as nonviral gene delivery carriers. The critical miceller concentration values of these amphiphiles are indicative of their superior surface-active properties. All of the synthesized GAs, alone or along with lipids like cholesterol and/or dioleoylphosphatidyl ethanolamine (DOPE), were formulated as liposomes. Formulations of GAs with DOPE showed average particle diameters of 326-400 nm with positive ζ-potential (30.1-46.4 mV). The lipoplexes of theses formulations showed complete pDNA retention at the base at a N/P ratio higher than 1.0 in gel retardation study. The GAs were effective in condensing pDNA into a ψ-phase, as indicated by circular dichroism study, and provided complete protection of the pDNA against the enzyme DNase at a N/P ratio more than 1. In vitro cell line studies showed that GA liposomal formulations caused β-gal expression and offered a higher transfection efficiency than that of liposomes prepared with the help of N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP)/DOPE and dicyclocarbodiimide (DCC)/DOPE but comparable to those of Lipofectamine 2000 in A549 and HeLa cell lines. Modulation of head group polarity significantly affected the transfection efficacy of GAs. The cell viabilities of almost all of the formulations were comparable to those of the standards (DCC/DOPE and DOTAP/DOPE liposomes). Incorporation of cholesterol [GA/DOPE/cholesterol in the ratio of 1:1:1] further improved the serum compatibility of the formulations and improved the transfection efficacy when evaluated in A549 and HeLa cell lines. Fluorescence-assisted cell sorting studies showed comparable number of transfected cells to Lipofectamine 2000 in the HeLa cell line. Intracellular trafficking studies using confocal microscopy indicated transfection of the HeLa cells with the reporter gene within 30 min of lipoplex treatment. γ-Scintigraphy using 99mTc-labeled lipoplexes showed higher concentrations of the lipoplexes in vital tissues like liver, spleen, lungs, and kidneys.
Collapse
Affiliation(s)
- Mange R. Yadav
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja
Sayajirao University of Baroda, Vadodara, 390 001 Gujarat State, India
| | - Mukesh Kumar
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja
Sayajirao University of Baroda, Vadodara, 390 001 Gujarat State, India
| | - Prashant R. Murumkar
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja
Sayajirao University of Baroda, Vadodara, 390 001 Gujarat State, India
| | - Puja P. Hazari
- Division
of Radiopharmaceuticals, Institute of Nuclear
Medicine & Allied Sciences (INMAS), Lucknow Road, Timarpur, 110 054 Delhi, India
| | - Anil K. Mishra
- Division
of Radiopharmaceuticals, Institute of Nuclear
Medicine & Allied Sciences (INMAS), Lucknow Road, Timarpur, 110 054 Delhi, India
| |
Collapse
|
22
|
Wang N, Zhang T. Downregulation of MicroRNA-135 Promotes Sensitivity of Non-Small Cell Lung Cancer to Gefitinib by Targeting TRIM16. Oncol Res 2018; 26:1005-1014. [PMID: 29295721 PMCID: PMC7844745 DOI: 10.3727/096504017x15144755633680] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Personalized treatment targeting the epidermal growth factor receptor (EGFR) may be a promising new treatment of non-small cell lung cancer (NSCLC). Gefitinib, a tyrosine kinase inhibitor, is the first drug for NSCLC, which unfortunately easily leads to drug resistance. Our study aimed to explore the functional role of microRNA (miR)-135 in the sensitivity to gefitinib of NSCLC cells. Expression of miR-135 in normal cells and NSCLC cells was assessed, followed by the effects of abnormally expressed miR-135 on cell viability, migration, invasion, apoptosis, sensitivity to gefitinib, and the expression levels of adhesion molecules and programmed death ligand 1 (PD-L1) in H1650 and H1975 cells. Next, the possible target gene of miR-135 was screened and verified. Finally, the potential involvement of the JAK/STAT signaling pathway was investigated. Expression of miR-135 was upregulated in NSCLC cells, and miR-135 silencing repressed cell viability, migration, and invasion, but increased cell apoptosis and sensitivity to gefitinib. E-cadherin and β-catenin were significantly upregulated, but PD-L1 was downregulated by the silencing of miR-135. Subsequently, tripartite-motif (TRIM) 16 was screened and verified to be a target gene of miR-135, and miR-135 suppression was shown to function through upregulation of TRIM16 expression. Phosphorylated levels of the key kinases in the JAK/STAT pathway were reduced by silencing miR-135 by targeting TRIM16. In conclusion, miR-135 acted as a tumor promoter, and its suppression could improve sensitivity to gefitinib by targeting TRIM16 and inhibition of the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ning Wang
- *Department of Thoracic Surgery, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Tingting Zhang
- †Department of Oncology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| |
Collapse
|
23
|
Wang X, Chen Q, Zhang X, Ren X, Zhang X, Meng L, Liang H, Sha X, Fang X. Matrix metalloproteinase 2/9-triggered-release micelles for inhaled drug delivery to treat lung cancer: preparation and in vitro/in vivo studies. Int J Nanomedicine 2018; 13:4641-4659. [PMID: 30147314 PMCID: PMC6095127 DOI: 10.2147/ijn.s166584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Improvement in drug accumulation in the lungs through inhalation administration and high expression of MMP2 and MMP9 in lung tumors have both been widely reported. Methods MMP2/9-triggered-release micelles were constructed and in vitro and in vivo studies of inhalation administration against lung tumor carried out. Pluronic P123 (P123) was modified with GPLGIAGQ-NH2 (GQ8) peptide to obtain P123-GQ8 (PG). MMP2/9-triggered-release micelles were constructed using PG and succinylated gelatin (SG) and loading paclitaxel (Ptx). To