1
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
2
|
Zhang H, Huang J, Alahdal M. Exosomes loaded with chondrogenic stimuli agents combined with 3D bioprinting hydrogel in the treatment of osteoarthritis and cartilage degeneration. Biomed Pharmacother 2023; 168:115715. [PMID: 37857246 DOI: 10.1016/j.biopha.2023.115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Osteoarthritis (OA) is a challenging joint inflammatory disease that often leads to disability. Immunoregulatory Exosomes (Exos) have shown promise in OA and cartilage degeneration treatment. Engineering Exos to deliver therapeutic agents like Kartogenin (KGN) has displayed potential for restoring cartilage regeneration. However, challenges include the uneven distribution of Exos at the injury site and the release of Exos cargo out of chondrocytes. Hydrogel-loaded uMSC-Exo has demonstrated significant therapeutic effects in wound healing and tissue regeneration. Recently, a new version of three-dimensional (3D) bioprinting of hydrogel significantly restored cartilage regeneration in OA joints. Combining immune regulatory Exos with 3D bioprinting hydrogel (3D-BPH-Exos) holds the potential for immunomodulating cartilage tissue and treatment of OA. It can reduce intracellular inflammasome formation and the release of inflammatory agents like IL-1β, TNF-α, and INF-γ, while also preventing chondrocyte apoptosis by restoring mitochondrial functions and enhancing chondrogenesis in synovial MSCs, osteoprogenitor cells, and osteoclasts. Loading Exos with chondrogenic stimuli agents in the 3D-BPH-Exos approach may offer a faster and safer strategy for cartilage repair while better inhibiting joint inflammation than high doses of anti-inflammatory drugs and cell-based therapies. This review provides a comprehensive overview of hydrogel bioprinting and exosome-based therapy in OA. It emphasizes the potential of 3D-BPH-Exos loaded with chondrogenic stimuli agents for OA treatment, serving as a basis for further research.
Collapse
Affiliation(s)
- Hui Zhang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China; Department of Orthopedics, Shangrao People's Hospital, Shangrao, Jiangxi, China
| | - Jianghong Huang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China.
| | - Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA.
| |
Collapse
|
3
|
Sahandi Zangabad P, Abousalman Rezvani Z, Tong Z, Esser L, Vasani RB, Voelcker NH. Recent Advances in Formulations for Long-Acting Delivery of Therapeutic Peptides. ACS APPLIED BIO MATERIALS 2023; 6:3532-3554. [PMID: 37294445 DOI: 10.1021/acsabm.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent preclinical and clinical studies have focused on the active area of therapeutic peptides due to their high potency, selectivity, and specificity in treating a broad range of diseases. However, therapeutic peptides suffer from multiple disadvantages, such as limited oral bioavailability, short half-life, rapid clearance from the body, and susceptibility to physiological conditions (e.g., acidic pH and enzymolysis). Therefore, high peptide dosages and dose frequencies are required for effective patient treatment. Recent innovations in pharmaceutical formulations have substantially improved therapeutic peptide administration by providing the following advantages: long-acting delivery, precise dose administration, retention of biological activity, and improvement of patient compliance. This review discusses therapeutic peptides and challenges in their delivery and explores recent peptide delivery formulations, including micro/nanoparticles (based on lipids, polymers, porous silicon, silica, and stimuli-responsive materials), (stimuli-responsive) hydrogels, particle/hydrogel composites, and (natural or synthetic) scaffolds. This review further covers the applications of these formulations for prolonged delivery and sustained release of therapeutic peptides and their impact on peptide bioactivity, loading efficiency, and (in vitro/in vivo) release parameters.
Collapse
Affiliation(s)
- Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Zahra Abousalman Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Shi W, Meng Q, Hu X, Cheng J, Shao Z, Yang Y, Ao Y. Using a Xenogeneic Acellular Dermal Matrix Membrane to Enhance the Reparability of Bone Marrow Mesenchymal Stem Cells for Cartilage Injury. Bioengineering (Basel) 2023; 10:916. [PMID: 37627801 PMCID: PMC10451227 DOI: 10.3390/bioengineering10080916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Due to its avascular organization and low mitotic ability, articular cartilage possesses limited intrinsic regenerative capabilities. The aim of this study is to achieve one-step cartilage repair in situ via combining bone marrow stem cells (BMSCs) with a xenogeneic Acellular dermal matrix (ADM) membrane. The ADM membranes were harvested from Sprague-Dawley (SD) rats through standard decellularization procedures. The characterization of the scaffolds was measured, including the morphology and physical properties of the ADM membrane. The in vitro experiments included the cell distribution, chondrogenic matrix quantification, and viability evaluation of the scaffolds. Adult male New Zealand white rabbits were used for the in vivo evaluation. Isolated microfracture was performed in the control (MF group) in the left knee and the tested ADM group was included as an experimental group when an ADM scaffold was implanted through matching with the defect after microfracture in the right knee. At 6, 12, and 24 weeks post-surgery, the rabbits were sacrificed for further research. The ADM could adsorb water and had excellent porosity. The bone marrow stem cells (BMSCs) grew well when seeded on the ADM scaffold, demonstrating a characteristic spindle-shaped morphology. The ADM group exhibited an excellent proliferative capacity as well as the cartilaginous matrix and collagen production of the BMSCs. In the rabbit model, the ADM group showed earlier filling, more hyaline-like neo-tissue formation, and better interfacial integration between the defects and normal cartilage compared with the microfracture (MF) group at 6, 12, and 24 weeks post-surgery. In addition, neither intra-articular inflammation nor a rejection reaction was observed after the implantation of the ADM scaffold. This study provides a promising biomaterial-based strategy for cartilage repair and is worth further investigation in large animal models.
Collapse
Affiliation(s)
- Weili Shi
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenxing Shao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuping Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Abdal Dayem A, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG. Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 2023; 160:114376. [PMID: 36764131 DOI: 10.1016/j.biopha.2023.114376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Young Bong Kim
- Department of Biomedical Science & Engineering, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Zhang P, Chen J, Sun Y, Cao Z, Zhang Y, Mo Q, Yao Q, Zhang W. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration. J Mater Chem B 2023; 11:1240-1261. [PMID: 36648128 DOI: 10.1039/d2tb02203f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Osteochondral defect (OCD) regeneration remains a great challenge. Recently, multilayer scaffold simulating native osteochondral structures have aroused broad interest in osteochondral tissue engineering. Here, we developed a 3D multifunctional bi-layer scaffold composed of a kartogenin (KGN)-loaded GelMA hydrogel (GelMA/KGN) as an upper layer mimicking a cartilage-specific extracellular matrix and a hydroxyapatite (HA)-coated 3D printed polycaprolactone porous scaffold (PCL/HA) as a lower layer simulating subchondral bone. The bi-layer scaffolds were subsequently modified with tannic acid (TA) prime-coating and E7 peptide conjugation (PCL/HA-GelMA/KGN@TA/E7) to regulate endogenous stem cell behaviors and exert antioxidant activity for enhanced osteochondral regeneration. In vitro, the scaffolds could support cell attachment and proliferation, and enhance the chondrogenic and osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BMSCs) in a specific layer. Besides, the incorporation of TA/E7 significantly increased the biological activity of the bi-layer scaffolds including the pro-migratory effect, antioxidant activity, and the maintenance of cell viability against oxidative stress. In vivo, the developed bi-layer scaffolds enhanced the simultaneous regeneration of cartilage and subchondral bone when implanted into a rabbit OCD model through macroscopic, micro-CT, and histological evaluation. Taken together, these investigations demonstrated that the 3D multifunctional bi-layer scaffolds could provide a suitable microenvironment for endogenous stem cells, and promote in situ osteochondral regeneration, showing great potential for the clinical treatment of OCD.
