1
|
McCuskey SR, Quek G, Vázquez RJ, Kundukad B, Bin Ismail MH, Astorga SE, Jiang Y, Bazan GC. Evolving Synergy Between Synthetic and Biotic Elements in Conjugated Polyelectrolyte/Bacteria Composite Improves Charge Transport and Mechanical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405242. [PMID: 39262122 DOI: 10.1002/advs.202405242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Indexed: 09/13/2024]
Abstract
gLiving materials can achieve unprecedented function by combining synthetic materials with the wide range of cellular functions. Of interest are situations where the critical properties of individual abiotic and biotic elements improve via their combination. For example, integrating electroactive bacteria into conjugated polyelectrolyte (CPE) hydrogels increases biocurrent production. One observes more efficient electrical charge transport within the CPE matrix in the presence of Shewanella oneidensis MR-1 and more current per cell is extracted, compared to traditional biofilms. Here, the origin of these synergistic effects are examined. Transcriptomics reveals that genes in S. oneidensis MR-1 related to bacteriophages and energy metabolism are upregulated in the composite material. Fluorescent staining and rheological measurements before and after enzymatic treatment identified the importance of extracellular biomaterials in increasing matrix cohesion. The synergy between CPE and S. oneidensis MR-1 thus arises from initially unanticipated changes in matrix composition and bacteria adaption within the synthetic environment.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Glenn Quek
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ricardo Javier Vázquez
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
| | - Binu Kundukad
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Muhammad Hafiz Bin Ismail
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Solange E Astorga
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Yan Jiang
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Guillermo C Bazan
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
| |
Collapse
|
2
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
3
|
Knoll MT, Fuderer E, Gescher J. Sprayable biofilm – Agarose hydrogels as 3D matrix for enhanced productivity in bioelectrochemical systems. Biofilm 2022; 4:100077. [PMID: 35619831 PMCID: PMC9127277 DOI: 10.1016/j.bioflm.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022] Open
Abstract
Bio-based energy production utilizing renewable resources can be realized by exoelectrogenic organisms and their application in bioelectrochemical systems (BES). These organisms catalyze the direct conversion of chemical into electrical energy and are already widely used in bioelectronics and biosensing. However, the biofilm-electrode interaction is a factor that limits sufficient space-time-yields for industrial applications. In this study, a hydrogel matrix consisting of agarose fibers was utilized as a scaffold for S. oneidensis cells to improve anodic processes in BES. This synthetic, scalable biofilm reached a higher current density in BES in comparison to naturally formed biofilms. Complemented with carbon nanofibers and riboflavin, the application of this functionalized hydrogel containing S. oneidensis cells led to an overall 9.1-fold increase in current density to 1324 mA m−2 in comparison to 145 mA m−2 for the planktonic control. In addition, the synthetic biofilm can be applied by spraying onto surfaces using a novel spray applicator. The latter allows to apply the biofilm effortless on large surfaces which will facilitate scalability and thus industrial application.
Collapse
|
4
|
Quek G, Vázquez RJ, McCuskey SR, Kundukad B, Bazan GC. Enabling Electron Injection for Microbial Electrosynthesis with n-Type Conjugated Polyelectrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203480. [PMID: 35835449 DOI: 10.1002/adma.202203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrosynthesis-using renewable electricity to stimulate microbial metabolism-holds the promise of sustainable chemical production. A key limitation hindering performance is slow electron-transfer rates at biotic-abiotic interfaces. Here a new n-type conjugated polyelectrolyte is rationally designed and synthesized and its use is demonstrated as a soft conductive material to encapsulate electroactive bacteria Shewanella oneidensis MR-1. The self-assembled 3D living biocomposite amplifies current uptake from the electrode ≈674-fold over controls with the same initial number of cells, thereby enabling continuous synthesis of succinate from fumarate. Such functionality is a result of the increased number of bacterial cells having intimate electronic communication with the electrode and a higher current uptake per cell. This is underpinned by the molecular design of the polymer to have an n-dopable conjugated backbone for facile reduction by the electrode and zwitterionic side chains for compatibility with aqueous media. Moreover, direct arylation polycondensation is employed instead of the traditional Stille polymerization to avoid non-biocompatible tin by-products. By demonstrating synergy between living cells with n-type organic semiconductor materials, these results provide new strategies for improving the performance of bioelectrosynthesis technologies.
