1
|
Liang S, Le QVC, Arrua RD, Turnbull T, Kempson I. Improved Control of Triple-Negative Breast Cancer Tumor and Metastasis with a pH-Sensitive Hyaluronic Acid Nanocarrier for Doxorubicin Delivery. ACS Biomater Sci Eng 2025; 11:623-633. [PMID: 39731574 DOI: 10.1021/acsbiomaterials.4c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44+ cells. DOX was functionalized with a boronic acid group, which was covalently linked with the HA polymer, resulting in a stable chemical linker at neutral pH. Under acidic conditions, the boronic ester linker is degraded, dissociating DOX. Compared to free DOX, the DOX HA NPs exhibited preferential accumulation in 4T1 cells. In a BALB/c mouse model, DOX HA NPs improved antitumor activity, dramatically improved control of lung metastases, and ultimately led to enhanced survival. The pH-sensitive HA nanocarriers provide a promising approach to enhance therapeutic outcomes and reduce toxicity in chemotherapy.
Collapse
Affiliation(s)
- Sisi Liang
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Clinical and Health Science, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Quy Van-Chanh Le
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Clinical and Health Science, University of South Australia, Adelaide, South Australia 5001, Australia
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Tyron Turnbull
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
2
|
Camacho-Ramírez A, Meléndez-Zamudio M, Cervantes J, Palestino G, Guerra-Contreras A. One-step synthesis of amphiphilic copolymers PDMS- b-PEG using tris(pentafluorophenyl)borane and subsequent study of encapsulation and release of curcumin. J Mater Chem B 2024; 12:7076-7089. [PMID: 38817163 DOI: 10.1039/d4tb00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A series of amphiphilic block copolymer (BCP) micelles based on poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) (PEG) were synthesized by a one-step reaction in the presence of tris(pentafluorophenyl)borane (BCF) as a catalyst. The structural composition of PDMS-b-PEG (PR11) and PEG-b-PDMS-b-PEG (PR12) was corroborated by FTIR, 29Si NMR, and TGA. The BCPs were assembled in an aqueous solution, obtaining micelles between 57 and 87 nm in size. PR11 exhibited a higher (2.0 g L-1) critical micelle concentration (CMC) than PR12 (1.5 g L-1) due to the short chain length. The synthesized nano micelles were used to encapsulate curcumin, which is one of three compounds of turmeric plant 'Curcuma longa' with significant biological activities, including antioxidant, chemoprotective, antibacterial, anti-inflammatory, antiviral, and anti-depressant properties. The encapsulation efficiency of curcumin was 60% for PR11 and 45% for PR12. Regarding the release study, PR11 delivered 53% curcumin after five days under acidic conditions (pH of 1.2) compared to 43% at a pH of 7.4. The degradation products of curcumin were observed under basic conditions and were more stable at acidic pH. In both situations, the release process is carried out by breaking the silyl-ether bond, allowing the release of curcumin. PR11 showed prolonged release times, so it could be used to reduce ingestion times and simultaneously work as a nanocarrier for other hydrophobic drugs.
Collapse
Affiliation(s)
- Abygail Camacho-Ramírez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Miguel Meléndez-Zamudio
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1, Canada
| | - Jorge Cervantes
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Gabriela Palestino
- Biopolymers and Nanostructures Laboratory, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P., C.P. 78210, Mexico
| | - Antonio Guerra-Contreras
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| |
Collapse
|
3
|
Zhao D, Li Z, Ji DK, Xia Q. Recent Progress of Multifunctional Molecular Probes for Triple-Negative Breast Cancer Theranostics. Pharmaceutics 2024; 16:803. [PMID: 38931924 PMCID: PMC11207493 DOI: 10.3390/pharmaceutics16060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer (BC) poses a significant threat to women's health, with triple-negative breast cancer (TNBC) representing one of the most challenging and aggressive subtypes due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Traditional TNBC treatments often encounter issues such as low drug efficiency, limited tumor enrichment, and substantial side effects. Therefore, it is crucial to explore novel diagnostic and treatment systems for TNBC. Multifunctional molecular probes (MMPs), which integrate target recognition as well as diagnostic and therapeutic functions, introduce advanced molecular tools for TNBC theranostics. Using an MMP system, molecular drugs can be precisely delivered to the tumor site through a targeted ligand. Real-time dynamic monitoring of drug release achieved using imaging technology allows for the evaluation of drug enrichment at the tumor site. This approach enables accurate drug release, thereby improving the therapeutic effect. Therefore, this review summarizes the recent advancements in MMPs for TNBC theranostics, encompassing the design and synthesis of MMPs as well as their applications in the field of TNBC theranostics.
Collapse
Affiliation(s)
- Deyi Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (D.Z.); (Z.L.)
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (D.Z.); (Z.L.)
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Xia
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
4
|
Yuan Y, Tan W, Mi Y, Wang L, Qi Z, Guo Z. Effect of Hydrophobic Chain Length in Amphiphilic Chitosan Conjugates on Intracellular Drug Delivery and Smart Drug Release of Redox-Responsive Micelle. Mar Drugs 2023; 22:18. [PMID: 38248643 PMCID: PMC10821436 DOI: 10.3390/md22010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Three redox-sensitive nanocarriers were rationally designed based on amphiphilic low molecular weight chitosan-cystamine-octylamine/dodecylamin/cetylamine (LC-Cys-OA, LC-Cys-DA, LC-Cys-CA) conjugates containing disulfide linkage for maximizing therapeutic effect by regulating hydrophobic interaction. The resultant spherical micelles had the characteristics of low CMC, suitable size, excellent biosafety and desired stability. The drug-loaded micelles were fabricated by embedding doxorubicin (Dox) into the hydrophobic cores. The effect of hydrophobic chain lengths of amphiphilic conjugates on encapsulation capacity, redox sensitivity, trigger-release behavior, cellular uptake efficacy, antitumor effect and antimigratory activity of Dox-loaded micelles was systematically investigated. Studies found that Dox-loaded LC-Cys-CA micelle had superior loading capacity and enhanced redox sensitivity compared with the other two micelles. Release assay indicated that the three Dox-loaded micelles maintained sufficiently stability in normal blood circulation but rapidly disintegrated in tumor cells. More importantly, the LC-Cys-CA micelle with a longer hydrophobic chain length exhibited a higher accumulative Dox release percentage than the other two micelles. Additionally, an increase in hydrophobic chain lengths of amphiphilic conjugates improved cellular uptake efficiency, antitumor effect and antimigration activity of Dox-loaded micelles, which could be explained by enhanced loading ability and redox sensitivity. Our research was expected to provide a viable platform for achieving a desired therapeutic efficacy via the alteration of hydrophobic interaction.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linqing Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhen Qi
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. Int J Mol Sci 2022; 23:ijms23052856. [PMID: 35269998 PMCID: PMC8911433 DOI: 10.3390/ijms23052856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
|
6
|
Forouhari S, Beygi Z, Mansoori Z, Hajsharifi S, Heshmatnia F, Gheibihayat SM. Liposomes: Ideal drug delivery systems in breast cancer. Biotechnol Appl Biochem 2021; 69:1867-1884. [PMID: 34505736 DOI: 10.1002/bab.2253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) has been recognized as the most common type of cancer in females across the world, accounting for 12% of each cancer case. In this sense, better diagnosis and screening have been thus far proven to contribute to higher survival rates. Moreover, traditional (or standard) chemotherapy is still known as one of the several prominent therapeutic options available, though it suffers from unsuitable cell selectivity, severe consequences, as well as resistance. In this regard, nanobased drug delivery systems (DDSs) are likely to provide promising grounds for BC treatment. Liposomes are accordingly effective nanosystems, having the benefits of multiple formulations verified to treat different diseases. Such systems possess specific features, including smaller size, biodegradability, hydrophobic/hydrophilic characteristics, biocompatibility, lower toxicity, as well as immunogenicity, which can all lead to considerable efficacy in treating various types of cancer. As chemotherapy uses drugs to target tumors, generates higher drug concentrations in tumors, which can provide for their slow release, and enhances drug stability, it can be improved via liposomes in DDSs for BC treatment. Therefore, the present study aims to review the existing issues regarding BC treatment and discuss liposome-based targeting in order to overcome barriers to conventional drug therapy.
