1
|
Shabbir MAB, Shamim M, Tahir AH, Sattar A, Qin W, Ahmad W, Ahmad W, Khan FA, Ashraf MA. Potential of ZnO nanoparticles for multi-drug resistant Escherichia coli having CRISPR-Cas from poultry market in Lahore. BMC Microbiol 2024; 24:355. [PMID: 39294579 PMCID: PMC11411796 DOI: 10.1186/s12866-024-03462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/14/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Apart from known factors such as irrational use of antibiotics and horizontal gene transfer, it is now reported that clustered regularly interspaced short palindromic repeats (CRISPR) are also associated with increased antimicrobial resistance. Hence, it is critical to explore alternatives to antibiotics to control economic losses. Therefore, the present study aimed to determine not only the association of CRISPR-Cas system with antibiotic resistance but also the potential of Zinc Oxide nanoparticles (ZnO-NPs) for avian pathogenic Escherichia coli (APEC) isolated from poultry market Lahore. MATERIALS AND METHODS Samples (n = 100) were collected from live bird markets of Lahore, and isolates were confirmed as Escherichia coli (E. coli) using the Remel One fast kit, and APEC was identified using PCR. The antibiotic resistance pattern in APEC was determined using the minimum inhibitory concentration (MIC), followed by genotypic confirmation of antibiotic-resistant genes using the PCR. The CRISPR-Cas system was also identified in multidrug-resistant (MDR) isolates, and its association with antibiotics was determined using qRT-PCR. The potential of ZnO-NPs was evaluated for multidrug-resistant (MDR) isolates by MIC. RESULTS All isolates of APEC were resistant to nalidixic acid, whereas 95% were resistant to chloramphenicol and 89% were resistant to streptomycin. Nineteen MDR APEC were found in the present study and the CRISPR-Cas system was detected in all of these MDR isolates. In addition, an increased expression of CRISPR-related genes was observed in the standard strain and MDR isolates of APEC. ZnO-NPs inhibited the growth of resistant isolates. CONCLUSIONS The findings showed the presence of the CRISPR-Cas system in MDR strains of APEC, along with the potential of ZnO-NPs for a possible solution to proceed. This highlights the importance of regulating antimicrobial resistance in poultry to reduce potential health consequences.
Collapse
Affiliation(s)
- Muhammad Abu Bakr Shabbir
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muqaddas Shamim
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adnan Hassan Tahir
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan
| | - Adeel Sattar
- Department of Pharmacology and Toxicology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wu Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 311300, Hangzhou, China
| | - Waqas Ahmad
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Narowal Campus, Lahore, Pakistan
| | - Farid Ahmed Khan
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Adnan Ashraf
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Angell CD, Lapurga G, Sun SH, Johnson C, Savardekar H, Rampersaud IV, Fletcher C, Albertson D, Ren C, Suarez-Kelly LP, Rampersaud AA, Carson WE. Targeting Myeloid-Derived Suppressor Cells via Dual-Antibody Fluorescent Nanodiamond Conjugate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1509. [PMID: 39330666 PMCID: PMC11434946 DOI: 10.3390/nano14181509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Fluorescent nanodiamonds (FNDs) are carbon-based nanomaterials that emit bright, photostable fluorescence and exhibit a modifiable surface chemistry. Myeloid-derived suppressor cells (MDSCs) are an immunosuppressive cell population known to expand in cancer patients and contribute to worse patient outcomes. To target MDSC, glycidol-coated FND were conjugated with antibodies against the murine MDSC markers, CD11b and GR1 (dual-Ab FND). In vitro, dual-Ab FND uptake by murine MDSC was significantly higher than IgG-coated FND (94.7% vs. 69.0%, p < 0.05). In vivo, intra-tumorally injected dual-Ab FND primarily localized to the tumor 2 and 24 h post-injection, as measured by in vivo fluorescence imaging and flow cytometry analysis of the spleen and tumor. Dual-Ab FND were preferentially taken up by intra-tumoral MDSC, representing 87.1% and 83.0% of FND+ cells in the tumor 2 and 24 h post-injection, respectively. Treatment of mice with anti-PD-L1 immunotherapy prior to intra-tumoral injection of dual-Ab FND did not significantly alter the uptake of FND by MDSC. These results demonstrate the ability of our novel dual-antibody conjugated FND to target MDSC and reveal a potential strategy for targeted delivery to other specific immune cell populations in future cancer research.
Collapse
Affiliation(s)
- Colin D Angell
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Gabriella Lapurga
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Steven H Sun
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Courtney Johnson
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Himanshu Savardekar
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | - Charles Fletcher
- Columbus NanoWorks, Inc., 1507 Chambers Road, Columbus, OH 43212, USA
| | - David Albertson
- Columbus NanoWorks, Inc., 1507 Chambers Road, Columbus, OH 43212, USA
| | - Casey Ren
- The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | - William E Carson
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Subramanian G, Kalidasan K, Quah S, Han QCG, Chan J, Wacker MG, Sampath P. Breaking barriers: Innovative approaches for skin delivery of RNA therapeutics. Int J Pharm 2024; 661:124435. [PMID: 38986965 DOI: 10.1016/j.ijpharm.2024.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.