study biodistribution of micelles, DiR encapsulated in micelles was dosed to rats via intravenous injection or inhalation before ex vivo imaging for detecting DiR quantity in lungs. And B16F10 lung cancer-bearing nude mice were chosen as animal models to evaluate in vivo efficacy of MMP2/9-triggered-release micelles. Results Ptx-release efficiency from PG-SG-Ptx micelles was MMP2/9-concentration-dependent. For A549 cells, PG-SG-Ptx cytotoxicity was significantly greater (P<0.001) compared to P123-Ptx. Aerosol inhalation was chosen as the method of administration. In biodistribution experiment, DiR quantity in lungs was 5.8%±0.4% of that in major organs, while the ratio was 38.8%±0.5% for inhalation. For B16F10 lung cancer-bearing nude mice, the efficacy of inhalation of PG-SG-Ptx was significantly higher (P<0.001) than Taxol inhalation and injected PG-SG-Ptx. Inhaled PG-SG-Ptx also significantly inhibited the expression of Pgp in lung cancer. Conclusion Inhalation of MMP2/9-triggered-release micelles increased tumor sensitivity to chemotherapeutics and reduced the toxicity of chemotherapy to healthy lung cells, which has great potential in lung cancer therapy.
Collapse
Affiliation(s)
- Xiaofei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ; .,Shanghai Omni Pharmaceuticall Co., Ltd., Shanghai, People's Republic of China
| | - Qinyue Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoyan Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoqing Ren
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiulei Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Lin Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Huihui Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| |
Collapse
|
24
|
Nehate C, Moothedathu Raynold AA, Haridas V, Koul V. Comparative Assessment of Active Targeted Redox Sensitive Polymersomes Based on pPEGMA-S-S-PLA Diblock Copolymer with Marketed Nanoformulation. Biomacromolecules 2018; 19:2549-2566. [DOI: 10.1021/acs.biomac.8b00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Chetan Nehate
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Aji Alex Moothedathu Raynold
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - V. Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
25
|
Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release 2018; 269:374-392. [DOI: 10.1016/j.jconrel.2017.11.036] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
|
26
|
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12:7291-7309. [PMID: 29042776 PMCID: PMC5634382 DOI: 10.2147/ijn.s146315] [Citation(s) in RCA: 719] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanotechnology has recently gained increased attention for its capability to effectively diagnose and treat various tumors. Nanocarriers have been used to circumvent the problems associated with conventional antitumor drug delivery systems, including their nonspecificity, severe side effects, burst release and damaging the normal cells. Nanocarriers improve the bioavailability and therapeutic efficiency of antitumor drugs, while providing preferential accumulation at the target site. A number of nanocarriers have been developed; however, only a few of them are clinically approved for the delivery of antitumor drugs for their intended actions at the targeted sites. The present review is divided into three main parts: first part presents introduction of various nanocarriers and their relevance in the delivery of anticancer drugs, second part encompasses targeting mechanisms and surface functionalization on nanocarriers and third part covers the description of selected tumors, including breast, lungs, colorectal and pancreatic tumors, and applications of relative nanocarriers in these tumors. This review increases the understanding of tumor treatment with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad
| | - Waqar Aman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Izhar Ullah
- Department of Health and Medical Sciences, University of Poonch, Rawalakot, Azad Kashmir
| | | | | | - Shumaila Shafique
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
27
|
Al-Khafaji AS, Davies MP, Risk JM, Marcus MW, Koffa M, Gosney JR, Shaw RJ, Field JK, Liloglou T. Aurora B expression modulates paclitaxel response in non-small cell lung cancer. Br J Cancer 2017; 116:592-599. [PMID: 28095398 PMCID: PMC5344288 DOI: 10.1038/bjc.2016.453] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
Background: Taxanes are mitotic poisons widely used in the treatment of non-small cell
lung cancer (NSCLC), however, little is known about potential molecular
modulators of response to these compounds. Aurora B (AURKB) is a critical
regulator of the mitotic spindle assembly, previously shown overexpressed in
NSCLC. Here we investigated the hypothesis that AURKB expression modulates
the efficacy of taxanes in NSCLC cells. Methods: AURKB mRNA expression was determined by qPCR in 132 frozen NSCLC
tissues and nine NSCLC cell lines. Aurora B expression was knocked down in
cell lines using multiple shRNA constructs. Barasertib was used to
specifically inhibit AURKB activity, determined by the level of H3S10
phosphorylation. Results: Frequent AURKB mRNA upregulation was observed in NSCLC tissues
(P<0.0001), being more prominent in squamous carcinomas
(P<0.0001). Aurora B expression in cell lines strongly
correlated with sensitivity to both docetaxel (P=0.004)
and paclitaxel (P=0.007). Aurora B knockdown derivatives
consistently showed a dose-dependent association between low-AURKB
expression and resistance to paclitaxel. Specific chemical inhibition of
Aurora B activity also demonstrated a strong dose-dependent efficiency in
triggering paclitaxel resistance. Conclusions: Aurora B activity is an important modulator of taxane response in NSCLC
cells. This may lead to further insights into taxane sensitivity of NSCLC
tumours.