Collapse
Affiliation(s)
- Sedighe Forouhari
- Infertility Research Center, Research Center of Quran, Hadith, and Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Beygi
- Department of Nursing and Midwife, Maybod Branch, Islamic Azad University, Maybod, Iran
| | - Zahra Mansoori
- Faculty of Educational Sciences and Psychology, Department of Sports Sciences, Shiraz University, Shiraz, Iran
| | - Sara Hajsharifi
- Student Research Committee, Department of Midwifery, Fatemeh (PBUH) School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Heshmatnia
- Student Research Committee, Department of Midwifery, Fatemeh (PBUH) School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Costa A, Vale N. Strategies for the treatment of breast cancer: from classical drugs to mathematical models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6328-6385. [PMID: 34517536 DOI: 10.3934/mbe.2021316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Breast cancer is one of the most common cancers and generally affects women. It is a heterogeneous disease that presents different entities, different biological characteristics, and differentiated clinical behaviors. With this in mind, this literature review had as its main objective to analyze the path taken from the simple use of classical drugs to the application of mathematical models, which through the many ongoing studies, have been considered as one of the reliable strategies, explaining the reasons why chemotherapy is not always successful. Besides, the most commonly mentioned strategies are immunotherapy, which includes techniques and therapies such as the use of antibodies, cytokines, antitumor vaccines, oncolytic and genomic viruses, among others, and nanoparticles, including metallic, magnetic, polymeric, liposome, dendrimer, micelle, and others, as well as drug reuse, which is a process by which new therapeutic indications are found for existing and approved drugs. The most commonly used pharmacological categories are cardiac, antiparasitic, anthelmintic, antiviral, antibiotic, and others. For the efficient development of reused drugs, there must be a process of exchange of purposes, methods, and information already available, and for their better understanding, computational mathematical models are then used, of which the methods of blind search or screening, based on the target, knowledge, signature, pathway or network and the mechanism to which it is directed, stand out. To conclude it should be noted that these different strategies can be applied alone or in combination with each other always to improve breast cancer treatment.
Collapse
Affiliation(s)
- Ana Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
8
|
Rahman S, Kumar V, Kumar A, Abdullah TS, Rather IA, Jan AT. Molecular Perspective of Nanoparticle Mediated Therapeutic Targeting in Breast Cancer: An Odyssey of Endoplasmic Reticulum Unfolded Protein Response (UPR ER) and Beyond. Biomedicines 2021; 9:biomedicines9060635. [PMID: 34199484 PMCID: PMC8229605 DOI: 10.3390/biomedicines9060635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the second most frequent cause of death among women. Representing a complex and heterogeneous type of cancer, its occurrence is attributed by both genetic (gene mutations, e.g., BRCA1, BRCA2) and non-genetic (race, ethnicity, etc.) risk factors. The effectiveness of available treatment regimens (small molecules, cytotoxic agents, and inhibitors) decreased due to their poor penetration across biological barriers, limited targeting, and rapid body clearance along with their effect on normal resident cells of bone marrow, gastrointestinal tract, and hair follicles. This significantly reduced their clinical outcomes, which led to an unprecedented increase in the number of cases worldwide. Nanomedicine, a nano-formulation of therapeutics, emerged as a versatile delivering module for employment in achieving the effective and target specific delivery of pharmaceutical payloads. Adoption of nanotechnological approaches in delivering therapeutic molecules to target cells ensures not only reduced immune response and toxicity, but increases the stability of therapeutic entities in the systemic circulation that averts their degradation and as such increased extravasations and accumulation via enhanced permeation and the retention (EPR) effect in target tissues. Additionally, nanoparticle (NP)-induced ER stress, which enhances apoptosis and autophagy, has been utilized as a combative strategy in the treatment of cancerous cells. As nanoparticles-based avenues have been capitalized to achieve better efficacy of the new genera of therapeutics with enhanced specificity and safety, the present study is aimed at providing the fundamentals of BC, nanotechnological modules (organic, inorganic, and hybrid) employed in delivering different therapeutic molecules, and mechanistic insights of nano-ER stress induced apoptosis and autophagy with a perspective of exploring this avenue for use in the nano-toxicological studies. Furthermore, the current scenario of USA FDA approved nano-formulations and the future perspective of nanotechnological based interventions to overcome the existing challenges are also discussed.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Tasduq S. Abdullah
- Council of Scientific and Industrial Research–Indian Institute of Integrative Medicine (CSIR–IIIM), Jammu 180001, India;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
- Correspondence: (I.A.R.); (A.T.J.)
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
- Correspondence: (I.A.R.); (A.T.J.)
| |
Collapse
|
9
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
10
|
Wang X, Wu D. Reduction‐Responsive Disulfide‐Containing Polymers for Biomedical Applications. SULFUR‐CONTAINING POLYMERS 2021:393-428. [DOI: 10.1002/9783527823819.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Baraya YS, Yankuzo HM, Wong KK, Yaacob NS. Strobilanthes crispus bioactive subfraction inhibits tumor progression and improves hematological and morphological parameters in mouse mammary carcinoma model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113522. [PMID: 33127562 DOI: 10.1016/j.jep.2020.113522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Locally known as 'pecah batu', 'bayam karang', 'keci beling' or 'batu jin', the Malaysian medicinal herb, Strobilanthes crispus (S. crispus), is traditionally used by the local communities as alternative or adjuvant remedy for cancer and other ailments and to boost the immune system. S. crispus has demonstrated multiple anticancer therapeutic potential in vitro and in vivo. A pharmacologically active fraction of S. crispus has been identified and termed as F3. Major constituents profiled in F3 include lutein and β-sitosterol. AIM OF THE STUDY In this study, the effects of F3, lutein and β-sitosterol on tumor development and metastasis were investigated in 4T1-induced mouse mammary carcinoma model. MATERIALS AND METHODS Tumor-bearing mice were fed with F3 (100 mg/kg/day), lutein (50 mg/kg/day) and β-sitosterol (50 mg/kg/day) for 30 days (n = 5 each group). Tumor physical growth parameters, animal body weight and development of secondary tumors were investigated. The safety profile of F3 was assessed using hematological and histomorphological changes on the major organs in normal control mice (NM). RESULTS Our findings revealed significant reduction of physical tumor growth parameters in all tumor-bearing mice treated with F3 (TM-F3), lutein (TM-L) or β-sitosterol (TM-β) as compared with the untreated group (TM). Statistically significant reduction in body weight was observed in TM compared to the NM or treated (TM-F3, TM-L and TM-β) groups. Histomorphological examination of tissue sections from the F3-treated group showed normal features of the vital organs (i.e., liver, kidneys, lungs and spleen) which were similar to those of NM. Administration of F3 to NM mice (NM-F3) did not cause significant changes in full blood count values. CONCLUSION F3 significantly reduced the total tumor burden and prevented secondary tumor development in metastatic breast cancer without significant toxicities in 4T1-induced mouse mammary carcinoma model. The current study provides further support for therapeutic development of F3 with further pharmacokinetics studies.
