1
|
Fernandes DA. Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. Bioconjug Chem 2024. [PMID: 39377727 DOI: 10.1021/acs.bioconjchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.
Collapse
|
2
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for cancer therapeutics: Liposomes, exosomes and hybrid exosomes. Cancer Lett 2023; 565:216220. [PMID: 37209944 PMCID: PMC10325927 DOI: 10.1016/j.canlet.2023.216220] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cancer has recently surpassed heart disease as the leading cause of deaths worldwide for the age group 45-65 and has been the primary focus for biomedical researchers. Presently, the drugs involved in the first-line cancer therapy are raising concerns due to high toxicity and lack of selectivity to cancer cells. There has been a significant increase in research with innovative nano formulations to entrap the therapeutic payload to enhance efficacy and eliminate or minimize toxic effects. Lipid-based carriers stand out due to their unique structural properties and biocompatible nature. The two main leaders of lipid-based drug carriers: long known liposomes and comparatively new exosomes have been well-researched. The similarity between the two lipid-based carriers is the vesicular structure with the core's capability to carry the payload. While liposomes utilize chemically derived and altered phospholipid components, the exosomes are naturally occurring vesicles with inherent lipids, proteins, and nucleic acids. More recently, researchers have focused on developing hybrid exosomes by fusing liposomes and exosomes. Combining these two types of vesicles may offer some advantages such as high drug loading, targeted cellular uptake, biocompatibility, controlled release, stability in harsh conditions and low immunogenicity.
Collapse
Affiliation(s)
- Disha N Moholkar
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Raghuram Kandimalla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Sekine S, Mayama S, Nishijima N, Kojima T, Endo-Takahashi Y, Ishii Y, Shiono H, Akiyama S, Sakurai A, Sashida S, Hamano N, Tada R, Suzuki R, Maruyama K, Negishi Y. Development of a Gene and Nucleic Acid Delivery System for Skeletal Muscle Administration via Limb Perfusion Using Nanobubbles and Ultrasound. Pharmaceutics 2023; 15:1665. [PMID: 37376113 PMCID: PMC10302710 DOI: 10.3390/pharmaceutics15061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Strategies for gene and nucleic acid delivery to skeletal muscles have been extensively explored to treat Duchenne muscular dystrophy (DMD) and other neuromuscular diseases. Of these, effective intravascular delivery of naked plasmid DNA (pDNA) and nucleic acids into muscles is an attractive approach, given the high capillary density in close contact with myofibers. We developed lipid-based nanobubbles (NBs) using polyethylene-glycol-modified liposomes and an echo-contrast gas and found that these NBs could improve tissue permeability by ultrasound (US)-induced cavitation. Herein, we delivered naked pDNA or antisense phosphorodiamidate morpholino oligomers (PMOs) into the regional hindlimb muscle via limb perfusion using NBs and US exposure. pDNA encoding the luciferase gene was injected with NBs via limb perfusion into normal mice with application of US. High luciferase activity was achieved in a wide area of the limb muscle. DMD model mice were administered PMOs, designed to skip the mutated exon 23 of the dystrophin gene, with NBs via intravenous limb perfusion, followed by US exposure. The number of dystrophin-positive fibers increased in the muscles of mdx mice. Combining NBs and US exposure, which can be widely delivered to the hind limb muscles via the limb vein, could be an effective therapeutic approach for DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Shohko Sekine
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Sayaka Mayama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Nobuaki Nishijima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Takuo Kojima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Yuko Ishii
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Hitomi Shiono
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Saki Akiyama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Akane Sakurai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Sanae Sashida
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Nobuhito Hamano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo 173-8605, Japan;
| | - Kazuo Maruyama
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo 173-8605, Japan;
- Laboratory of Ultrasound Theranostics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| |
Collapse
|
5
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
6
|
Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release 2023; 355:624-654. [PMID: 36775245 DOI: 10.1016/j.jconrel.2023.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Lipid vesicles can provide a cost-effective enhancement of skin drug absorption when vesicle production process is optimised. It is an important challenge to design the ideal vesicle, since their properties and features are related, as changes in one affect the others. Here, we review the main components, preparation and characterization methods commonly used, and the key properties that lead to highly efficient vesicles for transdermal drug delivery purposes. We stand by size, deformability degree and drug loading, as the most important vesicle features that determine the further transdermal drug absorption. The interest in this technology is increasing, as demonstrated by the exponential growth of publications on the topic. Although long-term preservation and scalability issues have limited the commercialization of lipid vesicle products, freeze-drying and modern escalation methods overcome these difficulties, thus predicting a higher use of these technologies in the market and clinical practice.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Teresa M Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain.
| |
Collapse
|
7
|
Shaharyar MA, Bhowmik R, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sarkar A, Kazmi I, Karmakar S. Vaccine Formulation Strategies and Challenges Involved in RNA Delivery for Modulating Biomarkers of Cardiovascular Diseases: A Race from Laboratory to Market. Vaccines (Basel) 2023; 11:vaccines11020241. [PMID: 36851119 PMCID: PMC9963957 DOI: 10.3390/vaccines11020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
It has been demonstrated that noncoding RNAs have significant physiological and pathological roles. Modulation of noncoding RNAs may offer therapeutic approaches as per recent findings. Small RNAs, mostly long noncoding RNAs, siRNA, and microRNAs make up noncoding RNAs. Inhibiting or promoting protein breakdown by binding to 3' untranslated regions of target mRNA, microRNAs post-transcriptionally control the pattern of gene expression. Contrarily, long non-coding RNAs perform a wider range of tasks, including serving as molecular scaffolding, decoys, and epigenetic regulators. This article provides instances of long noncoding RNAs and microRNAs that may be a biomarker of CVD (cardiovascular disease). In this paper we highlight various RNA-based vaccine formulation strategies designed to target these biomarkers-that are either currently in the research pipeline or are in the global pharmaceutical market-along with the physiological hurdles that need to be overcome.
Collapse
Affiliation(s)
- Md. Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| |
Collapse
|
8
|
Cui Z, Jiao Y, Pu L, Tang JZ, Wang G. The Progress of Non-Viral Materials and Methods for Gene Delivery to Skeletal Muscle. Pharmaceutics 2022; 14:2428. [PMID: 36365246 PMCID: PMC9695315 DOI: 10.3390/pharmaceutics14112428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
Since Jon A. Wolff found skeletal muscle cells being able to express foreign genes and Russell J. Mumper increased the gene transfection efficiency into the myocytes by adding polymers, skeletal muscles have become a potential gene delivery and expression target. Different methods have been developing to deliver transgene into skeletal muscles. Among them, viral vectors may achieve potent gene delivery efficiency. However, the potential for triggering biosafety risks limited their clinical applications. Therefore, non-viral biomaterial-mediated methods with reliable biocompatibility are promising tools for intramuscular gene delivery in situ. In recent years, a series of advanced non-viral gene delivery materials and related methods have been reported, such as polymers, liposomes, cell penetrating peptides, as well as physical delivery methods. In this review, we summarized the research progresses and challenges in non-viral intramuscular gene delivery materials and related methods, focusing on the achievements and future directions of polymers.