Collapse
Affiliation(s)
- Ahmed Sk Al-Khafaji
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK.,Department of Biology, Collage ofScience, University of Baghdad, Baghdad,Iraq
| | - Michael Pa Davies
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| | - Janet M Risk
- Mersey Head and Neck OncologyResearch Group, Department of Molecular and Clinical Cancer Medicine,Institute of Translational Medicine, University of Liverpool,Liverpool, UK
| | - Michael W Marcus
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| | - Maria Koffa
- Department of Molecular Biology andGenetics, Democritus University of Thrace,Alexandroupolis, Greece
| | - John R Gosney
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| | - Richard J Shaw
- Mersey Head and Neck OncologyResearch Group, Department of Molecular and Clinical Cancer Medicine,Institute of Translational Medicine, University of Liverpool,Liverpool, UK
| | - John K Field
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| | - Triantafillos Liloglou
- Roy Castle Lung Cancer ResearchProgramme, Department of Molecular and Clinical Cancer Medicine, Instituteof Translational Medicine, University of Liverpool,Liverpool, UK
| |
Collapse
|
28
|
Pawar H, Surapaneni SK, Tikoo K, Singh C, Burman R, Gill MS, Suresh S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: In vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Deliv 2016; 23:1453-68. [PMID: 26878325 DOI: 10.3109/10717544.2016.1138339] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to develop folic acid functionalized long-circulating co-encapsulated docetaxel (DTX) and curcumin (CRM) solid lipid nanoparticles (F-DC-SLN) to improve the pharmacokinetic and efficacy of DTX therapy. F-DC-SLN was prepared by hot melt-emulsification method and optimized by face centered-central composite design (FC-CCD). The SLN was characterized in terms of size and size distribution, drug entrapment efficiency and release profile. The cytotoxicity and cell uptake of the SLN formulations were evaluated in MCF-7 and MDA-MB-231 cell lines. The in vivo pharmacokinetic and biodistribution were studied in Wistar rats. F-DC-SLN exhibited 247.5 ± 3.40 nm particle size with 73.88 ± 1.08% entrapment efficiency and zeta potential of 14.53 ± 3.6 mV. Transmission electron microscopy (TEM) revealed spherical morphology of the SLN. Fluorescence microscopy confirmed the targeting efficacy of F-DC-SLN in MCF-7 cells. F-DC-SLN exhibited a significant increase in area under the curve (594.21 ± 64.34 versus 39.05 ± 7.41 μg/mL h) and mean residence time (31.14 ± 19.94 versus 7.24 ± 4.51 h) in comparison to Taxotere®. In addition, decreased DTX accumulation from F-DC-SLN in the heart and kidney in comparison to Taxotere may avoid to toxicity these vital organs. In conclusion, the F-DC-SLN improved the efficacy and pharmacokinetic profile of DTX exhibiting enhanced potential in optimizing breast cancer therapy.
Collapse
Affiliation(s)
- Harish Pawar
- a Department of Pharmaceutical Technology (Formulations)
| | | | | | - Charan Singh
- a Department of Pharmaceutical Technology (Formulations)
| | - Rohani Burman
- c Department of Pharmaceutical Technology (Process Chemistry) , National Institute of Pharmaceutical Education and Research (NIPER) , S.A.S. Nagar, Mohali, Punjab , India
| | - Manjinder Singh Gill
- c Department of Pharmaceutical Technology (Process Chemistry) , National Institute of Pharmaceutical Education and Research (NIPER) , S.A.S. Nagar, Mohali, Punjab , India
| | | |
Collapse
|
29
|
Sohail MF, Javed I, Hussain SZ, Sarwar S, Akhtar S, Nadhman A, Batool S, Irfan Bukhari N, Saleem RSZ, Hussain I, Shahnaz G. Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity of docetaxel. J Mater Chem B 2016; 4:6240-6248. [DOI: 10.1039/c6tb01348a] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Folate grafted and thiolated chitosan coated nanoliposomes were evaluated to improve the oral absorption and targeted pharmacological activity of docetaxel.
