1
|
Ding H, Hou X, Gao Z, Guo Y, Liao B, Wan J. Challenges and Strategies for Endothelializing Decellularized Small-Diameter Tissue-Engineered Vessel Grafts. Adv Healthc Mater 2024; 13:e2304432. [PMID: 38462702 DOI: 10.1002/adhm.202304432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Vascular diseases are the leading cause of ischemic necrosis in tissues and organs, necessitating using vascular grafts to restore blood supply. Currently, small vessels for coronary artery bypass grafts are unavailable in clinical settings. Decellularized small-diameter tissue-engineered vessel grafts (SD-TEVGs) hold significant potential. However, they face challenges, as simple implantation of decellularized SD-TEVGs in animals leads to thrombosis and calcification due to incomplete endothelialization. Consequently, research and development focus has shifted toward enhancing the endothelialization process of decellularized SD-TEVGs. This paper reviews preclinical studies involving decellularized SD-TEVGs, highlighting different strategies and their advantages and disadvantages for achieving rapid endothelialization of these vascular grafts. Methods are analyzed to improve the process while addressing potential shortcomings. This paper aims to contribute to the future commercial viability of decellularized SD-TEVGs.
Collapse
Affiliation(s)
- Heng Ding
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
2
|
Wang N, Chen J, Hu Q, He Y, Shen P, Yang D, Wang H, Weng D, He Z. Small diameter vascular grafts: progress on electrospinning matrix/stem cell blending approach. Front Bioeng Biotechnol 2024; 12:1385032. [PMID: 38807647 PMCID: PMC11130446 DOI: 10.3389/fbioe.2024.1385032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
The exploration of the next-generation small diameter vascular grafts (SDVGs) will never stop until they possess high biocompatibility and patency comparable to autologous native blood vessels. Integrating biocompatible electrospinning (ES) matrices with highly bioactive stem cells (SCs) provides a rational and promising solution. ES is a simple, fast, flexible and universal technology to prepare extracellular matrix-like fibrous scaffolds in large scale, while SCs are valuable, multifunctional and favorable seed cells with special characteristics for the emerging field of cell therapy and regenerative medicine. Both ES matrices and SCs are advanced resources with medical application prospects, and the combination may share their advantages to drive the overcoming of the long-lasting hurdles in SDVG field. In this review, the advances on SDVGs based on ES matrices and SCs (including pluripotent SCs, multipotent SCs, and unipotent SCs) are sorted out, and current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Jiajing Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Qingqing Hu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Yunfeng He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Pu Shen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Dingkun Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Haoyuan Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Second Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Zhao S, Zhang Q, Liu M, Du J, Wang T, Li Y, Zeng W. Application of stem cells in engineered vascular graft and vascularized organs. Semin Cell Dev Biol 2023; 144:31-40. [PMID: 36411157 DOI: 10.1016/j.semcdb.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
Abstract
Recent studies report that stem cell therapies have been applied successfully to patients, This has increased anticipations that this regeneration strategy could be a potential method to treat a wide range of intractable diseases some day. Stem cells offer new prospects for the treatment of incurable diseases and for tissue regeneration and repairation because of their unique biological properties. Angiogenesis a key process in tissue regeneration and repairation. Vascularization of organs is one of the main challenges hindering the clinical application of engineered tissues. Efficient production of engineered vascular grafts and vascularized organs is of critical importance for regenerative medicine. In this review, we focus on the types of stem cells that are widely used in tissue engineering and regeneration, as well as their application of these stem cells in the construction of tissue-engineered vascular grafts and vascularization of tissue-engineered organs.
Collapse
Affiliation(s)
- Shanlan Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Qiao Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing, China; Department of Pain and Rehabilitation, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, China
| | - Min Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Jiahui Du
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Tingting Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yanzhao Li
- Department of Anatomy, Third Military Medical University, Chongqing, China.
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China; Jinfeng Laboratory, Chongqing 401329, People's Republic China; State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.
| |
Collapse
|
4
|
Wang L, Wei X, Wang Y. Promoting Angiogenesis Using Immune Cells for Tissue-Engineered Vascular Grafts. Ann Biomed Eng 2023; 51:660-678. [PMID: 36774426 DOI: 10.1007/s10439-023-03158-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/29/2023] [Indexed: 02/13/2023]
Abstract
Implantable tissue-engineered vascular grafts (TEVGs) usually trigger the host reaction which is inextricably linked with the immune system, including blood-material interaction, protein absorption, inflammation, foreign body reaction, and so on. With remarkable progress, the immune response is no longer considered to be entirely harmful to TEVGs, but its therapeutic and impaired effects on angiogenesis and tissue regeneration are parallel. Although the implicated immune mechanisms remain elusive, it is certainly worthwhile to gain detailed knowledge about the function of the individual immune components during angiogenesis and vascular remodeling. This review provides a general overview of immune cells with an emphasis on macrophages in light of the current literature. To the extent possible, we summarize state-of-the-art approaches to immune cell regulation of the vasculature and suggest that future studies are needed to better define the timing of the activity of each cell subpopulation and to further reveal key regulatory switches.
Collapse
Affiliation(s)
- Li Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqing Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
5
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
6
|
Fayon A, Menu P, El Omar R. Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard. NPJ Regen Med 2021; 6:46. [PMID: 34385472 PMCID: PMC8361171 DOI: 10.1038/s41536-021-00155-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the lack of efficacy of synthetic vascular substitutes in the replacement of small-caliber arteries, vascular tissue engineering (VTE) has emerged as a promising solution to produce viable small-caliber tissue-engineered vascular grafts (TEVG). Previous studies have shown the importance of a cellular intimal layer at the luminal surface of TEVG to prevent thrombotic events. However, the cellularization of a TEVG seems to be a critical approach to consider in the development of a TEVG. To date, no standard cellularization method or cell type has been established to create the ideal TEVG by promoting its long-term patency and function. In this review, advances in VTE are described and discussed with a particular focus on the construction approaches of cellularized small-caliber TEVGs, the cell types used, as well as their preclinical and clinical applications.
Collapse
Affiliation(s)
- Adrien Fayon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Patrick Menu
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France.
| | - Reine El Omar
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France
| |
Collapse
|
7
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Wang Z, Wang X, Bi M, Hu X, Wang Q, Liang H, Liu D. Effects of the histone acetylase inhibitor C646 on growth and differentiation of adipose-derived stem cells. Cell Cycle 2021; 20:392-405. [PMID: 33487075 DOI: 10.1080/15384101.2021.1876389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
As an important histone acetylase, the transcriptional coactivator P300/CBP affects target gene expression and plays a role in the maintenance of stem cell characteristics and differentiation potential. In this study, we explored the action of a highly effective selective histone acetylase inhibitor, C646, on goat adipose-derived stem cells (gADSCs), and investigated the impact of histone acetylation on the growth characteristics and the differentiation potential of ADSCs. We found that C646 blocked the cell proliferation, arrested the cell cycle, and triggered apoptosis. Notably, immunocytochemistry and western blot analyses showed that the acetylation level of histone H3K9 was increased. Moreover, although real-time quantitative PCR and western blot confirmed that P300 expression was inhibited under these conditions, the expression level of two other histone acetylases, TIP60 and PCAF, was significantly increased. Furthermore, C646 clearly promoted the differentiation of gADSCs into adipocytes and had an impact on their differentiation into neuronal cells. This study provides new insights into the epigenetic regulation of stem cell differentiation and may represent an experimental basis for the comprehension of stem cell characteristics and function. Furthermore, it is of great relevance for the application of adult stem cells to somatic cell cloning, which may improve the efficiency of large livestock cloning and foster the production of transgenic animals.
