1
|
Du R, Li X, Fielding LA. Investigating the Formation of Polymer-Nanoparticle Complex Coacervate Hydrogels Using Polymerization-Induced Self-Assembly-Derived Nanogels with a Succinate-Functional Core. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20648-20656. [PMID: 39291829 PMCID: PMC11447913 DOI: 10.1021/acs.langmuir.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This paper reports polymer-nanoparticle-based complex coacervate (PNCC) hydrogels prepared by mixing anionic nanogels synthesized by polymerization-induced self-assembly (PISA) and cationic branched poly(ethylenimine) (bPEI). Specifically, poly(3-sulfopropyl methacrylate)58-b-poly(2-(methacryloyloxy)ethyl succinate)500 (PKSPMA58-PMES500) nanogels were prepared by reversible addition-fragmentation chain-transfer (RAFT)-mediated PISA. These nanogels swell on increasing the solution pH and form free-standing hydrogels at 20% w/w and pH ≥ 7.5. However, the addition of bPEI significantly improves the gel properties through the formation of PNCCs. Diluted bPEI/nanoparticle mixtures were analyzed by dynamic light scattering (DLS) and aqueous electrophoresis to examine the mechanism of PNCC formation. The influence of pH and the bPEI-to-nanogel mass ratio (MR) on the formation of these PNCC hydrogels was subsequently investigated. A maximum gel strength of 1300 Pa was obtained for 20% w/w bPEI/PKSPMA58-PMES500 PNCC hydrogels prepared at pH 9 with an MR of 0.1, and shear-thinning behavior was observed in all cases. After the removal of shear, these PNCC gels recovered rapidly, with the recovery efficiency being pH-dependent.
Collapse
Affiliation(s)
- Ruiling Du
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Xueyuan Li
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Zhao L, Zhu H, Duo YY, Wang ZG, Pang DW, Liu SL. A Cyanine with 83.2% Photothermal Conversion Efficiency and Absorption Wavelengths over 1200 nm for Photothermal Therapy. Adv Healthc Mater 2024; 13:e2304421. [PMID: 38780250 DOI: 10.1002/adhm.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Developing small-molecule photothermal agents (PTAs) with good near-infrared-II (NIR-II) response for deeper tissue penetration and minimizing damage to healthy tissues has attracted much attention in photothermal therapy (PTT). However, concentrating ultra-long excitation wavelengths and high photothermal conversion efficiencies (PCEs) into a single organic small molecule is still challenging due to the lack of suitable molecular structures. Here, six polymethine cyanine molecules based on the structure of indocyanine green are synthesized by increasing the conjugated structure of the two-terminal indole salts and the number of rigid methine units, and incorporating longer alkyl side chains into the indole salts. Ultimately, IC-1224 is obtained with an absorption wavelength of more than 1200 nm, which has a high PCE up to 83.2% in the NIR-II window and exhibits excellent PTT tumor ablation performance. This provides a high-performance NIR-II-responsive PTA, and offers further possibilities for the application of PTT in biomedical fields.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - You-Yang Duo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Front Bioeng Biotechnol 2024; 11:1333752. [PMID: 38318419 PMCID: PMC10841552 DOI: 10.3389/fbioe.2023.1333752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.
Collapse
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Somnath Mondal
- Department of Chemistry, Pennsylvania State University, State College, PA, United States
| | - Dhiman Ghosh
- Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| |
Collapse
|
4
|
Yang L, Ma J, Yang B. Fluorescent Carbon Dots Derived From Soy Sauce for Picric Acid Detection and Cell Imaging. J Fluoresc 2023; 33:1981-1993. [PMID: 36933123 DOI: 10.1007/s10895-023-03207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Picric acid (PA) is a powerful nitro-aromatic explosive that harms the environment and human health. Developing non-toxic and low-cost sensors for the rapid detection of PA is essential. An environment-friendly fluorescent probe for PA detection is designed based on carbon dots (CDs) directly separated from edible soy sauce by silica gel column chromatography. Neither organic reagents nor heating process was needed to prepare CDs. The obtained CDs exhibit bright blue fluorescence, good water solubility, and photostability. The fluorescent probe for PA was developed according to the CD's fluorescence can be significantly quenched via the inner filter effect between CDs and PA. The linear range was 0.2-24 µM with a limit of detection of 70 nM. This proposed method was successfully employed to detect PA in the real water samples with satisfactory recoveries between 98.0-104.0%. Moreover, the CDs were suitable for fluorescence imaging of HeLa cells owing to their low toxicity and good biocompatibility.
Collapse
Affiliation(s)
- Lingjuan Yang
- College of Chemical Engineering and Technology, Tianshui Normal University, 741001, Tianshui, Gansu, China
| | - Jie Ma
- College of Chemical Engineering and Technology, Tianshui Normal University, 741001, Tianshui, Gansu, China.
| | - Benqun Yang
- College of Chemical Engineering and Technology, Tianshui Normal University, 741001, Tianshui, Gansu, China
| |
Collapse
|
5
|
Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1713-1730. [PMID: 37542516 DOI: 10.1080/17425247.2023.2245332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION A major challenge in treating central nervous system (CNS) disorders is to achieve adequate drug delivery across the blood-brain barrier (BBB). Receptor-mediated nanodrug delivery as a Trojan horse strategy has become an exciting approach. However, these nanodrugs do not accumulate significantly in the brain parenchyma, which greatly limits the therapeutic effect of drugs. Amplifying the efficiency of receptor-mediated nanodrug delivery across the BBB becomes the holy grail in the treatment of CNS disorders. AREAS COVERED In this review, we tend to establish links between dynamic BBB and receptor-mediated nanodrug delivery, starting with the delivery processes across the BBB, describing factors affecting nanodrug delivery efficiency, and summarizing potential strategies that may amplify delivery efficiency. EXPERT OPINION Receptor-mediated nanodrug delivery is a common approach to significantly enhance the efficiency of brain-targeting delivery. As BBB is constantly undergoing changes, it is essential to investigate the impact of diseases on the effectiveness of brain-targeting nanodrug delivery. More critically, there are several barriers to achieving brain-targeting nanodrug delivery in the five stages of receptor-mediated transcytosis (RMT), and the impacts can be conflicting, requiring intricate balance. Further studies are also needed to investigate the material toxicity of nanodrugs to address the issue of clinical translation.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
6
|
Guan X, Li Z, Geng X, Lei Z, Karakoti A, Wu T, Kumar P, Yi J, Vinu A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207181. [PMID: 36693792 DOI: 10.1002/smll.202207181] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Fang H, Wu Y, Chen L, Cao Z, Deng Z, Zhao R, Zhang L, Yang Y, Liu Z, Chen Q. Regulating the Obesity-Related Tumor Microenvironment to Improve Cancer Immunotherapy. ACS NANO 2023; 17:4748-4763. [PMID: 36809912 DOI: 10.1021/acsnano.2c11159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Obesity usually induces systemic metabolic disturbances, including in the tumor microenvironment (TME). This is because adaptive metabolism related to obesity in the TME with a low level of prolyl hydroxylase-3 (PHD3) depletes the major fatty acid fuels of CD8+ T cells and leads to the poor infiltration and unsatisfactory function of CD8+ T cells. Herein, we discovered that obesity could aggravate the immunosuppressive TME and weaken CD8+ T cell-mediated tumor cell killing. We have thus developed gene therapy to relieve the obesity-related TME to promote cancer immunotherapy. An efficient gene carrier was prepared by modifying polyethylenimine with p-methylbenzenesulfonyl (abbreviated as PEI-Tos) together with hyaluronic acid (HA) shielding, achieving excellent gene transfection in tumors after intravenous administration. HA/PEI-Tos/pDNA (HPD) containing the plasmid encoding PHD3 (pPHD3) can effectively upregulate the expression of PHD3 in tumor tissues, revising the immunosuppressive TME and significantly increasing the infiltration of CD8+ T cells, thereby improving the responsiveness of immune checkpoint antibody-mediated immunotherapy. Efficient therapeutic efficacy was achieved using HPD together with αPD-1 in colorectal tumor and melanoma-bearing obese mice. This work provides an effective strategy to improve immunotherapy of tumors in obese mice, which may provide a useful reference for the immunotherapy of obesity-related cancer in the clinic.
