1
|
Allgood JE, Bittner GD, Bushman JS. Repair and regeneration of peripheral nerve injuries that ablate branch points. Neural Regen Res 2023; 18:2564-2568. [PMID: 37449590 DOI: 10.4103/1673-5374.373679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses: (1) the branched anatomy of the peripheral nervous system, (2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed, (3) factors known to influence regeneration through branched nerve structures, (4) techniques and models of branched peripheral nerve injuries in animal models, and (5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system.
Collapse
Affiliation(s)
- JuliAnne E Allgood
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| | - George D Bittner
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Jared S Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
2
|
Rosenbalm TN, Levi NH, Morykwas MJ, Wagner WD. Electrical stimulation via repeated biphasic conducting materials for peripheral nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:61. [PMID: 37964030 PMCID: PMC10645611 DOI: 10.1007/s10856-023-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Improved materials for peripheral nerve repair are needed for the advancement of new surgical techniques in fields spanning from oncology to trauma. In this study, we developed bioresorbable materials capable of producing repeated electric field gradients spaced 600 μm apart to assess the impact on neuronal cell growth, and migration. Electrically conductive, biphasic composites comprised of poly (glycerol) sebacate acrylate (PGSA) alone, and doped with poly (pyrrole) (PPy), were prepared to create alternating segments with high and low electrically conductivity. Conductivity measurements demonstrated that 0.05% PPy added to PSA achieved an optimal value of 1.25 × 10-4 S/cm, for subsequent electrical stimulation. Tensile testing and degradation of PPy doped and undoped PGSA determined that 35-40% acrylation of PGSA matched nerve mechanical properties. Both fibroblast and neuronal cells thrived when cultured upon the composite. Biphasic PGSA/PPy sheets seeded with neuronal cells stimulated for with 3 V, 20 Hz demonstrated a 5x cell increase with 1 day of stimulation and up to a 10x cell increase with 3 days stimulation compared to non-stimulated composites. Tubular conduits composed of repeated high and low conductivity materials suitable for implantation in the rat sciatic nerve model for nerve repair were evaluated in vivo and were superior to silicone conduits. These results suggest that biphasic conducting conduits capable of maintaining mechanical properties without inducing compression injuries while generating repeated electric fields are a promising tool for acceleration of peripheral nerve repair to previously untreatable patients.
Collapse
Affiliation(s)
- Tabitha N Rosenbalm
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| | - Nicole H Levi
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA.
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA.
| | - Michael J Morykwas
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| | - William D Wagner
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| |
Collapse
|
3
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
4
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Li X, Zhang X, Hao M, Wang D, Jiang Z, Sun L, Gao Y, Jin Y, Lei P, Zhuo Y. The application of collagen in the repair of peripheral nerve defect. Front Bioeng Biotechnol 2022; 10:973301. [PMID: 36213073 PMCID: PMC9542778 DOI: 10.3389/fbioe.2022.973301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Collagen is a natural polymer expressed in the extracellular matrix of the peripheral nervous system. It has become increasingly crucial in peripheral nerve reconstruction as it was involved in regulating Schwann cell behaviors, maintaining peripheral nerve functions during peripheral nerve development, and being strongly upregulated after nerve injury to promote peripheral nerve regeneration. Moreover, its biological properties, such as low immunogenicity, excellent biocompatibility, and biodegradability make it a suitable biomaterial for peripheral nerve repair. Collagen provides a suitable microenvironment to support Schwann cells’ growth, proliferation, and migration, thereby improving the regeneration and functional recovery of peripheral nerves. This review aims to summarize the characteristics of collagen as a biomaterial, analyze its role in peripheral nerve regeneration, and provide a detailed overview of the recent advances concerning the optimization of collagen nerve conduits in terms of physical properties and structure, as well as the application of the combination with the bioactive component in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Hao
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| | - Yue Zhuo
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| |
Collapse
|
6
|
Kaplan B, Levenberg S. The Role of Biomaterials in Peripheral Nerve and Spinal Cord Injury: A Review. Int J Mol Sci 2022; 23:ijms23031244. [PMID: 35163168 PMCID: PMC8835501 DOI: 10.3390/ijms23031244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve and spinal cord injuries are potentially devastating traumatic conditions with major consequences for patients’ lives. Severe cases of these conditions are currently incurable. In both the peripheral nerves and the spinal cord, disruption and degeneration of axons is the main cause of neurological deficits. Biomaterials offer experimental solutions to improve these conditions. They can be engineered as scaffolds that mimic the nerve tissue extracellular matrix and, upon implantation, encourage axonal regeneration. Furthermore, biomaterial scaffolds can be designed to deliver therapeutic agents to the lesion site. This article presents the principles and recent advances in the use of biomaterials for axonal regeneration and nervous system repair.