Collapse
Affiliation(s)
- Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Kamaladasan Kalidasan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Shan Quah
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Qi Chou Gavin Han
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore
| | - Justin Chan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Matthias G Wacker
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore.
| | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore; Program in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
4
|
Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH, Akhtar J. Nanodiamonds: A Cutting-Edge Approach to Enhancing Biomedical Therapies and Diagnostics in Biosensing. CHEM REC 2024; 24:e202400006. [PMID: 38530037 DOI: 10.1002/tcr.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing, 100F190, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur, 22620, Pakistan
| | - Talib Hussain Bangalni
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| |
Collapse
|
5
|
Huang Z, Xiao Z, Yu L, Liu J, Yang Y, Ouyang W. Tumor-associated macrophages in non-small-cell lung cancer: From treatment resistance mechanisms to therapeutic targets. Crit Rev Oncol Hematol 2024; 196:104284. [PMID: 38311012 DOI: 10.1016/j.critrevonc.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide. Different treatment approaches are typically employed based on the stage of NSCLC. Common clinical treatment methods include surgical resection, drug therapy, and radiation therapy. However, with the introduction and utilization of immune checkpoint inhibitors, cancer treatment has entered a new era, completely revolutionizing the treatment landscape for various cancers and significantly improving overall patient survival. Concurrently, treatment resistance often poses a critical challenge, with many patients experiencing disease progression following an initial response due to treatment resistance. Increasing evidence suggests that the tumor microenvironment (TME) plays a pivotal role in treatment resistance. Tumor-associated macrophages (TAMs) within the TME can promote treatment resistance in NSCLC by secreting various cytokines activating signaling pathways, and interacting with other immune cells. Therefore, this article will focus on elucidating the key mechanisms of TAMs in treatment resistance and analyze how targeting TAMs can reduce the levels of treatment resistance in NSCLC, providing a comprehensive understanding of the principles and approaches to overcome treatment resistance in NSCLC.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ziqi Xiao
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liqing Yu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayu Liu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yihan Yang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang 330006, Jiangxi Province, China.
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
6
|
Tegafaw T, Liu S, Ahmad MY, Ali Al Saidi AK, Zhao D, Liu Y, Yue H, Nam SW, Chang Y, Lee GH. Production, surface modification, physicochemical properties, biocompatibility, and bioimaging applications of nanodiamonds. RSC Adv 2023; 13:32381-32397. [PMID: 37928839 PMCID: PMC10623544 DOI: 10.1039/d3ra06837d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Nanodiamonds (ND) are chemically inert and stable owing to their sp3 covalent bonding structure, but their surface sp2 graphitic carbons can be easily homogenized with diverse functional groups via oxidation, reduction, hydrogenation, amination, and halogenation. Further surface conjugation of NDs with hydrophilic ligands can boost their colloidal stability and functionality. In addition, NDs are non-toxic as they are made of carbons. They exhibit stable fluorescence without photobleaching. They also possess paramagnetic and ferromagnetic properties, making them suitable for use as a new type of fluorescence imaging (FI) and magnetic resonance imaging (MRI) probe. In this review, we focused on recently developed ND production methods, surface homogenization and functionalization methods, biocompatibilities, and biomedical imaging applications as FI and MRI probes. Finally, we discussed future perspectives.
Collapse
Affiliation(s)
- Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| |
Collapse
|
7
|
Sotoma S, Abe H, Miyanoiri Y, Ohshima T, Harada Y. Highly Dispersed 3C Silicon Carbide Nanoparticles with a Polydopamine/Polyglycerol Shell for Versatile Functionalization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21413-21424. [PMID: 37071076 DOI: 10.1021/acsami.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Silicon carbide (SiC) nanoparticles containing lattice defects are attracting considerable attention as next-generation imaging probes and quantum sensors for visualizing and sensing life activities. However, SiC nanoparticles are not currently used in biomedical applications because of the lack of technology for controlling their physicochemical properties. Therefore, in this study, SiC nanoparticles are deaggregated, surface-coated, functionalized, and selectively labeled to biomolecules of interest. A thermal-oxidation chemical-etching method is developed for deaggregating and producing a high yield of dispersed metal-contaminant-free SiC nanoparticles. We further demonstrated a polydopamine coating with controllable thickness that can be used as a platform for decorating gold nanoparticles on the surface, enabling photothermal application. We also demonstrated a polyglycerol coating, which gives excellent dispersity to SiC nanoparticles. Furthermore, a single-pot method is developed to produce mono/multifunctional polyglycerol-modified SiC nanoparticles. Using this method, CD44 proteins on cell surfaces are selectively labeled through biotin-mediated immunostaining. The methods developed in this study are fundamental for applying SiC nanoparticles to biomedical applications and should considerably accelerate the development of various SiC nanoparticles to exploit their potential applications in bioimaging and biosensing.