Collapse
Affiliation(s)
- Huapan Fang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yicheng Wu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhiqin Cao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zheng Deng
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Rui Zhao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Zhang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Emam HE, El-Shahat M, Allayeh AK, Ahmed HB. Functionalized starch for formulation of graphitic carbon nanodots as viricidal/anticancer laborers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Yadav N, Gaikwad RP, Mishra V, Gawande MB. Synthesis and Photocatalytic Applications of Functionalized Carbon Quantum Dots. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Rahul P. Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| |
Collapse
|
10
|
Zhai LM, Zhao Y, Xiao RL, Zhang SQ, Tian BH, Li XX, Zhang R, Ma RS, Liang HX. Nuclear-targeted carbon quantum dot mediated CRISPR/Cas9 delivery for fluorescence visualization and efficient editing. NANOSCALE 2022; 14:14645-14660. [PMID: 36165075 DOI: 10.1039/d2nr04281a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nuclear targeted delivery has great potential in improving the efficiency of non-viral carrier mediated genome editing. However, direct and efficient delivery of CRISPR/Cas9 plasmid into the nucleus remains a challenge. In this study, a nuclear targeted gene delivery platform based on fluorescent carbon quantum dots (CQDs) was developed. Polyethylenimine (PEI) and polyethylene glycol (PEG) synergistically passivated the surface of CQDs, providing an excitation-independent green-emitting fluorescent CQDs-PEI-PEG conjugate (CQDs-PP) with an ultra-small size and positive surface charge. Here we show that CQDs-PP could bind CRISPR/Cas9 plasmid to form a nano-complex by electrostatic attraction, which can bypass lysosomes and enter the nucleus by passive diffusion, and thereby improve the transfection efficiency. Also, CQDs-PP could deliver CRISPR/Cas9 plasmid into HeLa cells, resulting in the insertion/deletion mutation of the target EFHD1 gene. More importantly, CQDs-PP exhibited a considerably higher gene editing efficiency as well as comparable or lower cytotoxicity relative to Lipo2000 and PEI-passivated CQDs-PEI (CQDs-P). Thus, the nuclear-targeted CQDs-PP is expected to constitute an efficient CRISPR/Cas9 delivery carrier in vitro with imaging-trackable ability.
Collapse
Affiliation(s)
- Li-Min Zhai
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui-Lin Xiao
- School of Ecology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shi-Quan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Bao-Hua Tian
- School of Ecology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xin-Xin Li
- School of Ecology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rong Zhang
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Ri-Sheng Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Hai-Xia Liang
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
- School of Ecology, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
11
|
Ahmed HB, El-Shahat M, Allayeh AK, Emam HE. Maillard reaction for nucleation of polymer quantum dots from chitosan-glucose conjugate: Antagonistic for cancer and viral diseases. Int J Biol Macromol 2022; 224:858-870. [DOI: 10.1016/j.ijbiomac.2022.10.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
12
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
13
|
Delgado-Martín J, Delgado-Olidén A, Velasco L. Carbon Dots Boost dsRNA Delivery in Plants and Increase Local and Systemic siRNA Production. Int J Mol Sci 2022; 23:5338. [PMID: 35628147 PMCID: PMC9141514 DOI: 10.3390/ijms23105338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, we obtained carbon dots from glucose or saccharose as the nucleation source and passivated them with branched polyethylenimines for developing dsRNA nanocomposites. The CDs were fully characterized using hydrodynamic analyses, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The ζ potential determined that the CDs had positive charges, good electrophoretic mobility and conductivity, and were suitable for obtaining dsRNA nanocomposites. DsRNA naked or coated with the CDs were delivered to leaves of cucumber plants by spraying. Quantitation of the dsRNA that entered the leaves showed that when coated with the CDs, 50-fold more dsRNA was detected than when naked dsRNA. Moreover, specific siRNAs derived from the sprayed dsRNAs were 13 times more abundant when the dsRNA was coated with the CDs. Systemic dsRNAs were determined in distal leaves and showed a dramatic increase in concentration when delivered as a nanocomposite. Similarly, systemic siRNAs were significantly more abundant in distal leaves when spraying with the CD-dsRNA nanocomposite. Furthermore, FITC-labeled dsRNA was shown to accumulate in the apoplast and increase its entry into the plant when coated with CDs. These results indicate that CDs obtained by hydrothermal synthesis are suitable for dsRNA foliar delivery in RNAi plant applications.
Collapse
Affiliation(s)
- Josemaría Delgado-Martín
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA), Churriana, 290140 Malaga, Spain; (J.D.-M.); (A.D.-O.)
- Universidad de Málaga, 29010 Malaga, Spain
| | - Alejo Delgado-Olidén
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA), Churriana, 290140 Malaga, Spain; (J.D.-M.); (A.D.-O.)
| | - Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA), Churriana, 290140 Malaga, Spain; (J.D.-M.); (A.D.-O.)
| |
Collapse
|
14
|
Clustering of photoluminescent carbon quantum dots using biopolymers for biomedical applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Rawat P, Nain P, Sharma S, Sharma PK, Malik V, Majumder S, Verma VP, Rawat V, Rhyee JS. An Overview of Synthetic Methods and Applications of Photoluminescent Properties of Carbon Quantum Dots. LUMINESCENCE 2022. [PMID: 35419945 DOI: 10.1002/bio.4255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Carbon quantum dots (CQDs) are promising carbonaceous nanomaterials fortuitously discovered in 2004. CQDs are the rising stars in the nanotechnology ensemble because of their unique properties and widespread applications in sensing, imaging, medicine, catalysis, and optoelectronics. CQDs are notable for their excellent solubility and effective luminescence, and as a result, they are also known as carbon nanolights. Many strategies are used for the efficient and economical preparation of CQDs; however, CQDs prepared from waste or green sustainable methods have greater requirements due to their safety and ease of synthesis. Sustainable chemical strategies for CQDs have been developed, emphasizing green synthetic methodologies based on "top-down" and "bottom-up" approaches. This review summarizes many such studies relevant to the development of sustainable methods for photoluminescent CQDs. Furthermore, we have emphasized recent advances in CQDs' photoluminescent applications in chemical and biological fields. Finally, a brief overview of synthetic processes utilizing the green source and their associated applications are tabulated, providing a clear understanding of the new optoelectronic materials.