Collapse
Affiliation(s)
- Zhanpeng Cui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yang Jiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Linyu Pu
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - James Zhenggui Tang
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton WV1 1SB, UK
| | - Gang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Endo-Takahashi Y, Negishi Y. Gene and oligonucleotide delivery via micro- and nanobubbles by ultrasound exposure. Drug Metab Pharmacokinet 2022; 44:100445. [DOI: 10.1016/j.dmpk.2022.100445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
|
10
|
Transformable vesicles for cancer immunotherapy. Adv Drug Deliv Rev 2021; 179:113905. [PMID: 34331988 DOI: 10.1016/j.addr.2021.113905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/22/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapy that utilizes the human immune system to fight cancer represents a revolutionary method for cancer treatment. Immunotherapeutic agents that trigger the immune response should be carefully delivered to the desired site to maximize immunotherapy effectiveness and minimize side effects. Vesicles offer the possibility of encapsulating both hydrophilic and hydrophobic drugs and thus serve as a promising delivery tool. As multiple irreconcilable requirements exist at different transport stages, developing vesicles transformable in response to given stimuli is of great significance. In this review, we first introduced various vesicle types used for immunotherapy. Furthermore, the typical stimuli that trigger vesicle transformation and the usually generated transformation styles were described. Focusing on three aspects of antigen-presenting cell (APC)/T cell activation, tumor microenvironment (TME) amelioration, and immunogenic cell death (ICD)-induced immunotherapy, we reviewed recently reported transformable vesicles for tumor treatment. Finally, we put forward possible directions for future research and clinical translation.
Collapse
|
11
|
Zhang Y, Fowlkes JB. Liposomes-based nanoplatform enlarges ultrasound-related diagnostic and therapeutic precision. Curr Med Chem 2021; 29:1331-1341. [PMID: 34348609 DOI: 10.2174/0929867328666210804092624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/07/2022]
Abstract
Ultrasound (US) is notable in the medical field as a safe and effective imaging modality due to its lack of ionizing radiation, non-invasive approach, and real-time monitoring capability. Accompanying recent progress in nanomedicine, US has been providing hope of theranostic capability not only for imaging-based diagnosis but also for US-based therapy by taking advantage of the bioeffects induced by US. Cavitation, sonoporation, thermal effects, and other cascade effects stimulated by acoustic energy conversion have contributed to medical problem-solving in the past decades although to varying degrees of efficacy in comparisons to other methods. Recently, the usage of liposomes-based nanoplatform fuels the development of nanomedicine and provides novel clinical strategies for antitumor, thrombolysis, and controlled drug release. Merging of novel liposome-based nanoplatforms and US-induced reactions has promise for a new blueprint for future medicine. In the present review article, the value of liposome-based nanoplatforms in US-related diagnosis and therapy will be discussed and summarized along with potential future directions for further investigations.
Collapse
Affiliation(s)
- Ying Zhang
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| | - J Brian Fowlkes
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| |
Collapse
|
12
|
Omata D, Munakata L, Kageyama S, Suzuki Y, Maruyama T, Shima T, Chikaarashi T, Kajita N, Masuda K, Tsuchiya N, Maruyama K, Suzuki R. Ultrasound image-guided gene delivery using three-dimensional diagnostic ultrasound and lipid-based microbubbles. J Drug Target 2021; 30:200-207. [PMID: 34254554 DOI: 10.1080/1061186x.2021.1953510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gene therapy is a promising technology for genetic and intractable diseases. Drug delivery carriers or systems for genes and nucleic acids have been studied to improve transfection efficiency and achieve sufficient therapeutic effects. Ultrasound (US) and microbubbles have also been combined for use in gene delivery. To establish a clinically effective gene delivery system, exposing the target tissues to US is important. The three-dimensional (3D) diagnostic probe can three-dimensionally scan the tissue with mechanical regulation, and homogenous US exposure to the targeted tissue can be expected. However, the feasibility of therapeutically applying 3D probes has not been evaluated, especially gene delivery. In this study, we evaluated the characteristics of a 3D probe and lipid-based microbubbles (LB) for gene delivery and determined whether the 3D probe in the diagnostic US device could be used for efficient gene delivery to the targeted tissue using a mouse model. The 3D probe RSP6-16 with LB delivered plasmid DNA (pDNA) to the kidney after systemic injection with luciferase activity similar to that of probes used in previously studies. No toxicity was observed after treatment and, therefore, the combined 3D probe and LB would deliver genes to targeted tissue safely and efficiently.
Collapse
Affiliation(s)
- Daiki Omata
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Lisa Munakata
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Saori Kageyama
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Yuno Suzuki
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Tamotsu Maruyama
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Tadamitsu Shima
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Takumi Chikaarashi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kohji Masuda
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoto Tsuchiya
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuo Maruyama
- Faculty of Pharma-Science, Laboratory of Theranostics, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| | - Ryo Suzuki
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
13
|
Ternary Complexes of pDNA, Neuron-Binding Peptide, and PEGylated Polyethyleneimine for Brain Delivery with Nano-Bubbles and Ultrasound. Pharmaceutics 2021; 13:pharmaceutics13071003. [PMID: 34371694 PMCID: PMC8309135 DOI: 10.3390/pharmaceutics13071003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
In brain-targeted delivery, the transport of drugs or genes across the blood-brain barrier (BBB) is a major obstacle. Recent reports found that focused ultrasound (FUS) with microbubbles enables transient BBB opening and improvement of drug or gene delivery. We previously developed nano-sized bubbles (NBs), which were prepared based on polyethylene glycol (PEG)-modified liposomes containing echo-contrast gas, and showed that our NBs with FUS could also induce BBB opening. The aim of this study was to enhance the efficiency of delivery of pDNA into neuronal cells following transportation across the BBB using neuron-binding peptides. This study used the RVG-R9 peptide, which is a chimeric peptide synthesized by peptides derived from rabies virus glycoprotein and nonamer arginine residues. The RVG peptide is known to interact specifically with the nicotinic acetylcholine receptor in neuronal cells. To enhance the stability of the RVG-R9/pDNA complex in vivo, PEGylated polyethyleneimine (PEG-PEI) was also used. The ternary complexes composed of RVG-R9, PEG-PEI, and pDNA could interact with mouse neuroblastoma cells and deliver pDNA into the cells. Furthermore, for the in vivo experiments using NBs and FUS, gene expression was observed in the FUS-exposed brain hemispheres. These results suggest that this systemic gene delivery system could be useful for gene delivery across the BBB.