Collapse
Affiliation(s)
- Zhimin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Meiyu Bi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Xiao Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Qing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University , Hohhot, P.R, China
| |
Collapse
|
9
|
Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, Zhang C, Tang W, Liu Z. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci 2020; 9:1088-1103. [PMID: 33332490 DOI: 10.1039/d0bm01164a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies of nanomedicine have achieved dramatic progress in recent decades. However, the main challenges that traditional nanomedicine has to overcome include low accumulation at target sites and rapid clearance from the blood circulation. An interesting approach using cell membrane coating technology has emerged as a possible way to overcome these limitations, owing to the enhanced targeted delivery and reduced immunogenicity of cell membrane moieties. Mesenchymal stem cell (MSC) therapy has been investigated for treating various diseases, ranging from inflammatory diseases to tissue damage. Recent studies with engineered modified MSCs or MSC membranes have focused on enhancing cell therapeutic efficacy. Therefore, bioengineering strategies that couple synthetic nanoparticles with MSC membranes have recently received much attention due to their homing ability and tumor tropism. Given the various membrane receptors on their surfaces, MSC membrane-coated nanoparticles are an effective method with selective targeting properties, allowing entry into specific cells. Here, we review recent progress on the use of MSC membrane-coated nanoparticles for biomedical applications, particularly in the two main antitumor and anti-inflammatory fields. The combination of a bioengineered cell membrane and synthesized nanoparticles presents a wide range of possibilities for the further development of targeted drug delivery, showing the potential to enhance the therapeutic efficacy for treating various diseases.
Collapse
Affiliation(s)
- Mian Wang
- Department of Cardiology, Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Harper S, Hoff M, Skepper J, Davies S, Huguet E. Portal venous repopulation of decellularised rat liver scaffolds with syngeneic bone marrow stem cells. J Tissue Eng Regen Med 2020; 14:1502-1512. [PMID: 32808475 DOI: 10.1002/term.3117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Liver transplantation is the only life-saving treatment for end-stage liver failure but is limited by the organ shortage and consequences of immunosuppression. Repopulation of decellularised scaffolds with recipient cells provides a theoretical solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Recellularisation of the vasculature of decellularised liver scaffolds was investigated as an essential prerequisite to the survival of other parenchymal components. Liver decellularisation was carried out by portal vein perfusion using a detergent-based solution. Decellularised scaffolds were placed in a sterile perfusion apparatus consisting of a sealed organ chamber, functioning at 37°C in normal atmospheric conditions. The scaffold was perfused via portal vein with culture medium. A total of 107 primary cultured bone marrow stem cells, selected by plastic adherence, were infused into the scaffold, after which repopulated scaffolds were perfused for up to 30 days. The cultured stem cells were assessed for key marker expression using fluorescence-activated cell sorting (FACS), and recellularised scaffolds were analysed by light, electron and immunofluorescence microscopy. Stem cells were engrafted in portal, sinusoidal and hepatic vein compartments, with cell alignment reminiscent of endothelium. Cell surface marker expression altered following engraftment, from haematopoietic to endothelial phenotype, and engrafted cells expressed sinusoidal endothelial endocytic receptors (mannose, Fc and stabilin receptors). These results represent one step towards complete recellularisation of the liver vasculature and progress towards the objective of generating transplantable neo-organs.
Collapse
Affiliation(s)
- Simon Harper
- Cambridge University, Department of Surgery, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mekhola Hoff
- Cambridge University, Department of Surgery, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jeremy Skepper
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Susan Davies
- Cambridge University, Department of Histopathology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emmanuel Huguet
- Cambridge University, Department of Surgery, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
12
|
Afra S, Matin MM. Potential of mesenchymal stem cells for bioengineered blood vessels in comparison with other eligible cell sources. Cell Tissue Res 2020; 380:1-13. [PMID: 31897835 DOI: 10.1007/s00441-019-03161-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Application of stem cells in tissue engineering has proved to be effective in many cases due to great proliferation and differentiation potentials as well as possible paracrine effects of these cells. Human mesenchymal stem cells (MSCs) are recognized as a valuable source for vascular tissue engineering, which requires endothelial and perivascular cells. The goal of this review is to survey the potential of MSCs for engineering functional blood vessels in comparison with other cell types including bone marrow mononuclear cells, endothelial precursor cells, differentiated adult autologous smooth muscle cells, autologous endothelial cells, embryonic stem cells, and induced pluripotent stem cells. In conclusion, MSCs represent a preference in making autologous tissue-engineered vascular grafts (TEVGs) as well as off-the-shelf TEVGs for emergency vascular surgery cases.
Collapse
Affiliation(s)
- Simindokht Afra
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Chen J, Tu C, Tang X, Li H, Yan J, Ma Y, Wu H, Liu C. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect. Stem Cell Res Ther 2019; 10:379. [PMID: 31842985 PMCID: PMC6915868 DOI: 10.1186/s13287-019-1464-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Restoration of massive bone defects remains a huge challenge for orthopedic surgeons. Insufficient vascularization and slow bone regeneration limited the application of tissue engineering in bone defect. The effect of electromagnetic field (EMF) on bone defect has been reported for many years. However, sinusoidal EMF (SEMF) combined with tissue engineering in bone regeneration remains poorly investigated. METHODS In the present study, we investigated the effect of SEMF and vascular endothelial growth factor (VEGF) on osteogenic and vasculogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). Furthermore, pretreated rBMSC- laden polycaprolactone-hydroxyapatite (PCL/HA) scaffold was constructed and implanted into the subcritical cranial defect of rats. The bone formation and vascularization were evaluated 4 and 12 weeks after implantation. RESULTS It was shown that SEMF and VEGF could enhance the protein and mRNA expression levels of osteoblast- and endothelial cell-related markers, respectively. The combinatory effect of SEMF and VEGF slightly promoted the angiogenic differentiation of rBMSCs. The proteins of Wnt1, low-density lipoprotein receptor-related protein 6 (LRP-6), and β-catenin increased in all inducted groups, especially in SEMF + VEGF group. The results indicated that Wnt/β-catenin pathway might participate in the osteogenic and angiogenic differentiation of rBMSCs. Histological evaluation and reconstructed 3D graphs revealed that tissue-engineered constructs significantly promoted the new bone formation and angiogenesis compared to other groups. CONCLUSION The combinatory effect of SEMF and VEGF raised an efficient approach to enhance the osteogenesis and vascularization of tissue-engineered constructs, which provided a useful guide for regeneration of bone defects.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Chang Tu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Yongzhuang Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| |
Collapse
|
14
|
On-Chip Construction of Multilayered Hydrogel Microtubes for Engineered Vascular-Like Microstructures. MICROMACHINES 2019; 10:mi10120840. [PMID: 31805688 PMCID: PMC6953073 DOI: 10.3390/mi10120840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 12/30/2022]
Abstract
Multilayered and multicellular structures are indispensable for constructing functional artificial tissues. Engineered vascular-like microstructures with multiple layers are promising structures to be functionalized as artificial blood vessels. In this paper, we present an efficient method to construct multilayer microtubes embedding different microstructures based on direct fabrication and assembly inside a microfluidic device. This four-layer microfluidic device has two separate inlets for fabricating various microstructures. We have achieved alternating-layered microtubes by controlling the fabrication, flow, and assembly time of each microstructure, and as well, double-layered microtubes have been built by a two-step assembly method. Modifications of both the inner and outer layers was successfully demonstrated, and the flow conditions during the on-chip assembly were evaluated and optimized. Each microtube was successfully constructed within several minutes, showing the potential applications of the presented method for building engineered vascular-like microstructures with high efficiency.
Collapse
|
15
|
Lopera Higuita M, Griffiths LG. Small Diameter Xenogeneic Extracellular Matrix Scaffolds for Vascular Applications. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:26-45. [PMID: 31663438 DOI: 10.1089/ten.teb.2019.0229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, despite the success of percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG) remains among the most commonly performed cardiac surgical procedures in the United States. Unfortunately, the use of autologous grafts in CABG presents a major clinical challenge as complications due to autologous vessel harvest and limited vessel availability pose a significant setback in the success rate of CABG surgeries. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissues have the potential to overcome these challenges, as they offer unlimited availability and sufficient length to serve as "off-the-shelf" CABGs. Unfortunately, regardless of numerous efforts to produce a fully functional small diameter xenogeneic ECM scaffold, the combination of factors required to overcome all failure mechanisms in a single graft remains elusive. This article covers the major failure mechanisms of current xenogeneic small diameter vessel ECM scaffolds, and reviews the recent advances in the field to overcome these failure mechanisms and ultimately develop a small diameter ECM xenogeneic scaffold for CABG. Impact Statement Currently, the use of autologous vessel in coronary artery bypass graft (CABG) is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use in CABG can potentially increase the success rate of CABG surgery by eliminating complications related to the use of autologous vessel. However, this development has been hindered by an array of failure mechanisms that currently have not been overcome. This article describes the currently identified failure mechanisms of small diameter vascular xenogeneic extracellular matrix scaffolds and reviews current research targeted to overcoming these failure mechanisms toward ensuring long-term graft patency.