Collapse
Affiliation(s)
- Pooja Rawat
- Amity School of Applied Sciences, Amity University, Haryana, India.,Department of Applied Physics and Institute of Natural Sciences, Kyung Hyee University, Yong-in, Republic of Korea
| | - Parul Nain
- Amity School of Applied Sciences, Amity University, Haryana, India
| | - Shaveta Sharma
- Amity School of Applied Sciences, Amity University, Haryana, India
| | - Parshant Kumar Sharma
- Department of Biotechnology, S.D. College of Engineering & Technology, Muzaffarnagar, U.P, India
| | - Vidhu Malik
- Department of Chemistry, DCRUST Murthal, Sonipat
| | - Sudip Majumder
- Amity School of Applied Sciences, Amity University, Haryana, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali , Banasthali Newai University, Rajasthan, India
| | - Varun Rawat
- Amity School of Applied Sciences, Amity University, Haryana, India.,School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Jong Soo Rhyee
- Department of Applied Physics and Institute of Natural Sciences, Kyung Hyee University, Yong-in, Republic of Korea
| |
Collapse
|
16
|
Kim J, Yu AM, Kubelick KP, Emelianov SY. Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9. PHOTOACOUSTICS 2022; 25:100307. [PMID: 34703762 PMCID: PMC8521288 DOI: 10.1016/j.pacs.2021.100307] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 05/11/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays major roles in extracellular matrix (ECM) remodeling and membrane protein cleavage, suggesting a high correlation with cancer cell invasion and tumor metastasis. Here, we present a contrast agent based on a DNA aptamer that can selectively target human MMP-9 in the tumor microenvironment (TME) with high affinity and sensitivity. Surface modification of plasmonic gold nanospheres with the MMP-9 aptamer and its complementary sequences allows the nanospheres to aggregate in the presence of human MMP-9 through DNA displacement and hybridization. Aggregation of gold nanospheres enhances the optical absorption in the first near-infrared window (NIR-I) due to the plasmon coupling effect, thereby allowing us to detect the aggregated gold nanospheres within the TME via ultrasound-guided photoacoustic (US/PA) imaging. Selective and sensitive detection of human MMP-9 via US/PA imaging is demonstrated in solution of nanosensors with the pre-treatment of human MMP-9, in vitro in cell culture, and in vivo in a xenograft murine model of human breast cancer.
Collapse
Affiliation(s)
- Jinhwan Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony M. Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Kelsey P. Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence to: School of Electrical & Computer Engineering, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|
17
|
Highly Effective Crosslinker for Redox-Sensitive Gene Carriers. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/5635981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polyethyleneimine (PEI) has been extensively used as a common gene carrier due to its high gene transfection efficiency. PEI1.8k shows significantly lower cytotoxicity than its high molecular weight counterparts. However, it also has the problem of low gene transfection efficiency. To address the dilemma, a highly effective crosslinker (DTME) was synthesized to react with PEI1.8k to obtain CS-PEI1.8k. The reaction showed several advantages, such as a fast process in room temperature within nine hours with the product which can directly complex with DNA after removing the solvent. The ability of CS-PEI1.8k to agglomerate with DNA was proven by particle size, zeta potential, and gel retardation assays. The cytotoxic in vitro transfection ability and cell internalization capacity of CS-PEI1.8k were tested to verify the transfection capacity of CS-PEI1.8k. Moreover, we also studied the mechanism of the relatively high level of gene transfection by this binary complex compared with PEI25k.
Collapse
|
18
|
Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. Nat Commun 2021; 12:6742. [PMID: 34795289 PMCID: PMC8602287 DOI: 10.1038/s41467-021-27078-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy has become a powerful cancer treatment, but only a small fraction of patients have achieved durable benefits due to the immune escape mechanism. In this study, epigenetic regulation is combined with gene therapy-mediated immune checkpoint blockade to relieve this immune escape mechanism. PPD (i.e., mPEG-b-PLG/PEI-RT3/DNA) is developed to mediate plasmid-encoding shPD-L1 delivery by introducing multiple interactions (i.e., electrostatic, hydrogen bonding, and hydrophobic interactions) and polyproline II (PPII)-helix conformation, which downregulates PD-L1 expression on tumour cells to relieve the immunosuppression of T cells. Zebularine (abbreviated as Zeb), a DNA methyltransferase inhibitor (DNMTi), is used for the epigenetic regulation of the tumour immune microenvironment, thus inducing DC maturation and MHC I molecule expression to enhance antigen presentation. PPD plus Zeb combination therapy initiates a systemic anti-tumour immune response and effectively prevents tumour relapse and metastasis by generating durable immune memory. This strategy provides a scheme for tumour treatment and the inhibition of relapse and metastasis.
Collapse
|
19
|
Bayda S, Amadio E, Cailotto S, Frión-Herrera Y, Perosa A, Rizzolio F. Carbon dots for cancer nanomedicine: a bright future. NANOSCALE ADVANCES 2021; 3:5183-5221. [PMID: 36132627 PMCID: PMC9419712 DOI: 10.1039/d1na00036e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
Cancer remains one of the main causes of death in the world. Early diagnosis and effective cancer therapies are required to treat this pathology. Traditional therapeutic approaches are limited by lack of specificity and systemic toxicity. In this scenario, nanomaterials could overcome many limitations of conventional approaches by reducing side effects, increasing tumor accumulation and improving the efficacy of drugs. In the past few decades, carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and carbon dots) have attracted significant attention of researchers in various scientific fields including biomedicine due to their unique physical/chemical properties and biological compatibility and are among the most promising materials that have already changed and will keep changing human life. Recently, because of their functionalization and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic cancer drugs. In this review, we present an overview of the development of carbon dot nanomaterials in the nanomedicine field by focusing on their synthesis, and structural and optical properties as well as their imaging, therapy and cargo delivery applications.
Collapse
Affiliation(s)
- Samer Bayda
- Faculty of Sciences, Jinan University Tripoli Lebanon
| | - Emanuele Amadio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Simone Cailotto
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Yahima Frión-Herrera
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute 33081 Aviano Italy
| |
Collapse
|
20
|
Zhang X, Hong K, Sun Q, Zhu Y, Du J. Bioreducible, arginine-rich polydisulfide-based siRNA nanocomplexes with excellent tumor penetration for efficient gene silencing. Biomater Sci 2021; 9:5275-5292. [PMID: 34180478 DOI: 10.1039/d1bm00643f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) technology has great potential in cancer therapy, e.g., small interfering RNA (siRNA) can be exploited to silence specific oncogenes related to tumor growth and progression. However, it is critical to achieve high transfection efficiency while reducing cytotoxicity. In this paper, we report an siRNA delivery strategy targeting the oncogene KRAS based on arginine-modified poly(disulfide amine)/siRNA nanocomplexes. The poly(disulfide amine) is synthesized via aza-Michael polyaddition followed by the introduction of arginine groups onto its backbone to afford poly((N,N'-bis(acryloyl)cystamine-co-ethylenediamine)-g-Nω-p-tosyl-l-arginine) (PBR) polycations. Thus multiple interactions including electrostatic interaction, hydrogen bonding and a hydrophobic effect are introduced simultaneously between PBR and siRNA or cell membranes to improve transfection efficiency. By optimizing the grafting density of arginine groups, PBR/siRNA nanocomplexes achieve high cellular uptake efficiency, successful endosomal/lysosomal escape, and rapid biodegradation in the presence of high GSH concentration in the cytoplasm, and finally release siRNA to activate the RNAi mechanism. Additionally, compared to commercially available PEI 25K, PBR/siRNA nanocomplexes possess a significantly increased gene silencing effect on human pancreatic cancer cells (PANC-1) with decreased cytotoxicity and enhanced tumor penetration ability in PANC-1 multicellular spheroids in vitro. Overall, with both GSH-responsiveness and excellent tumor penetration, this safe and efficient poly(disulfide amine)-based siRNA delivery system is expected to provide a new strategy for gene therapy of pancreatic cancer and other stromal-rich tumors.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Kai Hong
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Qingmei Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yunqing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China. and Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
21
|
Havrdová M, Urbančič I, Bartoň Tománková K, Malina L, Štrancar J, Bourlinos AB. Self-Targeting of Carbon Dots into the Cell Nucleus: Diverse Mechanisms of Toxicity in NIH/3T3 and L929 Cells. Int J Mol Sci 2021; 22:ijms22115608. [PMID: 34070594 PMCID: PMC8198156 DOI: 10.3390/ijms22115608] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.