Collapse
Affiliation(s)
- Po Zhang
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China. .,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yuzhi Sun
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Zhicheng Cao
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China. .,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
7
|
Mao Z, Bi X, Wu C, Zheng Y, Shu X, Wu S, Guan J, Ritchie RO. A Cell-Free Silk Fibroin Biomaterial Strategy Promotes In Situ Cartilage Regeneration Via Programmed Releases of Bioactive Molecules. Adv Healthc Mater 2023; 12:e2201588. [PMID: 36314425 DOI: 10.1002/adhm.202201588] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Indexed: 02/03/2023]
Abstract
In situ tissue regeneration using cell-free biofunctional scaffolds has been extensively studied as a promising alternative strategy to promote cartilage repair. In this study, a cartilage-biomimetic silk fibroin (SF)-based scaffold with controlled sequential release of two bioactive molecules is developed. Transforming growth factor-β1 (TGF-β1) is initially loaded onto the SF scaffolds by physical absorption, which are then successively functionalized with bone marrow mesenchymal stem cells (BMSCs)-specific-affinity peptide (E7) via gradient degradation coating of Silk fibroin Methacryloyl (SilMA)/Hyaluronic acid Methacryloyl (HAMA). Such SF-based scaffolds exhibit excellent structural stability and catilage-like mechanical properties, thus providing a desirable 3D microenvironment for cartilage reconstruction. Furthermore, rapid initial release of E7 during the first few days, followed by slow and sustained release of TGF-β1 for as long as few weeks, synergistically induced the recruitment of BMSCs and chondrogenic differentiation of them in vitro. Finally, in vivo studies indicate that the implantation of the biofunctional scaffold markedly promote in situ cartilage regeneration in a rabbit cartilage defect model. It is believed that this cartilage-biomimetic biofunctional SF-based scaffold with sequential controlled release of E7 and TGF-β1 may have a promising potential for improved cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China.,School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Chengai Wu
- Beijing Jishuitan Hospital, Beijing Research Institute of Orthopedics and Traumatology, Beijing, 100035, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiong Shu
- Beijing Jishuitan Hospital, Beijing Research Institute of Orthopedics and Traumatology, Beijing, 100035, China
| | - Sujun Wu
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
8
|
Xin L, Zheng X, Chen J, Hu S, Luo Y, Ge Q, Jin X, Ma L, Zhang S. An Acellular Scaffold Facilitates Endometrial Regeneration and Fertility Restoration via Recruiting Endogenous Mesenchymal Stem Cells. Adv Healthc Mater 2022; 11:e2201680. [PMID: 36049781 DOI: 10.1002/adhm.202201680] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
Severe intrauterine adhesions (IUAs), characterized by inadequate endometrial repair and fibrosis, can lead to infertility. Stem cell-based therapies, which deliver mesenchymal stem cells (MSCs) to the wound site, hold a considerable promise for endometrium regeneration. However, some notable hurdles, such as stemness loss, immunogenicity, low retention and survival rate, limit their clinical application. Evidence shows a strategy of mobilizing endogenous MSCs recruitment can overcome the traditional limitations of exogenous stem cell-based therapies. Here, an acellular biomaterial named stromal derived factor-1 alpha (SDF-1α)/E7-modified collagen scaffold (CES) is explored. CES based on harnessing the innate regenerative potential of the body enables near-complete endometrium regeneration and fertility restoration both in a rat endometrium acute damage model and a rat IUA model. Mechanistically, the CES implantation promotes endogenous MSCs recruitment via a macrophage-coordinated strategy; then the homing MSCs exert the function of immunomodulation and altered local microenvironments toward regeneration. To conclude, CES, which can harness endogenous MSCs and overcome the traditional limitations of cell-based therapies, can serve as a clinically feasible and cell-free strategy with high therapeutic efficiency for IUA treatment.
Collapse
Affiliation(s)
- Liaobing Xin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province. No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Sentao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yilun Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qunzi Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province. No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Lie Ma
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province. No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province. No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| |
Collapse
|
9
|
Wang Y, Ling C, Chen J, Liu H, Mo Q, Zhang W, Yao Q. 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration. BIOMATERIALS ADVANCES 2022; 140:213067. [PMID: 35961187 DOI: 10.1016/j.bioadv.2022.213067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of osteochondral scaffolds with both structural and biochemical cues to regulate endogenous bone marrow-derived mesenchymal stem cells (BMSCs) behavior for cartilage and subchondral bone regeneration is still a challenge. To this end, a composite scaffold (BE-PSA) with gradient structure and programmed biomolecule delivery was prepared by fused deposition modeling (FDM) 3D printing and multi-material-based modification. The 3D-printed polycaprolactone (PCL) scaffold included upper pores of 200 μm for cartilage regeneration and lower pores of 400 μm for bone regeneration. For a sequential modulation of BMSCs behavior, fast-degrading sodium alginate (SA) hydrogel was used to deliver a burst release of E7 peptide to enhance BMSCs migration within 72 h, while a slowly-degrading silk fibroin (SF) porous matrix was used to provide a sustained release of B2A peptide to improve BMSCs dual-lineage differentiation lasting for >300 h, depending on the different degradation rates of SA hydrogel and SF matrix. The BE-PSA scaffold had good biocompatibility and could improve the migration and osteogenic/chondrogenic differentiation of BMSCs. Benefiting from the synergistic effects of spatial structures and programmed biomolecule delivery, the BE-PSA scaffold showed enhanced cartilage and subchondral bone regeneration in rabbit osteochondral defect model. This work not only provides a promising scaffold to guide BMSCs behavior for osteochondral regeneration but also offers a method for the fabrication of tissue engineering biomaterials based on the structural and biochemical modification.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| |
Collapse
|
10
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
11
|
Zhang W, Zhang Y, Li X, Cao Z, Mo Q, Sheng R, Ling C, Chi J, Yao Q, Chen J, Wang H. Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects. Mater Today Bio 2022; 14:100251. [PMID: 35469254 PMCID: PMC9034395 DOI: 10.1016/j.mtbio.2022.100251] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
In osteochondral defects, oxidative stress caused by elevated levels of reactive oxygen species (ROS) can disrupt the normal endogenous repair process. In this study, a multifunctional hydrogel composed of silk fibroin (SF) and tannic acid (TA), the FDA-approved ingredients, was developed to alleviate oxidative stress and enhance osteochondral regeneration. In this proposed hydrogel, SF first interacts with TA to form a hydrogen-bonded supramolecular structure, which is subsequently enzymatically crosslinked to form a stable hydrogel. Furthermore, TA had multiple phenolic hydroxyl groups that formed interactions with the therapeutic molecule E7 peptide for controlled drug delivery. In vitro investigations showed that SF-TA and SF-TA-E7 hydrogels exhibited a multitude of biological effects including scavenging of ROS, maintaining cell viability, and promoting the proliferation of bone marrow mesenchymal stem cells (BMSCs) against oxidative stress. The proteomic analysis indicated that SF-TA and SF-TA-E7 hydrogels suppressed oxidative stress, which in turn improved cell proliferation in multiple proliferation and apoptosis-related pathways. In rabbit osteochondral defect model, SF-TA and SF-TA-E7 hydrogels promoted enhanced regeneration of both cartilage and subchondral bone as compared to hydrogel without TA incorporation. These findings indicated that the multifunctional SF-TA hydrogel provided a microenvironment suitable for the endogenous regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xiaolong Li
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Zhicheng Cao
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Chen Ling
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Jiayu Chi
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Hongmei Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Pharmaceutical Sciences, Binzhou Medical University, 264003, Yantai, Shandong, China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| |
Collapse
|
12
|
Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S. Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Long Y, Bundkirchen K, Gräff P, Krettek C, Noack S, Neunaber C. Cytological Effects of Serum Isolated from Polytraumatized Patients on Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:2612480. [PMID: 34876907 PMCID: PMC8645412 DOI: 10.1155/2021/2612480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Due to their immunomodulatory and regenerative capacity, human bone marrow-derived mesenchymal stem cells (hBMSCs) are promising in the treatment of patients suffering from polytrauma. However, few studies look at the effects of sera from polytraumatized patients on hBMSCs. The aim of this study was to explore changes in hBMSC properties in response to serum from polytrauma patients taken at different time points after the trauma incident. For this, sera from 84 patients with polytrauma (collected between 2010 and 2020 in our department) were used. In order to test the differential influence on hBMSC, sera from the 1st (D1), 5th (D5), and 10th day (D10) after polytrauma were pooled, respectively. As a control, sera from three healthy donors (HS), matched with respect to age and gender to the polytrauma group, were collected. Furthermore, hBMSCs from four healthy donors were used in the experiments. The pooled sera of HS, D1, D5, and D10 were analyzed by multicytokine array for pro-/anti-inflammatory cytokines. Furthermore, the influence of the different sera on hBMSCs with respect to cell proliferation, colony forming unit-fibroblast (CFU-F) assay, cell viability, cytotoxicity, cell migration, and osteogenic and chondrogenic differentiation was analyzed. The results showed that D5 serum significantly reduced hBMSC cell proliferation capacity compared with HS and increased the proportion of dead cells compared with D1. However, the frequency of CFU-F was not reduced in polytrauma groups compared with HS, as well as the other parameters. The serological effect of polytrauma on hBMSCs was related to the time after trauma. It is disadvantageous to use BMSCs in polytraumatized patients at least until the fifth day after polytrauma as obvious cytological changes could be found at that time point. However, it is promising to use hBMSCs to treat polytrauma after five days, combined with the concept of "Damage Control Orthopedics" (DCO).