Collapse
Affiliation(s)
- Glenn Quek
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 119077, Singapore
| | - Ricardo Javier Vázquez
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 119077, Singapore
| | - Samantha R McCuskey
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 119077, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
5
|
Liu X, Inda ME, Lai Y, Lu TK, Zhao X. Engineered Living Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201326. [PMID: 35243704 PMCID: PMC9250645 DOI: 10.1002/adma.202201326] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Indexed: 05/31/2023]
Abstract
Living biological systems, ranging from single cells to whole organisms, can sense, process information, and actuate in response to changing environmental conditions. Inspired by living biological systems, engineered living cells and nonliving matrices are brought together, which gives rise to the technology of engineered living materials. By designing the functionalities of living cells and the structures of nonliving matrices, engineered living materials can be created to detect variability in the surrounding environment and to adjust their functions accordingly, thereby enabling applications in health monitoring, disease treatment, and environmental remediation. Hydrogels, a class of soft, wet, and biocompatible materials, have been widely used as matrices for engineered living cells, leading to the nascent field of engineered living hydrogels. Here, the interactions between hydrogel matrices and engineered living cells are described, focusing on how hydrogels influence cell behaviors and how cells affect hydrogel properties. The interactions between engineered living hydrogels and their environments, and how these interactions enable versatile applications, are also discussed. Finally, current challenges facing the field of engineered living hydrogels for their applications in clinical and environmental settings are highlighted.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Maria Eugenia Inda
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yong Lai
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Lin X, Tsao CT, Kyomoto M, Zhang M. Injectable Natural Polymer Hydrogels for Treatment of Knee Osteoarthritis. Adv Healthc Mater 2022; 11:e2101479. [PMID: 34535978 DOI: 10.1002/adhm.202101479] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a serious chronic and degenerative disease that increasingly occurs in the aged population. Its current clinical treatments are limited to symptom relief and cannot regenerate cartilage. Although a better understanding of OA pathophysiology has been facilitating the development of novel therapeutic regimen, delivery of therapeutics to target sites with minimal invasiveness, high retention, and minimal side effects remains a challenge. Biocompatible hydrogels have been recognized to be highly promising for controlled delivery and release of therapeutics and biologics for tissue repair. In this review, the current approaches and the challenges in OA treatment, and unique properties of injectable natural polymer hydrogels as delivery system to overcome the challenges are presented. The common methods for fabrication of injectable polysaccharide-based hydrogels and the effects of their composition and properties on the OA treatment are detailed. The strategies of the use of hydrogels for loading and release cargos are also covered. Finally, recent efforts on the development of injectable polysaccharide-based hydrogels for OA treatment are highlighted, and their current limitations are discussed.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Ching Ting Tsao
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Masayuki Kyomoto
- Medical R&D Center Corporate R&D Group KYOCERA Corporation 800 Ichimiyake, Yasu Shiga 520‐2362 Japan
| | - Miqin Zhang
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
7
|
Moriwaki S, Yoshizaki Y, Konno T. Phospholipid polymer hydrogels with rapid dissociation for reversible cell immobilization. J Mater Chem B 2022; 10:2628-2636. [PMID: 35015009 DOI: 10.1039/d1tb02316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reversible and cytocompatible cell immobilization polymer matrix with a rapid dissociation rate was prepared using a zwitterionic phospholipid polymer bearing phenylboronic acid and poly(vinyl alcohol) (PVA). A reversible and spontaneously forming phospholipid polymer hydrogel is reported for use as a cell immobilization matrix which caused no invasive damage to the cells. To improve the possibility of applying the hydrogels as a reversible cell immobilization matrix, the stimuli-responsive dissociation rate of polymer hydrogels was designed to have a more rapid rate to ease the recovery of the immobilized cells. In this study, a phospholipid polymer containing 3-methacrylamide phenylboronic acid (MAPBA) as the phenylboronic acid unit was synthesized. The water-soluble phospholipid polymer (PMB-MAPBA) can spontaneously form polymer hydrogels after mixing with PVA solution under normal pressure, room temperature, and neutral pH conditions. Also, the dissociation of the hydrogels after the addition of D-sorbitol completely occurred within 10 minutes. The cells were easily immobilized on the hydrogels during the preparation process. Also, the recovery ratio of the immobilized cells was improved due to the rapid dissociation of the hydrogels. The reversible and spontaneously formed phospholipid polymer hydrogels are promising for use as soft materials for platforms for cell engineering.