Collapse
Affiliation(s)
- Markéta Havrdová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-58-563-4384
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia; (I.U.); (J.Š.)
| | - Kateřina Bartoň Tománková
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translation Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic; (K.B.T.); (L.M.)
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translation Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic; (K.B.T.); (L.M.)
| | - Janez Štrancar
- Laboratory of Biophysics, Condensed Matter Physics Department, “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia; (I.U.); (J.Š.)
| | | |
Collapse
|
22
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
23
|
Yang D, Li L, Cao L, Zhang Y, Ge M, Yan R, Dong WF. Superior reducing carbon dots from proanthocyanidin for free-radical scavenging and for cell imaging. Analyst 2021; 146:2330-2338. [PMID: 33624640 DOI: 10.1039/d0an02479a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of excessive ROS can cause much harm to the human body and can even cause diseases. Therefore, it is important to detect and remove ROS, but there is no ideal method available for this at present. In this research, using procyanidins, a type of plant extract with strong reducibility, as raw materials, fluorescent carbon dots (CDs) were prepared by a hydrothermal method. The proanthocyanidin-based carbon dots (PCDs) emit a light-green colored light under UV irradiation. The PCDs retain the strong reducibility of procyanidins and are highly water-soluble compared with procyanidins. The PCDs, in addition to having good biocompatibility, also have the superior properties of radical scavenging activity and cell imaging. In in vitro experiments, 1,1-diphenyl-2-picrylhydrazyl (DPPH; 100 μM) was reduced by 30% when PCDs were added up to a concentration of 87.5 μg mL-1. At the same time, the fluorescence quenching correlates with the concentration of hypochlorite and hydrogen peroxide and has a good linearity in the range of 250-2250 nM and 60-180 μM with a detection limit of 3.676 nM and 0.602 μM, respectively. Based on the previously described advantages, PCDs have potential as a biomedicine.
Collapse
Affiliation(s)
- Dian Yang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui K, Xu X, Wang F, Zhang L. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int J Biol Sci 2021; 17:1361-1381. [PMID: 33867852 PMCID: PMC8040477 DOI: 10.7150/ijbs.58773] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death, which accounts for approximately 10% of all new cancer cases worldwide. Surgery is the main method for treatment of early-stage CRC. However, it is not effective for most metastatic tumors, and new treatment and diagnosis strategies need to be developed. Photosensitizers (PSs) play an important role in the treatment of CRC. Phototherapy also has a broad prospect in the treatment of CRC because of its low invasiveness and low toxicity. However, most PSs are associated with limitations including poor solubility, poor selectivity and high toxicity. The application of nanomaterials in PSs has added many advantages, including increased solubility, bioavailability, targeting, stability and low toxicity. In this review, based on phototherapy, we discuss the characteristics and development progress of PSs, the targeting of PSs at organ, cell and molecular levels, and the current methods of optimizing PSs, especially the application of nanoparticles as carriers in CRC. We introduce the photosensitizer (PS) targeting process in photodynamic therapy (PDT), the damage mechanism of PDT, and the application of classic PS in CRC. The action process and damage mechanism of photothermal therapy (PTT) and the types of ablation agents. In addition, we present the imaging examination and the application of PDT / PTT in tumor, including (fluorescence imaging, photoacoustic imaging, nuclear magnetic resonance imaging, nuclear imaging) to provide the basis for the early diagnosis of CRC. Notably, single phototherapy has several limitations in vivo, especially for deep tumors. Here, we discuss the advantages of the combination therapy of PDT and PTT compared with the single therapy. At the same time, this review summarizes the clinical application of PS in CRC. Although a variety of nanomaterials are in the research and development stage, few of them are actually on the market, they will show great advantages in the treatment of CRC in the near future.
Collapse
Affiliation(s)
- Jiaxin Yan
- Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,School of Pharmacy, Henan University, Kaifeng Kaifeng 475004, China
| | - Chunli Wang
- Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Kunli Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Xu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Feng Wang
- Guangming Substation of Shenzhen Ecological Environment Monitoring Station, Shenzhen 518107, P. R. China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
25
|
Recent Developments in Carbon Quantum Dots: Properties, Fabrication Techniques, and Bio-Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9020388] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carbon dots have gained tremendous interest attributable to their unique features. Two approaches are involved in the fabrication of quantum dots (Top-down and Bottom-up). Most of the synthesis methods are usually multistep, required harsh conditions, and costly carbon sources that may have a toxic effect, therefore green synthesis is more preferable. Herein, the current review presents the green synthesis of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) that having a wide range of potential applications in bio-sensing, cellular imaging, and drug delivery. However, some drawbacks and limitations are still unclear. Other biomedical and biotechnological applications are also highlighted.
Collapse
|
26
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Cohen EN, Kondiah PPD, Choonara YE, du Toit LC, Pillay V. Carbon Dots as Nanotherapeutics for Biomedical Application. Curr Pharm Des 2020; 26:2207-2221. [PMID: 32238132 DOI: 10.2174/1381612826666200402102308] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 02/01/2023]
Abstract
Carbon nanodots are zero-dimensional spherical allotropes of carbon and are less than 10nm in size (ranging from 2-8nm). Based on their biocompatibility, remarkable water solubility, eco- friendliness, conductivity, desirable optical properties and low toxicity, carbon dots have revolutionized the biomedical field. In addition, they have intrinsic photo-luminesce to facilitate bio-imaging, bio-sensing and theranostics. Carbon dots are also ideal for targeted drug delivery. Through functionalization of their surfaces for attachment of receptor-specific ligands, they ultimately result in improved drug efficacy and a decrease in side-effects. This feature may be ideal for effective chemo-, gene- and antibiotic-therapy. Carbon dots also comply with green chemistry principles with regard to their safe, rapid and eco-friendly synthesis. Carbon dots thus, have significantly enhanced drug delivery and exhibit much promise for future biomedical applications. The purpose of this review is to elucidate the various applications of carbon dots in biomedical fields. In doing so, this review highlights the synthesis, surface functionalization and applicability of biodegradable polymers for the synthesis of carbon dots. It further highlights a myriad of biodegradable, biocompatible and cost-effective polymers that can be utilized for the fabrication of carbon dots. The limitations of these polymers are illustrated as well. Additionally, this review discusses the application of carbon dots in theranostics, chemo-sensing and targeted drug delivery systems. This review also serves to discuss the various properties of carbon dots which allow chemotherapy and gene therapy to be safer and more target-specific, resulting in the reduction of side effects experienced by patients and also the overall increase in patient compliance and quality of life.
Collapse
Affiliation(s)
- Eemaan N Cohen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
28
|
Kong H, Zhao Y, Zhu Y, Xiong W, Luo J, Cheng J, Zhang Y, Zhang M, Qu H, Zhao Y. Carbon dots from Artemisiae Argyi Folium Carbonisata: strengthening the anti-frostbite ability. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 49:11-19. [PMID: 33331196 DOI: 10.1080/21691401.2020.1862134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, novel carbon dots (CDs) were discovered and separated from Artemisiae Argyi Folium Carbonisata (AAFC) aqueous extract. AAFC-CDs were characterised by a series of methods, mainly including electron microscopy, optical technology and X-ray photoelectron spectroscopy (XPS). Results displayed that AAFC-CDs with a quantum yield (QY) around 0.19% had a size distribution between 6.0 and 10.0 nm and possessed a nearly spherical shape, with a lattice spacing of 0.369 nm. In mice, AAFC-CDs reduced the tissue damage, ear frostbite, and body stiffness caused by cold, and provided energy by increasing the use of blood glucose. The mechanism may be by decreasing concentration of IL-1βk, TNF-α and reducing the rise in blood glucose levels caused by frostbite. This study is the first to indicate that CDs may be the active constituent of AAFC against frostbite, suggesting their potential for clinical applications.