Collapse
Affiliation(s)
- Yusha'u Shu'aibu Baraya
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Hassan Muhammad Yankuzo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| |
Collapse
|
12
|
Alven S, Aderibigbe BA. The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment. Pharmaceutics 2020; 12:E1212. [PMID: 33333778 PMCID: PMC7765183 DOI: 10.3390/pharmaceutics12121212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is among the most common types of cancer in women and it is the cause of a high rate of mortality globally. The use of anticancer drugs is the standard treatment approach used for this type of cancer. However, most of these drugs are limited by multi-drug resistance, drug toxicity, poor drug bioavailability, low water solubility, poor pharmacokinetics, etc. To overcome multi-drug resistance, combinations of two or more anticancer drugs are used. However, the combination of two or more anticancer drugs produce toxic side effects. Micelles and dendrimers are promising drug delivery systems that can overcome the limitations associated with the currently used anticancer drugs. They have the capability to overcome drug resistance, reduce drug toxicity, improve the drug solubility and bioavailability. Different classes of anticancer drugs have been loaded into micelles and dendrimers, resulting in targeted drug delivery, sustained drug release mechanism, increased cellular uptake, reduced toxic side effects of the loaded drugs with enhanced anticancer activity in vitro and in vivo. This review article reports the biological outcomes of dendrimers and micelles loaded with different known anticancer agents on breast cancer in vitro and in vivo.
Collapse
Affiliation(s)
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| |
Collapse
|
13
|
Cagel M, Moretton MA, Bernabeu E, Zubillaga M, Lagomarsino E, Vanzulli S, Nicoud MB, Medina VA, Salgueiro MJ, Chiappetta DA. Antitumor efficacy and cardiotoxic effect of doxorubicin-loaded mixed micelles in 4T1 murine breast cancer model. Comparative studies using Doxil® and free doxorubicin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Qin Y, Peng X. Synthesis of Biocompatible Cholesteryl-Carboxymethyl Xylan Micelles for Tumor-Targeting Intracellular DOX Delivery. ACS Biomater Sci Eng 2020; 6:1582-1589. [PMID: 33455362 DOI: 10.1021/acsbiomaterials.0c00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patients with cancer suffer from severe side effects and reduced life quality, as chemotherapeutic drugs are cytotoxic toward normal cells as well as toward cancer cells. In recent years, nanoparticles have been explored as targeted drug delivery systems; however, problems such as toxicity and instability prevent their practical application. Here, we report the synthesis of cholesteryl-carboxymethyl xylan (CCMX) via an esterification reaction between the carboxyl group of carboxymethyl xylan and the hydroxyl group of cholesterol to form biocompatible micelles as a vehicle for targeted drugs. With its critical micelle concentration (CMC) depending on the degree of substitution (DS) of cholesteryl and ranging from 0.0024 to 0.017 mg/mL, CCMX could self-assemble and form nanoscale micelles in aqueous media. Taking doxorubicin (DOX) as a model drug, the drug encapsulation efficiency (EE%) of CCMX-3 (DS of 0.35 for cholesteryl) reached 91.3%, and this system exhibited excellent internalization ability, as verified by tumor cellular uptake tests. The results of in vitro cytotoxicity and in vivo antitumor activity tests of nude mice demonstrated that CCMX-3/DOX micelles effectively suppressed the growth of tumor cells by maintaining the cytotoxicity of commercial DOX injection while reducing the toxicity against normal cells and increasing the survival time.
Collapse
Affiliation(s)
- Yanzhe Qin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.,The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
15
|
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38:430. [PMID: 31661003 PMCID: PMC6819447 DOI: 10.1186/s13046-019-1443-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge. Recently, the focus for enhanced availability, targeted cellular uptake with minimal toxicity is achieved by nano-carriers. These smart nano-carriers carrying all the necessary arsenals (drugs, tracking probe, and ligand) designed in such a way that specifically targets the TNBC cells at site. Articulating the targeted delivery system with multifunctional molecules for high specificity, tracking, diagnosis, and treatment emerged as theranostic approach. In this review, in addition to classical treatment modalities, recent advances in nanotheranostics for early and effective diagnostic and treatment is discussed. This review highlighted the recently FDA approved immunotherapy and all the ongoing clinical trials for TNBC, in addition to nanoparticle assisted immunotherapy. Futuristic but realistic advancements in artificial intelligence (AI) and machine learning not only improve early diagnosis but also assist clinicians for their workup in TNBC. The novel concept of Nanoparticles induced endothelial leakiness (NanoEL) as a way of tumor invasion is also discussed in addition to classical EPR effect. This review intends to provide basic insight and understanding of the novel nano-therapeutic modalities in TNBC diagnosis and treatment and to sensitize the readers for continue designing the novel nanomedicine. This is the first time that designing nanoparticles with stoichiometric definable number of antibodies per nanoparticle now represents the next level of precision by design in nanomedicine.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, 160012 India
| | - Rajaletchumy Veloo Kutty
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology,University Malaysia Pahang, Tun Razak Highway, 26300 Kuantan, Pahang Malaysia
- Center of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, 26300, Kuantan, Pahang Malaysia
| |
Collapse
|
16
|
Alp E, Damkaci F, Guven E, Tenniswood M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomedicine 2019; 14:1335-1346. [PMID: 30863064 PMCID: PMC6388755 DOI: 10.2147/ijn.s191837] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The efficacy of epigenetic drugs, such as histone deacetylase inhibitors, is often diminished by poor aqueous solubility resulting in limited bioavailability and a low therapeutic index. To overcome the suboptimal therapeutic index, we have developed a biocompatible starch nanoparticle formulation of CG-1521, a histone deacetylase inhibitor in preclinical development for hard-to-treat breast cancers, which improves its bioavailability and half-life. Methods The physicochemical parameters (size, zeta potential, morphology, loading, and release kinetics) of these nanoparticles (CG-NPs) have been optimized and their cytotoxic and apoptotic capacities measured in MCF-7 breast cancer cell line. The mechanism of action of the encapsulated drug was compared with the free drug at molecular level. Results We show that encapsulation of CG-1521 substantially reduces the release rate of drug and provides a significantly enhanced cytotoxic ability of nanoparticles compared with equivalent dose of free CG-1521. CG-NPs induced cell cycle arrest and significant apoptosis in MCF-7 cells in vitro. The biological action of encapsulated drug has the similar impact with free drug on gene expression. Conclusion The findings suggest that encapsulation of CG-1521 into starch nanoparticles can improve drug delivery of histone deacetylase inhibitors for breast cancer therapy without interfering with the mechanism of action of the drug.
Collapse
Affiliation(s)
- Esma Alp
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, Ankara 06800, Turkey.,Department of Chemistry, State University of New York at Oswego, Oswego, NY 13126, USA.,Cancer Research Center, Rensselaer, NY 12144, USA, .,Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA,
| | - Fehmi Damkaci
- Department of Chemistry, State University of New York at Oswego, Oswego, NY 13126, USA
| | - Eylem Guven
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Martin Tenniswood
- Cancer Research Center, Rensselaer, NY 12144, USA, .,Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA,
| |
Collapse
|
17
|
Cui Y, Yang Y, Ma M, Xu Y, Sui J, Li H, Liang J, Sun Y, Fan Y, Zhang X. Reductive responsive micelle overcoming multidrug resistance of breast cancer by co-delivery of DOX and specific antibiotic. J Mater Chem B 2019; 7:6075-6086. [PMID: 31389470 DOI: 10.1039/c9tb01093a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The redox-degradable nano-micelle-reversed drug resistance by combination chemotherapy strategy of salinomycin (SL) that could specifically inhibit A/MCF-7 cells and a traditional broad-spectrum antitumor drug, doxorubicin (DOX).