Collapse
Affiliation(s)
- Sachi Moriwaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yuta Yoshizaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
8
|
Vázquez RJ, McCuskey SR, Quek G, Su Y, Llanes L, Hinks J, Bazan GC. Conjugated Polyelectrolyte/Bacteria Living Composites in Carbon Paper for Biocurrent Generation. Macromol Rapid Commun 2022; 43:e2100840. [PMID: 35075724 DOI: 10.1002/marc.202100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Indexed: 11/08/2022]
Abstract
Successful practical implementation of bioelectrochemical systems requires developing affordable electrode structures that promote efficient electrical communication with microbes. Recent efforts have centered on immobilizing bacteria with organic semiconducting polymers on electrodes via electrochemical methods. This approach creates a fixed biocomposite that takes advantage of the increased electrode's electroactive surface area (EASA). Here, we demonstrate that a biocomposite comprising the water-soluble conjugated polyelectrolyte CPE-K and electrogenic Shewanella oneidensis MR-1 can self-assemble with carbon paper electrodes, thereby increasing its biocurrent extraction by ∼ 6-fold over control biofilms. A ∼ 1.5-fold increment in biocurrent extraction was obtained for the biocomposite on carbon paper relative to the biocurrent extracted from gold-coated counterparts. Electrochemical characterization revealed that the biocomposite stabilized with the carbon paper more quickly than atop flat gold electrodes. Cross-sectional images show that the biocomposite infiltrates inhomogeneously into the porous carbon structure. Despite an incomplete penetration, the biocomposite can take advantage of the large EASA of the electrode via long-range electron transport. These results show that previous success on gold electrode platforms can be improved when using more commercially viable and easily manipulated electrode materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ricardo Javier Vázquez
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Samantha R McCuskey
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Glenn Quek
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Yude Su
- Suzhou Institute of Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Luana Llanes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillermo C Bazan
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
9
|
Sheng T, Guan X, Liu C, Su Y. De Novo Approach to Encapsulating Biocatalysts into Synthetic Matrixes: From Enzymes to Microbial Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52234-52249. [PMID: 34352175 DOI: 10.1021/acsami.1c09708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysts hold great promise in chemical and electrochemical reactions. However, biocatalysts are prone to inhospitable physiochemical conditions. Encapsulating biocatalysts into a synthetic host matrix can improve their stability and activity, and broaden their operational conditions. In this Review, we summarize the emerging de novo approaches to encapsulating biocatalysts into synthetic matrixes. Here, de novo means that embedding of biocatalysts and construction of matrixes take place simultaneously. We discuss the advantages and limitations of the de novo approach. On the basis of the nature of the biocatalysts and the synthetic frameworks, we specifically focus on two aspects: (1) encapsulation of enzymes (in vitro) in metal-organic frameworks and (2) encapsulation of microbial electrocatalysts (in vivo) on the electrode. For both cases, we discuss how the encapsulation improves biocatalysts' performance (stability, viability, activity, and etc.). We also highlight the benefit of encapsulation in facilitating the transport of charge carriers in microbial electrocatalysis.
Collapse
Affiliation(s)
- Tianran Sheng
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
10
|
McCuskey SR, Chatsirisupachai J, Zeglio E, Parlak O, Panoy P, Herland A, Bazan GC, Nguyen TQ. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem Rev 2021; 122:4791-4825. [PMID: 34714064 DOI: 10.1021/acs.chemrev.1c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Jirat Chatsirisupachai
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Erica Zeglio
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden
| | - Onur Parlak
- Dermatology and Venereology Division, Department of Medicine(Solna), Karolinska Institute, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Anna Herland
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Qi X, Wang S, Jiang Y, Liu P, Li Q, Hao W, Han J, Zhou Y, Huang X, Liang P. Artificial electrochemically active biofilm for improved sensing performance and quickly devising of water quality early warning biosensors. WATER RESEARCH 2021; 198:117164. [PMID: 33915405 DOI: 10.1016/j.watres.2021.117164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
A major challenge for devising an electrochemically active biofilm (EAB)-based biosensor for real-time water quality early-warning is the formation of EAB that requires several days to weeks. Besides the onerous and time-consuming preparation process, the naturally formed EABs are intensively concerned as they can hardly deliver repeatable electrical signals even at identical experimental conditions. To address these concerns, this study employed sodium alginate as immobilization agent to encapsulate Shewanella oneidensis MR-1 and prepared EAB for devising a biosensor in a short period of less than 1 h. The artificial EAB were found capable of delivering highly consistent electrical signals with each other when fed with the same samples. Morphology and bioelectrochemical properties of the artificial EAB were investigated to provide interpretations for these findings. Different concentrations of bacteria and alginate in forming the EAB were investigated for their effects on the biosensor's sensitivity. Results suggested that lower concentration of bacteria would be beneficial until it increased to 0.06 (OD660). Concentration of sodium alginate affected the sensitivity as well and 1% was found an optimum amount to serve in the formation of EAB. A long-term operation of the biosensor with artificial EAB for 110 h was performed. Clear warning signals for incoming toxicants were observed over random signal fluctuations. All results suggested that the artificial EAB electrode would support a rapid devised and highly sensitivity biosensor.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Qingcheng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
12
|
|
13
|
Kaneko M, Ishihara K, Nakanishi S. Redox-Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001849. [PMID: 32734709 DOI: 10.1002/smll.202001849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrochemical systems in which metabolic electrons in living microbes have been extracted to or injected from an extracellular electrical circuit have attracted considerable attention as environmentally-friendly energy conversion systems. Since general microbes cannot exchange electrons with extracellular solids, electron mediators are needed to connect living cells to an extracellular electrode. Although hydrophobic small molecules that can penetrate cell membranes are commonly used as electron mediators, they cannot be dissolved at high concentrations in aqueous media. The use of hydrophobic mediators in combination with small hydrophilic redox molecules can substantially increase the efficiency of the extracellular electron transfer process, but this method has side effects, in some cases, such as cytotoxicity and environmental pollution. In this Review, recently-developed redox-active polymers are highlighted as a new type of electron mediator that has less cytotoxicity than many conventional electron mediators. Owing to the design flexibility of polymer structures, important parameters that affect electron transport properties, such as redox potential, the balance of hydrophobicity and hydrophilicity, and electron conductivity, can be systematically regulated.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Graduate School of Engineering Science Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