Collapse
Affiliation(s)
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Wang D, Wang X, Zhang Z, Wang L, Li X, Xu Y, Ren C, Li Q, Turng LS. Programmed Release of Multimodal, Cross-Linked Vascular Endothelial Growth Factor and Heparin Layers on Electrospun Polycaprolactone Vascular Grafts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32533-32542. [PMID: 31393107 DOI: 10.1021/acsami.9b10621] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viable tissue-engineering small-diameter vascular grafts should support rapid growth of an endothelial cell layer and exhibit long-term antithrombogenic property. In this study, multiple layers of various bioactive molecules, such as vascular endothelial growth factor (VEGF) and heparin, on an electrospun polycaprolactone scaffold have been developed through repeated electrostatic adsorption self-assembly (up to 20 layers), followed by genipin cross-linking. Programmed and sustained release of biomolecules embedded within the multilayered structure can be triggered by matrix metallopeptidase 2 enzyme in vitro. The result is an early and full release of VEGF to promote rapid endothelialization on the intended vascular grafts, followed by a gradual but sustained release of heparin for long-term anticoagulation and antithrombogenicity. This method of forming a biologically responsive, multimodal delivery of VEGF and heparin is highly suitable for all hydrophobic surfaces and provides a promising way to meet the critical requirements of engineered small-diameter vascular grafts.
Collapse
|
17
|
Kiros S, Lin S, Xing M, Mequanint K. Embryonic Mesenchymal Multipotent Cell Differentiation on Electrospun Biodegradable Poly(ester amide) Scaffolds for Model Vascular Tissue Fabrication. Ann Biomed Eng 2019; 48:980-991. [PMID: 31062257 DOI: 10.1007/s10439-019-02276-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022]
Abstract
Vascular differentiation of stem cells and matrix component production on electrospun tubular scaffolds is desirable to engineer blood vessels. The mouse embryonic multipotent mesenchymal progenitor cell line (10T1/2) provides an excellent tool for tissue engineering since it shares similar differentiation characteristics with mesenchymal stem cells. Although 10T1/2 cells have been widely studied in the context of skeletal tissue engineering, their differentiation to smooth muscle lineage is less known. In this study, we fabricated tubular electrospun poly(ester amide) (PEA) fibers from L-phenylalanine-derived biodegradable biomaterials and investigated cell-scaffold interactions as well as their differentiation into vascular smooth muscle cell and subsequent elastin expression. PEA scaffolds fabricated under different collector speeds did not have an impact on the fiber directionality/orientation. 10T1/2 cytocompatibility and proliferation studies showed that PEA fibres were not cytotoxic and were able to support proliferation for 14 days. Furthermore, cells were observed infiltrating the fibrous scaffolds despite the small pore sizes (~ 5 µm). Vascular differentiation studies of 10T1/2 cells using qPCR, Western blot, and immunostaining showed a TGFβ1-induced upregulation of vascular smooth muscle cell (VSMC)-specific markers smooth muscle alpha-actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). Differentiated 10T1/2 cells produced both elastin and fibrillin-1 suggesting the potential of fibrous PEA scaffolds to fabricate model vascular tissues.
Collapse
Affiliation(s)
- Sarah Kiros
- School of Biomedical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Shigang Lin
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 66 Chancellors Circle, Winnipeg, R3T 2N2, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada. .,Department of Chemical & Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
| |
Collapse
|
18
|
Ezhilarasu H, Sadiq A, Ratheesh G, Sridhar S, Ramakrishna S, Ab Rahim MH, Yusoff MM, Jose R, Reddy VJ. Functionalized core/shell nanofibers for the differentiation of mesenchymal stem cells for vascular tissue engineering. Nanomedicine (Lond) 2018; 14:201-214. [PMID: 30526272 DOI: 10.2217/nnm-2018-0271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Atherosclerosis is a common cardiovascular disease causing medical problems globally leading to coronary artery bypass surgery. The present study is to fabricate core/shell nanofibers to encapsulate VEGF for the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells to develop vascular grafts. MATERIALS & METHODS The fabricated core/shell nanofibers contained polycaprolactone/gelatin as the shell, and silk fibroin/VEGF as the core materials. RESULTS The results observed that the core/shell nanofibers interact to differentiate MSCs into smooth muscle cells by the expression of vascular smooth muscle cell (VSMC) contractile proteins α-actinin, myosin and F-actin. CONCLUSION The functionalized polycaprolactone/gelatin/silk fibroin/VEGF (250 ng) core/shell nanofibers were fabricated for the controlled release of VEGF in a persistent manner for the differentiation of MSCs into smooth muscle cells for vascular tissue engineering.
Collapse
Affiliation(s)
- Hariharan Ezhilarasu
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore
| | - Asif Sadiq
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore
| | - Greeshma Ratheesh
- Institute of Health & Biomedical Innovation, Science & Engineering Faculty, Queensland University of Technology (QUT), Australia
| | - Sreepathy Sridhar
- Department of Mechanical & Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore
| | - Mohd Hasbi Ab Rahim
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mashitah M Yusoff
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Rajan Jose
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Venugopal Jayarama Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore.,Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
19
|
Roveimiab Z, Lin F, Anderson JE. Emerging Development of Microfluidics-Based Approaches to Improve Studies of Muscle Cell Migration. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:30-45. [PMID: 30073911 DOI: 10.1089/ten.teb.2018.0181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPACT STATEMENT The essential interactions between and among cells in the three types of muscle tissue in development, wound healing, and regeneration of tissues, are underpinned by the ability of cardiac, smooth, and skeletal muscle cells to migrate in maintaining functional capacity after pathologies such as myocardial infarction, tissue grafting, and traumatic and postsurgical injury. Microfluidics-based devices now offer significant enhancement over conventional approaches to studying cell chemotaxis and haptotaxis that are inherent in migration. Advances in experimental approaches to muscle cell movement and tissue formation will contribute to innovations in tissue engineering for patching wound repair and muscle tissue replacement.
Collapse
Affiliation(s)
- Ziba Roveimiab
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada.,2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Francis Lin
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada.,2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Judy E Anderson
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada
| |
Collapse
|
20
|
Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater 2018; 7:e1701461. [PMID: 29732735 PMCID: PMC6105365 DOI: 10.1002/adhm.201701461] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Collapse
Affiliation(s)
- Daniel Radke
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Wenkai Jia
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Kemin Fena
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| |
Collapse
|
21
|
Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater 2018; 74:90-111. [PMID: 29753139 DOI: 10.1016/j.actbio.2018.05.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. STATEMENT OF SIGNIFICANCE Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds.
Collapse
Affiliation(s)
- Nicholas A Chartrain
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christopher B Williams
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abby R Whittington
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
22
|
Di Franco S, Amarelli C, Montalto A, Loforte A, Musumeci F. Biomaterials and heart recovery: cardiac repair, regeneration and healing in the MCS era: a state of the "heart". J Thorac Dis 2018; 10:S2346-S2362. [PMID: 30123575 PMCID: PMC6081365 DOI: 10.21037/jtd.2018.01.85] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/12/2018] [Indexed: 01/31/2023]
Abstract
Regenerative medicine is an emerging interdisciplinary field of scientific research that, supported by tissue engineering is, nowadays, a valuable and reliable solution dealing with the actual organs shortage and the unresolved limits of biological or prosthetic materials used in repair and replacement of diseased or damaged human tissues and organs. Due to the improvements in design and materials, and to the changing of clinical features of patients treated for valvular heart disease the distance between the ideal valve and the available prostheses has been shortened. We will then deal with the developing of new tools aiming at replacing or repair cardiac tissues that still represent an unmet clinical need for the surgeons and indeed for their patients. In the effort of improving treatment for the cardiovascular disease (CVD), scientists struggle with the lack of self-regenerative capacities of finally differentiated cardiovascular tissues. In this context, using several converging technological approaches, regenerative medicine moves beyond traditional transplantation and replacement therapies and can restore tissue impaired function. It may also play an essential role in surgery daily routine, leading to produce devices such as injectable hydrogels, cardiac patches, bioresorbable stents and vascular grafts made by increasingly sophisticated biomaterial scaffolds; tailored devices promptly fabricated according to surgeon necessity and patient anatomy and pathology will hopefully represent a daily activity in the next future. The employment of these devices, still far from the in vitro reproduction of functional organs, has the main aim to achieve a self-renewal process in damaged tissues simulating endogenous resident cell populations. In this field, the collaboration and cooperation between cardiothoracic surgeons and bioengineers appear necessary to modify these innovative devices employed in preclinical studies according to the surgeon's needs.