Collapse
Affiliation(s)
- Yani Cui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yuedi Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Mengcheng Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yang Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Junhui Sui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Huifang Li
- Research Core Facility
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
18
|
Piorecka K, Kurjata J, Stanczyk M, Stanczyk WA. Synthetic routes to nanomaterials containing anthracyclines: noncovalent systems. Biomater Sci 2018; 6:2552-2565. [PMID: 30140825 DOI: 10.1039/c8bm00739j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemotherapy still constitutes a basic treatment for various types of cancer. Anthracyclines are effective antineoplastic drugs that are widely used in clinical practice. Unfortunately, they are characterized by high systemic toxicity and lack of tumour selectivity. A promising way to enhance treatment effectiveness and reduce toxicity is the synthesis of systems containing anthracyclines either in the form of complexes for the encapsulation of active drugs or their covalent conjugates with inert carriers. In this respect nanotechnology offers an extensive spectrum of possible solutions. In this review, we discuss recent advances in the development of anthracycline prodrugs based on nanocarriers such as copolymers, lipids, DNA, and inorganic systems. The review focuses on the chemical architecture of the noncovalent nanocarrier-drug systems.
Collapse
Affiliation(s)
- Kinga Piorecka
- Department of Engineering of Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | | | | | | |
Collapse
|
19
|
Behroozi F, Abdkhodaie MJ, Abandansari HS, Satarian L, Molazem M, Al-Jamal KT, Baharvand H. Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomater 2018; 76:239-256. [PMID: 29928995 DOI: 10.1016/j.actbio.2018.05.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
The oxidation-reduction (redox)-responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic-hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC) in an aqueous environment. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the micelles were spherical with an average diameter of 120 nm. The insoluble anticancer drug paclitaxel (PTX) was loaded into micelles, and its triggered release behavior under different redox conditions was verified. Folate-targeting micelles showed an enhanced uptake in 4T1 breast cancer cells and in vitro cytotoxicity by flow cytometry and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, respectively. Delayed tumor growth was confirmed in the subcutaneously implanted 4T1 breast cancer in mice after intraperitoneal injection. The proposed redox-responsive copolymer offers a new type of biomaterial for drug delivery into cancer cells in vivo. STATEMENT OF SIGNIFICANCE On-demand drug actuation is highly desired. Redox-responsive polymeric DDSs have been shown to be able to respond and release their cargo in a selective manner when encountering a significant change in the potential difference, such as that present between cancerous and healthy tissues. This study offers an added advantage to the field of redox-responsive polymers by reporting a new type of shell-sheddable micelle based on an amphiphilic triblock co-polymer, containing diselenide as a redox-sensitive linkage. The linkage was smartly located at the hydrophilic-hydrophilic bridge in the co-polymer offering complete collapse of the micelle when exposed to the right trigger. The system was able to delay tumor growth and reduce toxicity in a breast cancer tumor model following intraperitoneal injection in mice.
Collapse
Affiliation(s)
- Farnaz Behroozi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad-Jafar Abdkhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Environmental Applied Science and Management, Ryerson University, Toronto, Canada.
| | - Hamid Sadeghi Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Satarian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Molazem
- Department of Radiology and Surgery, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London, UK
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
20
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
21
|
Kang Y, Lu L, Lan J, Ding Y, Yang J, Zhang Y, Zhao Y, Zhang T, Ho RJ. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater 2018; 68:137-153. [PMID: 29288085 DOI: 10.1016/j.actbio.2017.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
A novel redox-sensitive system for co-delivering hydrophobic drugs and hydrophilic siRNA or shRNA was developed by conjugating gambogic acid (GA) with poly(amido amine)s (PAAs) through amide bonds, which is called GA-conjugated PAAs (PAG). PAG can self-assemble into micelles as amphiphilic block copolymers, which exhibits an excellent loading ability for the co-delivery of docetaxel (DTX) and MMP-9 shRNA with adjustable dosing ratios. In addition, confocal microscopy, flow cytometry and in vitro transfection analyses demonstrated more efficient cellular internalization of DTX and MMP-9 shRNA after incubation with PAG/DTX- MMP-9 shRNA micelles (PAG/DTX-shRNA) than with free drugs. Unlike traditional amphiphilic copolymer micelles, GA conjugated in PAG possesses an intrinsic anticancer efficacy. The presence of disulfide bonds in PAAs enables rapid disassembly of PAG micelles in response to reducing agents, inducing the release of loaded drugs (DTX, GA and MMP-9 shRNA). In vitro cellular assays revealed that PAG/DTX-shRNA micelles inhibited MCF-7 cell proliferation more efficiently than the single drug or single drug-loaded micelles. In vivo biodistribution and anti-tumor effect studies using an MCF-7 breast cancer xenograft mouse model have indicated that PAG/DTX-shRNA micelles can enhance drug accumulation compared with the free drug, thereby sustaining the therapeutic effect on tumors. Additionally, PAG/DTX-shRNA micelles displayed a greater anti-tumor efficacy than Taxotere® and PAG-shRNA micelles. These results suggest that the redox-sensitive PAG platform is a promising co-delivery system for combining drugs and gene therapy for the treatment of cancer. STATEMENT OF SIGNIFICANCE The PAG micelles were designed by conjugating gambogic acid (GA) with poly(amido amine)s (PAAs), which would serve dual purposes as both gene and drugs co-delivery carrier and an anti-tumor prodrug. Unlike traditional amphiphilic micelles, GA conjugated in PAG could exert its intrinsic efficacy and provide synergistic antiproliferative effects with docetaxel (DTX) on MCF-7 cells. Disulfide bonds in PAG enables a rapid disassembly of PAG micelles in response to reducing agents and to release all loaded drugs (DTX, GA and MMP-9 shRNA) at tumor sites. PAG/DTX-shRNA micelles displayed greater anti-tumor efficacy than that of Taxotere®, indicating the design concept for PAG works well. And the strategy for PAG could be used to develop a series of similar co-delivery systems through conjugations of other small-molecule drugs with PAAs, such as doxorubicin, methotrexate and other drugs with carboxy groups in their structure.