Collapse
Affiliation(s)
- Shingo Sotoma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Leung HM, Chu HC, Mao ZW, Lo PK. Versatile nanodiamond-based tools for therapeutics and bioimaging. Chem Commun (Camb) 2023; 59:2039-2055. [PMID: 36723092 DOI: 10.1039/d2cc06495b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanodiamonds (NDs) are a remarkable class of carbon-based nanoparticles in nanomedicine which have recently become a hot topic of research due to their unique features including functionalization versatility, tunable opto-magnetic properties, chemical stability, minimal cytotoxicity, high affinity to biomolecules and biocompatibility. These attractive features make NDs versatile tools for a wide range of biologically relevant applications. In this feature article, we discuss the opto-magnetic properties of negatively charged nitrogen vacancy (NV-) centres in NDs as fluorescence probes. We further discuss the frequently used chemical methods for surface chemistry modification of NDs which are relevant for biomedical applications. The in vitro and in vivo biocompatibility of modified NDs is also highlighted. Subsequently, we give an overview of recent state-of-the-art biomedical applications of NDs as versatile tools for bioimaging and detection, and as targeting nanocarriers for chemotherapy, photodynamic therapy, gene therapy, antimicrobial and antiviral therapy, and bone tissue engineering. Finally, we pinpoint the main challenges for NDs in biomedical applications which lie ahead and discuss perspectives on future directions in advancing the field for practical applications and clinical translations.
Collapse
Affiliation(s)
- Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Hoi Ching Chu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Zheng-Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Komatsu N. Poly(Glycerol)-Based Biomedical Nanodevices Constructed by Functional Programming on Inorganic Nanoparticles for Cancer Nanomedicine. Acc Chem Res 2023; 56:106-116. [PMID: 36602954 DOI: 10.1021/acs.accounts.2c00615] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanomedicine is promising to improve conventional cancer medicine by making diagnosis and therapy more accurate and more effective in a more personalized manner. A key of the cancer nanomedicine is construction of medical nanodevices by programming various requisite functions to nanoparticles (NPs). As compared to that of soft NPs, including organic micelles and polymers, fabrication of an inorganic NP based nanodevice is still challenging; the approved nanoformulations have been confined to the limited number of superparamagnetic iron oxide NPs (SPIONs). The major challenges lie in how to program the requisite functions to inorganic NPs. In spite the much denser and less hydrophilic properties of inorganic NPs, most of the following functions have to be programmed for their in vivo applications: (A) high dispersibility in a physiological environment, (B) high stealth efficiency to slip through the trap by liver and spleen, (C) high targeting efficiency to cancer tissue, (D) clear visualization of cancer for diagnosis, and (E) high anticancer activity for treatment.In our approach, poly(glycerol) (PG), containing a hydroxy group at every monomer unit, was found as a better alternative to poly(ethylene glycol) (PEG), the most commonly used hydrophilic polymer, giving (A) high dispersibility to inorganic NPs. Although most of the inorganic NPs are not dense in functional groups, the hyperbranched structure with many hydroxy groups in PG turns the less functional surface into highly functional one, imparting not only good hydrophilicity but also (B) high stealth efficiency as we reported recently. In addition, a number of hydroxy groups in PG afford the structural or functional extensibility to introduce the additional layer or function. This enables us to design and construct a three-layer architecture consisting of a core inorganic NP, a hydrophilic and stealthy PG layer, and a functional molecule layer, where their interfaces are connected firmly by covalent bonds. The three-layered nanodevice is very flexible in its design for the following reasons: The PG coating can be applied to a wide variety of inorganic NPs with various functions, and various functional moieties can be introduced on the PG layer as a functional molecule layer. Owing to the versatility of the three-layer model, the rest of the above functions (C)-(E) can be programed in the NP core and/or the outmost layer in nanodevices.In this Account, the author described first the methodology for precise construction and quantitative characterization of various biomedical nanodevices. This fundamental aspect of this research has been achieved by "applying organic chemistry to nanomaterials" which is the concept of our research. That is, the rich chemistry in synthesis and characterization of organic compounds has been applied to the nanodevice fabrication and characterization. Second, evaluation of the functions programmed in the nanodevices is described in terms of stealth and targeting efficiencies, cancer diagnosis and therapy, and biomedical sensing. This stage in our research made us more interdisciplinary from chemistry and nanoscience to biology and medicine. The following research spiral has been established in our group to strongly promote the improvement of our biomedical nanodevices; nanodevice design → precise construction → quantitative characterization → functional evaluation.