Collapse
Affiliation(s)
- Yazhou Long
- Trauma Department, Hannover Medical School, 30625 Hannover, Germany
| | | | - Pascal Gräff
- Trauma Department, Hannover Medical School, 30625 Hannover, Germany
| | | | - Sandra Noack
- Trauma Department, Hannover Medical School, 30625 Hannover, Germany
| | - Claudia Neunaber
- Trauma Department, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
15
|
Kim D, Park D, Kim TH, Chung JJ, Jung Y, Kim SH. Substance P/Heparin-Conjugated PLCL Mitigate Acute Gliosis on Neural Implants and Improve Neuronal Regeneration via Recruitment of Neural Stem Cells. Adv Healthc Mater 2021; 10:e2100107. [PMID: 34227258 DOI: 10.1002/adhm.202100107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/03/2021] [Indexed: 12/15/2022]
Abstract
The inflammatory host tissue response, characterized by gliosis and neuronal death at the neural interface, limits signal transmission and longevity of the neural probe. Substance P induces an anti-inflammatory response and neuronal regeneration and recruits endogenous stem cells. Heparin prevents nonspecific protein adsorption, suppresses the inflammatory response, and is beneficial to neuronal behavior. Poly(l-lactide-co-ε-caprolactone) (PLCL) is a soft and flexible polymer, and PLCL covalently conjugated with biomolecules has been widely used in tissue engineering. Coatings of heparin-conjugated PLCL (Hep-PLCL), substance P-conjugated PLCL (SP-PLCL), and heparin/substance P-conjugated PLCL (Hep/SP-PLCL) reduced the adhesion of astrocytes and fibroblasts and improved neuronal adhesion and neurite development compared to bare glass. The effects of these coatings are evaluated using immunohistochemistry analysis after implantation of coated stainless steel probes in rat brain for 1 week. In particular, Hep/SP-PLCL coating reduced the activation of microglia and astrocytes, the neuronal degeneration caused by inflammation, and indicated a potential for neuronal regeneration at the tissue-device interface. Suppression of the acute host tissue response by coating Hep/SP-PLCL could lead to improved functionality of the neural prosthesis.
Collapse
Affiliation(s)
- Donghak Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - DoYeun Park
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Tae Hee Kim
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Justin J. Chung
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Soo Hyun Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| |
Collapse
|
16
|
Fan BS, Liu Y, Zhang JY, Chen YR, Yang M, Yu JK. Principles for establishment of the stem cell bank and its applications on management of sports injuries. Stem Cell Res Ther 2021; 12:307. [PMID: 34051865 PMCID: PMC8164236 DOI: 10.1186/s13287-021-02360-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The stem cells of the stem cell banks have prominent problems for insufficient sources, easy contamination, unstable biological characteristics after serial subcultivations, and high cost. METHODS After collecting the construction processes of the existing stem cell banks and suggestions from authoritative experts in the past 10 years, 230 reference principles were obtained, and finally, the principles of "5C" for the establishment of modern standardized stem cell banks were summarized, and their related applications on the management of sports injuries were reviewed as well. RESULTS The basic principles of "5C" for the establishment of modern standardized stem cell banks include (1) principle of informed consent, (2) confidentiality principle, (3) conformity principle, (4) contamination-free principle, and (5) commonweal principle. The applications of stem cells on repairs, reconstructions, and regenerations of sports injuries were also reviewed, especially in tissue-engineered cartilage, tissue-engineered meniscus, and tissue-engineered ligament. CONCLUSIONS The proposal of the basic principles of "5C" is conducive to relevant stem cell researchers and clinical medical experts to build modern stem cell banks in a more standardized and efficient manner while avoiding some major mistakes or problems that may occur in the future. On this basis, stem cells from stem cell banks would be increasingly used in the management of sports injuries. More importantly, these days, getting stem cell samples are difficult in a short time, and such banks with proper legal consent may help the scientific community.
Collapse
Affiliation(s)
- Bao-Shi Fan
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.,School of Clinical Medicine, Weifang Medical University, No.7166 West, Baotong Road, Weifang, 261053, Shandong, China
| | - Yang Liu
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - Ji-Ying Zhang
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - You-Rong Chen
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - Meng Yang
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.,School of Clinical Medicine, Weifang Medical University, No.7166 West, Baotong Road, Weifang, 261053, Shandong, China
| | - Jia-Kuo Yu
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China. .,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
17
|
Bucci R, Vaghi F, Erba E, Romanelli A, Gelmi ML, Clerici F. Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater 2021; 122:82-100. [PMID: 33326882 DOI: 10.1016/j.actbio.2020.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Nanofiber films produced by electrospinning currently provide a promising platform for different applications. Although nonfunctionalized nanofiber films from natural or synthetic polymers are extensively used, electrospun materials combined with peptides are gaining more interest. In fact, the selection of specific peptides improves the performance of the material for biological applications and mainly for tissue engineering, mostly by maintaining similar mechanical properties with respect to the simple polymer. The main drawback in using peptides blended with a polymer is the quick release of the peptides. To avoid this problem, covalent linking of the peptide is more beneficial. Here, we reviewed synthetic protocols that enable covalent grafting of peptides to polymers before or after the electrospinning procedures to obtain more robust electrospun materials. Applications and the performance of the new material compared to that of the starting polymer are discussed.