Collapse
|
22
|
Pawlish G, Spivack K, Gabriel A, Huang Z, Comolli N. Chemotherapeutic loading via tailoring of drug-carrier interactions in poly (sialic acid) micelles. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Voon SH, Kue CS, Imae T, Saw WS, Lee HB, Kiew LV, Chung LY, Yusa SI. Doxorubicin-loaded micelles of amphiphilic diblock copolymer with pendant dendron improve antitumor efficacy: In vitro and in vivo studies. Int J Pharm 2017; 534:136-143. [DOI: 10.1016/j.ijpharm.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022]
|
24
|
Multiple polysaccharide–drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting. Carbohydr Polym 2017; 173:57-66. [PMID: 28732901 DOI: 10.1016/j.carbpol.2017.05.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
|
25
|
Guo D, Shi C, Wang X, Wang L, Zhang S, Luo J. Riboflavin-containing telodendrimer nanocarriers for efficient doxorubicin delivery: High loading capacity, increased stability, and improved anticancer efficacy. Biomaterials 2017; 141:161-175. [PMID: 28688287 DOI: 10.1016/j.biomaterials.2017.06.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
We have developed two linear-dendritic telodendrimers (TDs) with rational design using amphiphilic riboflavin (Rf) as building blocks for efficient doxorubicin (DOX) delivery. Micellar TD nanoparticles (NPs) are composed of a hydrophilic polyethylene glycol (PEG) shell and a Rf-containing affinitive core for DOX encapsulation. Strong DOX-Rf interactions and amphiphilic Rf structure render these nanocarriers with an ultra-high DOX loading capacity (>1/1, DOX/TD, w/w), ∼100% loading efficiency, the sustained drug release and the optimal particle sizes (20-40 nm) for efficient tumor-targeted drug delivery. These nanoformulations significantly prolonged DOX circulation time in the blood without the accelerated clearance observed after multiple injections. DOX-TDs target several types of tumors efficiently in vivo, e.g. Raji lymphoma, MDA-MB-231 breast cancer, and SKOV-3 ovarian cancer. In vivo maximum tolerated dose (MTD) of DOX was increased by 2-2.5 folds for the nanoformulations in mice relative to those of free DOX and Doxil®. These nanoformulations significantly inhibited tumor growth and prolonged survival of mice bearing SKOV-3 ovarian cancer xenografts. In summary, Rf-containing nanoformulations with high DOX loading capacity, improved stability and efficient tumor targeting lead to superior antitumor efficacy, which merit the further development for clinical application.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xu Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Shengle Zhang
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
26
|
Du X, Sun Y, Zhang M, He J, Ni P. Polyphosphoester-Camptothecin Prodrug with Reduction-Response Prepared via Michael Addition Polymerization and Click Reaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13939-13949. [PMID: 28378998 DOI: 10.1021/acsami.7b02281] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polyphosphoesters (PPEs), as potential candidates for biocompatible and biodegradable polymers, play an important role in material science. Various synthetic methods have been employed in the preparation of PPEs such as polycondensation, polyaddition, ring-opening polymerization, and olefin metathesis polymerization. In this study, a series of linear PPEs has been prepared via one-step Michael addition polymerization. Subsequently, camptothecin (CPT) derivatives containing disulfide bonds and azido groups were linked onto the side chain of the PPE through Cu(I)-catalyzed azidealkyne cyclo-addition "click" chemistry to yield a reduction-responsive polymeric prodrug P(EAEP-PPA)-g-ss-CPT. The chemical structures were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared, ultraviolet-visible spectrophotometer, and high performance liquid chromatograph analyses, respectively. The amphiphilic prodrug could self-assemble into micelles in aqueous solution. The average particle size and morphology of the prodrug micelles were measured by dynamic light scattering and transmission electron microscopy, respectively. The results of size change under different conditions indicate that the micelles possess a favorable stability in physiological conditions and can be degraded in reductive medium. Moreover, the studies of in vitro drug release behavior confirm the reduction-responsive degradation of the prodrug micelles. A methyl thiazolyl tetrazolium assay verifies the good biocompatibility of P(EAEP-PPA) not only for normal cells, but also for tumor cells. The results of cytotoxicity and the intracellular uptake about prodrug micelles further demonstrate that the prodrug micelles can efficiently release CPT into 4T1 or HepG2 cells to inhibit the cell proliferation. All these results show that the polyphosphoester-based prodrug can be used for triggered drug delivery system in cancer treatment.
Collapse
Affiliation(s)
- Xueqiong Du
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Yue Sun
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
27
|
Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 2017; 14:123-136. [PMID: 27401941 PMCID: PMC5835024 DOI: 10.1080/17425247.2016.1208650] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Metastatic breast cancer is one of the most devastating cancers that have no cure. Many therapeutic and diagnostic strategies have been extensively studied in the past decade. Among these strategies, cancer nanotechnology has emerged as a promising strategy in preclinical studies by enabling early identification of primary tumors and metastases, and by effective killing of cancer cells. Areas covered: This review covers the recent progress made in targeting and imaging of metastatic breast cancer with nanoparticles, and treatment using nanoparticle-enabled chemo-, gene, photothermal- and radio-therapies. This review also discusses recent developments of nanoparticle-enabled stem cell therapy and immunotherapy. Expert opinion: Nanotechnology is expected to play important roles in modern therapy for cancers, including metastatic breast cancer. Nanoparticles are able to target and visualize metastasis in various organs, and deliver therapeutic agents. Through targeting cancer stem cells, nanoparticles are able to treat resistant tumors with minimal toxicity to healthy tissues/organs. Nanoparticles are also able to activate immune cells to eliminate tumors. Owing to their multifunctional, controllable and trackable features, nanotechnology-based imaging and therapy could be a highly potent approach for future cancer research and treatment.
Collapse
Affiliation(s)
- Qingxin Mu
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Hui Wang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Miqin Zhang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| |
Collapse
|
28
|
Zhang X, Li C, Zheng H, Song H, Li L, Xiong F, Yang J, Qiu T. Glutathione-dependent micelles based on carboxymethyl chitosan for delivery of doxorubicin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1824-1840. [PMID: 27707353 DOI: 10.1080/09205063.2016.1238128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel glutathione (GSH)-dependent micelles based on carboxymethyl chitosan (CMCS) were developed for triggered intracellular release of doxorubicin (DOX). DOX-33'-Dithiobis (N-hydroxysuccinimidyl propionate)-CMCS (DOX-DSP-CMCS) prodrugs were synthesized. DOX was attached to the amino group on CMCS via disulfide bonds and drug-loaded micelles were formed by self-assembly. The micelles formed core-shell structure with CMCS and DOX as the shell and core, respectively, in aqueous media. The structure of the prodrugs was confirmed by IR and proton nuclear magnetic resonance (1H NMR) spectroscopy. The drug-loading capacity determined by UV spectrophotometry was 4.96% and the critical micelle concentration of polymer prodrugs determined by pyrene fluorescence was 0.089 mg/mL. Micelles were spherical and the mean size of the nanoparticles was 174 nm, with a narrow polydispersity index of 0.106. Moreover, in vitro drug release experiments showed that the micelles were highly GSH-sensitive owing to the reductively degradable disulfide bonds. Cell counting kit (CCK-8) assays revealed that DOX-DSP-CMCS micelles exhibited effective cytotoxicity against HeLa cells. Moreover, confocal laser scanning microscopy (CLSM) demonstrated that DOX-DSP-CMCS micelles could efficiently deliver and release DOX in the cancer cells. In conclusion, the DOX-DSP-CMCS nanosystem is a promising drug delivery vehicle for cancer therapy.
Collapse
Affiliation(s)
- Xueqiong Zhang
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Chunfu Li
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Hua Zheng
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Haoyuan Song
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Lianghong Li
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Fuliang Xiong
- a Department of Phamaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Jin Yang
- b School of Traditional Chinese Medicine , Hubei University for Nationalities , Enshi , China
| | - Tong Qiu
- c Biomedical Materials and Engineering Center , Wuhan University of Technology , Wuhan , China
| |
Collapse
|
29
|
Orienti I, Falconi M, Teti G, Currier MA, Wang J, Phelps M, Cripe TP. Preparation and Evaluation of a Novel Class of Amphiphilic Amines as Antitumor Agents and Nanocarriers for Bioactive Molecules. Pharm Res 2016; 33:2722-35. [PMID: 27457066 PMCID: PMC5040747 DOI: 10.1007/s11095-016-1999-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Purpose We describe a novel class of antitumor amphiphilic amines (RCn) based on a tricyclic amine hydrophilic head and a hydrophobic linear alkyl tail of variable length. Methods We tested the lead compound, RC16, for cytotoxicity and mechanism of cell death in several cancer cell lines, anti tumor efficacy in mouse tumor models, and ability to encapsulate chemotherapy drugs. Results These compounds displayed strong cytotoxic activity against cell lines derived from both pediatric and adult cancers. The IC50 of the lead compound, RC16, for normal cells including human keratinocytes, human fibroblasts and human umbilical vein endothelial cells was tenfold higher than for tumor cells. RC16 exhibited significant antitumor effects in vivo using several human xenografts and a metastatic model of murine neuroblastoma by both intravenous and oral administration routes. The amphiphilic character of RC16 triggered a spontaneous molecular self-assembling in water with formation of micelles allowing complexation of Doxorubicin, Etoposide and Paclitaxel. These micelles significantly improved the in vitro antitumor activity of these drugs as the enhancement of their aqueous solubility also improved their biologic availability. Conclusions RC16 and related amphiphilic amines may be useful as a novel cancer treatment. Electronic supplementary material The online version of this article (doi:10.1007/s11095-016-1999-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna, Italy
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| | - Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jiang Wang
- College of Pharmacy and Division of Pharmaceutics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, USA
| | - Mitch Phelps
- College of Pharmacy and Division of Pharmaceutics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA.