Collapse
Affiliation(s)
- Ben Kaplan
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
- Bruce Rapaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
- Correspondence:
| |
Collapse
|
7
|
Huang Y, Wu W, Liu H, Chen Y, Li B, Gou Z, Li X, Gou M. 3D printing of functional nerve guide conduits. BURNS & TRAUMA 2021; 9:tkab011. [PMID: 34212061 PMCID: PMC8240533 DOI: 10.1093/burnst/tkab011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerve guide conduits (NGCs), as alternatives to nerve autografts and allografts, have been widely explored as an advanced tool for the treatment of peripheral nerve injury. However, the repairing efficiency of NGCs still needs significant improvements. Functional NGCs that provide a more favorable microenvironment for promoting axonal elongation and myelination are of great importance. In recent years, 3D printing technologies have been widely applied in the fabrication of customized and complex constructs, exhibiting great potential for tissue engineering applications, especially for the construction of functional NGCs. In this review, we introduce the 3D printing technologies for manufacturing functional NGCs, including inkjet printing, extrusion printing, stereolithography-based printing and indirect printing. Further, we summarize the current methods and strategies for constructing functional NGCs, such as designing special conduit architectures, using appropriate materials and co-printing with different biological cues. Finally, the challenges and prospects for construction of functional NGCs are also presented.
Collapse
Affiliation(s)
- Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Saini V, Kaur T, Kalotra S, Kaur G. The neuroplasticity marker PSA-NCAM: Insights into new therapeutic avenues for promoting neuroregeneration. Pharmacol Res 2020; 160:105186. [DOI: 10.1016/j.phrs.2020.105186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
|
9
|
Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 2020; 154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
10
|
Chen SX, He JH, Mi YJ, Shen HF, Schachner M, Zhao WJ. A mimetic peptide of α2,6-sialyllactose promotes neuritogenesis. Neural Regen Res 2020; 15:1058-1065. [PMID: 31823885 PMCID: PMC7034278 DOI: 10.4103/1673-5374.270313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/21/2019] [Accepted: 07/28/2019] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress contributes to the pathogenesis of neurodegenerative diseases. With the aim to find reagents that reduce oxidative stress, a phage display library was screened for peptides mimicking α2,6-sialyllactose (6'-SL), which is known to beneficially influence neural functions. Using Sambucus nigra lectin, which specifically binds to 6'-SL, we screened a phage display library and found a peptide comprising identical sequences of 12 amino acids. Mimetic peptide, reverse peptide and scrambled peptide were tested for inhibition of 6'-SL binding to the lectin. Indeed, lectin binding to 6'-SL was inhibited by the most frequently identified mimetic peptide, but not by the reverse or scrambled peptides, showing that this peptide mimics 6'-SL. Functionally, mimetic peptide, but not the reverse or scrambled peptides, increased viability and expression of neural cell adhesion molecule L1 in SK-N-SH human neuroblastoma cells, and promoted survival and neurite outgrowth of cultured mouse cerebellar granule neurons challenged by H2O2-induced oxidative stress. The combined results indicate that the 6'-SL mimetic peptide promotes neuronal survival and neuritogenesis, thus raising hopes for the treatment of neurodegenerative diseases. This study was approved by the Medical Ethics Committee of Shantou University Medical College, China (approval No. SUMC 2014-004) on February 20, 2014.
Collapse
Affiliation(s)
- Shuang-Xi Chen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Jia-Hui He
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yong-Jian Mi
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Neurology, Chongqing Qijiang Renmin Hospital, Chongqing, China
| | - Hui-Fan Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Correspondence to: Melitta Schachner, ; Wei-Jiang Zhao,
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Correspondence to: Melitta Schachner, ; Wei-Jiang Zhao,
| |
Collapse
|
11
|
Wang H, Qu X, Zhang Z, Lei M, Tan H, Bao C, Lin S, Zhu L, Kohn J, Liu C. Tag-Free Site-Specific BMP-2 Immobilization with Long-Acting Bioactivities via a Simple Sugar-Lectin Interaction. ACS Biomater Sci Eng 2020; 6:2219-2230. [PMID: 33455345 DOI: 10.1021/acsbiomaterials.9b01730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of a biomaterial matrix with biological properties is of great importance to developing functional materials for clinical use. However, the site-specific immobilization of growth factors to endow materials with bioactivities has been a challenge to date. Considering the wide existence of glycosylation in mammalian proteins or recombinant proteins, we establish a bioaffinity-based protein immobilization strategy (bioanchoring method) utilizing the native sugar-lectin interaction between concanavalin A (Con A) and the oligosaccharide chain on glycosylated bone morphogenetic protein-2 (GBMP-2). The interaction realizes the site-specific immobilization of GBMP-2 to a substrate modified with Con A while preserving its bioactivity in a sustained and highly efficient way, as evidenced by its enhanced ability to induce osteodifferentiation compared with that of the soluble GBMP-2. Moreover, the surface with Con A-bioanchored GBMP-2 can be reused to stimulate multiple batches of C2C12 cells to differentiate almost to the same degree. Even after 4 month storage at 4 °C in phosphate-buffered saline (PBS), the Con A-bioanchored GBMP-2 still maintains the bioactivity to stimulate the differentiation of C2C12 cells. Furthermore, the ectopic ossification test proves the in vivo bioactivity of bioanchored GBMP-2. Overall, our results demonstrate that the tag-free and site (i.e., sugar chain)-specific protein immobilization strategy represents a simple and generic alternative, which is promising to apply for other glycoprotein immobilization and application. It should be noted that although the lectin we utilized can only bind to d-mannose/d-glucose, the diversity of the lectin family assures that a specific lectin could be offered for other sugar types, thus expanding the applicable scope further.