Collapse
Affiliation(s)
- Sveva Di Franco
- Department of Anaesthesiology and Critical Care Medicine, L. Vanvitelli University, Naples, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Andrea Montalto
- Department of Heart and Vessels, Cardiac Surgery Unit and Heart Transplantation Center, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Antonio Loforte
- Department of Cardiovascular Surgery and Transplantation, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - Francesco Musumeci
- Department of Heart and Vessels, Cardiac Surgery Unit and Heart Transplantation Center, S. Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
23
|
Maina RM, Barahona MJ, Finotti M, Lysyy T, Geibel P, D'Amico F, Mulligan D, Geibel JP. Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innov Surg Sci 2018; 3:203-213. [PMID: 31579784 PMCID: PMC6604577 DOI: 10.1515/iss-2018-0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022] Open
Abstract
Vascular disease - including coronary artery disease, carotid artery disease, and peripheral vascular disease - is a leading cause of morbidity and mortality worldwide. The standard of care for restoring patency or bypassing occluded vessels involves using autologous grafts, typically the saphenous veins or internal mammary arteries. Yet, many patients who need life- or limb-saving procedures have poor outcomes, and a third of patients who need vascular intervention have multivessel disease and therefore lack appropriate vasculature to harvest autologous grafts from. Given the steady increase in the prevalence of vascular disease, there is great need for grafts with the biological and mechanical properties of native vessels that can be used as vascular conduits. In this review, we present an overview of methods that have been employed to generate suitable vascular conduits, focusing on the advances in tissue engineering methods and current three-dimensional (3D) bioprinting methods. Tissue-engineered vascular grafts have been fabricated using a variety of approaches such as using preexisting scaffolds and acellular organic compounds. We also give an extensive overview of the novel use of 3D bioprinting as means of generating new vascular conduits. Different strategies have been employed in bioprinting, and the use of cell-based inks to create de novo structures offers a promising solution to bridge the gap of paucity of optimal donor grafts. Lastly, we provide a glimpse of our work to create scaffold-free, bioreactor-free, 3D bioprinted vessels from a combination of rat vascular smooth muscle cells and fibroblasts that remain patent and retain the tensile and mechanical strength of native vessels.
Collapse
Affiliation(s)
- Renee M Maina
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Maria J Barahona
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michele Finotti
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,University of Padua, Transplantation and Hepatobiliary Surgery, Padua, Italy
| | - Taras Lysyy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Geibel
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Francesco D'Amico
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,University of Padua, Transplantation and Hepatobiliary Surgery, Padua, Italy
| | - David Mulligan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - John P Geibel
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Dhulekar J, Simionescu A. Challenges in vascular tissue engineering for diabetic patients. Acta Biomater 2018; 70:25-34. [PMID: 29396167 PMCID: PMC5871600 DOI: 10.1016/j.actbio.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Hyperglycemia and dyslipidemia coexist in diabetes and result in inflammation, degeneration, and impaired tissue remodeling, processes which are not conducive to the desired integration of tissue engineered products into the surrounding tissues. There are several challenges for vascular tissue engineering such as non-thrombogenicity, adequate burst pressure and compliance, suturability, appropriate remodeling responses, and vasoactivity, but, under diabetic conditions, an additional challenge needs to be considered: the aggressive oxidative environment generated by the high glucose and lipid concentrations that lead to the formation of advanced glycation end products (AGEs) in the vascular wall. Extracellular matrix-based scaffolds have adequate physical properties and are biocompatible, however, these scaffolds are altered in diabetes by the formation AGEs and impaired collagen degradation, consequently increasing vascular wall stiffness. In addition, vascular cells detect and respond to altered stimuli from the matrix by pathological remodeling of the vascular wall. Due to the immunomodulatory effects of mesenchymal stem cells (MSCs), they are frequently used in tissue engineering in order to protect the scaffolds from inflammation. MSCs together with antioxidant treatments of the scaffolds are expected to protect the vascular grafts from diabetes-induced alterations. In conclusion, as one of the most daunting environments that could damage the ECM and its interaction with cells is progressively built in diabetes, we recommend that cells and scaffolds used in vascular tissue engineering for diabetic patients are tested in diabetic animal models, in order to obtain valuable results regarding their resistance to diabetic adversities. STATEMENT OF SIGNIFICANCE Almost 25 million Americans have diabetes, characterized by high levels of blood sugar that binds to tissues and disturbs the function of cardiovascular structures. Therefore, patients with diabetes have a high risk of cardiovascular diseases. Surgery is required to replace diseased arteries with implants, but these fail after 5-10 years because they are made of non-living materials, not resistant to diabetes. New tissue engineering materials are developed, based on the patients' own stem cells, isolated from fat, and added to extracellular matrix-based scaffolds. Our main concern is that diabetes could damage the tissue-like implants. Thus we review studies related to the effect of diabetes on tissue components and recommend antioxidant treatments to increase the resistance of implants to diabetes.
Collapse
|
25
|
Lau S, Eicke D, Carvalho Oliveira M, Wiegmann B, Schrimpf C, Haverich A, Blasczyk R, Wilhelmi M, Figueiredo C, Böer U. Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering. Tissue Eng Part A 2018; 24:432-447. [DOI: 10.1089/ten.tea.2016.0541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Skadi Lau
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Dorothee Eicke
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Marco Carvalho Oliveira
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Schrimpf
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Constança Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017; 147:116-132. [PMID: 28942128 PMCID: PMC5638652 DOI: 10.1016/j.biomaterials.2017.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 12/18/2022]
Abstract
Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Xia Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Oscar Bartulos
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Xiao-Qiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, 130021, China
| | - Yongming Ren
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Peining Li
- Department of Genetics, Yale University, New Haven, CT 06519, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alan Dardik
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jordan S Pober
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marsha Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Robert J Hawley
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - David H Sachs
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Tseng YC, Roan JN, Ho YC, Lin CC, Yeh ML. An in vivo study on endothelialized vascular grafts produced by autologous biotubes and adipose stem cells (ADSCs). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:166. [PMID: 28914400 DOI: 10.1007/s10856-017-5986-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Currently, commercial synthetic vascular grafts made from Dacron and ePTFE for small-diameter, vascular applications (<6 mm) show limited reendothelization and are less compliant, often resulting in thrombosis and intimal hyperplasia. Although good blood compatibility can be achieved in autologous arteries and veins, the number of high quality harvest sites is limited, and the grafts are size-mismatched for use in the fistula or cardiovascular bypass surgery; thus, alternative small graft substitutes must be developed. A biotube is an in vivo, tissue-engineered approach for the growth of autologous grafts through the subcutaneous implantation of an inert rod through the inflammation process. In the present study, we embedded silicone rods with a diameter of 2 mm into the dorsal subcutaneous tissue of rabbits for 4 weeks to grow biotubes. The formation of functional endothelium cells aligned on the inner wall surface was achieved by seeding with adipose stem cells (ADSCs). The ADSCs-seeded biotubes were implanted into the carotid artery of rabbits for more than 1 month, and the patency rates and remodeling of endothelial cells were observed by angiography and fluorescence staining, respectively. Finally, the mechanical properties of the biotube were also evaluated. The fluorescence staining results showed that the ADSCs differentiated not only into endothelia cells but also into smooth muscle cells. Moreover, the patency of the ADSCs-seeded biotube remained high for at least 5 months. These small-sized ADSCs-seeded vascular biotubes may decrease the rate of intimal hyperplasia during longer implantation times and have potential clinical applications in the future.