14
|
McCuskey SR, Su Y, Leifert D, Moreland AS, Bazan GC. Living Bioelectrochemical Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908178. [PMID: 32347632 DOI: 10.1002/adma.201908178] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Composites, in which two or more material elements are combined to provide properties unattainable by single components, have a historical record dating to ancient times. Few include a living microbial community as a key design element. A logical basis for enabling bioelectronic composites stems from the phenomenon that certain microorganisms transfer electrons to external surfaces, such as an electrode. A bioelectronic composite that allows cells to be addressed beyond the confines of an electrode surface can impact bioelectrochemical technologies, including microbial fuel cells for power production and bioelectrosynthesis platforms where microbes produce desired chemicals. It is shown that the conjugated polyelectrolyte CPE-K functions as a conductive matrix to electronically connect a three-dimensional network of Shewanella oneidensis MR-1 to a gold electrode, thereby increasing biocurrent ≈150-fold over control biofilms. These biocomposites spontaneously assemble from solution into an intricate arrangement of cells within a conductive polymer matrix. While increased biocurrent is due to more cells in communication with the electrode, the current extracted per cell is also enhanced, indicating efficient long-range electron transport. Further, the biocomposites show almost an order-of-magnitude lower charge transfer resistance than CPE-K alone, supporting the idea that the electroactive bacteria and the conjugated polyelectrolyte work synergistically toward an effective bioelectronic composite.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106, USA
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California, 93106, USA
| | - Yude Su
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106, USA
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California, 93106, USA
- Departments of Chemistry and Chemical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Dirk Leifert
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California, 93106, USA
| | - Alex S Moreland
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106, USA
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California, 93106, USA
| | - Guillermo C Bazan
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106, USA
- Center for Polymers and Organic Solids, University of California, Santa Barbara, California, 93106, USA
- Departments of Chemistry and Chemical Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
15
|
Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering. Biomaterials 2020; 230:119628. [DOI: 10.1016/j.biomaterials.2019.119628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
|
16
|
Liu Z, Lu B, He B, Li X, Wang LA. Effect of the pyrolysis duration and the addition of zeolite powder on the leaching toxicity of copper and cadmium in biochar produced from four different aquatic plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109517. [PMID: 31394377 DOI: 10.1016/j.ecoenv.2019.109517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The study aimed to determine the biochar yield of four aquatic plants, the leaching toxicity of copper (Cu) and cadmium (Cd) in the biochar, and the stabilization characteristics of the biochar produced under different pyrolysis conditions (at 350 °C for 1, 2, and 3 h and absence/presence of zeolite powder). The results showed that different plant species required a different pyrolysis duration and the presence or absence of zeolite powder. The stabilization of Cu and Cd was significantly affected by the pyrolysis duration and the external materials for different plant species and different types of admixtures. Pyrolysis temperatures over 350 °C for 1 h without zeolite powder generated stable Cu and Cd in goldfish algae (Ceratophyllum demersum L.), foxtail algae (Myriophyllum verticillatum L.), and penny grass (Hydrocotyle vulgaris). Pyrolysis temperatures over 350 °C for 1 h with zeolite powder made Cu and Cd stable in water celery (Oenanthe javanica (Bl.) DC). The addition of zeolite powder during pyrolysis was possible due to the weight reduction efficiency in plants with Cu and Cd. Furthermore, the surface of the biochar with the zeolite powder showed honeycombs and a spongy porous structure. The duration of the pyrolysis had little effect on the honeycomb pore structure.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Bangjun Lu
- Fuling Environmental Monitoring Center, 3 Taibai Rd, Fuling New District of Chongqing, China
| | - Benyang He
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| | - Xiang Li
- International Policy, Faculty of Law and Economics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| |
Collapse
|
17
|
Liu Z, Lu B, Xiao H, Liu D, Li X, Wang LA, Urbanovich O, Nagorskaya L. Effect of mixed solutions of heavy metal eluents on soil fertility and microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112968. [PMID: 31554144 DOI: 10.1016/j.envpol.2019.112968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 05/28/2023]
Abstract
This study analyzed the effect of heavy metal eluents (0.3 mol/L C6H8O7, 5 × 10-4 mol/L EDTA, and 0.01 mol/L Na2S2O3) on the content of organic matter, hydrolytic nitrogen, available phosphorus and potassium, and species composition of bacteria and fungi in vegetable soils. The obtained results documented that the treatment of the soil, consisting of shaking the sample with a mixture of eluents, significantly increased the content of organic matter, hydrolytic nitrogen, and available phosphorus and potassium. The mixed solutions of eluents increase the maximum available P in the soil by 279.3%, and hydrolytic N by 30.7%. The eluents affected, to a certain extent, the dominant species of microorganisms in the soil, but did not increase species richness and evenness in all soil samples.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Bangjun Lu
- Fuling Environmental Monitoring Center, 3 Taibai Rd. Fuling New District of Chongqing, China
| | - Hongyan Xiao
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| | - Dongsheng Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| | - Xiang Li
- International Policy, Faculty of Law and Economics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Oksana Urbanovich
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Liubov Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| |
Collapse
|
18
|
Chong P, Erable B, Bergel A. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. BIORESOURCE TECHNOLOGY 2019; 289:121641. [PMID: 31300306 DOI: 10.1016/j.biortech.2019.121641] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.