Collapse
Affiliation(s)
| | | | - Zheng Zhang
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | - Joachim Kohn
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
12
|
Kalotra S, Saini V, Singh H, Sharma A, Kaur G. 5-Nonyloxytryptamine oxalate-embedded collagen-laminin scaffolds augment functional recovery after spinal cord injury in mice. Ann N Y Acad Sci 2019; 1465:99-116. [PMID: 31800108 DOI: 10.1111/nyas.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Polysialic acid (PSA) is crucial for the induction and maintenance of nervous system plasticity and repair after injury. In order to exploit the immense therapeutic potential of PSA, previous studies have focused on the identification and development of peptide-based or synthetic PSA mimetics. 5-Nonyloxytryptamine (5-NOT) has been previously reported as a PSA-mimicking compound for promoting functional recovery after spinal cord injury in mice. In order to explore the neuroregeneration potential of 5-NOT, the current study was based on a biomaterial approach using collagen-laminin (C/L) scaffolds. In in vitro studies, 5-NOT was observed to promote neurite outgrowth, migration, and fasciculation in cerebellar neuronal cells, whereas in 3D cell cultures it showed more ramification and complex Sholl profiles. 5-NOT promoted the survival and neurite length of cortical neurons when cocultured with glutamate-challenged astrocytes. In in vivo studies, spinal cord compression injury mice were used with immediate application of C/L hydrogels impregnated with 5-NOT. C/L + 5-NOT-treated mice demonstrated ∼75% of motor recovery 14 days after injury. Furthermore, this effect was shown to be dependent on the ERK-MAPK pathway and augmentation of cell survival. Thus, based on a biomaterial approach, our current study provides new insight for 5-NOT-containing hydrogels as a promising candidate to speed up recovery after central nervous system injuries.
Collapse
Affiliation(s)
- Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vedangana Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harpal Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anuradha Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
13
|
Gao T, Yan J, Liu CC, Palma AS, Guo Z, Xiao M, Chen X, Liang X, Chai W, Cao H. Chemoenzymatic Synthesis of O-Mannose Glycans Containing Sulfated or Nonsulfated HNK-1 Epitope. J Am Chem Soc 2019; 141:19351-19359. [PMID: 31738061 DOI: 10.1021/jacs.9b08964] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human natural killer-1 (HNK-1) epitope is a unique sulfated trisaccharide sequence presented on O- and N-glycans of various glycoproteins and on glycolipids. It is overexpressed in the nervous system and plays crucial roles in nerve regeneration, synaptic plasticity, and neuronal diseases. However, the investigation of functional roles of HNK-1 in a more complex glycan context at the molecular level remains a big challenge due to lack of access to related structurally well-defined complex glycans. Herein, we describe a highly efficient chemoenzymatic approach for the first collective synthesis of HNK-1-bearing O-mannose glycans with different branching patterns, and for their nonsulfated counterparts. The successful strategy relies on both chemical glycosylation of a trisaccharide lactone donor for the introduction of sulfated HNK-1 branch and substrate promiscuities of bacterial glycosyltransferases that can tolerate sulfated substrates for enzymatic diversification. Glycan microarray analysis with the resulting complex synthetic glycans demonstrated their recognition by two HNK-1-specific antibodies including anti-HNK-1/N-CAM (CD57) and Cat-315, which provided further evidence for the recognition epitopes of these antibodies and the essential roles of the sulfate group for HNK-1 glycan-antibody recognition.