Collapse
|
14
|
Zhen X, Qu R, Chen W, Wu W, Jiang X. The development of phosphorescent probes for in vitro and in vivo bioimaging. Biomater Sci 2021; 9:285-300. [PMID: 32756681 DOI: 10.1039/d0bm00819b] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphorescence is a process that slowly releases the photoexcitation energy after the removal of the excitation source. Although transition metal complexes and purely organic room-temperature phosphorescence (RTP) materials show excellent phosphorescence property, their applications in in vitro and in vivo bioimaging are limited due to their poor solubility in water. To overcome this issue, phosphorescent materials are modified with amphiphilic or hydrophilic polymers to endow them with biocompatibility. This review focuses on recent advances in the development of phosphorescent probes for in vitro and in vivo bioimaging. The photophysical mechanism and the design principles of transition metal complexes and purely organic RTP materials for the stabilization of the triplet excited state for enhanced phosphorescence are first discussed. Then, the applications in in vitro and in vivo bioimaging using transition metal complexes including iridium(iii) complexes, platinum(ii) complexes, rhodium(i) complexes, and purely organic RTP materials are summarized. Finally, the current challenges and perspectives for these emerging materials in bioimaging are discussed.
Collapse
Affiliation(s)
- Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
15
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
16
|
Microbubbles and Nanobubbles with Ultrasound for Systemic Gene Delivery. Pharmaceutics 2020; 12:pharmaceutics12100964. [PMID: 33066531 PMCID: PMC7602142 DOI: 10.3390/pharmaceutics12100964] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of gene expression is a promising therapeutic approach for many intractable diseases. However, its use in clinical applications requires the efficient delivery of nucleic acids to target tissues, which is a major challenge. Recently, various delivery systems employing physical energy, such as ultrasound, magnetic force, electric force, and light, have been developed. Ultrasound-mediated delivery has particularly attracted interest due to its safety and low costs. Its delivery effects are also enhanced when combined with microbubbles or nanobubbles that entrap an ultrasound contrast gas. Furthermore, ultrasound-mediated nucleic acid delivery could be performed only in ultrasound exposed areas. In this review, we summarize the ultrasound-mediated nucleic acid systemic delivery system, using microbubbles or nanobubbles, and discuss its possibilities as a therapeutic tool.
Collapse
|
17
|
Cai X, Jiang Y, Lin M, Zhang J, Guo H, Yang F, Leung W, Xu C. Ultrasound-Responsive Materials for Drug/Gene Delivery. Front Pharmacol 2020; 10:1650. [PMID: 32082157 PMCID: PMC7005489 DOI: 10.3389/fphar.2019.01650] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ultrasound is one of the most commonly used methods in the diagnosis and therapy of diseases due to its safety, deep penetration into tissue, and non-invasive nature. In the drug/gene delivery systems, ultrasound shows many advantages in terms of site-specific delivery and spatial release control of drugs/genes and attracts increasing attention. Microbubbles are the most well-known ultrasound-responsive delivery materials. Recently, nanobubbles, droplets, micelles, and nanoliposomes have been developed as novel carriers in this field. Herein, we review advances of novel ultrasound-responsive materials (nanobubbles, droplets, micelles and nanoliposomes) and discuss the challenges of ultrasound-responsive materials in delivery systems to boost the development of ultrasound-responsive materials as delivery carriers.
Collapse
Affiliation(s)
- Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiyong Zhang
- Department of Pediatrics, Shenzhen Maternity and Child Health Care Hospital, Shenzhen, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fanwen Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, Hong Kong, Hong Kong
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Omata D, Unga J, Suzuki R, Maruyama K. Lipid-based microbubbles and ultrasound for therapeutic application. Adv Drug Deliv Rev 2020; 154-155:236-244. [PMID: 32659255 DOI: 10.1016/j.addr.2020.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Microbubbles with diagnostic ultrasound have had a long history of use in the medical field. In recent years, the therapeutic application of the combination of microbubbles and ultrasound, called sonoporation, has received increased attention as microbubble oscillation or collapse close to various barriers in the body was recognized to potentially open those barriers, increasing drug transport across them. In this review, we aimed to describe the development of lipid-stabilized microbubbles equipped with functions, such as long circulation and drug loading, and the therapeutic application of sonoporation for tumor-targeted therapy, brain-targeted therapy, and immunotherapy. We also attempted to discuss the current status of the field and potential future developments.
Collapse
|
19
|
Wang Y, Li X, Liu L, Liu B, Wang F, Chen C. Tissue Targeting and Ultrasound-Targeted Microbubble Destruction Delivery of Plasmid DNA and Transfection In Vitro. Cell Mol Bioeng 2019; 13:99-112. [PMID: 32030111 DOI: 10.1007/s12195-019-00597-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/27/2019] [Indexed: 02/03/2023] Open
Abstract
Introduction Ultrasound-targeted microbubble destruction (UTMD) has been shown a promising approach for target-specific gene delivery and treatment of many diseases in the past decade. To improve the therapeutic potential of UTMD, the gene carrier of microbubbles should possess adequate DNA condensation capability and (or) specific cell or tissue selectivity. The tissue-targeted and ultrasound-targeted cationic microbubbles were developed to meet gene therapy. Methods A tissue-targeted stearic acid-inserted cationic microbubbles (SCMBs) were prepared for ultrasound-targeted gene delivery. Branched PEI was modified with stearic acid and further mixed with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and biot-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (ammonium salt) (Biot-DSPE-PEG2000), intercellular adhesion molecule-1 (ICAM-1) antibody and plasmid DNA to prepare cationic microbubbles through ultrasonic hydration. The ICAM-1 antibody and plasmid DNA were expected to assemble to the surface of SCMBs via biotin-avidin interaction and electrostatic interaction, respectively. Results It was found that the SCMBs had higher zeta potential compared with neutral microbubbles (NMBs) and cationic microbubbles (CMBs). In contrast, DNA incorporated SCMBs4 showed negative potential, exhibiting good DNA-binding capacity. Confocal images showed that the HeLa cells were attached around by the SCMBs4 from the view of green fluorescence of fluorescein isothiocyanate-loaded IgG which conjugated to ICAM-1 antibody on their surface. After ultrasound treatment, HeLa cells treated with SCMBs exhibited slightly stronger red fluorescence under confocal laser scanning microscope, indicating a synergistic promotion for transfection efficiency. Conclusions This tissue- and ultrasound-targeted cationic microbubble demonstrated here showed a promising strategy for improving gene therapy in the future.