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, 700 Children's Dr, Columbus, Ohio, 43205, USA.
| |
Collapse
|
30
|
Yi Q, Ma J, Kang K, Gu Z. Dual cellular stimuli-responsive hydrogel nanocapsules for delivery of anticancer drugs. J Mater Chem B 2016; 4:4922-4933. [PMID: 32263151 DOI: 10.1039/c6tb00651e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report dual cellular environmental stimuli-responsive hydrogel nanocapsules (HA-NCs) for delivery of an anticancer drug (doxorubicin, DOX). This nanocapsule drug delivery system was specially designed to be triggered by stimuli in intra-cellular environments, specifically high glutathione (GSH) concentration and low pH. Biocompatible hyaluronan was used as the basic nanocapsule shell building material. Chemical modifications were conducted in order to functionalize it; specifically, GSH cleavable crosslinking sites and pH responsive expansion sites were introduced. After passive delivery to tumor sites via an enhanced permeation and retention (EPR) effect and cellular uptake, the nanocapsule shells underwent a swelling/disassembly process due to high GSH concentration (e.g., 10 mM), which induced cleavage of disulfide (S-S) bonds, and low pH (e.g., pH 5), which caused water influx associated with deprotection of the acetal groups. This process enabled rupture of the hydrogel nanocapsules and therefore resulted in release of the encapsulated payloads. This hydrogel nanocapsule system exhibited a great ability to release the vast majority of the encapsulated DOX in tumor cells, as proven by the remarkably (4.7-fold) accelerated drug release rate within tumor cells (pH 5.0, GSH 10 mM), in sharp contrast to the drug release rate under physiological conditions (pH 7.4, GSH 0). In vitro bio-evaluation showed the good biocompatibility of the nanocapsule carriers and their efficient cancer cell growth inhibition activity after drug encapsulation. In vivo studies confirmed that the DOX containing nanocapsules (DOX/HA-NCs) had comparable antitumor efficiency and greatly reduced side effects as compared with free DOX (DOX·HCl).
Collapse
Affiliation(s)
- Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | | | | | | |
Collapse
|
31
|
Panja S, Dey G, Bharti R, Kumari K, Maiti TK, Mandal M, Chattopadhyay S. Tailor-Made Temperature-Sensitive Micelle for Targeted and On-Demand Release of Anticancer Drugs. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12063-12074. [PMID: 27128684 DOI: 10.1021/acsami.6b03820] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design of nanomedicines from the tuned architecture polymer is a leading object of immense research in recent years. Here, smart thermoresponsive micelles were prepared from novel architecture four-arm star block copolymers, namely, pentaerythritol polycaprolactone-b-poly(N-isopropylacrylamide) and pentaerythritol polycaprolactone-b-poly(N-vinylcaprolactam). The polymers were synthesized and tagged with folic acid (FA) to render them as efficient cancer cell targeting cargos. FA-conjugated block copolymers were self-assembled to a nearly spherical (ranging from 15 to 170 nm) polymeric micelle (FA-PM) with a sufficiently lower range of critical micelle concentration (0.59 × 10(-2) to 1.52 × 10(-2) mg/mL) suitable for performing as an efficient drug carrier. The blocks show lower critical solution temperature (LCST) ranging from 30 to 39 °C with high DOX-loading content (24.3%, w/w) as compared to that reported for a linear polymer in the contemporary literature. The temperature-induced reduction in size (57%) of the FA-PM enables a high rate of DOX release (78.57% after 24 h) at a temperature above LCST. The DOX release rate has also been tuned by on-demand administration of temperature. The in vitro biocompatibilities of the blank and DOX-loaded FA-PMs have been studied by the MTT assay. The cellular uptake study proves selective internalization of the FA-PM into cancerous cells (C6 glioma) compared that into normal cells (HaCaT). In vivo administration of the DOX-loaded FA-PMs into the C6 glioma rat tumor model resulted in significant accumulation in tumor sites, which drastically inhibited the tumor volume by ∼83.9% with respect to control without any significant systemic toxicity.
Collapse
Affiliation(s)
- S Panja
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - G Dey
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - R Bharti
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - K Kumari
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - T K Maiti
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - M Mandal
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - S Chattopadhyay
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| |
Collapse
|
32
|
Camacho KM, Menegatti S, Vogus DR, Pusuluri A, Fuchs Z, Jarvis M, Zakrewsky M, Evans MA, Chen R, Mitragotri S. DAFODIL: A novel liposome-encapsulated synergistic combination of doxorubicin and 5FU for low dose chemotherapy. J Control Release 2016; 229:154-162. [PMID: 27034194 DOI: 10.1016/j.jconrel.2016.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/25/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
PEGylated liposomes have transformed chemotherapeutic use of doxorubicin by reducing its cardiotoxicity; however, it remains unclear whether liposomal doxorubicin is therapeutically superior to free doxorubicin. Here, we demonstrate a novel PEGylated liposome system, named DAFODIL (Doxorubicin And 5-Flurouracil Optimally Delivered In a Liposome) that inarguably offers superior therapeutic efficacies compared to free drug administrations. Delivery of synergistic ratios of this drug pair led to greater than 90% reduction in tumor growth of murine 4T1 mammary carcinoma in vivo. By exploiting synergistic ratios, the effect was achieved at remarkably low doses, far below the maximum tolerable drug doses. Our approach re-invents the use of liposomes for multi-drug delivery by providing a chemotherapy vehicle which can both reduce toxicity and improve therapeutic efficacy. This methodology is made feasible by the extension of the ammonium-sulfate gradient encapsulation method to nucleobase analogues, a liposomal entrapment method once conceived useful only for anthracyclines. Therefore, our strategy can be utilized to efficiently evaluate various chemotherapy combinations in an effort to translate more effective combinations into the clinic.
Collapse
Affiliation(s)
- Kathryn M Camacho
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Douglas R Vogus
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Anusha Pusuluri
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Zoë Fuchs
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Maria Jarvis
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Michael Zakrewsky
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Michael A Evans
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Renwei Chen
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
33
|
Zhang Z, Wan J, Sun L, Li Y, Guo J, Wang C. Zinc finger-inspired nanohydrogels with glutathione/pH triggered degradation based on coordination substitution for highly efficient delivery of anti-cancer drugs. J Control Release 2016; 225:96-108. [DOI: 10.1016/j.jconrel.2016.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
|
34
|
Cui Y, Sui J, He M, Xu Z, Sun Y, Liang J, Fan Y, Zhang X. Reduction-Degradable Polymeric Micelles Decorated with PArg for Improving Anticancer Drug Delivery Efficacy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2193-2203. [PMID: 26720795 DOI: 10.1021/acsami.5b10867] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, five kinds of reduction-degradable polyamide amine-g-polyethylene glycol/polyarginine (PAA-g-PEG/PArg) micelles with different proportions of hydrophilic and hydrophobic segments were synthesized as novel drug delivery vehicles. Polyarginine not only acted as a hydrophilic segment but also possessed a cell-penetrating function to carry out a rapid transduction into target cells. Polyamide amine-g-polyethylene glycol (PAA-g-PEG) was prepared for comparison. The characterization and antitumor effect of the DOX-incorporated PAA-g-PEG/PArg cationic polymeric micelles were investigated in vitro and in vivo. The cytotoxicity experiments demonstrated that the PAA-g-PEG/PArg micelles have good biocompatibility. Compared with DOX-incorporated PAA-g-PEG micelles, the DOX-incorporated PAA-g-PEG/PArg micelles were more efficiently internalized into human hepatocellular carcinoma (HepG2) cells and more rapidly released DOX into the cytoplasm to inhibit cell proliferation. In the 4T1-bearing nude mouse tumor models, the DOX-incorporated PAA-g-PEG/PArg micelles could efficiently accumulate in the tumor site and had a longer accumulation time and more significant aggregation concentration than those of PAA-g-PEG micelles. Meanwhile, it excellently inhibited the solid tumor growth and extended the survival period of the tumor-bearing Balb/c mice. These results could be attributed to their appropriate nanosize and the cell-penetrating peculiarity of polyarginine as a surface layer. The PAA-g-PEG/PArg polymeric micelles as a safe and high efficiency drug delivery system were expected to be a promising delivery carrier that targeted hydrophobic chemotherapy drugs to tumors and significantly enhanced antitumor effects.