Collapse
Affiliation(s)
- Tian Gao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology , Shandong University , Qingdao 266237 , China.,Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , China
| | - Jingyu Yan
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology , Shandong University , Qingdao 266237 , China.,Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , China
| | - Angelina S Palma
- UCIBIO, Department of Chemistry, Faculty of Science and Technology , NOVA University of Lisbon , Caparica 2829-516 , Portugal
| | - Zhimou Guo
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Min Xiao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology , Shandong University , Qingdao 266237 , China
| | - Xi Chen
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Wengang Chai
- The Glycosciences Laboratory, Faculty of Medicine , Imperial College London , London SW7 2AZ , United Kingdom
| | - Hongzhi Cao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology , Shandong University , Qingdao 266237 , China.,Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , China
| |
Collapse
|
14
|
Lei Y, Wu M, Wang J, Zhang H, Zhan X, Sun Z, Wu J. Preparation and property of a biantenna macromolecule based on polysialic acid. Int J Biol Macromol 2019; 155:1342-1349. [PMID: 31730980 DOI: 10.1016/j.ijbiomac.2019.11.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
Abstract
Polysialic acid (PSA), an acidic polysaccharide usually exists as a double-chain structure on cell adhesion molecules in vertebrates. The available PSA produced from Escherichia coli fermentation, however, is monochain PSA. In this work, a biomimetic biantenna type PSA (biPSA) was synthesized in vitro under mild conditions, and the terminal nonreducing ends of sialic acid residue were retained. The structure of biPSA was characterized through infrared spectroscopy, and NMR, and the double-chain structure of biPSA was confirmed by the doubled molecular weight and particle size of biPSA. Analysis through circular dichroism, isothermal titration calorimetry, and thermostability experiments revealed that the obtained biPSA was more stable in aqueous solution than PSA, especially after complexation with Ca2+, which increased the variation in enthalpy and entropy. However, the addition of Cu2+ had a negligible effect on configuration of PSA and biPSA. The addition of Ca2+ promoted cell proliferation in a culture of microglia BV-2 cells with biPSA in medium. By contrast, the addition of Cu2+ had toxic effects. Supplementation with biPSA can maintain cell viability for a longer period than supplementation with monochain PSA. This work indicates that biPSA is a potential substitute for monochain PSA in practical applications.
Collapse
Affiliation(s)
- Yanli Lei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Miaosen Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junyi Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenglong Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Oka S. HNK-1 Carbohydrate, an Attractive Unique Glyco-Epitope. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1905.2sj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shogo Oka
- Human Health Sciences, Graduate School of Medicine, Kyoto University
| |
Collapse
|
16
|
Oka S. HNK-1 Carbohydrate, an Attractive Unique Glyco-Epitope. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1905.2se] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shogo Oka
- Human Health Sciences, Graduate School of Medicine, Kyoto University
| |
Collapse
|
17
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 528] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
18
|
Bioproduction, purification, and application of polysialic acid. Appl Microbiol Biotechnol 2018; 102:9403-9409. [DOI: 10.1007/s00253-018-9336-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023]
|
19
|
Di Summa PG, Schiraldi L, Cherubino M, Oranges CM, Kalbermatten DF, Raffoul W, Madduri S. Adipose Derived Stem Cells Reduce Fibrosis and Promote Nerve Regeneration in Rats. Anat Rec (Hoboken) 2018; 301:1714-1721. [PMID: 29710394 PMCID: PMC6667902 DOI: 10.1002/ar.23841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/31/2017] [Accepted: 01/27/2018] [Indexed: 01/17/2023]
Abstract
Peripheral nerve regeneration is critical and challenging in the adult humans. High level of collagen infiltration (i.e., scar tissue), in the niche of injury, impedes axonal regeneration and path finding. Unfortunately, studies focusing on the modulation of scar tissue in the nerves are scarce. To address part of this problem, we have evaluated the differentiated adipose derived stem cells (dASCs) for their antifibrotic and regenerative effects in a 10 mm nerve gap model in rats. Three different animal groups (N = 5) were treated with fibrin nerve conduits (empty), or seeded with dASCs (F + dASCs) and autograft, respectively. Histological analysis of regenerated nerves, at 12 weeks postoperatively, reveled the high levels of collagen infiltration (i.e., 21.5% ± 6.1% and 24.1% ± 2.9%) in the middle and distal segment of empty conduit groups in comparison with stem cells treated (16.6% ± 2.1% and 12.1% ± 2.9%) and autograft (15.0% ± 1.7% and 12.8% ± 1.0%) animals. Thus, the dASCs treatment resulted in significant reduction of fibrotic tissue formation. Consequently, enhanced axonal regeneration and remyelination was found in the animals treated with dASCs. Interestingly, these effects of dASCs appeared to be equivalent to that of autograft treatment. Thus, the dASCs hold great potential for preventing the scar tissue formation and for promoting nerve regeneration in the adult organisms. Future experiments will focus on the validation of these findings in a critical nerve injury model. Anat Rec, 301:1714–1721, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists
Collapse
Affiliation(s)
- Pietro G Di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Luigi Schiraldi
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Mario Cherubino
- Department of Biotechnology, University of Insubria, Varese, Italy
| | - Carlo M Oranges
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel 4031, Switzerland
| | - Daniel F Kalbermatten
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel 4031, Switzerland
| | - Wassim Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Srinivas Madduri
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel 4031, Switzerland.,Department of Biomedicine, University of Basel, Basel 4031, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| |
Collapse
|
20
|
Qian Y, Song J, Zhao X, Chen W, Ouyang Y, Yuan W, Fan C. 3D Fabrication with Integration Molding of a Graphene Oxide/Polycaprolactone Nanoscaffold for Neurite Regeneration and Angiogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700499. [PMID: 29721407 PMCID: PMC5908351 DOI: 10.1002/advs.201700499] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/02/2017] [Indexed: 05/17/2023]
Abstract
Treating peripheral nerve injury faces major challenges and may benefit from bioactive scaffolds due to the limited autograft resources. Graphene oxide (GO) has emerged as a promising nanomaterial with excellent physical and chemical properties. GO has functional groups that confer biocompatibility that is better than that of graphene. Here, GO/polycaprolactone (PCL) nanoscaffolds are fabricated using an integration molding method. The nanoscaffolds exhibit many merits, including even GO nanoparticle distribution, macroporous structure, and strong mechanical support. Additionally, the process enables excellent quality control. In vitro studies confirm the advantages of the GO/PCL nanoscaffolds in terms of Schwann cell proliferation, viability, and attachment, as well as neural characteristics maintenance. This is the first study to evaluate the in vivo performance of GO-based nanoscaffolds in this context. GO release and PCL biodegradation is analyzed after long-term in vivo study. It is also found that the GO/PCL nerve guidance conduit could successfully repair a 15 mm sciatic nerve defect. The pro-angiogenic characteristic of GO is evaluated in vivo using immunohistochemistry. In addition, the AKT-endothelial nitric oxide synthase (eNOS)-vascular endothelial growth factor (VEGF) signaling pathway might play a major role in the angiogenic process. These findings demonstrate that the GO/PCL nanoscaffold efficiently promotes functional and morphological recovery in peripheral nerve regeneration, indicating its promise for tissue engineering applications.
Collapse
Affiliation(s)
- Yun Qian
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Shanghai Sixth People's Hospital East CampusShanghai University of Medicine and HealthShanghai201306China
| | - Jialin Song
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Xiaotian Zhao
- School of PharmacyShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Wei Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Yuanming Ouyang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Shanghai Sixth People's Hospital East CampusShanghai University of Medicine and HealthShanghai201306China
| | - Weien Yuan
- School of PharmacyShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Cunyi Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| |
Collapse
|
21
|
Ray WZ, Mahan MA, Guo D, Guo D, Kliot M. An update on addressing important peripheral nerve problems: challenges and potential solutions. Acta Neurochir (Wien) 2017; 159:1765-1773. [PMID: 28500566 DOI: 10.1007/s00701-017-3203-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
From time to time it is thoughtful and productive to review a medical field and reflect upon what are the major issues that need to be addressed and what is being done to do so. This review article is not meant to be all-inclusive but rather focuses on four evolving areas in the field of peripheral nerve disorders and treatments: (1) nerve surgery under ultrasound guidance using a new ultra-minimally invasive thread technique; (2) evolving magnetic resonance imaging (MRI) and ultrasound imaging techniques that are helping to both diagnose and treat a variety of peripheral nerve problems including entrapment neuropathies, traumatic nerve injuries, and masses arising from nerves; (3) promoting recovery after nerve injury using electrical stimulation; and (4) developing animal models to reproduce a severe nerve injury (neurotmetic grade in continuity) that requires a surgical intervention and repair. In each area we first describe the current challenges and then discuss new and emerging techniques and approaches. It is our hope that this article will bring added attention and resources to help better address peripheral nerve problems that remain a challenge for both patients and physicians.