Collapse
Affiliation(s)
- Yue Wang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518035 People's Republic of China
| | - Xiaoli Li
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Nanshan Hi-new Technology and Industry Park, Shenzhen, 518057 Guangzhou People's Republic of China
| | - Lanlan Liu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Nanshan Hi-new Technology and Industry Park, Shenzhen, 518057 Guangzhou People's Republic of China
| | - Bingruo Liu
- Division of Engineering Science, University of Toronto, Toronto, M5S2E8 Canada
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, 603 Jinsui Road, Xinxiang, 453002 Henan People's Republic of China
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, 518003 People's Republic of China
| | - Changsheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Nanshan Hi-new Technology and Industry Park, Shenzhen, 518057 Guangzhou People's Republic of China
| |
Collapse
|
20
|
Fu JW, Lin YS, Gan SL, Li YR, Wang Y, Feng ST, Li H, Zhou GF. Multifunctionalized Microscale Ultrasound Contrast Agents for Precise Theranostics of Malignant Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3145647. [PMID: 31360144 PMCID: PMC6642784 DOI: 10.1155/2019/3145647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
In ultrasonography, ultrasound contrast agents (UCAs) that possess high acoustic impedance mismatch with the bulk medium are frequently employed to highlight the borders between tissues by enhanced ultrasound scattering in a clinic. Typically, the most common UCA, microbubble, is generally close in size to a red blood cell (<∼10 μm). These microscale UCAs cannot be directly entrapped into the target cells but generate several orders of magnitude stronger echo signals than the nanoscale ones. And their large containment and high ultrasound responsiveness also greatly facilitate to perform combined treatments, e.g., drug delivery and other imaging techniques. So multifunctionalized microscale UCAs appear on this scene and keep growing toward a promising direction for precise theranostics. In this review, we systematically summarize the new advances in the principles and preparations of multifunctionalized microscale UCAs and their medical applications for malignant tumors.
Collapse
Affiliation(s)
- Jia-Wei Fu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yi-Sheng Lin
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Sheng-Long Gan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yong-Rui Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guo-Fu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
21
|
Development of Antibody-Modified Nanobubbles Using Fc-Region-Binding Polypeptides for Ultrasound Imaging. Pharmaceutics 2019; 11:pharmaceutics11060283. [PMID: 31208098 PMCID: PMC6631014 DOI: 10.3390/pharmaceutics11060283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 02/01/2023] Open
Abstract
Ultrasound (US) imaging is a widely used imaging technique. The use of US contrast agents such as microbubbles, which consist of phospholipids and are filled with perfluorocarbon gases, has become an indispensable component of clinical US imaging, while molecular US imaging has recently attracted significant attention in combination with efficient diagnostics. The avidin–biotin interaction method is frequently used to tether antibodies to microbubbles, leading to the development of a molecular targeting US imaging agent. However, avidin still has limitations such as immunogenicity. We previously reported that lipid-based nanobubbles (NBs) containing perfluorocarbon gas are suitable for US imaging and gene delivery. In this paper, we report on the development of a novel antibody modification method for NBs using Fc-region-binding polypeptides derived from protein A/G. First, we prepared anti-CD146 antibody-modified NBs using this polypeptide, resulting in high levels of attachment to human umbilical vein endothelial cells expressing CD146. To examine their targeting ability and US imaging capability, the NBs were administered to tumor-bearing mice. The contrast imaging of antibody-modified NBs was shown to be prolonged compared with that of non-labeled NBs. Thus, this antibody modification method using an Fc-binding polypeptide may be a feasible tool for developing a next-generation antibody-modified US imaging agent.
Collapse
|
22
|
Abraham T, Mao M, Tan C. Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys Biol 2018; 15:061001. [DOI: 10.1088/1478-3975/aac7a2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 340:155-172. [PMID: 30881202 PMCID: PMC6420022 DOI: 10.1016/j.cej.2018.01.060] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
At present, ultrasound radiation is broadly employed in medicine for both diagnostic and therapeutic purposes at various frequencies and intensities. In this review article, we focus on therapeutically-active nanoparticles (NPs) when stimulated by ultrasound. We first introduce the different ultrasound-based therapies with special attention to the techniques involved in the oncological field, then we summarize the different NPs used, ranging from soft materials, like liposomes or micro/nano-bubbles, to metal and metal oxide NPs. We therefore focus on the sonodynamic therapy and on the possible working mechanisms under debate of NPs-assisted sonodynamic treatments. We support the idea that various, complex and synergistics physical-chemical processes take place during acoustic cavitation and NP activation. Different mechanisms are therefore responsible for the final cancer cell death and strongly depends not only on the type and structure of NPs or nanocarriers, but also on the way they interact with the ultrasonic pressure waves. We conclude with a brief overview of the clinical applications of the various ultrasound therapies and the related use of NPs-assisted ultrasound in clinics, showing that this very innovative and promising approach is however still at its infancy in the clinical cancer treatment.
Collapse
Affiliation(s)
- Giancarlo Canavese
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technologies CSFT@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| | - Andrea Ancona
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Luisa Racca
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Bianca Dumontel
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Federica Barbaresco
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technologies CSFT@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| |
Collapse
|
24
|
Physical Methods for Drug and Gene Delivery Through the Cell Plasma Membrane. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2017; 227:73-92. [DOI: 10.1007/978-3-319-56895-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Takahashi S, Tada R, Negishi Y, Aramaki Y. Mechanisms of Enhanced Antigen Delivery to Murine Dendritic Cells by the Cationic Liposomes. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/oji.2017.74007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
VanOsdol J, Ektate K, Ramasamy S, Maples D, Collins W, Malayer J, Ranjan A. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J Control Release 2016; 247:55-63. [PMID: 28042085 DOI: 10.1016/j.jconrel.2016.12.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
Abstract
Mild hyperthermia generated using high intensity focused ultrasound (HIFU) and microbubbles (MBs) can improve tumor drug delivery from non-thermosensitive liposomes (NTSLs) and low temperature sensitive liposomes (LTSLs). However, MB and HIFU are limited by the half-life of the contrast agent and challenges in accurate control of large volume tumor hyperthermia for longer duration (>30min.). The objectives of this study were to: 1) synthesize and characterized long-circulating echogenic nanobubble encapsulated LTSLs (ELTSLs) and NTSLs (ENTSLs), 2) evaluate in vivo drug release following short duration (~20min each) HIFU treatments administered sequentially over an hour in a large volume of mouse xenograft colon tumor, and 3) determine the impact of the HIFU/nanobubble combination on intratumoral drug distribution. LTSLs and NTSLs containing doxorubicin (Dox) were co-loaded with a nanobubble contrast agent (perfluoropentane, PFP) using a one-step sonoporation method to create ELTSLs and ENTSLs, which then were characterized for size, release in a physiological buffer, and ability to encapsulate PFP. For the HIFU group, mild hyperthermia (40-42°C) was completed within 90min after liposome infusion administered sequentially in three regions of the tumor. Fluorescence microscopy and high performance liquid chromatography analysis were performed to determine the spatial distribution and concentration of Dox in the treated regions. PFP encapsulation within ELTSLs and ENTSLs did not impact size or caused premature drug release in physiological buffer. As time progressed, the delivery of Dox decreased in HIFU-treated tumors with ELTSLs, but this phenomenon was absent in the LTSL, NTSL, and ENTSL groups. Most importantly, PFP encapsulation improved Dox penetration in the tumor periphery and core and did not impact the distribution of Dox in non-tumor organs/tissues. Data from this study suggest that short duration and sequential HIFU treatment could have significant benefits and that its action can be potentiated by nanobubble agents to result in improved drug penetration.