Collapse
|
30
|
Guo Y, Zhang P, Zhao Q, Wang K, Luan Y. Reduction-Sensitive Polymeric Micelles Based on Docetaxel-Polymer Conjugates Via Disulfide Linker for Efficient Cancer Therapy. Macromol Biosci 2015; 16:420-31. [PMID: 26647779 DOI: 10.1002/mabi.201500317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/15/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Yuanyuan Guo
- School of Pharmaceutical Science; Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Pei Zhang
- School of Pharmaceutical Science; Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Qingyun Zhao
- Hospital of Traditional Chinese Medicine of Jimo; Shandong Province P. R. China
| | - Kaiming Wang
- School of Pharmaceutical Science; Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science; Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| |
Collapse
|
31
|
Fan R, Tong A, Li X, Gao X, Mei L, Zhou L, Zhang X, You C, Guo G. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Int J Nanomedicine 2015; 10:7291-305. [PMID: 26664119 PMCID: PMC4672756 DOI: 10.2147/ijn.s89066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intraperitoneal chemotherapy was explored in clinical trials as a promising strategy to improve the therapeutic effects of chemotherapy. In this work, we developed a biodegradable and injectable drug-delivery system by coencapsulation of docetaxel (Doc) and LL37 peptide polymeric nanoparticles (Doc+LL37 NPs) in a thermosensitive hydrogel system for colorectal peritoneal carcinoma therapy. Firstly, polylactic acid (PLA)-Pluronic L35-PLA (PLA-L35-PLA) was explored to prepare the biodegradable Doc+LL37 NPs using a water-in-oil-in-water double-emulsion solvent-evaporation method. Then, biodegradable and injectable thermosensitive PLA-L64-PLA hydrogel with lower sol–gel transition temperature at around body temperature was also prepared. Transmission electron microscopy revealed that the Doc+LL37 NPs formed with the PLA-L35-PLA copolymer were spherical. Fourier-transform infrared spectra certified that Doc and LL37 were encapsulated successfully. X-ray diffraction diagrams indicated that Doc was encapsulated amorphously. Intraperitoneal administration of Doc+LL37 NPs–hydrogel significantly suppressed the growth of HCT116 peritoneal carcinomatosis in vivo and prolonged the survival of tumor-bearing mice. Our results suggested that Doc+LL37 NPs–hydrogel may have potential clinical applications.
Collapse
Affiliation(s)
- Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xiaoning Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, and Collaborative Innovation Center for Biotherapy, Beijing, People's Republic of China
| | - Chao You
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
32
|
Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
Garrastazu Pereira G, Lawson AJ, Buttini F, Sonvico F. Loco-regional administration of nanomedicines for the treatment of lung cancer. Drug Deliv 2015; 23:2881-2896. [PMID: 26585837 DOI: 10.3109/10717544.2015.1114047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung cancer poses one of the most significant challenges to modern medicine, killing thousands every year. Current therapy involves surgical resection supplemented with chemotherapy and radiotherapy due to high rates of relapse. Shortcomings of currently available chemotherapy protocols include unacceptably high levels of systemic toxicity and low accumulation of drug at the tumor site. Loco-regional delivery of nanocarriers loaded with anticancer agents has the potential to significantly increase efficacy, while minimizing systemic toxicity to anticancer agents. Local drug administration at the tumor site using nanoparticulate drug delivery systems can reduce systemic toxicities observed with intravenously administered anticancer drugs. In addition, this approach presents an opportunity for sustained delivery of anticancer drug over an extended period of time. Herein, the progress in the development of locally administered nanomedicines for the treatment of lung cancer is reviewed. Administration by inhalation, intratumoral injection and means of direct in situ application are discussed, the benefits and drawbacks of each modality are explored.