Collapse
Affiliation(s)
- Poehere Chong
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.
| |
Collapse
|
19
|
Lin X, Jain P, Wu K, Hong D, Hung HC, O'Kelly MB, Li B, Zhang P, Yuan Z, Jiang S. Ultralow Fouling and Functionalizable Surface Chemistry Based on Zwitterionic Carboxybetaine Random Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1544-1551. [PMID: 30265550 PMCID: PMC6501560 DOI: 10.1021/acs.langmuir.8b02540] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Here, we report a simple yet effective surface-modification approach to imparting hydrophobic surfaces with superhydrophilicity using ultralow fouling/functionalizable carboxybetaine (CB) copolymers via a dip-coating technique. A new series of CB random copolymers with varying amphiphilicities were synthesized and coated on hydrophobic polypropylene (PP) and polystyrene (PS) surfaces. The nonfouling capability of each coating was screened by an enzyme-linked immunosorbent assay (ELISA) and further comprehensively assessed against 100% human serum by a Micro BCA protein assay kit. The random copolymer containing ∼30 mol % CB units showed superhydrophilicity with the highest air contact angle of more than 165° in DI water and the best nonfouling capability against 100% human blood serum. Surfaces of a 96-well plate coated with the optimal CB random copolymer had a significantly better nonfouling capability than those of a commercial 96-well plate with an ultralow attachment surface. The adhesion of mouse embryonic fibroblast cells (NIH3T3) was completely inhibited on surfaces coated with CB random copolymers. Furthermore, the optimal nonfouling CB copolymer surface was functionalized with an antigen via covalent bonding where its specific interactions with its antibody were verified. Thus, this CB random copolymer is capable of imparting both ultralow fouling and functionalizable capabilities to hydrophobic surfaces for blood-contacting devices.
Collapse
|
20
|
Oda H, Ishihara K. Determination of association constants between water-soluble phospholipid polymer bearing phenylboronic acid group and polyol compounds for reversible formation of three-dimensional networks. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics. Sci Rep 2018; 8:15293. [PMID: 30327574 PMCID: PMC6191412 DOI: 10.1038/s41598-018-33521-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial electrochemical systems provide an environmentally-friendly means of energy conversion between chemical and electrical forms, with applications in wastewater treatment, bioelectronics, and biosensing. However, a major challenge to further development, miniaturization, and deployment of bioelectronics and biosensors is the limited thickness of biofilms, necessitating large anodes to achieve sufficient signal-to-noise ratios. Here we demonstrate a method for embedding an electroactive bacterium, Shewanella oneidensis MR-1, inside a conductive three-dimensional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix electropolymerized on a carbon felt substrate, which we call a multilayer conductive bacterial-composite film (MCBF). By mixing the bacteria with the PEDOT:PSS precursor in a flow-through method, we maintain over 90% viability of S. oneidensis during encapsulation. Microscopic analysis of the MCBFs reveal a tightly interleaved structure of bacteria and conductive PEDOT:PSS up to 80 µm thick. Electrochemical experiments indicate S. oneidensis in MCBFs can perform both direct and riboflavin-mediated electron transfer to PEDOT:PSS. When used in bioelectrochemical reactors, the MCBFs produce 20 times more steady-state current than native biofilms grown on unmodified carbon felt. This versatile approach to control the thickness of bacterial composite films and increase their current output has immediate applications in microbial electrochemical systems, including field-deployable environmental sensing and direct integration of microorganisms into miniaturized organic electronics.
Collapse
|
22
|
Liu Z, Wang LA, Ding S, Xiao H. Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:171-177. [PMID: 29804013 DOI: 10.1016/j.ecoenv.2018.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated remediation of mercury-contaminated soils using Oxalis corniculata L. combined with various enhancers (sodium thiosulfate, ammonium thiosulfate, ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid). The experiment was conducted using Oxalis corniculata seedlings planted in pots containing mercury loaded soils. Investigations included analysis of soil properties, plant growth conditions, ability of the plants to accumulate and extract mercury, and rhizosphere microorganism distribution. The maximal mercury content of the aerial parts and the mercury-translocation ratio of Oxalis corniculata treated with enhancers increased compared to Oxalis corniculata without enhancers. Compared with no enhancers, the theoretical reduction in phytoremediation time was about 50%, 25%, 20% and 21% when Oxalis corniculata was treated with sodium thiosulfate (Na2S2O3), ammonium thiosulfate ((NH4)2S2O3), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), respectively. The results indicated that the dominant species in rhizosphere soils varied with different enhancers. However, the evenness of background soils, rhizosphere soils of Oxalis corniculata, Oxalis corniculata treated with Na2S2O3, (NH4)2S2O3, EDTA and DTPA was not largely different at 0.62, 0.61, 0.57, 0.64, 0.61 and 0.63, respectively. These findings demonstrate that Oxalis corniculata treated with Na2S2O3 has the potential to recover and reclaim mercury-contaminated soils in pots.