Collapse
Affiliation(s)
- Yu Chieh Tseng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jun Neng Roan
- Institute of clinical medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiovascular Surger, Department of Surgery, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ying Chiang Ho
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih Chan Lin
- Department of Medical Research, Laboratory Animal Center, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ming Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
28
|
Gao A, Hang R, Li W, Zhang W, Li P, Wang G, Bai L, Yu XF, Wang H, Tong L, Chu PK. Linker-free covalent immobilization of heparin, SDF-1α, and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation. Biomaterials 2017; 140:201-211. [DOI: 10.1016/j.biomaterials.2017.06.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/17/2017] [Accepted: 06/18/2017] [Indexed: 01/20/2023]
|
29
|
Krawiec JT, Liao HT, Kwan LL, D'Amore A, Weinbaum JS, Rubin JP, Wagner WR, Vorp DA. Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft. J Vasc Surg 2017; 66:883-890.e1. [PMID: 28017585 PMCID: PMC5481505 DOI: 10.1016/j.jvs.2016.09.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE One of the rate-limiting barriers within the field of vascular tissue engineering is the lengthy fabrication time associated with expanding appropriate cell types in culture. One particularly attractive cell type for this purpose is the adipose-derived mesenchymal stem cell (AD-MSC), which is abundant and easily harvested from liposuction procedures. Even this cell type has its drawbacks, however, including the required culture period for expansion, which could pose risks of cellular transformation or contamination. Eliminating culture entirely would be ideal to avoid these concerns. In this study, we used the raw population of cells obtained after digestion of human liposuction aspirates, known as the stromal vascular fraction (SVF), as an abundant, culture-free cell source for tissue-engineered vascular grafts (TEVGs). METHODS SVF cells and donor-paired cultured AD-MSCs were first assessed for their abilities to differentiate into vascular smooth muscle cells (SMCs) after angiotensin II stimulation and to secrete factors (eg, conditioned media) that promote SMC migration. Next, both cell types were incorporated into TEVG scaffolds, implanted as an aortic graft in a Lewis rat model, and assessed for their patency and composition. RESULTS In general, the human SVF cells were able to perform the same functions as AD-MSCs isolated from the same donor by culture expansion. Specifically, cells within the SVF performed two important functions; namely, they were able to differentiate into SMCs (SVF calponin expression: 16.4% ± 7.7% vs AD-MSC: 19.9%% ± 1.7%) and could secrete promigratory factors (SVF migration rate relative to control: 3.1 ± 0.3 vs AD-MSC: 2.5 ± 0.5). The SVF cells were also capable of being seeded within biodegradable, elastomeric, porous scaffolds that, when implanted in vivo for 8 weeks, generated patent TEVGs (SVF: 83% patency vs AD-MSC: 100% patency) populated with primary vascular components (eg, SMCs, endothelial cells, collagen, and elastin). CONCLUSIONS Human adipose tissue can be used as a culture-free cell source to create TEVGs, laying the groundwork for the rapid production of cell-seeded grafts.
Collapse
MESH Headings
- Adipose Tissue/blood supply
- Adult
- Angiotensin II/pharmacology
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/surgery
- Bioprosthesis
- Blood Vessel Prosthesis
- Blood Vessel Prosthesis Implantation/instrumentation
- Blood Vessel Prosthesis Implantation/methods
- Cell Differentiation
- Cell Movement
- Cell Separation
- Cells, Cultured
- Female
- Humans
- Lipectomy
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/transplantation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/transplantation
- Phenotype
- Rats, Inbred Lew
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/transplantation
- Time Factors
- Tissue Engineering/methods
- Tissue Scaffolds
Collapse
Affiliation(s)
- Jeffrey T Krawiec
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Han-Tsung Liao
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pa; Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - LaiYee Lily Kwan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pa
| | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Ri.MED Foundation, Palermo, Italy; Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), University of Palermo, Palermo, Italy
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
30
|
Wang H, Agarwal P, Xiao Y, Peng H, Zhao S, Liu X, Zhou S, Li J, Liu Z, He X. A Nano-In-Micro System for Enhanced Stem Cell Therapy of Ischemic Diseases. ACS CENTRAL SCIENCE 2017; 3:875-885. [PMID: 28852702 PMCID: PMC5571461 DOI: 10.1021/acscentsci.7b00213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 05/12/2023]
Abstract
Stem cell therapy holds great potential for treating ischemic diseases. However, contemporary methods for local stem cell delivery suffer from poor cell survival/retention after injection. We developed a unique multiscale delivery system by encapsulating therapeutic agent-laden nanoparticles in alginate hydrogel microcapsules and further coentrapping the nano-in-micro capsules with stem cells in collagen hydrogel. The multiscale system exhibits significantly higher mechanical strength and stability than pure collagen hydrogel. Moreover, unlike nanoparticles, the nano-in-micro capsules do not move with surrounding body fluid and are not taken up by the cells. This allows a sustained and localized release of extracellular epidermal growth factor (EGF), a substance that could significantly enhance the proliferation of mesenchymal stem cells while maintaining their multilineage differentiation potential via binding with its receptors on the stem cell surface. As a result, the multiscale system significantly improves the stem cell survival at 8 days after implantation to ∼70% from ∼4-7% for the conventional system with nanoparticle-encapsulated EGF or free EGF in collagen hydrogel. After injecting into the ischemic limbs of mice, stem cells in the multiscale system facilitate tissue regeneration to effectively restore ∼100% blood perfusion in 4 weeks without evident side effects.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pranay Agarwal
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yichao Xiao
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Hao Peng
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Shuting Zhao
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xuanyou Liu
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shenghua Zhou
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Jianrong Li
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhenguo Liu
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoming He
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
Wang N, Zheng W, Cheng S, Zhang W, Liu S, Jiang X. In Vitro Evaluation of Essential Mechanical Properties and Cell Behaviors of a Novel Polylactic-co-Glycolic Acid (PLGA)-Based Tubular Scaffold for Small-Diameter Vascular Tissue Engineering. Polymers (Basel) 2017; 9:E318. [PMID: 30970995 PMCID: PMC6418786 DOI: 10.3390/polym9080318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 01/04/2023] Open
Abstract
In this paper, we investigate essential mechanical properties and cell behaviors of the scaffolds fabricated by rolling polylactic-co-glycolic acid (PLGA) electrospinning (ES) films for small-diameter vascular grafts (inner diameter < 6 mm). The newly developed strategy can be used to fabricate small diameter vascular grafts with or without pre-seeded cells, which are two main branches for small diameter vascular engineering. We demonstrate that the mechanical properties of our rolling-based scaffolds can be tuned flexibly by the number of layers. For cell-free scaffolds, with the increase of layer number, burst pressure and suture retention increase, elastic tensile modulus maintains unchanged statistically, but compliance and liquid leakage decrease. For cell-containing scaffolds, seeding cells will significantly decrease the liquid leakage, but there are no statistical differences for other mechanical properties; moreover, cells live and proliferate well in the scaffold after a 6-day culture.
Collapse
Affiliation(s)
- Nuoxin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin 150001, China.
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China.
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China.
| | - Shiyu Cheng
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China.
| | - Wei Zhang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China.
| | - Shaoqin Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin 150001, China.
| | - Xingyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin 150001, China.
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China.
- The University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
32
|
Liu D, Xiang T, Gong T, Tian T, Liu X, Zhou S. Bioinspired 3D Multilayered Shape Memory Scaffold with a Hierarchically Changeable Micropatterned Surface for Efficient Vascularization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19725-19735. [PMID: 28540725 DOI: 10.1021/acsami.7b05933] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
How to achieve three-dimensional (3D) cell alignment and subsequent prompt tissue regeneration remains a great challenge. Here, inspired by the interior 3D architecture of native arteries, we develop a new 3D multilayered shape memory vascular scaffold with a hierarchically changeable micropatterned surface for vascularization. The shape memory function renders the implantation of the scaffold safe and convenient via minimally invasive surgery. By co-culturing endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) on the 3D multilayered structure, the inner monolayer, which has a square micropatterned surface, can promote EC adhesion and migration, resulting in a rapid endothelialization, and the outer multilayers, which have rectangular micropatterned surfaces, can induce a circumferential alignment of VSMCs. After implantation in the cervical artery of a New Zealand rabbit for 120 days, the graft developed a high capacity for modulating cellular 3D alignment, to generate a neonatal functional blood vessel with an endothelium layer in the inner layer and multilevel VSMC circumferential alignments in the outer layers.