Collapse
Affiliation(s)
| | - Amanda Jane Lawson
- a Graduate School of Health, University of Technology Sydney , Sydney , Australia and
| | | | - Fabio Sonvico
- b Department of Pharmacy , University of Parma , Parma , Italy
| |
Collapse
|
34
|
Pawar H, Wankhade SR, Yadav DK, Suresh S. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration. Pharm Dev Technol 2015; 21:725-36. [DOI: 10.3109/10837450.2015.1049706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Chen L, Tan L, Zhang X, Li J, Qian Z, Xiang M, Wei Y. Which polymer is more suitable for etoposide: A comparison between two kinds of drug loaded polymeric micelles in vitro and in vivo? Int J Pharm 2015; 495:265-275. [PMID: 26325322 DOI: 10.1016/j.ijpharm.2015.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/02/2015] [Accepted: 08/16/2015] [Indexed: 02/05/2023]
Abstract
In this paper, we systemly compared the two kinds of VP16 (etoposide) loaded polymers micelles, monomethyl poly (ethylene glycol)-poly (lactic acid) (MPEG-PDLLA) and monomethyl poly (ethylene glycol)-poly (ϵ-caprolactone) (MPEG-PCL) in vitro and in vivo. Molecular modeling study was used as a novel means to compare the two formulations. In vitro, the micelle samples were fully characterized by TEM, XRD, drug loading (DL), Encapsulation efficiency (EE), stability and MTT. The stability study revealed that MPEG-PDLLA-VP16 had the significant advantage of 100% drug retention within 48 h compared to MPEG-PCL-VP16 with 40%, conform to the computer simulation model results. Cellular uptake figured that MPEG-PDLLA-VP16 had a 7 times larger uptake rate in the H460 cell line. In vivo, pharmacodynamics results showed MPEG-PDLLA-VP16 perform no significant difference with VP16 clinical formulations (10, 20mg/kg). However, MPEG-PCL-VP16 had no difference between different dosages on anticancer activities. Plasma pharmacokinetics results showed that the two micelle formulations prolong the half-life of VP16 twice than that of VP16 clinical formulations. In conclusion, micelle were better choice for cancer treatment on reducing drug toxic. In this study, the results also indicated that MPEG-PDLLA was more suitable for VP16 than MPEG-PCL as a more promising formulation for clinical cancer treatment.
Collapse
Affiliation(s)
- Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Liwei Tan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaoning Zhang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Jun Li
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Mingli Xiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
36
|
Qu D, Ma Y, Sun W, Chen Y, Zhou J, Liu C, Huang M. Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells. Int J Nanomedicine 2015; 10:1173-87. [PMID: 25709440 PMCID: PMC4330033 DOI: 10.2147/ijn.s76742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A microemulsion-based synergistic dual-drug codelivery system was developed for enhanced cell apoptosis by transporting coix seed oil and etoposide into A549 (human lung carcinoma) cells simultaneously. Results obtained by dynamic light scattering showed that an etoposide (VP16)-loaded coix seed oil microemulsion (EC-ME) delivery system had a small size around 35 nm, a narrow polydispersity index, and a slightly negative surface charge. The encapsulating efficiency and total drug loading rate were 97.01% and 45.48%, respectively, by high-performance liquid chromatography. The release profiles at various pH values showed an obvious pH-responsive difference, with the accumulated amount of VP16 released at pH 4.5 (and pH 5.5) being 2.7-fold higher relative to that at pH 7.4. Morphologic alteration (particle swelling) associated with a mildly acidic pH environment was found on transmission electron microscopy. In the cell study, the EC-ME system showed a significantly greater antiproliferative effect toward A549 cells in comparison with free VP16 and the mixture of VP16 and coix seed oil. The half-maximal inhibitory concentration of the EC-ME system was 3.9-fold and 10.4-fold lower relative to that of free VP16 and a mixture of VP16 and coix seed oil, respectively. Moreover, fluorescein isothiocyanate and VP16 (the green fluorescent probe and entrapped drug, respectively) were efficiently internalized into the cells by means of coix seed oil microemulsion through intuitive observation and quantitative measurement. Importantly, an EC-ME system containing 20 μg/mL of VP16 showed a 3.3-fold and 3.5-fold improvement in induction of cell apoptosis compared with the VP-16-loaded microemulsion and free VP16, respectively. The EC-ME combination strategy holds promise as an efficient drug delivery system for induction of apoptosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Ding Qu
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Yihua Ma
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Wenjie Sun
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China ; Department of Pharmaceutics, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Yan Chen