Collapse
Affiliation(s)
- Hui Kong
- Beijing Key Laboratory, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yusheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yafan Zhu
- Beijing Key Laboratory, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Xiong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Luo
- Beijing Key Laboratory, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinjun Cheng
- Beijing Key Laboratory, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Key Laboratory, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- Beijing Key Laboratory, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Zhang H, Men K, Pan C, Gao Y, Li J, Lei S, Zhu G, Li R, Wei Y, Duan X. Treatment of Colon Cancer by Degradable rrPPC Nano-Conjugates Delivered STAT3 siRNA. Int J Nanomedicine 2020; 15:9875-9890. [PMID: 33324056 PMCID: PMC7732178 DOI: 10.2147/ijn.s277845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023] Open
Abstract
Background Drugs that work based on the mechanism of RNA interference have shown strong potential in cancer gene therapy. Although significant progress has been made in small interfering RNA (siRNA) design and manufacturing, ideal delivery system remains a limitation for the development of siRNA-based drugs. Particularly, it is necessary to focus on parameters including delivery efficiency, stability, and safety when developing siRNA formulations for cancer therapy. Methods In this work, a novel degradable siRNA delivery system cRGD-R9-PEG-PEI-Cholesterol (rrPPC) was synthesized based on low molecular weight polyethyleneimine (PEI). Functional groups including cholesterol, cell penetrating peptides (CPPs), and poly(ethylene oxide) were introduced to PEI backbone to attain enhanced transfection efficiency and biocompatibility. Results The synthesized rrPPC was dispersed as nanoparticles in water with an average size of 195 nm and 41.9 mV in potential. rrPPC nanoparticles could efficiently deliver siRNA into C26 clone cancer cells and trigger caveolae-mediated pathway during transmembrane transportation. By loading the signal transducer and activator of transcription 3 (STAT3) targeting siRNA, rrPPC/STAT3 siRNA (rrPPC/siSTAT3) complex demonstrated strong anti-cancer effects in multiple colon cancer models following local delivery. In addition, intravenous (IV) injection of rrPPC/siSTAT3 complex efficiently suppressed lung metastasis tumor progression with ideal in vivo safety. Conclusion Our results provide evidence that rrPPC nanoparticles constitute a potential candidate vector for siRNA-based colon cancer gene therapy.
Collapse
Affiliation(s)
- Hongjia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Congbin Pan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Guonian Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Rui Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| |
Collapse
|
30
|
Cao Y, Wu C, Liu Y, Hu L, Shang W, Gao Z, Xia N. Folate functionalized pH-sensitive photothermal therapy traceable hollow mesoporous silica nanoparticles as a targeted drug carrier to improve the antitumor effect of doxorubicin in the hepatoma cell line SMMC-7721. Drug Deliv 2020; 27:258-268. [PMID: 32009475 PMCID: PMC7034047 DOI: 10.1080/10717544.2020.1718801] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this paper, we prepared doxorubicin-loaded folic acid-functionalized pH-sensitive
photothermal therapy (PTT) traceable hollow mesoporous silica nanoparticles (DOX-HPCF) as
a drug carrier for liver cancer treatment. According to TEM characterization, hollow
mesoporous silica nanoparticles (HMSN) are monodispersed spherical particles with hollow
structure. In vitro drug release experiments showed that HPCF exhibited
pH-sensitive release. Cell uptake experiments showed that HPCF was successfully absorbed
by SMMC-7721 cells. In addition, DOX-HPCF significantly inhibited the proliferation of
SMMC-7721 cells, and the near-infrared (NIR) light group showed a more obvious inhibitory
effect. In vivo anti-tumor experiments showed that DOX-HPCF-assisted PTT
inhibited tumor growth significantly. Therefore, HPCF is a promising photothermotherapy
carrier for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yue Cao
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Hu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wenjing Shang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhanshan Gao
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Nan Xia
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
31
|
Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huang Wen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Konstantin Tamarov
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Emilia Happonen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Vesa‐Pekka Lehto
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Wujun Xu
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|
32
|
Zhao Y, Zhang Y, Kong H, Zhang M, Cheng J, Wu J, Qu H, Zhao Y. Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatoprotective Effect. Int J Nanomedicine 2020; 15:9049-9059. [PMID: 33235451 PMCID: PMC7680119 DOI: 10.2147/ijn.s281976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The charcoal processed product of Paeoniae Radix Alba (PRA), PRA Carbonisata (PRAC), has long been used for its hepatoprotective effects. However, the material basis and mechanism of action of PRAC remain unclear. AIM To explore the hepatoprotective effects of Paeoniae Radix Alba Carbonisata-derived carbon dots (PRAC-CDs). METHODS PRAC-CDs were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, ultraviolet, fluorescence, Fourier transform infrared and X-ray photoelectron spectroscopy, X-ray diffraction, and high-performance liquid chromatography. The hepatoprotective effect of PRAC-CDs was evaluated and confirmed using the classic carbon tetrachloride acute liver injury model. RESULTS PRAC-CDs averaged 1.0-2.4 nm in size and exhibited a quantum yield of 5.34% at a maximum excitation wavelength of 320 nm and emission at 411 nm. PRAC-CDs can reduce the ALT and AST levels of mice with carbon tetrachloride-induced acute liver injury and have a mitigating effect on the rise in TBA and TBIL. More interestingly, PRAC-CDs can significantly reduce MDA and increase SOD levels, demonstrating that PRAC-CDs can improve the body's ability to scavenge oxygen free radicals and inhibit free radical-induced liver cell lipid peroxidation, thereby preventing liver cell damage. CONCLUSION These results demonstrate the remarkable hepatoprotective effects of PRAC-CDs against carbon tetrachloride-induced acute liver injury, which provide new insights into potential biomedical and healthcare applications of CDs.