Collapse
Affiliation(s)
- Zhongchuang Liu
- School of Chemistry and Chemical Engineering, School of Green Intelligence Environment, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Shimin Ding
- School of Chemistry and Chemical Engineering, School of Green Intelligence Environment, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| | - Hongyan Xiao
- School of Chemistry and Chemical Engineering, School of Green Intelligence Environment, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| |
Collapse
|
23
|
Liu Z, Wang LA, Ding S, Li Y. Effects of growth agents and mercury on several herbs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12012-12021. [PMID: 29450779 DOI: 10.1007/s11356-018-1498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
The paper discussed the effects of growth agents and mercury on the growth of four herb species subjected to a pot experiment: Aloe vera, Setcreasea purpurea, Chlorophytum comosum, and Oxalis corniculata. We determined the height and biomass production of selected plants treated with different growth agents and different concentrations of mercury solutions. We evaluated the relative growth rate (RGR) of the experimental plants. The aim of the study was to explore potential novel solutions to the shortcoming of the low speed of phytoremediation. The results showed that the upper parts of Aloe vera and Chlorophytum comosum had the fastest growth in the treatment with water only. In contrast, the upper parts of Setcreasea purpurea grew most intensely after the treatment with Lvyebao Fertilizer, whereas the aboveground parts of Oxalis corniculata had the fastest growth after the application of water and the occasional use of Green Cake Fertilizer. In addition, the tolerance to mercury of Oxalis corniculata was the strongest, whereas that of Chlorophytum comosum was the lowest among the species investigated.
Collapse
Affiliation(s)
- Zhongchuang Liu
- School of Chemistry and Chemical Engineering, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China.
- Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China.
- Collaborative Innovation Center for Green Development in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China.
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
- College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Shimin Ding
- School of Chemistry and Chemical Engineering, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China
- Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China
- Collaborative Innovation Center for Green Development in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China
| | - Yuehan Li
- School of Chemistry and Chemical Engineering, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China
- Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China
- Collaborative Innovation Center for Green Development in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District, Chongqing, China
| |
Collapse
|
24
|
Dong D, Hao T, Wang C, Zhang Y, Qin Z, Yang B, Fang W, Ye L, Yao F, Li J. Zwitterionic starch-based hydrogel for the expansion and "stemness" maintenance of brown adipose derived stem cells. Biomaterials 2017; 157:149-160. [PMID: 29272722 DOI: 10.1016/j.biomaterials.2017.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
Brown adipose derived stem cells (BADSCs) have become a promising stem cell treatment candidate for myocardial infarction because of their efficiently spontaneous differentiation capacity towards cardiomyocytes. The lack of existing cell passage protocols motivates us to develop a neotype 3D cell expansion technique for BADSCs. In this study, "clickable" zwitterionic starch based hydrogels are developed using methacrylate modified sulfobetaine derived starch with dithiol-functionalized poly (ethylene glycol) as crosslinker via the "thiol-ene" Michael addition reaction. Moreover, CGRGDS peptide is immobilized into the hydrogel via a similar "clickable" approach. Their Young's moduli range from 22.28 to 74.81 kPa depending on the concentration of precursor solutions. Excellent anti-fouling property is also presented owing to the introduction of zwitterionic moieties. BADSCs are homogeneously encapsulated in the hydrogels and then routinely cultured for 10 days. Results suggest a capacious cell proliferation and the extent increases with either the decrease of mechanical strength or the introduction of CGRGDS. More excitingly, the cell "stemness" is well maintained during this period and the expanded cells released from the hydrogels well keep the efficiently spontaneous cardiomyogenic differentiation capacity. Therefore, it is suggested that zwitterionic starch based hydrogel is able for the expansion and "stemness " maintenance of BADSCs.
Collapse
Affiliation(s)
- Dianyu Dong
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Tianjin, 300072, China
| | - Tong Hao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing, 100850, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing, 100850, China
| | - Ying Zhang
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Tianjin, 300072, China
| | - Zhihui Qin
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Tianjin, 300072, China
| | - Boguang Yang
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Tianjin, 300072, China
| | - Wancai Fang
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Tianjin, 300072, China
| | - Lei Ye
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Tianjin, 300072, China
| | - Fanglian Yao
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Tianjin, 300072, China.