Collapse
Affiliation(s)
- Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Kim W, Ly NK, He Y, Li Y, Yuan Z, Yeo Y. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev 2023; 192:114635. [PMID: 36503885 PMCID: PMC9812987 DOI: 10.1016/j.addr.2022.114635] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
For systemically delivered nanoparticles to reach target tissues, they must first circulate long enough to reach the target and extravasate there. A challenge is that the particles end up engaging with serum proteins and undergo immune cell recognition and premature clearance. The serum protein binding, also known as protein corona formation, is difficult to prevent, even with artificial protection via "stealth" coating. Protein corona may be problematic as it can interfere with the interaction of targeting ligands with tissue-specific receptors and abrogate the so-called active targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum protein binding to circulating nanoparticles may be actively exploited to enhance their downstream delivery. This review summarizes known issues of protein corona and traditional strategies to control the corona, such as avoiding or overriding its formation, as well as emerging efforts to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of prevailing challenges in exploiting protein corona for nanoparticle development.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nhu Ky Ly
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Université Paris Cité, Faculté de Santé, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Yanying He
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongyue Yuan
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
13
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
14
|
A nanodiamond chemotherapeutic folate receptor-targeting prodrug with triggerable drug release. Int J Pharm 2022; 630:122432. [PMID: 36435503 DOI: 10.1016/j.ijpharm.2022.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Cancer chemotherapy is often accompanied by severe off-target effects that both damage quality of life and can decrease therapeutic compliance. This could be minimized through selective delivery of cytotoxic agents directly to the cancer cells. This would decrease the drug dose, consequently minimizing side effects and cost. With this goal in mind, a dual-gated folate-functionalized nanodiamond drug delivery system (NPFSSD) for doxorubicin with activatable fluorescence and cytotoxicity has been prepared. Both the cytotoxic activity and the fluorescence of doxorubicin (DOX) are quenched when it is covalently immobilized on the nanodiamond. The NPFSSD is preferentially uptaken by cancer cells overexpressing the folate receptor. Then, once inside a cell, the drug is preferentially released within tumor cells due to their high levels of endogenous of glutathione, required for releasing DOX through cleavage of a disulfide linker. Interestingly, once free DOX is loaded onto the nanodiamond, it can also evade resistance mechanisms that use protein pumps to remove drugs from the cytoplasm. This nanodrug, used in an in vivo model with local injection of drugs, effectively inhibits tumor growth with fewer side effects than direct injection of free DOX, providing a potentially powerful platform to improve therapeutic outcomes.
Collapse
|
15
|
Salmi MS, Ahmed U, Aslfattahi N, Rahman S, Hardy JG, Anwar A. Potent antibacterial activity of MXene-functionalized graphene nanocomposites. RSC Adv 2022; 12:33142-33155. [PMID: 36425203 PMCID: PMC9673471 DOI: 10.1039/d2ra04944a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 09/03/2024] Open
Abstract
Two dimensional (2D) nanomaterials display properties with significant biological utility (e.g., antimicrobial activity). In this study, MXene-functionalized graphene (FG) nanocomposites with Ti3C2T x in varying ratios (FG : Ti3C2T x , 25 : 75%, 50 : 50%, and 75 : 25%) were prepared and characterized via scanning electron microscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), and zeta potential analysis. Their cytotoxicity was assessed using immortalized human keratinocytes (HaCaT) cells at three different timepoints, and antibacterial activity was assessed using Gram-positive Methicillin resistant Staphylococcus aureus, MRSA, and Gram-negative neuro-pathogenic Escherichia coli K1 (E. coli K1) in vitro. The nanomaterials and composites displayed potent antibacterial effects against both types of bacteria and low cytotoxicity against HaCaT cells at 200 μg mL-1, which is promising for their utilization for biomedical applications.