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Congyan Liu
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Mengmeng Huang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
WANG RONGHUA, CAO HONGMEI, TIAN ZHIJU, JIN BO, WANG QING, MA HONG, WU JING. Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer. Oncol Rep 2015; 33:783-91. [DOI: 10.3892/or.2014.3644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/22/2014] [Indexed: 11/06/2022] Open
|
38
|
Gandhi R, Khatri N, Baradia D, Vhora I, Misra A. Surface-modified Epirubicin-HCl liposomes and its in vitro assessment in breast cancer cell-line: MCF-7. Drug Deliv 2015; 23:1152-62. [PMID: 25586675 DOI: 10.3109/10717544.2014.999960] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epirubicin-HCl is highly efficient for breast cancer management at a concentration of 60-90 mg/m(2). However, its application is limited due to cumulative dose-dependent cardio-toxicity. PURPOSE The main aim of this study was to formulate breast cancer-targeted liposomal carrier by surface conjugation of transferrin to minimize cardio-toxicity of drug along with improved pharmacokinetic profile. METHOD Liposomes were formulated by ethanol injection method using HSPC, cholesterol and DSPG and later loaded with drug by the ammonium sulfate gradient method. The formulation was characterized for physicochemical properties like size, zeta potential, entrapment efficiency, TEM; in vitro tests like electro-flocculation, hemolysis and drug release; cell line study (MCF-7 cells); in vivo studies including LD50 determination, pharmacokinetic analysis, myocardial toxicity determination and stability. RESULTS AND DISCUSSION Optimized formulation had molar ratio of 60:30:8:2 (HSPC:Chol:DSPG:mPEG-DSPE) with entrapment efficiency ∼83%, particle size below 200 nm and zeta potential about -20 mV. In vitro studies proved non-interfering property and drug release character of formulation while cell line studies demonstrated improvement in cell uptake and thereby increased cytotoxicity of targeted formulation. The IC50 value obtained for epirubicin solution, non-targeted and targeted liposomes was 0.675, 0.532 and 0.192 µg/ml, respectively. Furthermore, in vivo tests validated safety and distribution profile of prepared formulations. CONCLUSION Apt properties of prepared Epirubicin-HCl liposomal formulation warrant its clinical application in breast cancer treatment after further studies.
Collapse
Affiliation(s)
- Ravi Gandhi
- a Pharmacy Department, Faculty of Technology and Engineering , The Maharaja Sayajirao University of Baroda , Vadodara , Gujarat , India
| | - Nirav Khatri
- a Pharmacy Department, Faculty of Technology and Engineering , The Maharaja Sayajirao University of Baroda , Vadodara , Gujarat , India
| | - Dipesh Baradia
- a Pharmacy Department, Faculty of Technology and Engineering , The Maharaja Sayajirao University of Baroda , Vadodara , Gujarat , India
| | - Imran Vhora
- a Pharmacy Department, Faculty of Technology and Engineering , The Maharaja Sayajirao University of Baroda , Vadodara , Gujarat , India
| | - Ambikanandan Misra
- a Pharmacy Department, Faculty of Technology and Engineering , The Maharaja Sayajirao University of Baroda , Vadodara , Gujarat , India
| |
Collapse
|
39
|
Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett 2014; 9:1065-1072. [PMID: 25663858 PMCID: PMC4315058 DOI: 10.3892/ol.2014.2840] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 11/25/2014] [Indexed: 11/06/2022] Open
Abstract
In the present study, a targetable vector was developed for the targeted delivery of anticancer agents, consisting of lipid-coated poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) that were modified with transferrin (TF). Doxorubicin (DOX) was used as a model drug for lung cancer therapy. The use of these NPs combined the advantages and avoided the disadvantages exhibited individually by liposomes and polymeric NPs during drug delivery. The lipid coating of the polymeric core was confirmed by transmission electron microscopy. The physicochemical characteristics of transferrin-conjugated lipid-coated NPs (TF-LP), including the particle size, zeta potential, morphology, encapsulation efficiency and in vitro DOX release, were also evaluated. The cellular uptake investigation in the present study found that TF-LP was more efficiently endocytosed by the A549 cells, than LP and PLGA-NPs. Furthermore, the anti-proliferative effect exhibited by DOX-loaded TF-LPs on A549 cells and the inhibition of tumor spheroid growth was stronger compared with the effect of DOX-loaded lipid-coated PLGA-NPs and PLGA-NPs. In the in vivo component of the present study, TF-LP demonstrated the best inhibitory effect on tumor growth in the A549 tumor-bearing mice. It was concluded that TF-LP may be an efficient targeted drug-delivery system for lung cancer therapy.