Collapse
|
18
|
Ge Q, Wang X, Luo Y, Zheng X, Ma L. E7-Modified Substrates to Promote Adhesion and Maintain Stemness of Mesenchymal Stem Cells. Macromol Biosci 2021; 21:e2000384. [PMID: 33480478 DOI: 10.1002/mabi.202000384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs) have drawn great attention in clinical applications due to the self-renewal ability, multi-differentiation potential, and low immunogenicity. However, there are challenges in the ex vivo expansion of MSCs, including low efficiency, stemness loss, and safety. Therefore, it is crucial to construct a substrate that can show an alterable affinity to MSCs, and induce efficient cell expansion with minimal stemness loss. In this study, EPLQLKM (E7)-modified substrates with tunable E7 densities are fabricated on PEGylated substrates. The PEG layer with an average thickness of 1.7 nm shows good antifouling ability. E7-modified substrates have an improving effect on adhesion and spreading of the rat bone marrow-derived mesenchymal stem cells (rBMSCs), along with the increase of E7 densities. rBMSCs on E7-modified substrates maintain the stem cell phenotypes, and shows robust proliferation and multilineage differentiation, especially on the substrates with high E7 densities. In summary, this study provides a novel strategy of E7 functionalization to promote adhesion and maintain stemness of MSCs, which holds great potentials in the functionalization of microcarriers for the expansion of MSCs.
Collapse
Affiliation(s)
- Qunzi Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuemei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
19
|
Grogan SP, Baek J, D'Lima DD. Meniscal tissue repair with nanofibers: future perspectives. Nanomedicine (Lond) 2020; 15:2517-2538. [PMID: 32975146 DOI: 10.2217/nnm-2020-0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The knee menisci are critical to the long-term health of the knee joint. Because of the high incidence of injury and degeneration, replacing damaged or lost meniscal tissue is extremely clinically relevant. The multiscale architecture of the meniscus results in unique biomechanical properties. Nanofibrous scaffolds are extremely attractive to replicate the biochemical composition and ultrastructural features in engineered meniscus tissue. We review recent advances in electrospinning to generate nanofibrous scaffolds and the current state-of-the-art of electrospun materials for meniscal regeneration. We discuss the importance of cellular function for meniscal tissue engineering and the application of cells derived from multiple sources. We compare experimental models necessary for proof of concept and to support translation. Finally, we discuss future directions and potential for technological innovations.
Collapse
Affiliation(s)
- Shawn P Grogan
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Jihye Baek
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Wu R, Gao G, Xu Y. Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model. Int J Nanomedicine 2020; 15:6563-6577. [PMID: 32982218 PMCID: PMC7490068 DOI: 10.2147/ijn.s259028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobilized with bone morphogenetic protein-2 (BMP-2), to repair the acetabulum defects. Methods The characteristics of PELA electrospun were analyzed using scanning electron microscopy, the release kinetics of BMP-2 in vitro were analyzed using enzyme-linked immunosorbent assays. Human mesenchymal stem cells (hMSCs) were used for in vitro experiments, the biocompatibility of the electrospinning materials was investigated using a cell counting kit-8 (CCK-8) kit, and osteogenic differentiation was tested via alkaline phosphatase (ALP) activity and relative gene expression. Eighteen miniature pig animal models were used in the in vivo experiment. The pigs were sacrificed at 24 weeks after surgery, and the reconstructed acetabulum was evaluated using histological sections. Results Structural analysis revealed that the diameter of the PELA electrospun fiber was 0.8195 ± 0.16 μm. The PELA electrospun fiber materials showed good hydrophilicity and biocompatibility and could continuously release BMP-2 within 27 days: 16.07 ± 0.11 ng of BMP-2 was released from the scaffold. A total of sixteen implants fully filled the defects, and hematoxylin and eosin staining and Goldner's trichrome staining showed that the simple tendon group (T group) was mostly fibrous tissues, lots of fibroblasts and small amounts of chondrocytes were observed in the polydopamine-coated electrospun fiber group (DP group). The DP plus BMP-2 (DPB) group showed a large number of chondrocytes and partial new bone tissues. Conclusion PELA electrospun fibrous scaffolds are good sustained-release carriers, which can not only induce implant differentiation into cartilage and bone but also are completely degraded without toxicity. Therefore, the material can be used for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Ruiqi Wu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Guanying Gao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yan Xu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
21
|
Zhang W, Ling C, Liu H, Zhang A, Mao L, Wang J, Chao J, Backman LJ, Yao Q, Chen J. Tannic acid-mediated dual peptide-functionalized scaffolds to direct stem cell behavior and osteochondral regeneration. CHEMICAL ENGINEERING JOURNAL 2020; 396:125232. [DOI: 10.1016/j.cej.2020.125232] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
22
|
Zhang W, Ling C, Zhang A, Liu H, Jiang Y, Li X, Sheng R, Yao Q, Chen J. An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioact Mater 2020; 5:832-843. [PMID: 32637747 PMCID: PMC7321772 DOI: 10.1016/j.bioactmat.2020.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Endogenous repair of osteochondral defect is usually limited by the insufficient number of cells in the early stage and incomplete cell differentiation in the later stage. The development of drug delivery systems for sequential release of pro-migratory and pro-chondrogenic molecules to induce endogenous bone marrow-derived mesenchymal stem cells (BMSCs) recruitment and chondrogenic differentiation is highly desirable for in situ osteochondral regeneration. In this study, a novel, all-silk-derived sequential delivery system was fabricated by incorporating the tunable drug-loaded silk fibroin (SF) nanospheres into a SF porous matrix. The loading efficiency and release kinetics of biomolecules depended on the initial SF/polyvinyl alcohol (PVA) concentrations (0.2%, 1% and 5%) of the nanospheres, as well as the hydrophobicity of the loaded molecules, resulting in controllable and programmed delivery profiles. Our findings indicated that the 5% nanosphere-incorporated matrix showed a rapid release of E7 peptide during the first 120 h, whereas the 0.2% nanosphere-incorporated matrix provided a slow and sustained release of Kartogenin (KGN) longer than 30 days. During in vitro culture of BMSCs, this functional SF matrix incorporated with E7/KGN nanospheres showed good biocompatibility, as well as enhanced BMSCs migration and chondrogenic differentiation through the release of E7 and KGN. Furthermore, when implanted into rabbit osteochondral defect, the SF nanosphere matrix with sequential E7/KGN release promoted the regeneration of both cartilage and subchondral bone. This work not only provided a novel all-silk-derived drug delivery system for sequential release of molecules, but also a functional tissue-engineered scaffold for osteochondral regeneration. An all-silk-derived sequential biomolecule delivery system is developed. The release profiles of both hydrophilic and hydrophobic molecules from the SF nanosphere matrix can be easily tuned. This SF nanosphere matrix induces BMSCs recruitment and chondrogenic differentiation by programmed release of E7 and KGN. The SF nanosphere matrix with sequential E7/KGN release improves the regeneration of cartilage and subchondral bone in vivo..