Collapse
Affiliation(s)
- Wilson Z Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mark A Mahan
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Danzhu Guo
- BayCare Clinic, Green Bay, WI, 54303, USA
| | | | - Michel Kliot
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
22
|
Loers G, Astafiev S, Hapiak Y, Saini V, Mishra B, Gul S, Kaur G, Schachner M, Theis T. The polysialic acid mimetics idarubicin and irinotecan stimulate neuronal survival and neurite outgrowth and signal via protein kinase C. J Neurochem 2017; 142:392-406. [PMID: 28542923 PMCID: PMC5539918 DOI: 10.1111/jnc.14076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023]
Abstract
Polysialic acid (PSA) is a large, negatively charged, linear homopolymer of alpha2-8-linked sialic acid residues. It is generated by two polysialyltransferases and attached to N- and/or O-linked glycans, and its main carrier is the neural cell adhesion molecule (NCAM). PSA controls the development and regeneration of the nervous system by enhancing cell migration, axon pathfinding, synaptic targeting, synaptic plasticity, by regulating the differentiation of progenitor cells and by modulating cell-cell and cell-matrix adhesions. In the adult, PSA plays a role in the immune system, and PSA mimetics promote functional recovery after nervous system injury. In search for novel small molecule mimetics of PSA that are applicable for therapy, we identified idarubicin, an antineoplastic anthracycline, and irinotecan, an antineoplastic agent of the topoisomerase I inhibitor class, as PSA mimetics using a competition enzyme-linked immunosorbent assay. Idarubicin and irinotecan compete with the PSA-mimicking peptide and colominic acid, the bacterial analog of PSA, for binding to the PSA-specific monoclonal antibody 735. Idarubicin and irinotecan stimulate neurite outgrowth and survival of cultured cerebellar neurons after oxidative stress via protein kinase C and Erk1/2 in a similar manner as colominic acid, whereas Fyn, casein kinase II and the phosphatase and tensin homolog are only involved in idarubicin and irinotecan-stimulated neurite outgrowth. These novel results show that the structure and function of PSA can be mimicked by the small organic compounds irinotecan and idarubicin which trigger the same signaling cascades as PSA, thus introducing the possibility of retargeting these drugs to treat nervous system injuries.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Steven Astafiev
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Yuliya Hapiak
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Vedangana Saini
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
- Department of Biotechnology, Guru Nanak Dev University, GT Road, 143005 Amritsar, India
| | - Bibhudatta Mishra
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port (Fraunhofer-IME SP), Schnackenburgalle114, D-22525 Hamburg, Germany
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, GT Road, 143005 Amritsar, India
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
- To whom correspondence should be addressed: Melitta Schachner, Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA; phone: +1-732-445-1780; fax: +1-732-445-2063; ; or Melitta Schachner, Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China; phone: + 86 754 8890 0276; fax: + 86 754 8890 0236;
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
23
|
Zhang R, Loers G, Schachner M, Boelens R, Wienk H, Siebert S, Eckert T, Kraan S, Rojas-Macias MA, Lütteke T, Galuska SP, Scheidig A, Petridis AK, Liang S, Billeter M, Schauer R, Steinmeyer J, Schröder JM, Siebert HC. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides. ChemMedChem 2016; 11:990-1002. [PMID: 27136597 DOI: 10.1002/cmdc.201500609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Indexed: 02/05/2023]
Abstract
Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions.
Collapse
Affiliation(s)
- Ruiyan Zhang
- RI-B-NT: Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148, Kiel, Germany
- Zoological Institute, Department of Structural Biology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Melitta Schachner
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251, Hamburg, Germany
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hans Wienk
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Simone Siebert
- RI-B-NT: Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148, Kiel, Germany
| | - Thomas Eckert
- Institute of Veterinary Physiology and Biochemistry, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-Universität Gießen, Frankfurter Str. 106, 35392, Gießen, Germany
| | - Stefan Kraan
- Ocean Harvest Technology Ltd., N17 Business Park, Milltown, County Galway, Ireland
| | - Miguel A Rojas-Macias
- Institute of Veterinary Physiology and Biochemistry, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Sebastian P Galuska
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-Universität Gießen, Friedrichstr. 24, 35392, Gießen, Germany
| | - Axel Scheidig
- Zoological Institute, Department of Structural Biology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Athanasios K Petridis
- Neurosurgery Clinic, University Düsseldorf, Moorenstraße 5, 40255, Düsseldorf, Germany
| | - Songping Liang
- College of Life Sciences, Hunan Normal University, 410081, Changsha, China
| | - Martin Billeter
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 100, 40530, Gothenburg, Sweden
| | - Roland Schauer
- Institute of Biochemistry, Kiel University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Jürgen Steinmeyer
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University Hospital Giessen and Marburg GmbH, Paul-Meimberg-Str. 3, 35392, Gießen, Germany
| | - Jens-Michael Schröder
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Hans-Christian Siebert
- RI-B-NT: Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148, Kiel, Germany.
| |
Collapse
|
24
|
Ezra M, Bushman J, Shreiber D, Schachner M, Kohn J. Porous and Nonporous Nerve Conduits: The Effects of a Hydrogel Luminal Filler With and Without a Neurite-Promoting Moiety. Tissue Eng Part A 2016; 22:818-26. [PMID: 27102571 PMCID: PMC4876540 DOI: 10.1089/ten.tea.2015.0354] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 04/21/2016] [Indexed: 02/05/2023] Open
Abstract
Nerve conduits prefilled with hydrogels are frequently explored in an attempt to promote nerve regeneration. This study examines the interplay in vivo between the porosity of the conduit wall and the level of bioactivity of the hydrogel used to fill the conduit. Nerve regeneration in porous (P) or nonporous (NP) conduits that were filled with either collagen only or collagen enhanced with a covalently attached neurite-promoting peptide mimic of the glycan human natural killer cell antigen-1 (m-HNK) were compared in a 5 mm critical size defect in the mouse femoral nerve repair model. Although collagen is a cell-friendly matrix that does not differentiate between neural and nonneural cells, the m-HNK-enhanced collagen specifically promotes axon growth and appropriate motor neuron targeting. In this study, animals treated with NP conduits filled with collagen grafted with m-HNK (CollagenHNK) had the best overall functional recovery, based on a range of histomorphometric observations and parameters of functional recovery. Our data indicate that under some conditions, the use of generally cell friendly fillers such as collagen may limit nerve regeneration. This finding is significant, considering the frequent use of collagen-based hydrogels as fillers of nerve conduits.