Collapse
Affiliation(s)
- Yajun Guo
- Department of Nursing, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lijuan Wang
- Department of Nursing, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng Lv
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
40
|
Li Y, Yuan J, Yang Q, Cao W, Zhou X, Xie Y, Tu H, Zhang Y, Wang S. Immunoliposome co-delivery of bufalin and anti-CD40 antibody adjuvant induces synergetic therapeutic efficacy against melanoma. Int J Nanomedicine 2014; 9:5683-700. [PMID: 25506218 PMCID: PMC4260685 DOI: 10.2147/ijn.s73651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Liposomes constitute one of the most popular nanocarriers for improving the delivery and efficacy of agents in cancer patients. The purpose of this study was to design and evaluate immunoliposome co-delivery of bufalin and anti-CD40 to induce synergetic therapeutic efficacy while eliminating systemic side effects. Bufalin liposomes (BFL) conjugated with anti-CD40 antibody (anti-CD40-BFL) showed enhanced cytotoxicity compared with bufalin alone. In a mouse B16 melanoma model, intravenous injection of anti-CD40-BFL achieved smaller tumor volume than did treatment with BFL (average: 117 mm3 versus 270 mm3, respectively); the enhanced therapeutic efficacy through a caspase-dependent pathway induced apoptosis, which was confirmed using terminal deoxynucleotidyl transferase-mediated dUTP-Fluorescein nick end labeling and Western blot assay. Meanwhile, anti-CD40-BFL elicited unapparent body-weight changes and a significant reduction in serum levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, interferon-γ, and hepatic enzyme alanine transaminase, suggesting minimized systemic side effects. This may be attributed to the mechanism by which liposomes are retained within the tumor site for an extended period of time, which is supported by the following biodistribution and flow cytometric analyses. Taken together, the results demonstrated a highly promising strategy for liposomal vehicle transport of anti-CD40 plus bufalin that can be used to enhance antitumor effects via synergetic systemic immunity while blocking systemic toxicity.
Collapse
Affiliation(s)
- Ying Li
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiani Yuan
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Qian Yang
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wei Cao
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuanxuan Zhou
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yanhua Xie
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Honghai Tu
- Institute for Drug and Instrument Control, Xinjiang Military Area Command, Urumqi, Xinjiang, People's Republic of China
| | - Ya Zhang
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Siwang Wang
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
41
|
Wang S, Qiu J, Shi Z, Wang Y, Chen M. Nanoscale drug delivery for taxanes based on the mechanism of multidrug resistance of cancer. Biotechnol Adv 2014; 33:224-241. [PMID: 25447422 DOI: 10.1016/j.biotechadv.2014.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Taxanes are one type of the most extensively used chemotherapeutic agents to treat cancers. However, their clinical use is severely limited by intrinsic and acquired resistance. A diverse variety of mechanisms has been implicated about taxane resistance, such as alterations of drug targets, overexpression of efflux transporters, defective apoptotic machineries, and barriers in drug transport. The deepening understanding of molecular mechanisms of taxane resistance has spawned a number of targets for reversing resistance. However, circumvention of taxane resistance would not only possess therapeutic potential, but also face with clinical challenge, which accelerates the development of optimal nanoscale delivery systems. This review highlights the current understanding on the mechanisms of taxane resistance, and provides a comprehensive analysis of various nanoscale delivery systems to reverse taxane resistance.
Collapse
Affiliation(s)
- Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
42
|
Abstract
Etoposide, a semi-synthetic derivative of podophyllotoxin, is one of the most active and useful antineoplastic agent used routinely in firstline combination chemotherapy of testicular cancer, small-cell lung cancer and non-Hodgkin's lymphoma. Etoposide displays narrow therapeutic index, erratic pharmacokinetics and dose individualization that needs to be achieved for overcoming inter- and intra-patient variability (25-80 percent), so as to maintain proper drug exposure within a therapeutic range. Etoposide possess high plasma protein binding (97 percent) and is degraded via complex metabolic pathways. The main pharmacokinetic determinants of etoposide are still not completely defined in order to optimize the pharmaco-therapeutic parameters including dose, therapeutic schedule and route of administration. Much research has been done to determine drug-drug and herb-drug interactions for improving the bioavailability of etoposide. The present article gives insight on pharmaceutical and pharmacological attempts made from time to time to overcome the erratic inter- and intra-patient variability for improving the bioavailability of etoposide.
Collapse
|
43
|
Azithromycin Cationic Non-Lecithoid Nano/Microparticles Improve Bioavailability and Targeting Efficiency. Pharm Res 2014; 31:2857-67. [DOI: 10.1007/s11095-014-1382-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/07/2014] [Indexed: 11/30/2022]
|
44
|
Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech 2014; 15:822-33. [PMID: 24687241 DOI: 10.1208/s12249-014-0107-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/06/2014] [Indexed: 12/13/2022] Open
Abstract
Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.