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Aini Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Yujie Jiang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xiaolong Li
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| |
Collapse
|
23
|
Li W, Xu H, Han X, Sun S, Chai Q, Xu X, Man Z. Simultaneously promoting adhesion and osteogenic differentiation of bone marrow-derived mesenchymal cells by a functional electrospun scaffold. Colloids Surf B Biointerfaces 2020; 192:111040. [PMID: 32330819 DOI: 10.1016/j.colsurfb.2020.111040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023]
Abstract
Electrospinning is a common technology to construct tissue engineering scaffolds for bone regeneration. However, pure electrospun scaffolds do not enrich seed cells or promote their osteogenic differentiation. Biological functionalization of tissue engineering scaffolds is currently a hot research topic. Therefore, in this study, the bone marrow-derived mesenchymal cells (BM-MSC)-specific affinity peptide E7 and a bone morphogenic protein 2 (BMP-2) mimetic peptide were concomitantly conjugated onto the surface of an electrospun scaffold to construct a functional PEB scaffold. Characterization of PEB scaffolds revealed that both E7 and BMP-2 mimetic peptides were successfully conjugated onto the surface of electrospun scaffolds. With regard to biological activity, the PEB scaffold could synchronously promote adhesion and osteogenic differentiation of BM-MSC as a result of the co-delivery of E7 and BMP-2 mimetic peptides, which proved superior compared with the other three scaffolds. Consequently, the PEB scaffold offers a new concept for the construction of bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, PR China; Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China
| | - Hailun Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, PR China; Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China
| | - Qihao Chai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, PR China
| | - Xianxing Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, PR China; Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, PR China.
| |
Collapse
|
24
|
Zheng Y, Wu Y, Zhou Y, Wu J, Wang X, Qu Y, Wang Y, Zhang Y, Yu Q. Photothermally Activated Electrospun Nanofiber Mats for High-Efficiency Surface-Mediated Gene Transfection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7905-7914. [PMID: 31976653 DOI: 10.1021/acsami.9b20221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although electrospun nanofibers have been used to deliver functional genes into cells attached to the surface of the nanofibers, the controllable release of genes from nanofibers and the subsequent gene transfection with high efficiency remain challenging. Herein, photothermally activated electrospun hybrid nanofibers are developed for high-efficiency surface-mediated gene transfection. Nanofibers with a core-sheath structure are fabricated using coaxial electrospinning. Plasmid DNA (pDNA) encoding basic fibroblast growth factor is encapsulated in the fiber core, and gold nanorods with photothermal properties are embedded in the fiber sheath composed of poly(l-lactic acid) and gelatin. The nanofiber mats show excellent and controllable photothermal response under near-infrared irradiation. The permeability of the nanofibers is thereby enhanced to allow the rapid release of pDNA. In addition, transient holes are formed in the membranes of NIH-3T3 fibroblasts attached to the mat, thus facilitating delivery and transfection with pDNA and leading to increased proliferation and migration of the transfected cells in vitro. This work offers a facile and reliable method for the regulation of cell function and cell behavior via localized gene transfection, showing great potential for application in tissue engineering and cell-based therapy.
Collapse
Affiliation(s)
- Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yong Wu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Yang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Xiaoyu Wang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
25
|
Silva JC, Udangawa RN, Chen J, Mancinelli CD, Garrudo FFF, Mikael PE, Cabral JMS, Ferreira FC, Linhardt RJ. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110291. [PMID: 31761240 PMCID: PMC6878976 DOI: 10.1016/j.msec.2019.110291] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/14/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Electrospinning is a valuable technology for cartilage tissue engineering (CTE) due to its ability to produce fibrous scaffolds mimicking the nanoscale and alignment of collagen fibers present within the superficial zone of articular cartilage. Coaxial electrospinning allows the fabrication of core-shell fibers able to incorporate and release bioactive molecules (e.g., drugs or growth factors) in a controlled manner. Herein, we used coaxial electrospinning to produce coaxial poly(glycerol sebacate) (PGS)/poly(caprolactone) (PCL) aligned nanofibers (core:PGS/shell:PCL). The obtained scaffolds were characterized in terms of their structure, chemical composition, thermal properties, mechanical performance and in vitro degradation kinetics, in comparison to monoaxial PCL aligned fibers and respective non-aligned controls. All the electrospun scaffolds produced presented average fiber diameters within the nanometer-scale and the core-shell structure of the composite fibers was clearly confirmed by TEM. Additionally, fiber alignment significantly increased (>2-fold) the elastic modulus of both coaxial and monoxial scaffolds. Kartogenin (KGN), a small molecule known to promote mesenchymal stem/stromal cells (MSC) chondrogenesis, was loaded into the core PGS solution to generate coaxial PGS-KGN/PCL nanofibers. The KGN release kinetics and scaffold biological performance were evaluated in comparison to KGN-loaded monoaxial fibers and respective non-loaded controls. Coaxial PGS-KGN/PCL nanofibers showed a more controlled and sustained KGN release over 21 days than monoaxial PCL-KGN nanofibers. When cultured with human bone marrow MSC in incomplete chondrogenic medium (without TGF-β3), KGN-loaded scaffolds enhanced significantly cell proliferation and chondrogenic differentiation, as suggested by the increased sGAG amounts and chondrogenic markers gene expression levels. Overall, these findings highlight the potential of using coaxial PGS-KGN/PCL aligned nanofibers as a bioactive scaffold for CTE applications.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal; Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Ranodhi N Udangawa
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Jianle Chen
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Chiara D Mancinelli
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Fábio F F Garrudo
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal; Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Paiyz E Mikael
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA.
| |
Collapse
|
26
|
Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:3-14. [DOI: 10.1007/978-981-15-3258-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Wu N, Yu H, Sun M, Li Z, Zhao F, Ao Y, Chen H. Investigation on the Structure and Mechanical Properties of Highly Tunable Elastomeric Silk Fibroin Hydrogels Cross-Linked by γ-Ray Radiation. ACS APPLIED BIO MATERIALS 2019; 3:721-734. [PMID: 35019416 DOI: 10.1021/acsabm.9b01062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nier Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Huilei Yu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Muyang Sun
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zong Li
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Fengyuan Zhao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2324-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Chi H, Song X, Song C, Zhao W, Chen G, Jiang A, Wang X, Yu T, Zheng L, Yan J. Chitosan-Gelatin Scaffolds Incorporating Decellularized Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomater Sci Eng 2019; 5:5305-5315. [DOI: 10.1021/acsbiomaterials.9b00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hui Chi
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | - Chengchao Song
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | - Guanghua Chen
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Anlong Jiang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Xiaoyan Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Tailong Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | | |
Collapse
|
30
|
Onak G, Karaman O. Accelerated mineralization on nanofibers via non-thermal atmospheric plasma assisted glutamic acid templated peptide conjugation. Regen Biomater 2019; 6:231-240. [PMID: 31404337 PMCID: PMC6683955 DOI: 10.1093/rb/rbz014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Surface modification by non-thermal atmospheric plasma (NTAP) treatment can produce significantly higher carboxylic groups on the nanofibers (NF) surface, which potentially can increase biomineralization of NF via promoting glutamic acid (GLU) templated peptide conjugation. Herein, electrospun poly(lactide-co-glycolide) (PLGA) scaffolds were treated with NTAP and conjugated with GLU peptide followed by incubation in simulated body fluids for mineralization. The effect of NTAP treatment and GLU peptide conjugation on mineralization, surface wettability and roughness were investigated. The results showed that NTAP treatment significantly increased GLU peptide conjugation which consequently enhanced mineralization and mechanical properties of NTAP treated and peptide conjugated NF (GLU-pNF) compared to neat PLGA NF, NTAP treated NF (pNF) and GLU peptide conjugated NF (GLU-NF). The effect of surface modification on human bone marrow derived mesenchymal stem cells adhesion, proliferation and morphology was evaluated by cell proliferation assay and fluorescent microscopy. Results demonstrated that cellular adhesion and proliferation were significantly higher on GLU-pNF compared to NF, pNF and GLU-NF. In summary, NTAP treatment could be a promising modification technique to induce biomimetic peptide conjugation and biomineralization for bone tissue engineering applications.