Collapse
Affiliation(s)
- Joshua VanOsdol
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Kalyani Ektate
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Selvarani Ramasamy
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Danny Maples
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Willie Collins
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
27
|
Negishi Y, Endo-Takahashi Y, Maruyama K. Gene delivery systems by the combination of lipid bubbles and ultrasound. Drug Discov Ther 2016; 10:248-255. [PMID: 27795481 DOI: 10.5582/ddt.2016.01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | |
Collapse
|
28
|
Negishi Y, Tsunoda Y, Hamano N, Omata D, Endo-Takahashi Y, Suzuki R, Maruyama K, Nomizu M, Aramaki Y. Ultrasound-mediated gene delivery systems by AG73-modified Bubble liposomes. Biopolymers 2016; 100:402-7. [PMID: 23532952 DOI: 10.1002/bip.22246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 11/06/2022]
Abstract
Targeted gene delivery to neovascular vessels in tumors is considered a promising strategy for cancer therapy. We previously reported that "Bubble liposomes" (BLs), which are ultrasound (US) imaging gas-encapsulating liposomes, were suitable for US imaging and gene delivery. When BLs are exposed to US, the bubble is destroyed, creating a jet stream by cavitation, and resulting in the instantaneous ejection of extracellular plasmid DNA (pDNA) or other nucleic acids into the cytosol. We developed AG73 peptide-modified Bubble liposomes (AG73-BL) as a targeted US contrast agent, which was designed to attach to neovascular tumor vessels and to allow specific US detection of angiogenesis (Negishi et al., Biomaterials 2013, 34, 501-507). In this study, to evaluate the effectiveness of AG73-BL as a gene delivery tool for neovascular vessels, we examined the gene transfection efficiency of AG73-BL with US exposure in primary human endothelial cells (HUVEC). The transfection efficiency was significantly enhanced if the AG73-BL attached to the HUVEC was exposed to US compared to the BL-modified with no peptide or scrambled peptide. In addition, the cell viability was greater than 80% after transfection with AG73-BL. These results suggested that after the destruction of the AG73-BL with US exposure, a cavitation could be effectively induced by the US exposure against AG73-BL binding to the cell surface of the HUVEC, and the subsequent gene delivery into cells could be enhanced. Thus, AG73-BL may be useful for gene delivery as well as for US imaging of neovascular vessels.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
In recent decades ultrasound-guided delivery of drugs loaded on nanocarriers has been the focus of increasing attention to improve therapeutic treatments. Ultrasound has often been used in combination with microbubbles, micron-sized spherical gas-filled structures stabilized by a shell, to amplify the biophysical effects of the ultrasonic field. Nanometer size bubbles are defined nanobubbles. They were designed to obtain more efficient drug delivery systems. Indeed, their small sizes allow extravasation from blood vessels into surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Additionally, nanobubbles might be endowed with improved stability and longer residence time in systemic circulation. This review will describe the physico-chemical properties of nanobubbles, the formulation parameters and the drug loading approaches, besides potential applications as a therapeutic tool.
Collapse
|
30
|
Endo-Takahashi Y, Negishi Y, Suzuki R, Maruyama K, Aramaki Y. MicroRNA Imaging in Combination with Diagnostic Ultrasound and Bubble Liposomes for MicroRNA Delivery. Methods Mol Biol 2016; 1372:209-213. [PMID: 26530926 DOI: 10.1007/978-1-4939-3148-4_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
MicroRNA (miRNA) is expected to play an important role in the diagnosis and therapy of various diseases. In miRNA therapy, the development of delivery tools to the target site is considered to be essential. By using a delivery tool possessing imaging ability, miRNA colocalized with the carrier could be visualized after administration. We prepared polyethylene glycol (PEG)-modified liposomes containing echo-contrast gas, "Bubble liposomes" (BLs), and confirmed that BLs containing cationic lipid were capable of loading miRNA. Furthermore, we also achieved the imaging and delivery of systemically injected miRNA to target site in combination with ultrasound exposure. MiRNA-loaded BLs could be a useful tool for imaging and therapy.
Collapse
Affiliation(s)
- Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
31
|
Suzuki R, Klibanov AL. Co-administration of Microbubbles and Drugs in Ultrasound-Assisted Drug Delivery: Comparison with Drug-Carrying Particles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:205-20. [PMID: 26486340 DOI: 10.1007/978-3-319-22536-4_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two alternative approaches to ultrasound-assisted drug delivery. First, the drug can be entrapped into or attached onto the ultrasound-responsive particles and administered in the vasculature, to achieve ultrasound-triggered drug release from the particles and localized tissue deposition in response to ultrasound treatment of the target zone. Second, the drug can be co-administered with the microbubbles or other sonosensitive particles. In this case, the action of ultrasound on the particles (which act as cavitation nuclei) results in the transient improvement of permeability of the physiological barriers, so that the circulating drug can exit the bloodstream and get into the target tissues and cells. We discuss and compare both of these approaches, their characteristic advantages and disadvantages for the specific drug delivery scenarios. Clearly, the system based on the off-label use of the existing approved microbubbles and drugs (or drug carriers) will have a chance of getting to clinical trials faster and with lesser resources spent. However, if a superior curative potential of a sonosensitive drug carrier is proven, and formulation stability problems are addressed properly, this approach may find its way to practical use, especially for nucleic acid delivery scenarios.