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing, 100850, China.
| |
Collapse
|
25
|
Wang W, Yang J, Zhang E, Lu Y, Cao Z. L-carnitine Derived Zwitterionic Betaine Materials. J Mater Chem B 2017; 5:8676-8680. [PMID: 29430301 PMCID: PMC5802373 DOI: 10.1039/c7tb02431b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An L-carnitine derived zwitterionic betaine material was developed. The synthesized L-carnitineMA was the first zwitterionic betaine monomer from natural feedstocks. In the models of Surface coating and hydrogel, the L-carnitineMA material was able to achieve superior anti-fouling performance as good as state-of-the-art zwitterionic betaine materials.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Jianhai Yang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Yang Lu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| |
Collapse
|
26
|
Yu YY, Zhai DD, Si RW, Sun JZ, Liu X, Yong YC. Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems. Int J Mol Sci 2017; 18:ijms18010090. [PMID: 28054970 PMCID: PMC5297724 DOI: 10.3390/ijms18010090] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 02/02/2023] Open
Abstract
Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed.
Collapse
Affiliation(s)
- Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Dan-Dan Zhai
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Rong-Wei Si
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Jian-Zhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Xiang Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
27
|
|
28
|
Gao B, Konno T, Ishihara K. Fabrication of a live cell-containing multilayered polymer hydrogel membrane with micrometer-scale thickness to evaluate pharmaceutical activity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1372-85. [PMID: 26374190 DOI: 10.1080/09205063.2015.1095025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We propose a spinning-assisted layer-by-layer method for simple fabrication of a multilayered polymer hydrogel membrane that contains living cells. Hydrogel formation occurred based on the spontaneous cross-linking reaction between two polymers in aqueous solution. A water-soluble 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups (PMBV) and poly(vinyl alcohol) (PVA) were used as polymers for hydrogel membrane formation. Changing the number of hydrogel membrane layers, polymer concentration, spinning rate, and processing time for diffusion-dependent gelation of PMBV and PVA facilitated the regulation of the multilayered polymer hydrogel membrane thickness and morphology. We concluded that a multilayered polymer hydrogel membrane prepared using 5.0 wt% PMBV and 5.0 wt% PVA at a spinning rate of 2000 rpm was suitable for precise spatial control of cells in single layers. This multilayered polymer hydrogel membrane was used to prepare a single cell-laden layer to minimize barriers to the diffusion of bioactive compounds while preserving the three-dimensional (3-D) context. The pharmaceutical effects of one of the anticancer agents, paclitaxel, on a human cervical cancer line, HeLa cells, were evaluated in vitro, and the usability of this culture model was demonstrated.
Collapse
Affiliation(s)
- Botao Gao
- a Department of Materials Engineering, School of Engineering , The University of Tokyo ,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Tomohiro Konno
- b Department of Bioengineering, School of Engineering , The University of Tokyo ,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Kazuhiko Ishihara
- a Department of Materials Engineering, School of Engineering , The University of Tokyo ,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan.,b Department of Bioengineering, School of Engineering , The University of Tokyo ,7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
29
|
Oda H, Konno T, Ishihara K. Efficient differentiation of stem cells encapsulated in a cytocompatible phospholipid polymer hydrogel with tunable physical properties. Biomaterials 2015; 56:86-91. [DOI: 10.1016/j.biomaterials.2015.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 12/01/2022]
|
30
|
|
31
|
Gao B, Konno T, Ishihara K. Building cell-containing multilayered phospholipid polymer hydrogels for controlling the diffusion of a bioactive reagent. RSC Adv 2015. [DOI: 10.1039/c5ra05299h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed multilayered phospholipid polymer hydrogels containing living cells and a specific bioactive reagent for the regulation of cell-fate.
Collapse
Affiliation(s)
- Botao Gao
- Department of Materials Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Tomohiro Konno
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
- Department of Bioengineering
| |
Collapse
|
32
|
Lin X, Konno T, Ishihara K. Redox-active cytocompatible phospholipid polymer hydrogels for three-dimensional electrical control of encapsulated living cells. ACTA ACUST UNITED AC 2015. [DOI: 10.14723/tmrsj.40.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaojie Lin
- Department of Materials Engineering, The University of Tokyo
| | - Tomohiro Konno
- Department of Bioengineering, School of Engineering, The University of Tokyo
| | - Kazuhiko Ishihara
- Department of Materials Engineering, The University of Tokyo
- Department of Bioengineering, School of Engineering, The University of Tokyo
| |
Collapse
|
33
|
Lin X, Ishihara K. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1461-78. [DOI: 10.1080/09205063.2014.934319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Dolch K, Danzer J, Kabbeck T, Bierer B, Erben J, Förster AH, Maisch J, Nick P, Kerzenmacher S, Gescher J. Characterization of microbial current production as a function of microbe-electrode-interaction. BIORESOURCE TECHNOLOGY 2014; 157:284-92. [PMID: 24566287 DOI: 10.1016/j.biortech.2014.01.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 05/15/2023]
Abstract
Microbe-electrode-interactions are keys for microbial fuel cell technology. Nevertheless, standard measurement routines to analyze the interplay of microbial physiology and material characteristics have not been introduced yet. In this study, graphite anodes with varying surface properties were evaluated using pure cultures of Shewanella oneidensis and Geobacter sulfurreducens, as well as defined and undefined mixed cultures. The evaluation routine consisted of a galvanostatic period, a current sweep and an evaluation of population density. The results show that surface area correlates only to a certain extent with population density and anode performance. Furthermore, the study highlights a strain-specific microbe-electrode-interaction, which is affected by the introduction of another microorganism. Moreover, evidence is provided for the possibility of translating results from pure culture to undefined mixed species experiments. This is the first study on microbe-electrode-interaction that systematically integrates and compares electrochemical and biological data.