Collapse
Affiliation(s)
- Mindy Ezra
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jared Bushman
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - David Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Melitta Schachner
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
25
|
Lee YS, Griffin J, Masand SN, Shreiber DI, Uhrich KE. Salicylic acid-based poly(anhydride-ester) nerve guidance conduits: Impact of localized drug release on nerve regeneration. J Biomed Mater Res A 2016; 104:975-82. [PMID: 26691691 DOI: 10.1002/jbm.a.35630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 11/10/2022]
Abstract
Nerve guidance conduits (NGCs) can serve as physical scaffolds aligning and supporting regenerating cells while preventing scar tissue formation that often interferes with the regeneration process. Numerous studies have focused on functionalizing NGCs with neurotrophic factors, for example, to support nerve regeneration over longer gaps, but few directly incorporate therapeutic agents. Herein, we fabricated NGCs from a polyanhydride comprised of salicylic acid (SA), a nonsteroidal anti-inflammatory drug, then performed in vitro and in vivo assays. In vitro studies included cytotoxicity, anti-inflammatory response, and NGC porosity measurements. To prepare for implantation, type I collagen hydrogels were used as NGC luminal fillers to further enhance the axonal regeneration process. For the in vivo studies, SA-NGCs were implanted in femoral nerves of mice for 16 weeks and evaluated for functional recovery. The SA-based NGCs functioned as both a drug delivery vehicle capable of reducing inflammation and scar tissue formation because of SA release as well as a tissue scaffold that promotes peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Yong S Lee
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Jeremy Griffin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Shirley N Masand
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Kathryn E Uhrich
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854.,Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
26
|
Lo KWH, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol 2014; 32:74-81. [PMID: 24405851 DOI: 10.1016/j.tibtech.2013.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/13/2023]
Abstract
Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small-molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small-molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past 4 years in the area of small bioactive molecules for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| | - Tao Jiang
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Keith A Gagnon
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Clarke Nelson
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
27
|
Gao X, Wang Y, Chen J, Peng J. The role of peripheral nerve ECM components in the tissue engineering nerve construction. Rev Neurosci 2013; 24:443-53. [PMID: 23907421 DOI: 10.1515/revneuro-2013-0022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/05/2013] [Indexed: 11/15/2022]
Abstract
The extracellular matrix (ECM) is the naturally occurring substrate that provides a support structure and an attachment site for cells. It also produces a biological signal, which plays an important role in and has significant impact on cell adhesion, migration, proliferation, differentiation, and gene expression. Peripheral nerve repair is a complicated process involving Schwann cell proliferation and migration, 'bands of Büngner' formation, and newborn nerve extension. In the ECM of peripheral nerves, macromolecules are deposited among cells; these constitute the microenvironment of Schwann cell growth. Such macromolecules include collagen (I, III, IV, V), laminin, fibronectin, chondroitin sulfate proteoglycans (CSPGs), and other nerve factors. Collagen, the main component of ECM, provides structural support and guides newborn neurofilament extension. Laminin, fibronectin, CSPGs, and neurotrophic factors, are promoters or inhibitors, playing different roles in nerve repair after injury. By a chemical decellularization process, acellular nerve allografting eliminates the antigens responsible for allograft rejection and maintains most of the ECM components, which can effectively guide and enhance nerve regeneration. Thus, the composition and features of peripheral nerve ECM suggest its superiority as nerve repair material. This review focuses on the structure, function, and application in the tissue engineering nerve construction of the peripheral nerve ECM components.