Collapse
Affiliation(s)
- Yani Cui
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Mengmeng He
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Zhiyi Xu
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
35
|
Ekkelenkamp AE, Jansman MM, Roelofs K, Engbersen JF, Paulusse JM. Surfactant-free preparation of highly stable zwitterionic poly(amido amine) nanogels with minimal cytotoxicity. Acta Biomater 2016; 30:126-134. [PMID: 26518103 DOI: 10.1016/j.actbio.2015.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/14/2023]
Abstract
Narrowly dispersed zwitterionic poly(amido amine) (PAA) nanogels with a diameter of approximately 100nm were prepared by a high-yielding and surfactant-free, inverse nanoprecipitation of PAA polymers. The resulting, negatively charged, nanogels (PAA-NG1) were functionalized with N,N-dimethylethylenediamine via EDC/NHS coupling chemistry. This resulted in nanogels with a positive surface charge (PAA-NG2). Both types of nanogels were fluorescently labelled via isothiocyanate coupling. PAA-NG1 displays high colloidal stability both in PBS and Fetal Bovine Serum solution. Moreover, both nanogels exhibit a distinct zwitterionic swelling profile in response to pH changes. Cellular uptake of FITC-labelled nanogels with RAW 264.7, PC-3 and COS-7 cells was evaluated by fluorescence microscopy. These studies showed that nanogel surface charge greatly influences nanogel-cell interactions. The PAA polymer and PAA-NG1 showed minimal cell toxicity as was evaluated by MTT assays. The findings reported here demonstrate that PAA nanogels possess interesting properties for future studies in both drug delivery and imaging. STATEMENT OF SIGNIFICANCE The use of polymeric nanoparticles in biomedical applications such as drug delivery and imaging, shows great potential for medical applications. However, these nanoparticles are often not stable in biological environments. Zwitterionic polymers have shown excellent biocompatibility, but these materials are not easily degradable in biological environments. With the aim of developing a nanoparticle for drug delivery and imaging we synthesized a biomimetic and readily biodegradable zwitterionic polymer, which was incorporated into nanogels. These nanogels showed excellent stability in the presence of serum and minimal cytotoxicity, which was tested in three cell lines. Because of their negative surface charge and excellent serum stability, these nanogels are therefore promising carriers for drug delivery and molecular imaging.
Collapse
|
36
|
Xu C, Tian H, Wang P, Wang Y, Chen X. The suppression of metastatic lung cancer by pulmonary administration of polymer nanoparticles for co-delivery of doxorubicin and Survivin siRNA. Biomater Sci 2016; 4:1646-1654. [DOI: 10.1039/c6bm00601a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DOX and siRNA were sprayed into trachea, bronchi and alveoli, and were co-delivered to cancer cells.
Collapse
Affiliation(s)
- Caina Xu
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Ping Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yanbing Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
37
|
Liu M, Huang G, Cong Y, Tong G, Lin Z, Yin Y, Zhang C. The preparation and characterization of micelles from poly(γ-glutamic acid)-graft-poly(L-lactide) and the cellular uptake thereof. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:187. [PMID: 25917829 DOI: 10.1007/s10856-015-5519-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Chemotherapy is a traditional therapeutic approach for the treatment of many solid tumors, but the poor solubility and low bioavailability of hydrophobic anti-cancer drugs greatly limit their applications. In this article, DOX-loaded micelles were fabricated based on an amphiphilic graft polymer composed of hydrophilic poly(γ-glutamic acid) (γ-PGA) and hydrophobic poly (L-lactide) (PLLA). The structure of the copolymers and the characteristic of the micelles were studied. The release profiles of doxorubicin as a model drug from the micelles were measured. Due to the protonation of the amino group of DOX and the conformational alteration of γ-PGA, the release of DOX from γ-PGA-g-PLLA micelle was faster in the acid condition, which is beneficial to tumor therapy. The cellular uptake of the DOX-loaded γ-PGA-g-PLLA micelle was proved to be a GGT-mediated process.
Collapse
Affiliation(s)
- Meiqing Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Huang P, Wang W, Zhou J, Zhao F, Zhang Y, Liu J, Liu J, Dong A, Kong D, Zhang J. Amphiphilic polyelectrolyte/prodrug nanoparticles constructed by synergetic electrostatic and hydrophobic interactions with cooperative pH-sensitivity for controlled doxorubicin delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6340-6350. [PMID: 25746122 DOI: 10.1021/acsami.5b00962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To achieve higher therapeutic efficiency with catabatic side effects, desirable nanocarriers should be designed to retain the loaded drug tightly during the systemic circulation, but release the drug rapidly and efficiently upon endocytosis by tumor cells. Herein, to achieve "off-on" controlled delivery of DOX, novel amphiphilic polyelectrolyte/prodrug nanoparticles (NPs) with cooperative pH-sensitivity were constructed via synergistic electrostatic and hydrophobic interactions between slightly positively charged methoxy polyethylene glycol-b-(poly(2-(diisopropylamino) ethyl methacrylate-co-aminopropyl methacrylamide) (PEDPA) copolymer and negatively charged cis-aconityl-doxorubicin (CAD) prodrug (termed as PEDPA/CAD NPs). With polymer-prodrug synergistic noncovalent interactions, the drug loading content of PEDPA/CAD NPs could be improved up to 12.6% with favorable serum stability, and significantly lowered the drug leakage to 2.5% within 24 h at pH 7.4. However, nearly 80% of encapsulated drug could be released at pH 5.0 within 12 h, due to the cooperative effects of the protonation of PDPA blocks resulting in quick disassembly of NPs and the rapid hydrolysis of cis-aconityl linkage leading to charge-reverse of CAD. Moreover, the results of fluorescent microscopy imaging and flow cytometry measurements exhibited that DOX could be recovered and released rapidly from PEDPA/CAD NPs upon endocytosis and then exert therapeutic action in the cell nucleus. Importantly, the PEDPA/CAD NPs exhibited significantly higher antitumor efficiency in vivo with reduced nonspecific toxicity to normal tissues in comparation with free DOX. In summary, the NPs designed in this work, constructed by synergistic electrostatic and hydrophobic interactions with cooperative pH-sensitivity, which potentially resolved the dilemma between systemic stability and rapid intracellular drug release, would provide a promising nanomedicine platform for cancer therapy.
Collapse
Affiliation(s)
- Pingsheng Huang
- ‡Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- §Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | | | - Junhui Zhou
- ‡Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fuli Zhao
- ‡Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | - Anjie Dong
- ‡Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- §Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | | | - Jianhua Zhang
- ‡Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- §Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
39
|
|
40
|
Butt AM, Mohd Amin MCI, Katas H. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs. Int J Nanomedicine 2015; 10:1321-34. [PMID: 25709451 PMCID: PMC4335624 DOI: 10.2147/ijn.s78438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. METHODS FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay. RESULTS The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. CONCLUSION FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.
Collapse
Affiliation(s)
- Adeel Masood Butt
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Su T, Peng X, Cao J, Chang J, Liu R, Gu Z, He B. Functionalization of biodegradable hyperbranched poly(α,β-malic acid) as a nanocarrier platform for anticancer drug delivery. RSC Adv 2015. [DOI: 10.1039/c4ra13686a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile strategy for fabricating hyperbranched poly(α,β-malic acid) nanoparticles with multiple functions was developed for anticancer drug delivery.