Collapse
Affiliation(s)
- Dian Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Tao Gong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Tian Tian
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Xian Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, China
| |
Collapse
|
33
|
Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N. Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices 2017; 14:383-392. [PMID: 28447487 DOI: 10.1080/17434440.2017.1324293] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Conventional synthetic vascular grafts are limited by the inability to remodel, as well as issues of patency at smaller diameters. Tissue-engineered vascular grafts (TEVGs), constructed from biologically active cells and biodegradable scaffolds have the potential to overcome these limitations, and provide growth capacity and self-repair. Areas covered: This article outlines the TEVG design, biodegradable scaffolds, TEVG fabrication methods, cell seeding, drug delivery, strategies to reduce wait times, clinical trials, as well as a 5-year view with expert commentary. Expert commentary: TEVG technology has progressed significantly with advances in scaffold material and design, graft design, cell seeding and drug delivery. Strategies have been put in place to reduce wait times and improve 'off-the-shelf' capability of TEVGs. More recently, clinical trials have been conducted to investigate the clinical applications of TEVGs.
Collapse
Affiliation(s)
- Chin Siang Ong
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Xun Zhou
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Chen Yu Huang
- b Department of Physics & Astronomy , Johns Hopkins University , Baltimore , MD , USA
| | - Takuma Fukunishi
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Huaitao Zhang
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Narutoshi Hibino
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| |
Collapse
|
34
|
Wang K, Zhang Q, Zhao L, Pan Y, Wang T, Zhi D, Ma S, Zhang P, Zhao T, Zhang S, Li W, Zhu M, Zhu Y, Zhang J, Qiao M, Kong D. Functional Modification of Electrospun Poly(ε-caprolactone) Vascular Grafts with the Fusion Protein VEGF-HGFI Enhanced Vascular Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11415-11427. [PMID: 28276249 DOI: 10.1021/acsami.6b16713] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Synthetic artificial vascular grafts have exhibited low patency rate and severe neointimal hyperplasia in replacing small-caliber arteries (<6 mm) because of their failure to generate a functional endothelium. In this study, small-caliber (2.0 mm) electrospun poly(ε-caprolactone) (PCL) vascular grafts were modified with a fusion protein VEGF-HGFI which consists of the class I hydrophobin (HGFI) and vascular endothelial growth factor (VEGF), via hydrophobic interactions. Immunofluorescence staining with the anti-VEGF antibody showed that VEGF-HGFI formed a protein layer on the surface of fibers in the grafts. Scanning electron microscopy (SEM) and mechanical measurements showed that VEGF-HGFI modification had no effect on the structure and mechanical properties of PCL grafts. Blood compatibility tests demonstrated a lower level of fibrinogen (FGN) absorption, platelet activation, and aggregation on the VEGF-HGFI-modified PCL mats than that on the bare PCL mats. The hemolysis rate was comparable in both the modified and bare PCL mats. In vitro culture of human umbilical vein endothelial cells (HUVECs) demonstrated that VEGF-HGFI modification could remarkably enhance nitric oxide (NO) production, prostacyclin2 (PGI2) release, and the uptake of acetylated low-density lipoprotein (Ac-LDL) by HUVECs. The healing characteristics of the modified grafts were examined in the replacement of rat abdominal aorta for up to 1 month. Immunofluorescence staining revealed that endothelialization, vascularization, and smooth muscle cell (SMC) regeneration were markedly improved in the VEGF-HGFI-modified PCL grafts. These results suggest that modification with fusion protein VEGF-HGFI is an effective method to improve the regeneration capacity of synthetic vascular grafts.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Qiuying Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Liqiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Yiwa Pan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Ting Wang
- Urban Transport Emission Control Research Centre, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Shaoyang Ma
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Peixin Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Tiechan Zhao
- Center for Research and Development of Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193, China
| | - Siming Zhang
- Center for Research and Development of Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193, China
| | - Wen Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Yan Zhu
- Center for Research and Development of Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin 300193, China
| | - Jun Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| |
Collapse
|
35
|
Huan Z, Chu HK, Yang J, Sun D. Characterization of a Honeycomb-Like Scaffold With Dielectrophoresis-Based Patterning for Tissue Engineering. IEEE Trans Biomed Eng 2017; 64:755-764. [DOI: 10.1109/tbme.2016.2574932] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Pu L, Meng M, Wu J, Zhang J, Hou Z, Gao H, Xu H, Liu B, Tang W, Jiang L, Li Y. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration. Stem Cell Res Ther 2017; 8:72. [PMID: 28320452 PMCID: PMC5359832 DOI: 10.1186/s13287-017-0501-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The success of developing cardiovascular tissue engineering (CTE) grafts greatly needs a readily available cell substitute for endothelial and interstitial cells. Perinatal annexes have been proposed as a valuable source of mesenchymal stem cells (MSCs) for tissue engineering and regenerative medicine. The objective of the present study is to evaluate the potential of human Wharton's jelly MSCs (WJ-MSCs) and amniotic membrane MSCs (AM-MSCs) as a seeding cell in CTE and cardiovascular regenerative medicine. METHODS WJ-MSCs/AM-MSCs were isolated and characterized in vitro according to their morphology, proliferation, self-renewal, phenotype, and multipotency. More importantly, the characteristics of hemocompatibility, extracellular matrix deposition, and gene expression and viability of both MSCs were investigated. RESULTS Fibroblast-like human WJ-MSCs and AM-MSCs were successfully isolated and positively expressed the characteristic markers CD73, CD90, and CD105 but were negative for CD34, CD45, and HLA-DR. Both MSCs shared trilineage differentiation toward the adipogenic, osteogenic, and chondrogenic lineages. The proliferative and self-renewal capacity of WJ-MSCs was significantly higher than that of AM-MSCs (P < 0.001). WJ-MSCs provided comparable properties of antiplatelet adhesion and did not activate the coagulation cascade to endothelial cells. However, aggregated platelets were visualized on the surface of AM-MSCs-derived cell sheets and the intrinsic pathway was activated. Furthermore, WJ-MSCs have superior properties of collagen deposition and higher viability than AM-MSCs during cell sheet formation. CONCLUSIONS This study highlights that WJ-MSCs could act as a functional substitute of endothelial and interstitial cells, which could serve as an appealing and practical single-cell source for CTE and regenerative therapy.
Collapse
Affiliation(s)
- Lei Pu
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Mingyao Meng
- Central Laboratory, Yan’an Affiliated Hospital of Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Jian Wu
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
- Cardiovascular Surgery Institute of Yunnan, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Zongliu Hou
- Central Laboratory, Yan’an Affiliated Hospital of Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Hui Gao
- Central Laboratory, Yan’an Affiliated Hospital of Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Hui Xu
- Department of Thoracic Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Boyu Liu
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Weiwei Tang
- Central Laboratory, Yan’an Affiliated Hospital of Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| | - Lihong Jiang
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
- Cardiovascular Surgery Institute of Yunnan, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
- First People’s Hospital of Yunnan Province, 157, Jinbi Road, Kunming, Yunnan People’s Republic of China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming Medical University, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
- Cardiovascular Surgery Institute of Yunnan, 245, East of Renmin Road, Kunming, 650051 Yunnan People’s Republic of China
| |
Collapse
|
37
|
Dan P, Velot É, Francius G, Menu P, Decot V. Human-derived extracellular matrix from Wharton's jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomater 2017; 48:227-237. [PMID: 27769940 DOI: 10.1016/j.actbio.2016.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
One of the outstanding goals in tissue engineering is to develop a natural coating surface which is easy to manipulate, effective for cell adhesion and fully biocompatible. The ideal surface would be derived from human tissue, perfectly controllable, and pathogen-free, thereby satisfying all of the standards of the health authorities. This paper reports an innovative approach to coating surfaces using a natural extracellular matrix (ECM) extracted from the Wharton's jelly (WJ) of the umbilical cord (referred to as WJ-ECM). We have shown by atomic force microscopy (AFM), that the deposition of WJ-ECM on surfaces is homogenous with a controllable thickness, and that this easily-prepared coating is appropriate for both the adhesion and proliferation of human mesenchymal stem cells and mature endothelial cells. Furthermore, under physiological shear stress conditions, a larger number of cells remained adhered to WJ-ECM than to a conventional coating such as collagen - a result supported by the higher expression of both integrins α2 and β1 in cells cultured on WJ-ECM. Our data clearly show that Wharton's jelly is a highly promising coating for the design of human biocompatible surfaces in tissue engineering as well as in regenerative medicine. STATEMENT OF SIGNIFICANCE Discovery and design of biomaterial surface are a hot spot in the tissue engineering field. Natural matrix is preferred to mimic native cell microenvironment but its use is limited due to poor resource availability. Moreover, current studies often use single or several components of natural polymers, which is not the case in human body. This paper reports a natural extracellular matrix with full components derived from healthy human tissue: Wharton's jelly of umbilical cord. Reconstituting this matrix as a culture surface, our easily-prepared coating provides superior biocompatibility for stem and mature cells. Furthermore, we observed improved cell performance on this coating under both static and dynamic condition. This novel human derived ECM would be a promising choice for regenerative medicine.