Collapse
Affiliation(s)
- Yusheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Jiashu Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| |
Collapse
|
33
|
Mucha SG, Firlej L, Bantignies JL, Żak A, Samoć M, Matczyszyn K. Acetone-derived luminescent polymer dots: a facile and low-cost synthesis leads to remarkable photophysical properties. RSC Adv 2020; 10:38437-38445. [PMID: 35517521 PMCID: PMC9057305 DOI: 10.1039/d0ra05957a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/10/2020] [Indexed: 01/07/2023] Open
Abstract
Carbon-based dots have been attracting much attention as potentially superior alternatives to more conventional semiconductor nanoparticles, due to their fascinating optical properties, chemical and photochemical stability, unique environmental-friendliness, and the versatility of fabrication routes. Many commercial materials and organic compounds have been considered so far as carbon precursors but in many cases the fabrication required high-temperature conditions or led to inhomogeneous final products. Here we report on a simple low-cost synthesis of non-conjugated carbon-rich polymer dots (PDs) that uses acetone as carbon precursor. Both hydrophilic and hydrophobic fractions of PDs were obtained, with the respective average diameters of 2–4 nm and ca. 6 nm. The as-obtained PDs reveal greenish-blue photoluminescence (PL) and high quantum yields (∼5–7%) and complex kinetics of the decays with the average lifetime of ∼3.5 ns. Such luminescent acetone-derived PDs may find application in several fields, including sensing and bioimaging. Acetone-derived polymer dots (PDs) have been fabricated, according to a base-mediated synthesis route at room temperature. As-obtained hydrophobic and hydrophilic PDs revealed a strong greenish-blue emission due to the crosslink-enhanced effect.![]()
Collapse
Affiliation(s)
- Sebastian G Mucha
- Laboratoire Charles Coulomb, University of Montpellier, CNRS Montpellier 34095 France
| | - Lucyna Firlej
- Laboratoire Charles Coulomb, University of Montpellier, CNRS Montpellier 34095 France
| | - Jean-Louis Bantignies
- Laboratoire Charles Coulomb, University of Montpellier, CNRS Montpellier 34095 France
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wrocław University of Science and Technology Wyb. Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology Wyb. Wyspiańskiego 27 50-370 Wrocław Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology Wyb. Wyspiańskiego 27 50-370 Wrocław Poland
| |
Collapse
|
34
|
Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. NANOTECHNOLOGY 2020; 31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An increasing amount of evidence has demonstrated the diverse functionalities of nanomaterials in oncotherapies such as drug delivery, imaging, and killing cancer cells. This review aims to offer an authoritative guide for the development of nanomaterial-based oncotherapies and shed light on emerging yet understudied hallmarks of cancer where nanoparticles can help improve cancer control. With this aim, three nanomaterials, i.e. those based on gold, graphene, and liposome, were selected to represent and encompass metal inorganic, nonmetal inorganic, and organic nanomaterials, and four oncotherapies, i.e. phototherapies, immunotherapies, cancer stem cell therapies, and metabolic therapies, were characterized based on the differential hallmarks of cancer that they target. We also view physical plasma as a cocktail of reactive species and carrier of nanomaterials and focus on its roles in targeting the hallmarks of cancer provided with its unique traits and ability to selectively induce epigenetic and genetic modulations in cancer cells that halt tumor initiation and progression. This review provides a clear understanding of how the physico-chemical features of particles at the nanoscale contribute alone or create synergistic effects with current treatment modalities in combating each of the hallmarks of cancer that ultimately leads to desired therapeutic outcomes and shapes the toolbox for cancer control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Ji Z, Yin Z, Jia Z, Wei J. Carbon Nanodots Derived from Urea and Citric Acid in Living Cells: Cellular Uptake and Antioxidation Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8632-8640. [PMID: 32610019 DOI: 10.1021/acs.langmuir.0c01598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanodots (CNDs), reported as polyatomic carbon domains surrounded by amorphous carbon frames, have drawn extensive attention due to their easy-to-synthesis, outstanding electronic properties, and superior biocompatibility. However, substantial assessments regarding their biological performance are still needed, considering the complex nature of this type of relatively new nanoparticles. In this report, CNDs derived from urea and citric acid (U-CNDs) are investigated in the treatment of two cell lines, EA.hy926 and A549 cells, to examine the biocompatibility, cellular uptake, and antioxidation effect. The intracellular uptake study suggests an energy-dependent transport process into the cells mainly involving macropinocytosis and lipid raft-mediated endocytosis pathways. Moreover, the U-CNDs mostly target the mitochondria and present strong antioxidative effects by scavenging reactive oxygen species (ROS) in cells. Overall the findings in this report manifest that the U-CNDs could serve as a bioimaging reagent and antioxidant causing little deleteriousness in the respects of viability, plasma membrane integrity, and mitochondrial activity in both cell lines, and demonstrate some efficacy for inhibiting the metabolic activities of A549 cancer cells at higher concentration.
Collapse
Affiliation(s)
- Zuowei Ji
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
36
|
Wu Y, van der Mei HC, Busscher HJ, Ren Y. Enhanced bacterial killing by vancomycin in staphylococcal biofilms disrupted by novel, DMMA-modified carbon dots depends on EPS production. Colloids Surf B Biointerfaces 2020; 193:111114. [PMID: 32464355 DOI: 10.1016/j.colsurfb.2020.111114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Alternatives for less and less effective antibiotic treatment of bacterial infections, are amongst others based on nanotechnological innovations, like carbon-dots. However, with a focus on chemistry, important characteristics of bacterial strains, like (in-)ability to produce extracellular-polymeric-substances (EPS) are often neglected. EPS is the glue that certain bacterial strains produce to keep a biofilm together. Here we report on synthesis of novel, pH-responsive, 2,3-dimethylmaleic-anhydride modified carbon-dots (CDMMA-dots). CDMMA-dots, like unmodified C-dots without DMMA, were little bactericidal. However, CDMMA-dots reduced volumetric-bacterial-density within the acidic-environment of a biofilm for a non-EPS-producing Staphylococcus epidermidis strain, indicative for a more open structure. Such a structural disruption was not observed for an EPS-producing strain. Disrupted biofilms of the non-EPS-producing strain pre-exposed to CDMMA-dots at pH 5.0, were more amenable to vancomycin penetration and killing of their inhabitants than biofilms of EPS-producing-staphylococci. Herewith, we describe a new role of carbon-dots as synthetic disruptants of biofilm structure. It is a partial success story, identifying the challenge of making carbon-dots that act as a universal disruptant for biofilms of strains with different microbiological characteristics, most notably the ability to produce or not-produce EPS. Such carbon-dots, will enable more effective clinical treatment of bacterial infections combined with current antibiotics.
Collapse
Affiliation(s)
- Yanyan Wu
- University of Groningen and University Medical Center of Groningen Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
37
|
Pu ZF, Wen QL, Yang YJ, Cui XM, Ling J, Liu P, Cao QE. Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117944. [PMID: 31855815 DOI: 10.1016/j.saa.2019.117944] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
A facile, economical and one-step hydrothermal method was used to synthesize fluorescent carbon dots by utilizing citric acid as carbon source and phenylalanine to provide nitrogen. The as-prepared fluorescence carbon dots had strong blue light emission around 440 nm. As confirmed by UVvis absorption, X-ray photoelectron spectroscopic, Fourier transform infrared spectroscopy and transmission electron microscope characterization, the carbon dots were small and very stable in water for using as a fluorescent probe. It was also found that the fluorescence of the carbon dots could be quenched in the presence of Fe3+ ions, and the quenching rate was linear with the concentration of Fe3+ ions. We here proposed a static quenching mechanism about the fluorescence of the Phe-CDs could be selectively quenched by Fe3+ ions, which was because these Fe3+ ions could easily combine with the hydroxyl or carboxyl groups on the surface of Phe-CDs and induced aggregation. In addition, the pH had little effect on the fluorescence intensity of the Phe-CDs and maintained excellent fluorescence intensity even under extreme pH value conditions and could be used for the detection of Fe3+ ions. We have demonstrated that the method using the carbon dots for Fe3+ ions detection was rapid, reliable, and selective with a detection limit as low as 0.720 μM and a dynamic range from 5.0 to 500.0 μM. Moreover, the results of determination Fe3+ ions in tap water samples indicated that the presented method has potential for practical application in environmental metal analysis.