Collapse
Affiliation(s)
- Günnur Onak
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
- Bonegraft Biomaterials Co., Ege University Technopolis, Bornova, İzmir, Turkey
| |
Collapse
|
31
|
Lima AC, Ferreira H, Reis RL, Neves NM. Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opin Drug Deliv 2019; 16:795-813. [DOI: 10.1080/17425247.2019.1635117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Cláudia Lima
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
32
|
Monfared M, Taghizadeh S, Zare-Hoseinabadi A, Mousavi SM, Hashemi SA, Ranjbar S, Amani AM. Emerging frontiers in drug release control by core-shell nanofibers: a review. Drug Metab Rev 2019; 51:589-611. [PMID: 31296075 DOI: 10.1080/03602532.2019.1642912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In recent years, core-shell (CS) nanofiber has widely been used as a carrier for controlled drug release. This outstanding attention toward CS nanofiber is mainly due to its tremendous significance in controllable drug release in specific locations. The major advantage of CS nanofibers is forming a highly porous mesh, boosting its performance for many applications, due to its large surface-to-volume ratio. This inherently high ratio has prompted electrospun fibers to be considered one of the best drug-delivery-systems available, with the capacity to enhance properties such as cell attachment, drug loading, and mass transfer. Using electrospun fibers as CS nanofibers to incorporate different cargos such as antibiotics, anticancer agents, proteins, DNA, RNA, living cells, and diverse growth factors would considerably satisfy the need for a universal carrier in the field of nanotechnology. In addition to their high surface area, other benefit included in these nanofibers is the ability to trap drugs, easily controlled morphology, and their biomimetic characteristics. In this review, by taking the best advantages of the preparation and uses of CS nanofibers, a novel work in the domain of the controlled drug delivery by nanofiber-based scaffolds is presented.
Collapse
Affiliation(s)
- Mohammad Monfared
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Ranjbar
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Han D, Steckl AJ. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019; 84:1453-1497. [PMID: 31943926 DOI: 10.1002/cplu.201900281] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Indexed: 12/12/2022]
Abstract
The formation of fibers by electrospinning has experienced explosive growth in the past decade, recently reaching 4,000 publications and 1,500 patents per year. This impressive growth of interest is due to the ability to form fibers with a variety of materials, which lend themselves to a large and rapidly expanding set of applications. In particular, coaxial electrospinning, which forms fibers with multiple core-sheath layers from different materials in a single step, enables the combination of properties in a single fiber that are not found in nature in a single material. This article is a detailed review of coaxial electrospinning: basic mechanisms, early history and current status, and an in-depth discussion of various applications (biomedical, environmental, sensors, energy, catalysis, textiles). We aim to provide readers who are currently involved in certain aspects of coaxial electrospinning research an appreciation of other applications and of current results.
Collapse
Affiliation(s)
- Daewoo Han
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| | - Andrew J Steckl
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| |
Collapse
|
34
|
Qu D, Zhu JP, Childs HR, Lu HH. Nanofiber-based transforming growth factor-β3 release induces fibrochondrogenic differentiation of stem cells. Acta Biomater 2019; 93:111-122. [PMID: 30862549 DOI: 10.1016/j.actbio.2019.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
Fibrocartilage is typically found in regions subject to complex, multi-axial loads and plays a critical role in musculoskeletal function. Mesenchymal stem cell (MSC)-mediated fibrocartilage regeneration may be guided by administration of appropriate chemical and/or physical cues, such as by culturing cells on polymer nanofibers in the presence of the chondrogenic growth factor TGF-β3. However, targeted delivery and maintenance of effective local factor concentrations remain challenges for implementation of growth factor-based regeneration strategies in clinical settings. Thus, the objective of this study was to develop and optimize the bioactivity of a biomimetic nanofiber scaffold system that enables localized delivery of TGF-β3. To this end, we fabricated TGF-β3-releasing nanofiber meshes that provide sustained growth factor delivery and demonstrated their potential for guiding synovium-derived stem cell (SDSC)-mediated fibrocartilage regeneration. TGF-β3 delivery enhanced cell proliferation and synthesis of relevant fibrocartilaginous matrix in a dose-dependent manner. By designing a scaffold that eliminates the need for exogenous or systemic growth factor administration and demonstrating that fibrochondrogenesis requires a lower growth factor dose compared to previously reported, this study represents a critical step towards developing a clinical solution for regeneration of fibrocartilaginous tissues. STATEMENT OF SIGNIFICANCE: Fibrocartilage is a tissue that plays a critical role throughout the musculoskeletal system. However, due to its limited self-healing capacity, there is a significant unmet clinical need for more effective approaches for fibrocartilage regeneration. We have developed a nanofiber-based scaffold that provides both the biomimetic physical cues, as well as localized delivery of the chemical factors needed to guide stem cell-mediated fibrocartilage formation. Specifically, methods for fabricating TGF-β3-releasing nanofibers were optimized, and scaffold-mediated TGF-β3 delivery enhanced cell proliferation and synthesis of fibrocartilaginous matrix, demonstrating for the first time, the potential for nanofiber-based TGF-β3 delivery to guide stem cell-mediated fibrocartilage regeneration. This nanoscale delivery platform represents an exciting new strategy for fibrocartilage regeneration.
Collapse
Affiliation(s)
- Dovina Qu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Jennifer P Zhu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Hannah R Childs
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States.
| |
Collapse
|
35
|
Pant B, Park M, Park SJ. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019; 11:E305. [PMID: 31266186 PMCID: PMC6680404 DOI: 10.3390/pharmaceutics11070305] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Electrospinning has emerged as one of the potential techniques for producing nanofibers. The use of electrospun nanofibers in drug delivery has increased rapidly over recent years due to their valuable properties, which include a large surface area, high porosity, small pore size, superior mechanical properties, and ease of surface modification. A drug loaded nanofiber membrane can be prepared via electrospinning using a model drug and polymer solution; however, the release of the drug from the nanofiber membrane in a safe and controlled way is challenging as a result of the initial burst release. Employing a core-sheath design provides a promising solution for controlling the initial burst release. Numerous studies have reported on the preparation of core-sheath nanofibers by coaxial electrospinning for drug delivery applications. This paper summarizes the physical phenomena, the effects of various parameters in coaxial electrospinning, and the usefulness of core-sheath nanofibers in drug delivery. Furthermore, this report also highlights the future challenges involved in utilizing core-sheath nanofibers for drug delivery applications.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea
| | - Mira Park
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Science, Chonbuk National University, Jeonju 561-756, Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea.
| |
Collapse
|
36
|
Geng W, Shi H, Zhang X, Tan W, Cao Y, Mei R. Substance P enhances BMSC osteogenic differentiation via autophagic activation. Mol Med Rep 2019; 20:664-670. [PMID: 31115537 PMCID: PMC6580032 DOI: 10.3892/mmr.2019.10257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/12/2019] [Indexed: 01/09/2023] Open
Abstract
Bone mesenchymal stem cells (BMSCs) are the most commonly investigated progenitor cells in bone tissue engineering for treating severe bone defects. Strategies for regulating BMSC differentiation fate have received wide attention, in which redox homeostasis plays an important role due to the change in energy metabolism during stem cell differentiation. In the present study, it was observed that autophagic activity was induced along with BMSC osteogenic differentiation and subsequently regulated reactive oxygen species (ROS) generation and the level of osteogenesis. Furthermore, it was also observed that neuropeptide substance P (SP) administration could enhance the autophagic activity in rat BMSCs via the AMPK and mTOR pathways, as well as decreasing ROS generation and promoting osteogenic differentiation. Inhibition of autophagic activity by 3‑MA reversed the effects of SP on ROS and osteogenic levels. The present results indicated that autophagic activity participated in the regulation of differentiation fate of BMSCs and SP could promote osteogenic differentiation by activating autophagy, providing a more precise biological mechanism for its application in bone tissue engineering.