Collapse
Affiliation(s)
- Pan Dan
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire Université de Lorraine, Vandœuvre-lès-Nancy Cedex 54505, France
| | - Émilie Velot
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire Université de Lorraine, Vandœuvre-lès-Nancy Cedex 54505, France
| | - Grégory Francius
- UMR 7564, Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Villers-lès-Nancy 54600, France
| | - Patrick Menu
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire Université de Lorraine, Vandœuvre-lès-Nancy Cedex 54505, France.
| | - Véronique Decot
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire Université de Lorraine, Vandœuvre-lès-Nancy Cedex 54505, France; Unité de Thérapie Cellulaire et Tissulaire, CHRU de Nancy, Vandœuvre-lès-Nancy 54511, France
| |
Collapse
|
38
|
Calderon GA, Thai P, Hsu CW, Grigoryan B, Gibson SM, Dickinson ME, Miller JS. Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels. Biomater Sci 2017; 5:1652-1660. [DOI: 10.1039/c7bm00223h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here, we investigate the tubulogenic potential of commercially-sourced iPS-ECs with and without supporting commercially-sourced hMSCs within 3D natural fibrin or semi-synthetic gelatin methacrylate (GelMA) hydrogels.
Collapse
Affiliation(s)
| | - P. Thai
- Department of Bioengineering
- Rice University
- Houston
- USA
| | - C. W. Hsu
- Department of Molecular Physiology and Biophysics
- Baylor College of Medicine
- Houston
- USA
| | - B. Grigoryan
- Department of Bioengineering
- Rice University
- Houston
- USA
| | - S. M. Gibson
- Department of Bioengineering
- Rice University
- Houston
- USA
- Department of Molecular Physiology and Biophysics
| | - M. E. Dickinson
- Department of Molecular Physiology and Biophysics
- Baylor College of Medicine
- Houston
- USA
| | - J. S. Miller
- Department of Bioengineering
- Rice University
- Houston
- USA
| |
Collapse
|
39
|
Floren M, Migliaresi C, Motta A. Processing Techniques and Applications of Silk Hydrogels in Bioengineering. J Funct Biomater 2016; 7:jfb7030026. [PMID: 27649251 PMCID: PMC5040999 DOI: 10.3390/jfb7030026] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications.
Collapse
Affiliation(s)
- Michael Floren
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Claudio Migliaresi
- Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, Trento 38123, Italy.
| | - Antonella Motta
- Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, Trento 38123, Italy.
| |
Collapse
|
40
|
Hsia K, Yao CL, Chen WM, Chen JH, Lee H, Lu JH. Scaffolds and Cell-Based Tissue Engineering for Blood Vessel Therapy. Cells Tissues Organs 2016; 202:281-295. [PMID: 27548610 DOI: 10.1159/000448169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
The increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop a small-caliber blood vessel. In the absence of appropriate autologous vascular grafts, an alternative prosthesis must be constructed for cardiovascular disease patients. The aim of this article is to describe the advances in making cell-seeded cardiovascular prostheses. It also discusses the combinations of types of scaffolds and cells, especially autologous stem cells, which are suitable for application in tissue-engineered vessels with the favorable properties of mechanical strength, antithrombogenicity, biocompliance, anti-inflammation, fatigue resistance and long-term durability. This article highlights the advancements in cellular tissue-engineered vessels in recent years.
Collapse
|
41
|
Liu X, Shi Q, Wang H, Sun T, Yu N, Huang Q, Fukuda T. Microbubbles for High-Speed Assembly of Cell-Laden Vascular-Like Microtube. IEEE Robot Autom Lett 2016. [DOI: 10.1109/lra.2016.2524065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Askari F, Solouk A, Shafieian M, Seifalian AM. Stem cells for tissue engineered vascular bypass grafts. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:999-1010. [DOI: 10.1080/21691401.2016.1198366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Forough Askari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alexander M. Seifalian
- Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK
- Royal Free Hampstead National Health Service Trust Hospital, London, UK
| |
Collapse
|
43
|
Krawiec JT, Weinbaum JS, Liao HT, Ramaswamy AK, Pezzone DJ, Josowitz AD, D'Amore A, Rubin JP, Wagner WR, Vorp DA. In Vivo Functional Evaluation of Tissue-Engineered Vascular Grafts Fabricated Using Human Adipose-Derived Stem Cells from High Cardiovascular Risk Populations. Tissue Eng Part A 2016; 22:765-75. [PMID: 27079751 PMCID: PMC4876541 DOI: 10.1089/ten.tea.2015.0379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
Many preclinical evaluations of autologous small-diameter tissue-engineered vascular grafts (TEVGs) utilize cells from healthy humans or animals. However, these models hold minimal relevance for clinical translation, as the main targeted demographic is patients at high cardiovascular risk such as individuals with diabetes mellitus or the elderly. Stem cells such as adipose-derived mesenchymal stem cells (AD-MSCs) represent a clinically ideal cell type for TEVGs, as these can be easily and plentifully harvested and offer regenerative potential. To understand whether AD-MSCs sourced from diabetic and elderly donors are as effective as those from young nondiabetics (i.e., healthy) in the context of TEVG therapy, we implanted TEVGs constructed with human AD-MSCs from each donor type as an aortic interposition graft in a rat model. The key failure mechanism observed was thrombosis, and this was most prevalent in grafts using cells from diabetic patients. The remainder of the TEVGs was able to generate robust vascular-like tissue consisting of smooth muscle cells, endothelial cells, collagen, and elastin. We further investigated a potential mechanism for the thrombotic failure of AD-MSCs from diabetic donors; we found that these cells have a diminished potential to promote fibrinolysis compared to those from healthy donors. Together, this study served as proof of concept for the development of a TEVG based on human AD-MSCs, illustrated the importance of testing cells from realistic patient populations, and highlighted one possible mechanistic explanation as to the observed thrombotic failure of our diabetic AD-MSC-based TEVGs.
Collapse
Affiliation(s)
- Jeffrey T. Krawiec
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Han-Tsung Liao
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Aneesh K. Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dominic J. Pezzone
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- RiMED Foundation and DICGIM, University of Palermo, Italy
| | - J. Peter Rubin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Bourget JM, Laterreur V, Gauvin R, Guillemette MD, Miville-Godin C, Mounier M, Tondreau MY, Tremblay C, Labbé R, Ruel J, Auger FA, Veres T, Germain L. Microstructured human fibroblast-derived extracellular matrix scaffold for vascular media fabrication. J Tissue Eng Regen Med 2016; 11:2479-2489. [DOI: 10.1002/term.2146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jean-Michel Bourget
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
- Life Sciences Division; National Research Council (NRC) of Canada; Boucherville Canada
| | - Véronique Laterreur
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Génie Mécanique; Université Laval; Québec Canada
| | - Robert Gauvin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| | - Maxime D. Guillemette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| | | | - Maxence Mounier
- Life Sciences Division; National Research Council (NRC) of Canada; Boucherville Canada
| | - Maxime Y. Tondreau
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| | - Catherine Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Génie Mécanique; Université Laval; Québec Canada
| | - Raymond Labbé
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
- Service de Chirurgie Vasculaire; CHU de Québec; Québec Canada
| | - Jean Ruel
- Département de Génie Mécanique; Université Laval; Québec Canada
| | - François A. Auger
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| | - Teodor Veres
- Life Sciences Division; National Research Council (NRC) of Canada; Boucherville Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX; FRQS CHU de Quebec Research Centre; Quebec Canada
- Département de Chirurgie, Faculté de Médecine; Université Laval; Québec Canada
| |
Collapse
|
45
|
Zou T, Fan J, Fartash A, Liu H, Fan Y. Cell-based strategies for vascular regeneration. J Biomed Mater Res A 2016; 104:1297-314. [PMID: 26864677 DOI: 10.1002/jbm.a.35660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ.