Collapse
Affiliation(s)
- Ting Su
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xinyu Peng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jun Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jing Chang
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Rong Liu
- College of Medical and Nursing
- Chengdu University
- Chengdu
- China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Bin He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
42
|
Cao Y, Zhao J, Zhang Y, Liu J, Liu J, Dong A, Deng L. pH/redox dual-sensitive nanoparticles based on the PCL/PEG triblock copolymer for enhanced intracellular doxorubicin release. RSC Adv 2015; 5:28060-28069. [DOI: 10.1039/c5ra01833a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Acid/redox-dual sensitivities of nanoparticles based on PEG/PCL enhance the intracellular drug release of cancer cells.
Collapse
Affiliation(s)
- Yan Cao
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Junqiang Zhao
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
43
|
Sun Y, Wang Y, Cui Y, Zou W, Tan Y, Liang J, Fan Y, Zhang X. DOX-encapsulated intelligent PAA-g-PEG/PEG–Fa polymeric micelles for intensifying antitumor therapeutic effect via active-targeted tumor accumulation. J Mater Chem B 2015; 3:5478-5489. [DOI: 10.1039/c5tb00438a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction-breakable active targeting polymeric micelles as drug delivery systems could improve delivery efficiency by tumor-specific recognition.
Collapse
Affiliation(s)
- Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yaning Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yani Cui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Wen Zou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
44
|
Li J, Zhou Y, Li C, Wang D, Gao Y, Zhang C, Zhao L, Li Y, Liu Y, Li X. Poly(2-ethyl-2-oxazoline)–Doxorubicin Conjugate-Based Dual Endosomal pH-Sensitive Micelles with Enhanced Antitumor Efficacy. Bioconjug Chem 2014; 26:110-9. [DOI: 10.1021/bc5004718] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jinwen Li
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanxia Zhou
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chengwei Li
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dishi Wang
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yajie Gao
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chao Zhang
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lei Zhao
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yushu Li
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Liu
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinru Li
- Department of Pharmaceutics,
School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
45
|
Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. Preclinical evaluation of antitumor activity of acid-sensitive PEGylated doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21202-21214. [PMID: 25415351 DOI: 10.1021/am506178c] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The acid-sensitive PEGylated doxorubicin (DOX) with exact chemical structure was designed and prepared as a potential tumor intracellular microenvironment-responsive drug delivery system. First, the insensitive succinic anhydride-functionalized DOX (i.e., SAD) and acid-sensitive cis-aconitic anhydride-modified DOX (i.e., CAD) were synthesized through the ring-opening reaction. Subsequently, the insensitive and acid-sensitive PEGylated DOX (i.e., mPEG-SAD and mPEG-CAD) was prepared by the condensation reaction between the terminal hydroxyl group of mPEG and the carboxyl group in SAD and CAD, respectively. The obtained mPEG-SAD and mPEG-CAD could spontaneously self-assemble into micelles in phosphate-buffered saline at pH 7.4 with diameters of about 100 nm. The DOX release of mPEG-CAD micelle could be accelerated by the decrease of pH from 7.4, 6.8, to 5.5 in relation to that of mPEG-SAD micelle. On the other hand, the result of the cellular proliferation inhibition test indicated that mPEG-CAD micelle exhibited favorable antiproliferative activity in vitro. In addition, the selective intratumoral accumulation and antitumor efficacy of mPEG-CAD micelle were significantly better than those of free DOX and mPEG-SAD. More importantly, the prodrug micelles exhibited upregulated security in vivo as compared to free DOX. Overall, the mPEG-CAD micelle with enhanced antitumor efficacy and decreased side effects was a fascinating prospect for the clinical chemotherapy of malignancy.
Collapse
Affiliation(s)
- Diankui Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery. Eur J Pharm Biopharm 2014; 88:1012-25. [DOI: 10.1016/j.ejpb.2014.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022]
|
47
|
Li M, Tang Z, Lin J, Zhang Y, Lv S, Song W, Huang Y, Chen X. Synergistic antitumor effects of doxorubicin-loaded carboxymethyl cellulose nanoparticle in combination with endostar for effective treatment of non-small-cell lung cancer. Adv Healthc Mater 2014; 3:1877-88. [PMID: 24846434 DOI: 10.1002/adhm.201400108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/30/2014] [Indexed: 01/09/2023]
Abstract
The multi-modal combination therapy is proved powerful and successful to enhance the antitumor efficacy in clinics as compared with single therapy modes. In this study, the potential of combining chemotherapy with antiangiogenic therapy for the treatment of non-small-cell lung cancer is explored. Towards this aim, OEGylated carboxymethyl cellulose-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane (CMC-ME2MO) is prepared by treating CMC with ME2MO in the alkaline aqueous solution, and used to efficiently carry doxorubicin (DOX) with high drug-loading content (16.64%) and encapsulation efficiency (99.78%). As compared to free DOX, the resulting nanoparticles show not only the favorable stability in vitro but also the prolonged blood circulation, improved safety and tolerability, optimized biodistribution, reduced systemic toxicity, and enhanced antitumor efficacy in vivo, indicates a potential utility in cancer chemotherapy. Furthermore, the combination of the DOX-loaded polysaccharide nanoparticles and antiangiogenic drug endostar provides synergistic effects of chemotherapy and antiangiogenic therapy, which shows the highest efficiency in tumor suppression. The combination approach of the DOX-containing nanomedicine and endostar for efficient treatment of non-small-cell lung cancer is first proposed to demonstrate the synergistic therapeutic effect. This synergistic combination proves to be a promising therapeutic regimen in cancer therapy and holds great potential for clinical application.
Collapse
Affiliation(s)
- Mingqiang Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Jian Lin
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Shixian Lv
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
48
|
Ke X, Ng VWL, Ono RJ, Chan JM, Krishnamurthy S, Wang Y, Hedrick JL, Yang YY. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J Control Release 2014; 193:9-26. [DOI: 10.1016/j.jconrel.2014.06.061] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/10/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
49
|
Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 2014; 21:755-67. [PMID: 24279980 PMCID: PMC4098852 DOI: 10.1089/ars.2013.5733] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. RECENT ADVANCES Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. CRITICAL ISSUES Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. FUTURE DIRECTIONS Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Huang Y, Liu J, Cui Y, Li H, Sun Y, Fan Y, Zhang X. Reduction-triggered breakable micelles of amphiphilic polyamide amine-g-polyethylene glycol for methotrexate delivery. BIOMED RESEARCH INTERNATIONAL 2014; 2014:904634. [PMID: 24895626 PMCID: PMC4005151 DOI: 10.1155/2014/904634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 12/22/2022]
Abstract
Reduction-triggered breakable polymeric micelles incorporated with MTX were prepared using amphiphilic PAA-g-PEG copolymers having S-S bonds in the backbone. The micelles were spherical with diameters less than 70 nm. The micelles could encapsulate the hydrophobic MTX in the hydrophobic core. The drug loading content and drug loading efficiency of the micelles were highly dependent on the copolymer chemical structure, ranging from 2.9 to 7.5% and 31.9 to 82.5%, respectively. Both the drug loading content and drug loading efficiency increased along with more hydrophobic segments in the copolymers. In normal circumstance, these micelles were capable of keeping stable and hold most of the MTX in the core, stabilizing the incorporated MTX through the π-π stacking with the phenyl groups in the backbone of the copolymers. In reductive environments that mimicked the intracellular compartments, the entire MTX payload could be quickly released due to the reduction-triggered breakage of the micelles. These micelles showed good antiproliferative activity against several cancer cell lines, including KB, 4T-1 and HepG2, especially within the low drug concentration scope.
Collapse
Affiliation(s)
- Yihang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Jun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yani Cui
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Huanan Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|