Collapse
Affiliation(s)
- Mohammed Sadey Salmi
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University Selangor 47500 Malaysia +60-(0)3-5635-8630 +60-(0)3-7491-8622 ext. 7174
| | - Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University Selangor 47500 Malaysia +60-(0)3-5635-8630 +60-(0)3-7491-8622 ext. 7174
| | - Navid Aslfattahi
- Department of Fluid Mechanics and Thermodynamics, Faculty of Mechanical Engineering, Czech Technical University in Prague Technická 4 166 07 Prague Czech Republic
| | - Saidur Rahman
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University Selangor Malaysia
| | - John George Hardy
- Department of Chemistry, Faraday Building, Lancaster University Lancaster Lancashire LA1 4YB UK
- Materials Science Institute, Faraday Building, Lancaster University Lancaster Lancashire LA1 4YB UK
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University Selangor 47500 Malaysia +60-(0)3-5635-8630 +60-(0)3-7491-8622 ext. 7174
| |
Collapse
|
16
|
Targeted photodynamic therapy of glioblastoma mediated by platelets with photo-controlled release property. Biomaterials 2022; 290:121833. [PMID: 36201945 DOI: 10.1016/j.biomaterials.2022.121833] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
Photodynamic therapy (PDT) has recently emerged as a promising, targeted treatment modality for glioblastoma (GBM) which is the most vicious type of brain tumor. Successful GBM-PDT hinges upon light activation of a photosensitizer accumulated in the tumor. However, inadequate tumor accumulation of photosensitizer severely limits the success of PDT of GBM. To tackle this difficulty, we herein propose a drug delivery strategy of "platelets with photo-controlled release property". This strategy exploits platelets as carriers to deliver a photosensitizer which, in the current study, is a nano-composite (BNPD-Ce6) comprised of chlorine e6 (Ce6) loaded to boron nitride nanoparticles with a surface coating of polyglycerol and doxorubicin. To demonstrate the working mechanism and therapeutic advantage of this strategy, we loaded mouse platelets with BNPD-Ce6 to yield the nano-device BNPD-Ce6@Plt. In vitro experiments showed BNPD-Ce6@Plt to have a high loading capacity and efficiency. Laser irradiation (LI) at a wavelength of 808 nm induced ROS generation in BNPD-Ce6@Plt which displayed rapid activation, aggregation, and speedy discharge of BNPD-Ce6 into co-cultured GL261 mouse GBM cells which in turn, after LI, exhibited marked ROS generation, DNA damage, reduced viability, and cell death. In vivo animal experiments, mice that were intravenously injected with BNPD-Ce6@Plt exhibited rapid and extensive BNPD-Ce6 accumulation in both subcutaneous and intra-brain GL261 tumors shortly after LI of the tumors and the tumors displayed massive tissue necrosis after LI for a second time. Finally, a PDT regimen of two intravenous BNPD-Ce6@Plt injections each followed by multiple times of extracranial LI at the tumor site significantly inhibited the growth of intra-brain GL261 tumors and markedly increased the survival of the host animals. No apparent tissue damage was found in vital organs. Our findings make a compelling case for the notion that platelets are efficient carriers that can photo-controllably deliver nano-photosensitizers to achieve highly targeted and efficacious PDT of GBM. This work presents a novel approach to GBM-PDT with great translational potential.
Collapse
|
17
|
Chen H, Zhang Q. Polyglycerol fatty acid esters as alternatives to PEGylated lipids for liposome coating. Nanomedicine (Lond) 2022; 17:1027-1035. [PMID: 36000357 DOI: 10.2217/nnm-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Polyglycerol (PG) is a type of biocompatible hydrophilic polyether polyol, and it is considered as a potential alternative to polyethylene glycol (PEG) in modifying nanomedicines. Materials & methods: Polyglycerol fatty acid esters (PGFEs) were modified onto liposomes and their serum stability, pharmacokinetics, in vivo distribution and the capacity to induce anti-PEG IgM were compared with PEGylated liposomes (PEG-Lips). Results: Polyglycerol 10-monostearate (PG-10-MS) displayed considerable serum stability and compatibility with mice red blood cells, and it significantly prolonged the blood circulation of liposomes in the pharmacokinetics study compared with the unmodified liposomes, with a similar biodistribution pattern to that of the PEG-Lips. Moreover, PGFE-modified liposomes were less likely to induce the production of anti-PEG IgM. Conclusion: PGFEs could be considered as good candidates to replace PEG lipids for the preparation of liposomes.
Collapse
Affiliation(s)
- Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
18
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
19
|
Li QR, Xu HZ, Xiao RC, Liu Y, Tang JM, Li J, Yu TT, Liu B, Li LG, Wang MF, Han N, Xu YH, Wang C, Komatsu N, Zhao L, Peng XC, Li TF, Chen X. Platelets are highly efficient and efficacious carriers for tumor-targeted nano-drug delivery. Drug Deliv 2022; 29:937-949. [PMID: 35319321 PMCID: PMC8956315 DOI: 10.1080/10717544.2022.2053762] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present work aims to prove the concept of tumor-targeted drug delivery mediated by platelets. Doxorubicin (DOX) attached to nanodiamonds (ND-DOX) was investigated as the model payload drug of platelets. In vitro experiments first showed that ND-DOX could be loaded in mouse platelets in a dose-dependent manner with a markedly higher efficiency and capacity than free DOX. ND-DOX-loaded platelets (Plt@ND-DOX) maintained viability and ND-DOX could be stably held in the platelets for at least 4 hr. Next, mouse Lewis lung cancer cells were found to activate Plt@ND-DOX and thereby stimulate cargo unloading of Plt@ND-DOX. The unloaded ND-DOX was taken up by co-cultured cancer cells which consequently exhibited loss of viability, proliferation suppression and apoptosis. In vivo, Plt@ND-DOX displayed significantly prolonged blood circulation time over ND-DOX and DOX in mice, and Lewis tumor grafts demonstrated infiltration, activation and cargo unloading of Plt@ND-DOX in the tumor tissue. Consequently, Plt@ND-DOX effectively reversed the growth of Lewis tumor grafts which exhibited significant inhibition of cell proliferation and apoptosis. Importantly, Plt@ND-DOX displayed a markedly higher therapeutic potency than free DOX but without the severe systemic toxicity associated with DOX. Our findings are concrete proof of platelets as efficient and efficacious carriers for tumor-targeted nano-drug delivery with the following features: 1) large loading capacity and high loading efficiency, 2) good tolerance of cargo drug, 3) stable cargo retention and no cargo unloading in the absence of stimulation, 4) prolonged blood circulation time, and 5) excellent tumor distribution and tumor-activated drug unloading leading to high therapeutic potency and few adverse effects. Platelets hold great potential as efficient and efficacious carriers for tumor-targeted nano-drug delivery.