Collapse
Affiliation(s)
- Kerstin Dolch
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | - Joana Danzer
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Tobias Kabbeck
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | - Benedikt Bierer
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Johannes Erben
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Andreas H Förster
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | - Jan Maisch
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstrasse 2, 76131 Karlsruhe, Germany.
| | - Peter Nick
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstrasse 2, 76131 Karlsruhe, Germany.
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
35
|
Ghach W, Etienne M, Urbanova V, Jorand FP, Walcarius A. Sol–gel based ‘artificial’ biofilm from Pseudomonas fluorescens using bovine heart cytochrome c as electron mediator. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
Lin X, Konno T, Ishihara K. Cell-membrane-permeable and cytocompatible phospholipid polymer nanoprobes conjugated with molecular beacons. Biomacromolecules 2013; 15:150-7. [PMID: 24308501 DOI: 10.1021/bm401430k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To enable the visualization of the distribution and dynamics of intracellular biomolecules and thereby understand the mechanisms of intracellular bioreactions, we developed a specific functional nanoprobe through the combination of a well-designed, cytocompatible phospholipid polymer and molecular beacons (MBs). A water-soluble, amphiphilic phospholipid polymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-N-succinimidyloxycarbonyl tetra(ethylene glycol) methacrylate] (PMBS), was synthesized and conjugated with MBs to form nanoprobes via a chemical reaction between the ester group of N-hydroxysuccinimide and the amine group of the MBs. Surface tension measurements indicated that the polymeric nanoprobes had different conformations in aqueous solution, specifically at a concentration of 1.0 mg/mL. The PMBS, containing the large, hydrophobic BMA, formed polymer aggregates. The carcinoma cells used to test the probes remained 100% viable after incubation with PMBS-MB probes. The polymeric nanoprobes demonstrated not only a high target specificity but also resistance to nonspecific adsorption of proteins compared with unconjugated MBs and were able to penetrate the cytoplasm of the cells, allowing the live imaging of mRNA. In summary, MPC polymer-MB nanoprobes have great potential for practical application for the noninvasive monitoring of intracellular biomolecules and bioreactions in real time.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Materials Engineering and ‡Department of Bioengineering, School of Engineering, The University of Tokyo , 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
37
|
Oda H, Konno T, Ishihara K. The use of the mechanical microenvironment of phospholipid polymer hydrogels to control cell behavior. Biomaterials 2013; 34:5891-6. [DOI: 10.1016/j.biomaterials.2013.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/06/2013] [Indexed: 11/15/2022]
|
38
|
Gao B, Konno T, Ishihara K. A simple procedure for the preparation of precise spatial multicellular phospholipid polymer hydrogels. Colloids Surf B Biointerfaces 2013; 108:345-51. [DOI: 10.1016/j.colsurfb.2013.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 01/12/2023]
|
39
|
Nishio K, Nakamura R, Lin X, Konno T, Ishihara K, Nakanishi S, Hashimoto K. Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer. Chemphyschem 2013; 14:2159-63. [PMID: 23630181 DOI: 10.1002/cphc.201300117] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/09/2013] [Indexed: 11/05/2022]
Abstract
A redox-active phospholipid polymer with a phospholipid-mimicking structure (2-methacryloyloxyethyl phosphorylcholine; MPC) was synthesized to construct a biocompatible electron mediator between bacteria and an electrode. In this study, a copolymer of MPC and vinylferrocene [VF; poly(MPC-co-VF)] (PMF) is synthesized. When PMF is added to cultures of the bacterial species Escherichia coli (Gram negative) and Lactobacillus plantarum (Gram positive), which have different cell wall structures, a catalytic current mediated by PMF is observed. In addition, growth curves and live/dead assays indicate that PMF does not decrease metabolic activity or cell viability. These results indicate that PMF mediates extracellular electron transfer across bacterial cell membranes without associated cytotoxicity.
Collapse
Affiliation(s)
- Koichi Nishio
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Redox phospholipid polymer microparticles as doubly functional polymer support for immobilization of enzyme oxidase. Colloids Surf B Biointerfaces 2013; 102:857-63. [DOI: 10.1016/j.colsurfb.2012.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022]
|
41
|
Sun J, Zeng F, Jian H, Wu S. Grafting zwitterionic polymer chains onto PEI as a convenient strategy to enhance gene delivery performance. Polym Chem 2013. [DOI: 10.1039/c3py00752a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|