Collapse
Affiliation(s)
- Zheng-Fen Pu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiu-Lin Wen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yan-Ju Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiao-Miao Cui
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jian Ling
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Peng Liu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiu-E Cao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
38
|
Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Arch Pharm Res 2020; 43:46-57. [PMID: 31993968 DOI: 10.1007/s12272-020-01206-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Over the past few decades, hyperthermia therapy (HTT) has become one of the most promising strategies to treat cancer. HTT has been applied with nanotechnology to overcome drawbacks such as non-selectivity and invasiveness and to maximize therapeutic efficacy. The high temperature of HTT induces protein denaturation that leads to apoptosis or necrosis. It can also enhance the effects of other cancer therapies because heat-damaged tissues reduce radioresistance and help accumulate anticancer drugs. Gold nanoparticles and superparamagnetic iron oxide with different energy sources are commonly used as hyperthermia agents. New types of nanoparticles such as those whose surface is coated with several polymers and those modified with targeting moieties have been studied as novel HTT agents. In this review, we introduce principles and applications of nanotechnology-based HTT using gold nanoparticles and superparamagnetic iron oxide.
Collapse
|
39
|
Mao W, Kim SR, Yoo HS. Surface-decorated nanoparticles clicked into nanoparticle clusters for oligonucleotide encapsulation. RSC Adv 2020; 10:37040-37049. [PMID: 35521231 PMCID: PMC9057053 DOI: 10.1039/d0ra06622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/24/2020] [Indexed: 12/04/2022] Open
Abstract
Gold nanoparticles (AuNPs) are the predominant and representative metal nano-carriers used for the tumor-targeted delivery of therapeutics because they possess advantages such as biocompatibility, high drug loading efficiency, and enhanced accumulation at tumor sites via the size-dependent enhanced permeability and retention (EPR) effect. In this study, we designed an AuNP functionalized with block polymers comprising polyethylenimine and azide group-functionalized poly(ethyl glycol) for the electrostatic incorporation of cytosine–guanine oligonucleotide (CpG ODN) on the surface. The ODN-incorporated AuNPs were cross-linked to gold nanoparticle clusters (AuNCs) via click chemistry using a matrix metalloproteinase (MMP)-2 cleavable peptide linker modified with alkyne groups at both ends. In the presence of Cu(i), azide groups and alkyne groups spontaneously cyclize to form a triazole ring with high fidelity and efficiency, and therefore allow single AuNPs to stack to larger AuNCs for increased EPR effect-mediated tumor targeting. 1H-NMR and Fourier transform infrared spectroscopy revealed the successful synthesis of an azide–PEG-grafted branched polyethylenimine, and the size and morphology of AuNPs fabricated by the synthesized polymer were confirmed to be 4.02 ± 0.45 nm by field emission-transmission electron microscopy. Raman spectroscopy characterization demonstrated the introduction of azide groups on the surface of the synthesized AuNPs. Zeta-potential and gel-retardation analysis of CpG-loaded AuNPs indicated complete CpG sequestration by AuNPs when the CpG : AuNP weight ratio was higher than 1 : 2.5. The clustering process of the CpG-loaded AuNPs was monitored and was demonstrated to be dependent on the alkyne linker-to-AuNP ratio. Thus, the clicked AuNC can be tailored as a gene carrier where a high accumulation of therapeutics is required. AuNPs with bPEI and azide modification are loaded with CpG and self-assembled to AuNCs by click chemistry using an alkyne-terminated MMP-2 cleavable peptide as a linker. The clusters are dissembled by MMP-2 to release CpG in a stimuli-responsive manner.![]()
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Song Rae Kim
- Chuncheon Center
- Korea Basic Science Institute
- Chuncheon
- Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering
- Kangwon National University
- Chuncheon
- Republic of Korea
- Institute of Molecular Science and Fusion Technology
| |
Collapse
|
40
|
Han J, Na K. Transfection of the TRAIL gene into human mesenchymal stem cells using biocompatible polyethyleneimine carbon dots for cancer gene therapy. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Du J, Xu N, Fan J, Sun W, Peng X. Carbon Dots for In Vivo Bioimaging and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805087. [PMID: 30779301 DOI: 10.1002/smll.201805087] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/20/2019] [Indexed: 05/21/2023]
Abstract
Carbon dots (CDs), a kind of carbon material discovered accidentally, exhibit unexpected advantages in fluorescence imaging/sensing such as photostability, biocompatibility, and low toxicity. For emerging theranostics, an interdiscipline created by integrating therapy and diagnostics, CDs are good candidates when they are combined with targeted chemo/gene/photodynamic/photothermal therapeutic moieties. Here, the development of CDs in nanomedicine is reviewed from their use as original imaging agents and/or drug carriers to multifunctional theranostic systems. Finally, the challenges and prospects of the next-generation of CD-based theranostics for clinical applications are also discussed.
Collapse
Affiliation(s)
- Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
42
|
Zhu Z, Li Q, Li P, Xun X, Zheng L, Ning D, Su M. Surface charge controlled nucleoli selective staining with nanoscale carbon dots. PLoS One 2019; 14:e0216230. [PMID: 31150413 PMCID: PMC6544201 DOI: 10.1371/journal.pone.0216230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Organelle selective imaging can reveal structural and functional characters of cells undergoing external stimuli, and is considered critical in revealing biological fundamentals, designing targeted delivery system, and screening potential drugs and therapeutics. This paper describes the nucleoli targeting ability of nanoscale carbon dots (including nanodiamond) that are hydrothermally made with controlled surface charges. The surface charges of carbon dots are controlled in the range of -17.9 to -2.84 mV by changing the molar ratio of two precursors, citric acid (CA) and ethylenediamine (EDA). All carbon dots samples show strong fluorescence under wide excitation wavelength, and samples with both negative and positve charges show strong fluorescent contrast from stained nucleoli. The nucleoli selective imaging of live cell has been confirmed with Hoechst staining and nucleoli specific staining (SYTO RNA-select green), and is explained as surface charge heterogeneity on carbon dots. Carbon dots with both negative and positive charges have better ability to penetrate cell and nucleus membranes, and the charge heterogeneity helps carbon dots to bind preferentially to nucleoli, where the electrostatic environment is favored.
Collapse
Affiliation(s)
- Zhijun Zhu
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Qingxuan Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Ping Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- School of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, P. R. China
| | - Xiaojie Xun
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, and Chinese Academy of Science, Zhejiang, P. R. China
| | - Liyuan Zheng
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, and Chinese Academy of Science, Zhejiang, P. R. China
| | - Dandan Ning
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, and Chinese Academy of Science, Zhejiang, P. R. China
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, and Chinese Academy of Science, Zhejiang, P. R. China
| |
Collapse
|
43
|
Carbon dots stabilized silver–lipid nano hybrids for sensitive label free DNA detection. Biosens Bioelectron 2019; 133:48-54. [DOI: 10.1016/j.bios.2019.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022]
|
44
|
Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle MMB, Farooq MA, Mavlyanova R, Raza F, Bavi R, Wang B. Carbon dots: Applications in bioimaging and theranostics. Int J Pharm 2019; 564:308-317. [PMID: 31015004 DOI: 10.1016/j.ijpharm.2019.04.055] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/23/2023]
Abstract
Carbon dots are a carbonaceous nanomaterial that were discovered accidentally and are now drawing significant attention as a new quantum-sized fluorescent nanoparticle. Carbon dots are biocompatible, non-toxic, photostable, and easily functionalized with good photoluminescence and water solubility. Due to these unique properties, they are used broadly in live cell imaging, catalysis, electronics, biosensing, power, targeted drug delivery, and other biomedical applications. Here, we review the recent development of carbon dots in nanomedicine from their use in drug carriers to imaging agents to multifunctional theranostic systems. Finally, we discuss the challenges and views on next-generation carbon dot-based theranostics for clinical applications.