Collapse
Affiliation(s)
- Wen Geng
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Huimin Shi
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Ximin Zhang
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Wei Tan
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Yuan Cao
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Rongcheng Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
37
|
Cao B, Li Y, Yang T, Bao Q, Yang M, Mao C. Bacteriophage-based biomaterials for tissue regeneration. Adv Drug Deliv Rev 2019; 145:73-95. [PMID: 30452949 PMCID: PMC6522342 DOI: 10.1016/j.addr.2018.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Bacteriophage, also called phage, is a human-safe bacteria-specific virus. It is a monodisperse biological nanostructure made of proteins (forming the outside surface) and nucleic acids (encased in the protein capsid). Among different types of phages, filamentous phages have received great attention in tissue regeneration research due to their unique nanofiber-like morphology. They can be produced in an error-free format, self-assemble into ordered scaffolds, display multiple signaling peptides site-specifically, and serve as a platform for identifying novel signaling or homing peptides. They can direct stem cell differentiation into specific cell types when they are organized into proper patterns or display suitable peptides. These unusual features have allowed scientists to employ them to regenerate a variety of tissues, including bone, nerves, cartilage, skin, and heart. This review will summarize the progress in the field of phage-based tissue regeneration and the future directions in this field.
Collapse
Affiliation(s)
- Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Zhejiang, Hangzhou 310058, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
38
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M, Ao Y, Boyan BD, Chen H. Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:14-29. [PMID: 30079807 PMCID: PMC6388715 DOI: 10.1089/ten.teb.2018.0119] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
IMPACT STATEMENT Challenges in musculoskeletal tissue regeneration affect millions of patients globally. Scaffolds for tissue engineering bone and cartilage provide promising solutions that increase healing and decrease need for complicated surgical procedures. Porous scaffolds have emerged as an attractive alternative to traditional scaffolds. However, the success of advanced materials, use of biological factors, and manufacturing techniques can vary depending on use case. This review provides perspective on porous scaffold manufacturing, characterization and application, and can be used to inform future scaffold design.
Collapse
Affiliation(s)
- Alice Cheng
- Department of Biomedical Engineering, Peking University, Beijing, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
- Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Adrian Kahn
- Department of Oral and Maxillofacial Surgery, University of Tel Aviv, Tel Aviv, Israel
| | - Xiyu Li
- Department of Biomedical Engineering, Peking University, Beijing, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Zhenxing Shao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Muyang Sun
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Barbara D. Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Haifeng Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| |
Collapse
|
40
|
Chi H, Jiang A, Wang X, Chen G, Song C, Prajapati RK, Li A, Li Z, Li J, Zhang Z, Ji Y, Yan J. Dually optimized polycaprolactone/collagen I microfiber scaffolds with stem cell capture and differentiation-inducing abilities promote bone regeneration. J Mater Chem B 2019; 7:7052-7064. [PMID: 31641711 DOI: 10.1039/c9tb01359h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preparation of the PCME scaffold though coaxial electrospinning and its application for bone regeneration.
Collapse
|
41
|
Wang G, Man Z, Xin H, Li Y, Wu C, Sun S. Enhanced adhesion and proliferation of bone marrow mesenchymal stem cells on β‑tricalcium phosphate modified by an affinity peptide. Mol Med Rep 2018; 19:375-381. [PMID: 30431109 PMCID: PMC6297790 DOI: 10.3892/mmr.2018.9655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are often used in orthopedic tissue engineering, and bone marrow-derived mesenchymal stem cells (BMSCs) are currently considered the gold standard. One of the most important issues in MSC-based tissue engineering therapy is the low number of MSCs in pathological tissues. Achieving efficient recruitment of MSCs to defective or damaged tissues in vivo has been a difficult hurdle. The aim of the present study was to construct a biomaterial that can effectively recruit BMSCs to facilitate the repair of pathological tissues. So functional β-tricalcium phosphate (β-TCP) was synthesized using the BMSC affinity peptide DPIYALSWSGMA (DPI) adsorbed onto β-TCP through an adsorption/freeze-drying strategy. C57BL/6 mouse-derived BMSCs were seeded onto the DPI peptide-modified β-TCP (β-TCP-DPI); in vitro experiments demonstrated that β-TCP-DPI enhanced BMSC adhesion and proliferation compared with unmodified β-TCP. Results from the present study indicated that functional β-TCP may be used as an ideal scaffold in tissue engineering and in regenerative medicine.
Collapse
Affiliation(s)
- Guozong Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hua Xin
- Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 222000, P.R. China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Changshun Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
42
|
Wang G, Man Z, Zhang N, Xin H, Li Y, Sun T, Sun S. Biopanning of mouse bone marrow mesenchymal stem cell affinity for cyclic peptides. Mol Med Rep 2018; 19:407-413. [PMID: 30431079 PMCID: PMC6297745 DOI: 10.3892/mmr.2018.9626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory disease present worldwide. In the development of therapies for this disease, mesenchymal stem cells (MSC) are a promising candidate cell source in tissue engineering (TE) and regenerative medicine. MSCs harvested from bone marrow (BM) are the gold standard. A significant barrier for BMMSC-based therapies is the inability and decreased number of BMMSCs in the tissues of interest. The ability to recruit BMMSCs efficiently to defective or injured sites in tissues or organs, for example the necrotic area of the femoral head in vivo, has been a major concern. In the present study, a peptide sequence (CDNVAQSVC), termed D7, was identified through phage display technology using C57BL/6 mouse BMMSCs. Subsequent analysis suggested that the identified loop-constrained heptapeptide exhibited a high specific affinity for mouse BMMSCs. Due to this specific affinity for BMMSCs, the present study provides a selective method to improve MSC-based TE strategies for the treatment of ONFH.
Collapse
Affiliation(s)
- Guozong Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Nianping Zhang
- The Teaching and Research Section of Surgery, The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Hua Xin
- Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 222000, P.R. China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Tiantong Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
43
|
Dorsal Root Ganglion Maintains Stemness of Bone Marrow Mesenchymal Stem Cells by Enhancing Autophagy through the AMPK/mTOR Pathway in a Coculture System. Stem Cells Int 2018; 2018:8478953. [PMID: 30363977 PMCID: PMC6186314 DOI: 10.1155/2018/8478953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/10/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022] Open
Abstract
Our previous studies found that sensory nerve tracts implanted in tissue-engineered bone (TEB) could result in better osteogenesis. To explore the mechanism of the sensory nerve promoting osteogenesis in TEB in vitro, a transwell coculture experiment was designed between dorsal root ganglion (DRG) cells and bone marrow mesenchymal stem cells (BMSCs). BMSC proliferation was determined by CCK8 assay, and osteo-, chondro-, and adipogenic differentiation were assessed by alizarin red, alcian blue, and oil red staining. We found that the proliferation and multipotent differentiation of BMSCs were all enhanced in the coculture group compared to the BMSCs group. Crystal violet staining showed that the clone-forming ability of BMSCs in the coculture group was also enhanced and mRNA levels of Sox2, Nanog, and Oct4 were significantly upregulated in the coculture group. Moreover, the autophagy level of BMSCs, regulating their stemness, was promoted in the coculture group, mediated by the AMPK/mTOR pathway. In addition, AMPK inhibitor compound C could significantly downregulate the protein expression of LC3 and the mRNA level of stemness genes in the coculture group. Finally, we found that the NK1 receptor antagonist, aprepitant, could partly block this effect, which indicated that substance P played an important role in the effect. Together, we conclude that DRG could maintain the stemness of BMSCs by enhancing autophagy through the AMPK/mTOR pathway in a transwell coculture system, which may help explain the better osteogenesis after implantation of the sensory nerve into TEB.