Collapse
Affiliation(s)
- Qi-Rui Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Rong-Cheng Xiao
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jun-Ming Tang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ting-Ting Yu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
| | - Bin Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
| | - Liu-Gen Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
| | - Mei-Fang Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
| | - Ning Han
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xing-Chun Peng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
| | - Tong-Fei Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
20
|
Liu H, Guo C, Shang Y, Zeng L, Jia H, Wang Z. A Supramolecular Nanoparticle of Pemetrexed Improves the Anti-Tumor Effect by Inhibiting Mitochondrial Energy Metabolism. Front Bioeng Biotechnol 2022; 9:804747. [PMID: 34993192 PMCID: PMC8724251 DOI: 10.3389/fbioe.2021.804747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, supramolecular nanoparticles consisting of peptides and drugs have been regarded as useful drug delivery systems for tumor therapy. Pemetrexed (PEM) is a multitarget drug that is effective for many cancers, such as non-small cell lung cancer. Here, RGD-conjugated molecular nanoparticles mainly composed of an anticancer drug of PEM (PEM-FFRGD) were prepared to deliver PEM to tumors. The peptide could self-assemble into a nanoparticle structure with diameter of about 20 nm. Moreover, the nanoparticle showed favorable solubility and biocompatibility compared with those of PEM, and the MTT test on A549 and LLC cells showed that the PEM-FFRGD nanoparticles had stronger cytotoxic activity than PEM alone. Most importantly, the nanoparticle could promote tumor apoptosis and decrease mitochondrial energy metabolism in tumors. In vivo studies indicated that PEM-FFRGD nanoparticles had enhanced antitumor efficacy in LLC tumor-bearing mice compared to that of PEM. Our observations suggested that PEM-FFRGD nanoparticles have great practical potential for application in lung cancer therapy.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | | | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Haixue Jia
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
21
|
Mba IE, Nweze EI. Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:25-51. [DOI: 10.1007/978-981-16-9190-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
22
|
Singh M, Mazumder B. Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. Pharm Nanotechnol 2021; 10:42-55. [PMID: 34951376 DOI: 10.2174/2211738510666211222111938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the "Blood-Brain Barrier", which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier. OBJECTIVE This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented. CONCLUSION NDs could be the next"revolution "in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities. Lay Summary: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.
Collapse
Affiliation(s)
- Mohini Singh
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| | - Bhaskar Mazumder
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| |
Collapse
|
23
|
Rafiee Z, Omidi S. Modification of carbon-based nanomaterials by polyglycerol: recent advances and applications. RSC Adv 2021; 12:181-192. [PMID: 35424494 PMCID: PMC8978678 DOI: 10.1039/d1ra07554c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperbranched polymers, a subclass of dendritic polymers, mimic nature's components such as trees and nerves. Hyperbranched polyglycerol (HPG) is a hyperbranched polyether with outstanding physicochemical properties, including high water-solubility and functionality, biocompatibility, and an antifouling feature. HPG has attracted great interest in the modification of different objects, in particular carbon-based nanomaterials. In this review, recent advances in the synthesis and application of HPG to modify carbon-based nanomaterials, including graphene, carbon nanotubes, fullerene, nanodiamonds, carbon dots, and carbon fibers, are reviewed.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Chemistry, Malayer University Malayer Iran
| | - Sakineh Omidi
- Shahid Beheshti University of Medical Sciences Tehran Iran +98-9181438542
| |
Collapse
|
24
|
Moradi E, Naserzadeh P, Brouki Millan P, Ashtari B. Selective cytotoxicity mechanisms and biodistribution of diamond nanoparticles on the skin cancer in C57 mouse. Biomed Mater 2021; 17. [PMID: 34826833 DOI: 10.1088/1748-605x/ac3d99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/26/2021] [Indexed: 11/11/2022]
Abstract
The cytotoxicity of diamond nanoparticles (DNs) to various cell lines has been on focus by numerous scientists. The cellular toxicity system of DNs has not been fully understood or explained in skin cancer, at this point. This research was carried out to discover and reveal the potential impacts of DNs on the secluded brain, heart, liver, kidney, and skin in addition to evaluation of their cytotoxicity mechanism under test conditions. Their biological activities, for example cell viability, the level of reactive oxygen species (ROS), lipid peroxidation, cytochrome c release and Apoptosis/Necrosis were evaluated. Additionally, the bio-distribution of these nanomaterials in tissues was examined in the C57 mouse. Relying on the findings of the investigation, DNs were found to increase the ROS level, Malondialdehyde (MDA) content, release of cytochrome c, and cell death in skin significantly compared to other groups. In the C57 mouse, DNs were observed to have accumulated in skin tissue more intensively than they did in other organs. The present study presents for the proof that DNs can completely induce cell death signaling in skin cancer without bringing about a high cytotoxicity in other tissues. Results suggest that DNs can be valuable in recognition of skin cancer.