Collapse
Affiliation(s)
- Kofi Oti Boakye-Yiadom
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Samuel Kesse
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yaw Opoku-Damoah
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mensura Sied Filli
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mily Maviah Bazezy Joelle
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rukhshona Mavlyanova
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Faisal Raza
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
45
|
Chu KW, Lee SL, Chang CJ, Liu L. Recent Progress of Carbon Dot Precursors and Photocatalysis Applications. Polymers (Basel) 2019; 11:E689. [PMID: 30995724 PMCID: PMC6523528 DOI: 10.3390/polym11040689] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/16/2022] Open
Abstract
Carbon dots (CDs), a class of carbon-based sub-ten-nanometer nanoparticles, have attracted great attention since their discovery fifteen years ago. Because of the outstanding photoluminescence properties, photostability, low toxicity, and low cost, CDs have potential to replace traditional semiconductor quantum dots which have serious drawbacks of toxicity and high cost. This review covers the common top-down and bottom-up methods for the synthesis of CDs, different categories of CD precursors (small molecules, natural polymers, and synthetic polymers), one-pot and multi-step methods to produce CDs/photocatalyst composites, and recent advances of CDs on photocatalysis applications mostly in pollutant degradation and energy areas. A broad range of precursors forming fluorescent CDs are discussed, including small molecule sole or dual precursors, natural polymers such as pure polysaccharides and proteins and crude bio-resources from plants or animals, and various synthetic polymer precursors with positive, negative, neutral and hydrophilic, hydrophobic, or zwitterionic feature. Because of the wide light absorbance, excellent photoluminescence properties and electron transfer ability, CDs have emerged as a new type of photocatalyst. Recent work of CDs as sole photocatalyst or in combination with other materials (e.g., metal, metal sulfide, metal oxide, bismuth-based semiconductor, or other traditional photocatalysts) to form composite catalyst for various photocatalytic applications are reviewed. Possible future directions are proposed at the end of the article on mechanistic studies, production of CDs with better controlled properties, expansion of polymer precursor pool, and systematic studies of CDs for photocatalysis applications.
Collapse
Affiliation(s)
- Kuan-Wu Chu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, USA.
| | - Sher Ling Lee
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan.
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan.
| | - Lingyun Liu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
46
|
Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering Nanoparticles for Targeted Delivery of Nucleic Acid Therapeutics in Tumor. Mol Ther Methods Clin Dev 2019; 12:1-18. [PMID: 30364598 PMCID: PMC6197778 DOI: 10.1016/j.omtm.2018.09.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the past 10 years, with the increase of investment in clinical nano-gene therapy, there are many trials that have been discontinued due to poor efficacy and serious side effects. Therefore, it is particularly important to design a suitable gene delivery system. In this paper, we introduce the application of liposomes, polymers, and inorganics in gene delivery; also, different modifications with some stimuli-responsive systems can effectively improve the efficiency of gene delivery and reduce cytotoxicity and other side effects. Besides, the co-delivery of chemotherapy drugs with a drug tolerance-related gene or oncogene provides a better theoretical basis for clinical cancer gene therapy.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ying Qu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Bingyang Chu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
47
|
Devi P, Saini S, Kim KH. The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron 2019; 141:111158. [PMID: 31323605 DOI: 10.1016/j.bios.2019.02.059] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 02/23/2019] [Indexed: 12/22/2022]
Abstract
Carbon quantum dots (CQDs) have emerged as a potential material in the diverse fields of biomedical applications due to their numerous advantageous properties including fluorescence, water solubility, biocompatibility, low toxicity, small size and ease of modification, inexpensive scale-up production, and versatile conjugation with other nanoparticles. Thus, CQDs became a preferable choice in various biomedical applications such as nanocarriers for drugs, therapeutic genes, photosensitizers, and antibacterial molecules. Further, their potentials have also been verified in multifunctional diagnostic platforms, cellular and bacterial bio-imaging, development of theranostics nanomedicine, etc. This review provides a concise insight into the progress and evolution in the field of CQD research with respect to methods/materials available in bio-imaging, theranostics, cancer/gene therapy, diagnostics, etc. Further, our discussion is extended to explore the role of CQDs in nanomedicine which is considered to be the future of biomedicine. This study will thus help biomedical researchers in tapping the potential of CQDs to overcome various existing technological challenges.
Collapse
Affiliation(s)
- Pooja Devi
- Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India.
| | - Shefali Saini
- Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
48
|
Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi SM, Mandegary A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. J Adv Res 2019; 18:81-93. [PMID: 30828478 PMCID: PMC6383136 DOI: 10.1016/j.jare.2019.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, carbon dots (CDs) have attracted great attention due to their superior properties, such as biocompatibility, fluorescence, high quantum yield, and uniform distribution. These characteristics make CDs interesting for bioimaging, therapeutic delivery, optogenetics, and theranostics. Photoluminescence (PL) properties enable CDs to act as imaging-trackable gene nanocarriers, while cationic CDs with high transfection efficiency have been applied for plasmid DNA and siRNA delivery. In this review, we have highlighted the precursors, structure and properties of positively charged CDs to demonstrate the various applications of these materials for nucleic acid delivery. Additionally, the potential of CDs as trackable gene delivery systems has been discussed. Although there are several reports on cellular and animal approaches to investigating the potential clinical applications of these nanomaterials, further systematic multidisciplinary approaches are required to examine the pharmacokinetic and biodistribution patterns of CDs for potential clinical applications.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Dadashzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Moghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71345-1583, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosseinali Sassan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Seyed-Mojtaba Sohrevardi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Silences, Yazd, Iran
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
49
|
Mickaël C, Jiahui F, Mickaël R, Françoise P, Luc L. Influence of carbonization conditions on luminescence and gene delivery properties of nitrogen-doped carbon dots. RSC Adv 2019; 9:3493-3502. [PMID: 35518969 PMCID: PMC9060250 DOI: 10.1039/c8ra09651a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/07/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Carbon dots (CDs) have been intensively investigated due to their unique photoluminescence (PL) properties that are improved through surface passivation with nitrogen-containing groups. Recently, gene delivery applications emerged as passivation of CDs may yield positively charged nanoparticles that can interact with negatively charged nucleic acids. However previous work in the field focused on the use of high molecular weight polyamines for CD passivation, posing the problem of the separation of nanoparticles from residual polymer that is harmful to cells. In this work, cationic CDs were prepared by pyrolysis of citric acid/bPEI600 (1/4, w/w) so unreacted low molecular weight reagents could be conveniently eliminated by extensive dialysis. Various reaction conditions and activation modes were evaluated and eleven CDs that exhibited superior solubility in water were produced. All the nanoparticles were characterized with respect to their physical, optical and PL properties and their ability to deliver plasmid DNA to mammal cells was evaluated. Despite their similar physical properties, the CDs displayed marked differences in their gene delivery efficiency. CDs produced under microwave irradiation in a domestic oven were revealed to be superior to all the other nanoparticles produced in this study and compared to the gold standard transfection reagent bPEI25k, with an optimal CD/pDNA w/w ratio that was significantly down shifted, as was the associated cytotoxicity. Carbon dots prepared from citric acid and bPEI600 using various activation modes were evaluated as gene delivery reagents.![]()
Collapse
Affiliation(s)
- Claudel Mickaël
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| | - Fan Jiahui
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| | - Rapp Mickaël
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| | - Pons Françoise
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| | - Lebeau Luc
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| |
Collapse
|
50
|
Behboudi H, Mehdipour G, Safari N, Pourmadadi M, Saei A, Omidi M, Tayebi L, Rahmandoust M. Carbon Quantum Dots in Nanobiotechnology. ADVANCED STRUCTURED MATERIALS 2019. [DOI: 10.1007/978-3-030-10834-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|