Collapse
Affiliation(s)
- Ryo Suzuki
- Cardiovascular Division, Robert M Berne Cardiovascular Research Center, University of Virginia, 801394, Charlottesville, VA, 22908, USA.,Department of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Alexander L Klibanov
- Cardiovascular Division, Robert M Berne Cardiovascular Research Center, University of Virginia, 801394, Charlottesville, VA, 22908, USA.
| |
Collapse
|
32
|
Tada R, Hidaka A, Iwase N, Takahashi S, Yamakita Y, Iwata T, Muto S, Sato E, Takayama N, Honjo E, Kiyono H, Kunisawa J, Aramaki Y. Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice. PLoS One 2015; 10:e0139785. [PMID: 26440657 PMCID: PMC4594917 DOI: 10.1371/journal.pone.0139785] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL-4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- * E-mail: (RT); (YA)
| | - Akira Hidaka
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naoko Iwase
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Saeko Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Yamakita
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoko Iwata
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shoko Muto
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Emi Sato
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Noriko Takayama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Emi Honjo
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Vaccine Materials, National Institute of Biomedical Innovation, Osaka, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- * E-mail: (RT); (YA)
| |
Collapse
|
33
|
Enhancement of Blood-Brain Barrier Permeability and Delivery of Antisense Oligonucleotides or Plasmid DNA to the Brain by the Combination of Bubble Liposomes and High-Intensity Focused Ultrasound. Pharmaceutics 2015; 7:344-62. [PMID: 26402694 PMCID: PMC4588205 DOI: 10.3390/pharmaceutics7030344] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/29/2022] Open
Abstract
The blood–brain barrier (BBB) is a major obstacle that prevents therapeutic drugs or genes from being delivered to the central nervous system. Therefore, it is important to develop methods to enhance the permeability of the BBB. We have developed echo-contrast gas (C3F8) entrapping liposomes (Bubble liposomes, BLs) that can work as a gene delivery tool in combination with ultrasound (US) exposure. Here, we studied whether the permeability of the BBB can be enhanced by the combination of BLs and high-intensity focused ultrasound (HIFU). Mice were intravenously injected with Evans blue (EB). BLs were subsequently injected, and the right hemispheres were exposed to HIFU. As a result, the accumulation of EB in the HIFU-exposed brain hemispheres was increased over that observed in the non-HIFU-exposed hemispheres, depending on the intensity and the duration of the HIFU. Similarly, the combination of BLs and HIFU allowed fluorescent-labeled antisense oligonucleotides to be delivered into the HIFU-exposed left hemispheres of the treated mice. Furthermore, a firefly luciferase-expressing plasmid DNA was delivered to the brain by the combination method of BLs and HIFU, which resulted in the increased gene expression in the brain at the focused-US exposure site. These results suggest that the method of combining BLs and HIFU together serves as a useful means for accelerating the permeability of BBB and thereby enabling antisense oligonucleotides or genes to be delivered to the focused brain site.
Collapse
|
34
|
Sugano M, Morisaki H, Negishi Y, Endo-Takahashi Y, Kuwata H, Miyazaki T, Yamamoto M. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms. J Liposome Res 2015; 26:156-62. [PMID: 26152278 DOI: 10.3109/08982104.2015.1063648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. OBJECTIVE The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. MATERIALS AND METHODS Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. RESULTS The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. DISCUSSION AND CONCLUSION In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.
Collapse
Affiliation(s)
- Marika Sugano
- a Division of Biomaterials & Engineering , Department of Conservative Dentistry, Showa University School of Dentistry , Shinagawa-ku, Tokyo , Japan .,b Department of Periodontology , Showa University School of Dentistry , Ohta-ku, Tokyo , Japan .,c Japan Society for the Promotion of Science (JSPS) , Chiyoda-ku, Tokyo , Japan
| | - Hirobumi Morisaki
- d Department of Oral Microbiology , Showa University School of Dentistry , Shinagawa-ku, Tokyo , Japan , and
| | - Yoichi Negishi
- e Department of Drug Delivery and Molecular Biopharmaceutics , School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , Japan
| | - Yoko Endo-Takahashi
- e Department of Drug Delivery and Molecular Biopharmaceutics , School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , Japan
| | - Hirotaka Kuwata
- d Department of Oral Microbiology , Showa University School of Dentistry , Shinagawa-ku, Tokyo , Japan , and
| | - Takashi Miyazaki
- a Division of Biomaterials & Engineering , Department of Conservative Dentistry, Showa University School of Dentistry , Shinagawa-ku, Tokyo , Japan
| | - Matsuo Yamamoto
- b Department of Periodontology , Showa University School of Dentistry , Ohta-ku, Tokyo , Japan
| |
Collapse
|
35
|
Gao D, Xu M, Cao Z, Gao J, Chen Y, Li Y, Yang Z, Xie X, Jiang Q, Wang W, Liu J. Ultrasound-Triggered Phase-Transition Cationic Nanodroplets for Enhanced Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13524-37. [PMID: 26016606 DOI: 10.1021/acsami.5b02832] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ultrasound as an external stimulus for enhanced gene transfection represents a safe, noninvasive, cost-effective delivery strategy for gene therapy. Herein, we have developed an ultrasound-triggered phase-transition cationic nanodroplet based on a novel perfluorinated amphiphilic poly(amino acid), which could simultaneously load perfluoropentane (PFP) and nucleic acids. The heptadecafluoroundecylamine (C11F17-NH2) was chosen to initiate β-benzyl-L-aspartate N-carboxyanhydride (BLA-NCA) ring-opening polymerization to prepare C11F17-poly(β-benzyl-L-aspartate) (C11F17-PBLA). Subsequently, C11F17-poly{N-[N'-(2-aminoethyl)]aspartamide} [C11F17-PAsp(DET)] was synthesized by aminolysis reaction of C11F17-PBLA with diethylenetriamine (DET). PFP/pDNA-loaded nanodroplets PFP-TNDs [PFP/C11F17-PAsp(DET)/LucDNA/γ-PGA or poly(glutamic acid)-g-MeO-poly(ethylene glycol) (PGA-g-mPEG) ternary nanodroplets] were primarily formulated by an oil/water emulsification method, followed by surface modification with PGA-g-mPEG. The average diameter of PFP-TNDs ranged from 300 to 400 nm, and transmission electron microscopy images showed that the nanodroplets were nearly spherical in shape. The ζ potential of the nanodroplets dramatically decreased from +54.3 to +15.3 mV after modification with PGA-g-mPEG, resulting in a significant increase of the stability of the nanodroplets in the serum-containing condition. With ultrasound irradiation, the gene transfection efficiency was enhanced 14-fold on HepG2 cells, and ultrasound-triggered phase-transition cationic nanodroplets also displayed a good ultrasound contrast effect. These results suggest that the PFP/DNA-loaded phase-transition cationic nanodroplets can be utilized as efficient theranostic agents for targeting gene delivery.