Collapse
Affiliation(s)
- Elham Moradi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Millan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Li YJ, Wu JY, Liu J, Qiu X, Xu W, Tang T, Xiang DX. From blood to brain: blood cell-based biomimetic drug delivery systems. Drug Deliv 2021; 28:1214-1225. [PMID: 34142628 PMCID: PMC8259840 DOI: 10.1080/10717544.2021.1937384] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Brain drug delivery remains a major difficulty for several challenges including the blood-brain barrier, lesion spot targeting, and stability during circulation. Blood cells including erythrocytes, platelets, and various subpopulations of leukocytes have distinct features such as long-circulation, natural targeting, and chemotaxis. The development of biomimetic drug delivery systems based on blood cells for brain drug delivery is growing fast by using living cells, membrane coating nanotechnology, or cell membrane-derived nanovesicles. Blood cell-based vehicles are superior delivery systems for their engineering feasibility and versatile delivery ability of chemicals, proteins, and all kinds of nanoparticles. Here, we focus on advances of blood cell-based biomimetic carriers for from blood to brain drug delivery and discuss their translational challenges in the future.
Collapse
Affiliation(s)
- Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jihua Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiaohan Qiu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
26
|
Zhang Y, Zhou Q, Chen J, Tong J, Liang T, Zhao L. Doxorubicin-conjugated <sup>10</sup>B<sub>4</sub>C nanoparticles: Preparation and application in combined boron neutron capturetherapy/chemotherapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Abstract
Around three out of one hundred thousand people are diagnosed with glioblastoma multiforme, simply called glioblastoma, which is the most common primary brain tumor in adults. With a dismal prognosis of a little over a year, receiving a glioblastoma diagnosis is oftentimes fatal. A major advancement in its treatment was made almost two decades ago when the alkylating chemotherapeutic agent temozolomide (TMZ) was combined with radiotherapy (RT). Little progress has been made since then. Therapies that focus on the modulation of autophagy, a key process that regulates cellular homeostasis, have been developed to curb the progression of glioblastoma. The dual role of autophagy (cell survival or cell death) in glioblastoma has led to the development of autophagy inhibitors and promoters that either work as monotherapies or as part of a combination therapy to induce cell death, cellular senescence, and counteract the ability of glioblastoma stem cells (GSCs) for initiating tumor recurrence. The myriad of cellular pathways that act upon the modulation of autophagy have created contention between two groups: those who use autophagy inhibition versus those who use promotion of autophagy to control glioblastoma growth. We discuss rationale for using current major therapeutics, their molecular mechanisms for modulation of autophagy in glioblastoma and GSCs, their potentials for making strides in combating glioblastoma progression, and their possible shortcomings. These shortcomings may fuel the innovation of novel delivery systems and therapies involving TMZ in conjunction with another agent to pave the way towards a new gold standard of glioblastoma treatment.