Collapse
Affiliation(s)
- Tongqiang Zou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Armita Fartash
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
46
|
Wang L, Hu J, Sorek CE, Chen EY, Ma PX, Yang B. Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opin Biol Ther 2015; 16:317-30. [PMID: 26560995 PMCID: PMC4928489 DOI: 10.1517/14712598.2016.1118460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cardiovascular disease is the leading cause of mortality worldwide. Current surgical treatments for cardiovascular disease include vascular bypass grafting and replacement with autologous blood vessels or synthetic vascular grafts. However, there is a call for better alternative biological grafts. AREAS COVERED Tissue-engineered vascular grafts (TEVGs) are promising novel alternatives to replace diseased vessels. However, obtaining enough functional and clinically usable vascular cells for fabrication of TEVGs remains a major challenge. New findings in adult stem cells and recent advances in pluripotent stem cells have opened a new avenue for stem cell-based vascular engineering. In this review, recent advances on stem cell sourcing for TEVGs including the use of adult stem cells and pluripotent stem cells and advantages, disadvantages, and possible future implementations of different types of stem cells will be discussed. In addition, current strategies used during the fabrication of TEVGs will be highlighted. EXPERT OPINION The application of patient-specific TEVGs constructed with vascular cells derived from immune-compatible stem cells possesses huge clinical potential. Advances in lineage-specific differentiation approaches and innovative vascular engineering strategies will promote the vascular regeneration field from bench to bedside.
Collapse
Affiliation(s)
- Lunchang Wang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
- b Vascular Surgery, The Second Xiangya Hospital , Xiangya School of Medicine, Central South University , Hunan , China
| | - Jiang Hu
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
| | - Claire E Sorek
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Eugene Y Chen
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Peter X Ma
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
- d Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
- e Macromolecular Science and Engineering Center, University of Michigan , Ann Arbor , MI , USA
- f Materials Science and Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Bo Yang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
47
|
Shi C, Li Q, Zhang W, Feng Y, Ren X. REDV Peptide Conjugated Nanoparticles/pZNF580 Complexes for Actively Targeting Human Vascular Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20389-20399. [PMID: 26373583 DOI: 10.1021/acsami.5b06286] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein, we demonstrate that the REDV peptide modified nanoparticles (NPs) can serve as a kind of active targeting gene carrier to condensate pZNF580 for specific promotion of the proliferation of endothelial cells (ECs). First, we synthesized a series of biodegradable amphiphilic copolymers by ring-opening polymerization reaction and graft modification with REDV peptide. Second, we prepared active targeting NPs via self-assembly of the amphiphilic copolymers using nanoprecipitation technology. After condensation with negatively charged pZNF580, the REDV peptide modified NPs/pZNF580 complexes were formed finally. Due to the binding affinity toward ECs of the specific peptide, these REDV peptide modified NPs/pZNF580 complexes could be recognized and adhered specifically by ECs in the coculture system of ECs and human artery smooth muscle cells (SMCs) in vitro. After expression of ZNF580, as the key protein to promote the proliferation of ECs, the relative ZNF580 protein level increased from 15.7% to 34.8%. The specificity in actively targeting ECs of the REDV peptide conjugated NPs/pZNF580 complexes was still retained in the coculture system. These findings in the present study could facilitate the development of actively targeting gene carriers for the endothelialization of artificial blood vessels.
Collapse
Affiliation(s)
- Changcan Shi
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou 325011, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force , Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin University-Helmholtz-Zentrum Geesthacht , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Tianjin 300072, China
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University , Tianjin 300072, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin University-Helmholtz-Zentrum Geesthacht , Tianjin 300072, China
| |
Collapse
|
48
|
Iwai R, Tsujinaka T, Nakayama Y. Preparation of Biotubes with vascular cells component by in vivo incubation using adipose-derived stromal cell-exuding multi-microporous molds. J Artif Organs 2015; 18:322-9. [PMID: 26130007 DOI: 10.1007/s10047-015-0848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/06/2015] [Indexed: 11/26/2022]
Abstract
Biotubes, prepared using in-body tissue architecture (IBTA) technology, have adequate mechanical properties and excellent biocompatibility for vascular grafts. However, they have thin walls, lack vascular constructing cells, and are composed of subcutaneous connective tissues consisting mainly of collagen and fibroblasts. This study aimed to prepare Biotubes with a vascular-like structure including an endothelial cell lining and a smooth muscle cell by IBTA using adipose-derived vascular stromal cell (ADSCs)-exuding specially designed multiporous tubes (outer diameter 5 mm, length 24 mm, pore size 500 μm, pore number 180, cell number/tube >3.0 × 10(6)). ADSCs were separated from rat subcutaneous fat, suspended in a Matrigel™ solution at 4 °C, and then filled into the tubes. After the tubes were embedded into dorsal subcutaneous pouches of the same rats for 2 weeks, robust Biotubes with a wall thickness of >600 μm were formed surrounding the tubes. The luminal layer of the obtained Biotubes was dominated by the cells positive for an endothelial marker. Almost the entire intima, with a thickness of about 400 μm, was occupied with cells positive for a smooth muscle marker. Both cells were derived from ADSCs. Biotube walls were constructed by fusing ADSC-derived vascular constructing cells exuded from the tubes and fibroblasts and collagen from the surrounding connective tissue. A robust Biotubes with vascular cells component, were formed after only 2 weeks of subcutaneous incubation of ADSCs-exuding multiporous tubes.
Collapse
Affiliation(s)
- Ryosuke Iwai
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Takahiro Tsujinaka
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Yasuhide Nakayama
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
49
|
Xu F, Zhao R, Liu AS, Metz T, Shi Y, Bose P, Reich DH. A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues. LAB ON A CHIP 2015; 15:2496-503. [PMID: 25959132 PMCID: PMC4439293 DOI: 10.1039/c4lc01395f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper describes an approach to actuate magnetically arrays of microtissue constructs for long-term mechanical conditioning and subsequent biomechanical measurements. Each construct consists of cell/matrix material self-assembled around a pair of flexible poly(dimethylsiloxane) (PDMS) pillars. The deflection of the pillars reports the tissues' contractility. Magnetic stretching of individual microtissues via magnetic microspheres mounted on the cantilevers has been used to elucidate the tissues' elastic modulus and response to varying mechanical boundary conditions. This paper describes the fabrication of arrays of micromagnetic structures that can transduce an externally applied uniform magnetic field to actuate simultaneously multiple microtissues. These structures are fabricated on silicon-nitride coated Si wafers and contain electrodeposited Ni bars. Through-etched holes provide optical and culture media access when the devices are mounted on the PDMS microtissue scaffold devices. Both static and AC forces (up to 20 μN on each microtissue) at physiological frequencies are readily generated in external fields of 40 mT. Operation of the magnetic arrays was demonstrated via measurements of elastic modulus and dynamic stiffening in response to AC actuation of fibroblast populated collagen microtissues.
Collapse
Affiliation(s)
- Fan Xu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210008, Jiangsu, China
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Ruogang Zhao
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Alan S. Liu
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Tristin Metz
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Yu Shi
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Prasenjit Bose
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Daniel H. Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
50
|
Lau S, Schrimpf C, Klingenberg M, Helfritz F, Aper T, Haverich A, Wilhelmi M, Böer U. Evaluation of autologous tissue sources for the isolation of endothelial cells and adipose tissue-derived mesenchymal stem cells to pre-vascularize tissue-engineered vascular grafts. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/bnm-2015-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractCurrently used synthetic vascular grafts bear a high infection risk due to insufficient microvascularization of the graft wall disabling the infiltration of immune cells. Tissue-engineered grafts with a functional pre-vascularization thus would be desirable. However, autologous tissue sources for capillary forming cells need to be evaluated. Here, peripheral blood outgrowth endothelial cells (PB-OEC) from 17 healthy donors and pericyte-like mesenchymal stem cells derived from adipose tissue (ASC) of 17 patients scheduled for visceral surgery were characterized and investigated regarding their ability to form capillary-like networks in plasma-derived fibrin gels. To obtain proliferating PB-OEC with endothelial cell-specific properties (CD31-, VE-cadherin-expression, ac-LDL uptake and three-dimensional (3D)-tube formation in fibrin gels) both enrichment of CD34
Collapse
|