Collapse
|
45
|
Verma P, Meher JG, Asthana S, Pawar VK, Chaurasia M, Chourasia MK. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Deliv 2014; 23:479-88. [DOI: 10.3109/10717544.2014.920430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
46
|
Lale SV, R G A, Aravind A, Kumar DS, Koul V. AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules 2014; 15:1737-52. [PMID: 24689987 DOI: 10.1021/bm5001263] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonspecificity and cardiotoxicity are the primary limitations of current doxorubicin chemotherapy. To minimize side effects and to enhance bioavailability of doxorubicin to cancer cells, a dual-targeted pH-sensitive biocompatible polymeric nanosystem was designed and developed. An ATRP-based biodegradable triblock copolymer, poly(poly(ethylene glycol) methacrylate)-poly(caprolactone)-poly(poly(ethylene glycol) methacrylate) (pPEGMA-PCL-pPEGMA), conjugated with doxorubicin via an acid-labile hydrazone bond was synthesized and characterized. Dual targeting was achieved by attaching folic acid and the AS1411 aptamer through EDC-NHS coupling. Nanoparticles of the functionalized triblock copolymer were prepared using the nanoprecipitation method, resulting in an average particle size of ∼140 nm. The biocompatibility of the nanoparticles was evaluated using MTT cytotoxicity assays, blood compatibility studies, and protein adsorption studies. In vitro drug release studies showed a higher cumulative doxorubicin release at pH 5.0 (∼70%) compared to pH 7.4 (∼25%) owing to the presence of the acid-sensitive hydrazone linkage. Dual targeting with folate and the AS1411 aptamer increased the cancer-targeting efficiency of the nanoparticles, resulting in enhanced cellular uptake (10- and 100-fold increase in uptake compared to single-targeted NPs and non-targeted NPs, respectively) and a higher payload of doxorubicin in epithelial cancer cell lines (MCF-7 and PANC-1), with subsequent higher apoptosis, whereas a normal (noncancerous) cell line (L929) was spared from the adverse effects of doxorubicin. The results indicate that the dual-targeted pH-sensitive biocompatible polymeric nanosystem can act as a potential drug delivery vehicle against various epithelial cancers such as those of the breast, ovary, pancreas, lung, and others.
Collapse
Affiliation(s)
- Shantanu V Lale
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
| | | | | | | | | |
Collapse
|
47
|
Bhatt P, Khatri N, Kumar M, Baradia D, Misra A. Microbeads mediated oral plasmid DNA delivery using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug Deliv 2014; 22:849-61. [DOI: 10.3109/10717544.2014.898348] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Zhang H, Dou J, Zhai Y, Liu A, Zhai G. Advances in the formulations of non-injection administration of docetaxel. J Drug Target 2013; 22:87-94. [DOI: 10.3109/1061186x.2013.839686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Development and in vitro evaluation of a novel lipid nanocapsule formulation of etoposide. Eur J Pharm Sci 2013; 50:172-80. [PMID: 23831519 DOI: 10.1016/j.ejps.2013.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/11/2013] [Accepted: 06/25/2013] [Indexed: 12/25/2022]
Abstract
Small cell lung cancer (SCLC) is the most aggressive carcinoma in thoracic oncology, unfortunately, despite chemotherapy, relapse is constant. The effect of etoposide, a major drug used against SCLC, can potentially be enhanced after its encapsulation in nanocarriers. The aim of this study was to use the technology of lipid nanocapsules (LNCs) to obtain nanocarriers with drug loadings compatible with clinical use and with an industrial process. Solubility studies with different co-solvent were first performed, then several process were developed to obtain LNCs. LNCs were then characterized (size, zeta potential, and drug loading). The best formulation called Ω-LNCs had a size of 54.1±2.0 nm and a zeta potential of -5.8±3.5 mV and a etoposide drug loading of 5.7±0.3mg/g. The characteristics of this formulation were maintained after freeze drying and after a 15× scale-up. Release studies in a media mimicking plasma composition showed that 40% of the drug was released from the LNCs after 48 h. Moreover the activity of etoposide after encapsulation was enhanced on H209 cells, IC50 was 100 μM and 2.5 μM for etoposide and etoposide LNCs respectively. Unfortunately the formulation failed to be more cytotoxic than etoposide alone on H69AR cells that are resistant to etoposide. This study showed that is was possible to obtain a new etoposide nanocarrier without the use of organic solvent, that the process is suitable for scale-up and freeze drying and finally that etoposide activity is maintained which is very promising for future treatment of SCLC.
Collapse
|
50
|
Goel A, Baboota S, Sahni JK, Ali J. Exploring targeted pulmonary delivery for treatment of lung cancer. Int J Pharm Investig 2013; 3:8-14. [PMID: 23799201 PMCID: PMC3687239 DOI: 10.4103/2230-973x.108959] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most malignant cancer today. The treatment of lung cancer continues to be a challenge for oncologists. The direct delivery of chemotherapeutic agents to the lungs could represent a novel therapeutic approach for patients with pulmonary metastases. The large alveolar surface area, the low thickness of the epithelial barrier, and an extensive vascularization make the pulmonary route an ideal route for administration of oncolytics. This paper reviews the research performed over the last and current decades on the delivery of various oncolytics for pulmonary delivery for the treatment of lung cancer. Inhaled drug delivery devices in cancer therapy are also discussed in the present manuscript.
Collapse
Affiliation(s)
- Amit Goel
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| | | | | | | |
Collapse
|