Collapse
|
28
|
Ezra M, Bushman J, Shreiber D, Schachner M, Kohn J. Enhanced femoral nerve regeneration after tubulization with a tyrosine-derived polycarbonate terpolymer: effects of protein adsorption and independence of conduit porosity. Tissue Eng Part A 2013; 20:518-28. [PMID: 24011026 DOI: 10.1089/ten.tea.2013.0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Following complete nerve transection, entubulation of the nerve stumps helps guide axons to reconnect distally. In this study, a biodegradable and noncytotoxic tyrosine-derived polycarbonate terpolymer composed of 89.5 mol% desaminotyrosyl tyrosine ethyl ester (DTE), 10 mol% desaminotyrosyl tyrosine (DT), and 0.5 mol% poly(ethylene glycol) (PEG, molecular weight [Mw]=1 kDa) [designated as E10-0.5(1K)] was used to fabricate conduits for peripheral nerve regeneration. These conduits were evaluated against commercially available nonporous polyethylene (PE) tubes. The two materials are characterized in vitro for differences in surface properties, and the conduits are then evaluated in vivo in a critical-sized nerve defect in the mouse femoral nerve model. Conduits were fabricated from E10-0.5(1K) in both porous [P-E10-0.5(1K)] and nonporous [NP-E10-0.5(1K)] configurations. The results illustrate that adsorption of laminin, fibronectin, and collagen type I was enhanced on E10-0.5(1K) compared to PE. In addition, in vivo the E10-0.5(1K) conduits improved functional recovery over PE conduits, producing regenerated nerves with a fivefold increase in the number of axons, and an eightfold increase in the percentage of myelinated axons. These increases were observed for both P-E10-0.5(1K) and NP-E10-0.5(1K) after 15 weeks. When conduits were removed at 7 or 14 days following implantation, an increase in Schwann cell proteins and fibrin matrix formation was observed in E10-0.5(1K) conduits over PE conduits. These results indicate that E10-0.5(1K) is a pro-regenerative material for peripheral nerves and that the porosity of P-E10-0.5(1K) conduits was inconsequential in this model of nerve injury.
Collapse
Affiliation(s)
- Mindy Ezra
- 1 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway, New Jersey
| | | | | | | | | |
Collapse
|
29
|
Loers G, Saini V, Mishra B, Papastefanaki F, Lutz D, Chaudhury S, Ripoll DR, Wallqvist A, Gul S, Schachner M, Kaur G. Nonyloxytryptamine mimics polysialic acid and modulates neuronal and glial functions in cell culture. J Neurochem 2013; 128:88-100. [DOI: 10.1111/jnc.12408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/19/2013] [Accepted: 08/12/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg; Universitätsklinikum Hamburg-Eppendorf; Hamburg Germany
| | - Vedangana Saini
- Department of Biotechnology; Guru Nanak Dev University; Amritsar Punjab India
| | - Bibhudatta Mishra
- Zentrum für Molekulare Neurobiologie Hamburg; Universitätsklinikum Hamburg-Eppendorf; Hamburg Germany
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology; Hellenic Pasteur Institute; Athens Greece
| | - David Lutz
- Zentrum für Molekulare Neurobiologie Hamburg; Universitätsklinikum Hamburg-Eppendorf; Hamburg Germany
| | - Sidhartha Chaudhury
- DoD Biotechnology High Performance Computing Software Applications Institute; Telemedicine and Advanced Technology Research Center; US Army Medical Research and Materiel Command; Fort Detrick Maryland USA
| | - Daniel R. Ripoll
- DoD Biotechnology High Performance Computing Software Applications Institute; Telemedicine and Advanced Technology Research Center; US Army Medical Research and Materiel Command; Fort Detrick Maryland USA
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute; Telemedicine and Advanced Technology Research Center; US Army Medical Research and Materiel Command; Fort Detrick Maryland USA
| | - Sheraz Gul
- European ScreeningPort GmbH; Schnackenburgalle114; Hamburg Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie Hamburg; Universitätsklinikum Hamburg-Eppendorf; Hamburg Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience; Rutgers University; Piscataway New Jersey USA
| | - Gurcharan Kaur
- Department of Biotechnology; Guru Nanak Dev University; Amritsar Punjab India
| |
Collapse
|
30
|
Tegaserod mimics the neurostimulatory glycan polysialic acid and promotes nervous system repair. Neuropharmacology 2013; 79:456-66. [PMID: 24067923 PMCID: PMC4618794 DOI: 10.1016/j.neuropharm.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 11/21/2022]
Abstract
Glycans attached to the cell surface via proteins or lipids or exposed in the extracellular matrix affect many cellular processes, including neuritogenesis, cell survival and migration, as well as synaptic activity and plasticity. These functions make glycans attractive molecules for stimulating repair of the injured nervous system. Yet, glycans are often difficult to synthesize or isolate and have the disadvantage to be unstable in a complex tissue environment. To circumvent these issues, we have screened a library of small organic compounds to search for structural and functional mimetics of the neurostimulatory glycan polysialic acid (PSA) and identified the 5-HT4 receptor agonist tegaserod as a PSA mimetic. The PSA mimicking activity of tegaserod was shown in cultures of central and peripheral nervous system cells of the mouse and found to be independent of its described function as a serotonin (5-HT4) receptor agonist. In an in vivo model for peripheral nerve regeneration, mice receiving tegaserod at the site of injury showed enhanced recovery compared to control mice receiving vehicle control as evidenced by functional measurements and histology. These data indicate that tegaserod could be repurposed for treatment of nervous system injuries and underscores the potential of using small molecules as mimetics of neurostimulatory glycans.
Collapse
|