Collapse
Affiliation(s)
- Di Gao
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ming Xu
- §Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhong Cao
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jinbiao Gao
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ya Chen
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yingqin Li
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhe Yang
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaoyan Xie
- §Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qing Jiang
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Wang
- §Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Liu
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
36
|
Qiu K, Yu B, Huang H, Zhang P, Ji L, Chao H. Tetranuclear ruthenium(ii) complexes with oligo-oxyethylene linkers as one- and two-photon luminescent tracking non-viral gene vectors. Dalton Trans 2015; 44:7058-65. [DOI: 10.1039/c5dt00117j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Four tetranuclear ruthenium(ii) complexes Ru1–Ru4 based on oligo-oxyethylene and polybenzimidazole have been developed as one- and two-photon luminescent tracking non-viral gene vectors.
Collapse
Affiliation(s)
- Kangqiang Qiu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Bole Yu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Huaiyi Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Pingyu Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liangnian Ji
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Hui Chao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
37
|
Omata D, Negishi Y, Suzuki R, Oda Y, Endo-Takahashi Y, Maruyama K. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound. ADVANCES IN GENETICS 2014; 89:25-48. [PMID: 25620007 DOI: 10.1016/bs.adgen.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics.
Collapse
Affiliation(s)
- Daiki Omata
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryo Suzuki
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yusuke Oda
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| |
Collapse
|
38
|
Farinha D, Pedroso de Lima MC, Faneca H. Specific and efficient gene delivery mediated by an asialofetuin-associated nanosystem. Int J Pharm 2014; 473:366-74. [DOI: 10.1016/j.ijpharm.2014.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 01/14/2023]
|
39
|
Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target 2014; 23:16-42. [PMID: 25203857 DOI: 10.3109/1061186x.2014.954119] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several drug delivery systems have been investigated to reduce the side effects of chemotherapy by encapsulating the therapeutic agent in a nanosized carrier until it reaches the tumor site. Many of these particles are designed to be responsive to the mechanical and thermal perturbations delivered by ultrasound. Once the nanoparticle reaches the desired location, ultrasound is applied to release the chemotherapy drug only in the vicinity of the targeted (cancer) site, thus avoiding any detrimental interaction with healthy cells in the body. Studies using liposomes and micelles have shown promising results in this area, as these nanoparticles with simple, yet effective structures, showed high efficiency as drug delivery vehicles both in vitro and in vivo. This article reviews the design and application of two novel nanosized chemotherapeutic carriers (i.e. micelles and liposomes) intended to be actuated by ultrasound.
Collapse
Affiliation(s)
- Salma E Ahmed
- Department of Chemical Engineering, American University of Sharjah , Sharjah , United Arab Emirates
| | | | | |
Collapse
|
40
|
Lin Q, Jin CS, Huang H, Ding L, Zhang Z, Chen J, Zheng G. Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3072-3082. [PMID: 24706435 DOI: 10.1002/smll.201303842] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 06/03/2023]
Abstract
The abilities to deliver siRNA to its intended action site and assess the delivery efficiency are challenges for current RNAi therapy, where effective siRNA delivery will join force with patient genetic profiling to achieve optimal treatment outcome. Imaging could become a critical enabler to maximize RNAi efficacy in the context of tracking siRNA delivery, rational dosimetry and treatment planning. Several imaging modalities have been used to visualize nanoparticle-based siRNA delivery but rarely did they guide treatment planning. We report a multimodal theranostic lipid-nanoparticle, HPPS(NIR)-chol-siRNA, which has a near-infrared (NIR) fluorescent core, enveloped by phospholipid monolayer, intercalated with siRNA payloads, and constrained by apoA-I mimetic peptides to give ultra-small particle size (<30 nm). Using fluorescence imaging, we demonstrated its cytosolic delivery capability for both NIR-core and dye-labeled siRNAs and its structural integrity in mice through intravenous administration, validating the usefulness of NIR-core as imaging surrogate for non-labeled therapeutic siRNAs. Next, we validated the targeting specificity of HPPS(NIR)-chol-siRNA to orthotopic tumor using sequential four-steps (in vivo, in situ, ex vivo and frozen-tissue) fluorescence imaging. The image co-registration of computed tomography and fluorescence molecular tomography enabled non-invasive assessment and treatment planning of siRNA delivery into the orthotopic tumor, achieving efficacious RNAi therapy.
Collapse
Affiliation(s)
- Qiaoya Lin
- Princess Margaret Cancer Center and Techna Institute, UHN, TMDT 5-362, 101 College Street, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science & Technology, Wuhan, 430074, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Pensado A, Seijo B, Sanchez A. Current strategies for DNA therapy based on lipid nanocarriers. Expert Opin Drug Deliv 2014; 11:1721-31. [DOI: 10.1517/17425247.2014.935337] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Andrea Pensado
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
| | - Begoña Seijo
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
- Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Molecular Image Group,
A Choupana, 15706 Santiago de Compostela, Spain
| | - Alejandro Sanchez
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
- Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Molecular Image Group,
A Choupana, 15706 Santiago de Compostela, Spain
| |
Collapse
|
42
|
Millán-Chiu B, Camacho G, Varela-Echavarría A, Tamariz E, Fernández F, López-Marín LM, Loske AM. Shock waves and DNA-cationic lipid assemblies: a synergistic approach to express exogenous genes in human cells. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1599-1608. [PMID: 24642223 DOI: 10.1016/j.ultrasmedbio.2014.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Cationic lipid/DNA complexes (lipoplexes) represent a powerful tool for cell transfection; however, their use is still limited by important concerns, including toxicity and poor internalization into deep tissues. In this work, we investigated the use of shock wave-induced acoustic cavitation in vitro for the transfection of lipoplexes in human embryo kidney 293 cells. We selected shock waves with the ability to internalize 10-kDa fluorescein isothiocyanate-dextran into cells while maintaining survival rates above 50%. Cell transfection was tested using the green fluorescent protein-encoding plasmid pCX::GFPGPI2. Confocal microscopy and fluorescence-assisted cell sorting analyses revealed successful transfection after treatments ranging from 1 to 3 min using 60 to 180 shock waves at peak amplitudes of 12.3 ± 1.5 MPa. Interestingly, the combination of shock waves and lipoplexes induced a 3.1- and 3.8-fold increase in the expression of the reporter gene compared with the use of lipoplexes or shock waves alone, respectively. These results indicate that cationic DNA assembly and shock waves act in a synergistic manner to promote transfection of human cells, revealing a potential approach for non-invasive site-specific gene therapy.