Collapse
|
44
|
Li P, Zhang S, Li K, Wang J, Liu M, Gu X, Fan Y. The promoting effect on pre-osteoblast growth under electrical and magnetic double stimulation based on PEDOT/Fe 3O 4/PLGA magnetic-conductive bi-functional scaffolds. J Mater Chem B 2018; 6:4952-4962. [PMID: 32255068 DOI: 10.1039/c8tb00985f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrical stimulation (ES) and magnetic stimulation (MS) can promote bone tissue formation in vivo. Loading ES and MS simultaneously would be very beneficial for bone tissue construction in vitro or in vivo. Magnetic-conductive bi-functional scaffolds which are favorable for the transfer of ES and MS, could further facilitate bone cell/tissue growth. Poly(3,4-ethylenedioxythiophene) (PEDOT)/Fe3O4/polylactic acid-co-glycolic acid (PLGA) magnetic-conductive bi-functional fibrous scaffolds were prepared through in situ polymerization of EDOT on Fe3O4/PLGA fibers. MC3T3-E1 pre-osteoblasts were incubated on the PEDOT/Fe3O4/PLGA fibrous scaffolds and were stimulated by electrical, magnetic and electrical-magnetic signals respectively to detect the impact of different stimulation on cell viability. The measured results show that the scaffolds possess good conductivity and superparamagnetic responsiveness. Furthermore, both electrical and magnetic stimulation promoted cell proliferation and magnetic stimulation could induce cell alignment arrangement. Meanwhile, under electrical-magnetic double stimulation, cell viability was much higher than for cells under single electrical or magnetic stimulation. The growth promoting effects of PEDOT/Fe3O4/PLGA fibrous scaffolds under electrical-magnetic double stimulation has great practical potential for bone tissue engineering.
Collapse
Affiliation(s)
- Ping Li
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cheng G, Davoudi Z, Xing X, Yu X, Cheng X, Li Z, Deng H, Wang Q. Advanced Silk Fibroin Biomaterials for Cartilage Regeneration. ACS Biomater Sci Eng 2018; 4:2704-2715. [DOI: 10.1021/acsbiomaterials.8b00150] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gu Cheng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50014, United States
| | - Xin Xing
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
| | - Xin Yu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
| | - Xin Cheng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
| | - Zubing Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50014, United States
| |
Collapse
|
46
|
Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018; 132:188-213. [PMID: 29729295 DOI: 10.1016/j.addr.2018.05.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine.
Collapse
|
47
|
Gong M, Chi C, Ye J, Liao M, Xie W, Wu C, Shi R, Zhang L. Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum. Colloids Surf B Biointerfaces 2018; 170:201-209. [PMID: 29909312 DOI: 10.1016/j.colsurfb.2018.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
Due to the significant role of the periosteum in bone regeneration, we hypothesised that using a specially engineered artificial periosteum could lead to an enhancement in osteogenesis in bone grafts. Herein, we describe our work aimed at fabricating an electrospun fibrous membrane as an artificial periosteum that exhibits flexibility, permeability and osteoinduction. This membrane was designed to cover the complex surface of bone grafts to facilitate and accelerate bone regeneration. The traditional Chinese medicine icariin (ICA) was subsequently introduced into poly (ε-caprolactone) (PCL) /gelatin nanofibers to fabricate an artificial periosteum for the first time. The effects of ICA content on morphology, physical properties, drug release profile, in vitro degradability, biocompatibility and osteogenic differentiation properties were investigated. The ICA-loaded electrospun membranes showed significant improvement in hydrophilicity, high mechanical strength, appropriate degradation rates and excellent biocompatibility. Furthermore, clear enhancement in alkaline phosphatase (ALP) activity, as well as an increase in osteocalcin (OCN) and type collagen I (COL I) expression in MC3T3-E1 cells were detected. Furthermore, we observed clear calcium deposition content in MC3T3-E1 cells cultured on ICA-loaded fibrous matrix. The membrane loaded with 0.05 wt.% ICA displayed properties contributing to cell attachment, proliferation and differentiation. These results indicate the huge potential of this ICA-loaded PCL/gelatin electrospun membrane as a biomimetic artificial periosteum to accelerate bone regeneration.
Collapse
Affiliation(s)
- Min Gong
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Cheng Chi
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jingjing Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meihong Liao
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenqi Xie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengai Wu
- Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Rui Shi
- Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China.
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
48
|
Zhang H, Zheng X, Ahmed W, Yao Y, Bai J, Chen Y, Gao C. Design and Applications of Cell-Selective Surfaces and Interfaces. Biomacromolecules 2018; 19:1746-1763. [PMID: 29665330 DOI: 10.1021/acs.biomac.8b00264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue regeneration involves versatile types of cells. The accumulation and disorganized behaviors of undesired cells impair the natural healing process, leading to uncontrolled immune response, restenosis, and/or fibrosis. Cell-selective surfaces and interfaces can have specific and positive effects on desired types of cells, allowing tissue regeneration with restored structures and functions. This review outlines the importance of surfaces and interfaces of biomaterials with cell-selective properties. The chemical and biological cues including peptides, antibodies, and other molecules, physical cues such as topography and elasticity, and physiological cues referring mainly to interactions between cells-cells and cell-chemokines or cytokines are effective modulators for achieving cell selectivity upon being applied into the design of biomaterials. Cell-selective biomaterials have also shown practical significance in tissue regeneration, in particular for endothelialization, nerve regeneration, capture of stem cells, and regeneration of tissues of multiple structures and functions.
Collapse
Affiliation(s)
- Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jun Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yicheng Chen
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine , Zhejiang University , Hangzhou 310016 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
49
|
Zhou Y, Chyu J, Zumwalt M. Recent Progress of Fabrication of Cell Scaffold by Electrospinning Technique for Articular Cartilage Tissue Engineering. Int J Biomater 2018; 2018:1953636. [PMID: 29765405 PMCID: PMC5889894 DOI: 10.1155/2018/1953636] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
As a versatile nanofiber manufacturing technique, electrospinning has been widely employed for the fabrication of tissue engineering scaffolds. Since the structure of natural extracellular matrices varies substantially in different tissues, there has been growing awareness of the fact that the hierarchical 3D structure of scaffolds may affect intercellular interactions, material transportation, fluid flow, environmental stimulation, and so forth. Physical blending of the synthetic and natural polymers to form composite materials better mimics the composition and mechanical properties of natural tissues. Scaffolds with element gradient, such as growth factor gradient, have demonstrated good potentials to promote heterogeneous cell growth and differentiation. Compared to 2D scaffolds with limited thicknesses, 3D scaffolds have superior cell differentiation and development rate. The objective of this review paper is to review and discuss the recent trends of electrospinning strategies for cartilage tissue engineering, particularly the biomimetic, gradient, and 3D scaffolds, along with future prospects of potential clinical applications.
Collapse
Affiliation(s)
- Yingge Zhou
- Department of Industrial, Manufacturing, and System Engineering, Texas Tech University, Lubbock, TX, USA
| | - Joanna Chyu
- Department of Orthopedic Surgery and Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mimi Zumwalt
- Department of Orthopedic Surgery and Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
50
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|