Collapse
Affiliation(s)
- Blanca Millán-Chiu
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Giselle Camacho
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Alfredo Varela-Echavarría
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Elisa Tamariz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Luz M López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México.
| | - Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| |
Collapse
|
43
|
Rychak JJ, Klibanov AL. Nucleic acid delivery with microbubbles and ultrasound. Adv Drug Deliv Rev 2014; 72:82-93. [PMID: 24486388 PMCID: PMC4204336 DOI: 10.1016/j.addr.2014.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 02/02/2023]
Abstract
Nucleic acid-based therapy is a growing field of drug delivery research. Although ultrasound has been suggested to enhance transfection decades ago, it took a combination of ultrasound with nucleic acid carrier systems (microbubbles, liposomes, polyplexes, and viral carriers) to achieve reasonable nucleic acid delivery efficacy. Microbubbles serve as foci for local deposition of ultrasound energy near the target cell, and greatly enhance sonoporation. The major advantage of this approach is in the minimal transfection in the non-insonated non-target tissues. Microbubbles can be simply co-administered with the nucleic acid carrier or can be modified to carry nucleic acid themselves. Liposomes with embedded gas or gas precursor particles can also be used to carry nucleic acid, release and deliver it by the ultrasound trigger. Successful testing in a wide variety of animal models (myocardium, solid tumors, skeletal muscle, and pancreas) proves the potential usefulness of this technique for nucleic acid drug delivery.
Collapse
Affiliation(s)
| | - Alexander L Klibanov
- Cardiovascular Division, University of Virginia, Charlottesville, VA 22908-1394, USA.
| |
Collapse
|
44
|
Development of anionic bubble lipopolyplexes for efficient and safe gene transfection with ultrasound exposure in mice. J Control Release 2014; 176:24-34. [DOI: 10.1016/j.jconrel.2013.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/06/2013] [Accepted: 12/19/2013] [Indexed: 02/02/2023]
|
45
|
Negishi Y, Ishii Y, Shiono H, Akiyama S, Sekine S, Kojima T, Mayama S, Kikuchi T, Hamano N, Endo-Takahashi Y, Suzuki R, Maruyama K, Aramaki Y. Bubble liposomes and ultrasound exposure improve localized morpholino oligomer delivery into the skeletal muscles of dystrophic mdx mice. Mol Pharm 2014; 11:1053-61. [PMID: 24433046 DOI: 10.1021/mp4004755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder that is caused by mutations in the DMD gene that lead to an absence of functional protein. The mdx dystrophic mouse contains a nonsense mutation in exon 23 of the dystrophin gene; a phosphorodiamidate morpholino oligomer (PMO) designed to skip this mutated exon in the mRNA induces dystrophin expression. However, an efficient PMO delivery method is needed to improve treatment strategies for DMD. We previously developed polyethylene glycol (PEG)-modified liposomes (Bubble liposomes) that entrap ultrasound contrast gas and demonstrated that the combination of Bubble liposomes with ultrasound exposure is an effective gene delivery tool in vitro and in vivo. In this study, to evaluate the ability of Bubble liposomes as a PMO delivery tool, we tested the potency of the Bubble liposomes combined with ultrasound exposure to boost the delivery of PMO and increase the skipping of the mutated exon in the mdx mouse. The results indicated that the combination of Bubble liposomes and ultrasound exposure increased the uptake of the PMO targeting a nonsense mutation in exon 23 of the dystrophin gene and consequently increased the PMO-mediated exon-skipping efficiency compared with PMO injection alone, leading to significantly enhanced dystrophin expression. This increased efficiency indicated the potential of the combination of Bubble liposomes with ultrasound exposure to enhance PMO delivery for treating DMD. Thus, this ultrasound-mediated Bubble liposome technique may provide an effective, noninvasive, nonviral method for PMO therapy for DMD muscle as well as for other muscular dystrophies.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Endo-Takahashi Y, Negishi Y, Nakamura A, Ukai S, Ooaku K, Oda Y, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K, Aramaki Y. Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia. Sci Rep 2014; 4:3883. [PMID: 24457599 PMCID: PMC3900923 DOI: 10.1038/srep03883] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/09/2014] [Indexed: 11/12/2022] Open
Abstract
Currently, micro RNA (miRNA) is considered an attractive target for therapeutic intervention. A significant obstacle to the miRNA-based treatments is the efficient delivery of miRNA to the target tissue. We have developed polyethylene glycol-modified liposomes (Bubble liposomes (BLs)) that entrap ultrasound (US) contrast gas and can serve as both plasmid DNA (pDNA) or small interfering RNA (siRNA) carriers and US contrast agents. In this study, we investigated the usability of miRNA-loaded BLs (mi-BLs) using a hindlimb ischemia model and miR-126. It has been reported that miR-126 promotes angiogenesis via the inhibition of negative regulators of VEGF signaling. We demonstrated that mi-BLs could be detected using diagnostic US and that mi-BLs with therapeutic US could deliver miR-126 to an ischemic hindlimb, leading to the induction of angiogenic factors and the improvement of blood flow. These results suggest that combining mi-BLs with US may be useful for US imaging and miRNA delivery.
Collapse
Affiliation(s)
- Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Arisa Nakamura
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Saori Ukai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kotomi Ooaku
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yusuke Oda
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Fuminori Moriyasu
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
47
|
Lin Q, Chen J, Zhang Z, Zheng G. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (Lond) 2014; 9:105-20. [DOI: 10.2217/nnm.13.192] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAi therapeutics are believed to be the future of personalized medicine and have shown promise in early clinical trials. However, many physiological barriers exist in the systemic delivery of siRNAs to the cytoplasm of targeted cells to perform their function. To overcome these barriers, many siRNA delivery systems have been developed. Among these, lipid-based nanoparticles have great potential owing to their biocompatibility and low toxicity in comparison with inorganic nanoparticles and viral systems. This review discusses the hurdles of systemic siRNA delivery and highlights the recent progress made in lipid-based nanoparticles, which are categorized based on their key lipid components, including cationic lipid, lipoprotein, lipidoid, neutral lipid and anionic lipid-based nanoparticles. It is expected that these lipid nanoparticle-based siRNA delivery systems will have an enabling role for personalized cancer medicine, where siRNA delivery will join forces with genetic profiling of individual patients to achieve the best treatment outcome.
Collapse
Affiliation(s)
- Qiaoya Lin
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower 5-363, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, China
| | - Juan Chen
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, China
| | - Gang Zheng
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|