Collapse
Affiliation(s)
- Amanda J Manea
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
28
|
Arif M, Sharaf M, Samreen, Dong Q, Wang L, Chi Z, Liu CG. Bacteria-targeting chitosan/carbon dots nanocomposite with membrane disruptive properties improve eradication rate of Helicobacter pylori. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2423-2447. [PMID: 34644235 DOI: 10.1080/09205063.2021.1972559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We designed a bacteria-targeting and membrane disrupting nanocomposite for successful antibiotic treatment of Helicobacter pylori (H. pylori) infections in the present study. The antibacterial nanocomposite was prepared from thiolated-ureido-chitosan (Cys-U-CS) and anionic poly (malic acid) (PMLA) via electrostatic interaction decorated with dual functional ammonium citrate carbon quantum dots (CDs). Cys-U-CS serves as a targeting building block for attaching antibacterial nanocomposite onto bacterial cell surface through Urel-mediated protein channel. Simultaneously, membrane disrupting CDs generate ROS and lyse the bacterial outer membrane, allowing antibiotics to enter the intracellular cytoplasm. As a result, Cys-U-CS/PMLA@CDs nanocomposite (UCPM-NPs) loaded with the antibiotic amoxicillin (AMX) not only effectively target and kill bacteria in vitro via Urel-mediated adhesion but also efficiently retain in the stomach where H. pylori reside, serving as an effective drug carrier for abrupt on-site release of AMX into the bacterial cytoplasm. Furthermore, since thiolated-chitosan has a mucoadhesive property, UCPM-NPs may adhere to the stomach mucus layer and pass through it swiftly. According to our results, bacterial targeting is crucial for guaranteeing successful antibiotic treatment. The bacteria targeting UCPM-NPs with membrane disruptive ability may establish a promising drug delivery system for the effective targeted delivery of antibiotics to treat H. pylori infections.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Mohamed Sharaf
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China.,Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Samreen
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Quanjiang Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Lili Wang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Zhe Chi
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Chen-Guang Liu
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| |
Collapse
|
29
|
Xu HZ, Li TF, Wang C, Ma Y, Liu Y, Zheng MY, Liu ZJY, Chen JB, Li K, Sun SK, Komatsu N, Xu YH, Zhao L, Chen X. Synergy of nanodiamond-doxorubicin conjugates and PD-L1 blockade effectively turns tumor-associated macrophages against tumor cells. J Nanobiotechnology 2021; 19:268. [PMID: 34488792 PMCID: PMC8422639 DOI: 10.1186/s12951-021-01017-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/28/2021] [Indexed: 01/18/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) are the most abundant stromal cells in the tumor microenvironment. Turning the TAMs against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically “cold” tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells’ immunogenicity and thereby reactivate the TAMs into the anti-tumor M1 phenotype. Results Nano-DOX were first shown to stimulate the tumor cells and the TAMs to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAMs. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1’s action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAMs both by blocking Nano-DOX-induced PD-L1 in the TAMs and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAMs with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX’s action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. Conclusions PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAMs to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAMs, achieves enhanced activation of TAM-mediated anti-tumor response. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01017-w.
Collapse
Affiliation(s)
- Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Tong-Fei Li
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.,Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, 442000, Hubei, China
| | - Chao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Yan Ma
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Mei-Yan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Zhang-Jun-Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Jin-Bo Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Shi-Kuan Sun
- School of Material Science and Energy Engineering, Foshan University, Foshan, 528000, Guangdong, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
30
|
Peng Y, Wang Z, Peña J, Guo Z, Xing J. Effect of TEOA on the Process of Photopolymerization at 532 nm and Properties of Nanogels. Photochem Photobiol 2021; 98:132-140. [PMID: 34390000 DOI: 10.1111/php.13505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Nanogel is an important kind of biomaterials applied for wound dressings, drug delivery, medical diagnostics and biosensors. The properties of nanogels closely depend on the density of the crosslinking network. In this study, the role of triethanolamine (TEOA) in the effect on the crosslinking degree of nanogels based on poly(ethylene glycol) diacrylate (PEGDA) was investigated and illustrated. The effect of TEOA on the process of photopolymerization at 532 nm and properties of the nanogels was systematically investigated by using UV-vis spectroscopy, FT-IR spectroscopy, 1 H NMR, DLS, SEM, AFM and DSC. In brief, the double bond conversion of photopolymerization and the crosslinking degree of nanogels can be effectively regulated by TEOA.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhipeng Wang
- Tianjin Institute of Metrological Supervision and Testing, Tianjin, 300192, China
| | - Jhair Peña
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhiming Guo
- Tianjin Institute of Metrological Supervision and Testing, Tianjin, 300192, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
31
|
Efficient Delivery of Chlorin e6 by Polyglycerol-Coated Iron Oxide Nanoparticles with Conjugated Doxorubicin for Enhanced Photodynamic Therapy of Melanoma. Mol Pharm 2021; 18:3601-3615. [PMID: 34388342 DOI: 10.1021/acs.molpharmaceut.1c00510] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.
Collapse
|
32
|
Wu Y, Cao S, Alam MNA, Raabe M, Michel-Souzy S, Wang Z, Wagner M, Ermakova A, Cornelissen JJLM, Weil T. Fluorescent nanodiamonds encapsulated by Cowpea Chlorotic Mottle Virus (CCMV) proteins for intracellular 3D-trajectory analysis. J Mater Chem B 2021; 9:5621-5627. [PMID: 34184014 PMCID: PMC8292973 DOI: 10.1039/d1tb00890k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023]
Abstract
Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-magnetic properties of the coated NDs as well as the secondary structure of CPs adsorbed on the surface of NDs. In addition, the ND-CP shows excellent biocompatibility both in vitro and in vivo. Long-term 3D trajectories of the ND-CP with fine spatiotemporal resolutions are recorded; their intracellular motions are analyzed by different models, and the diffusion coefficients are calculated. The ND-CP with its brilliant optical properties and stability under physiological conditions provides us with a new tool to advance the understanding of cell biology, e.g., endocytosis, exocytosis, and active transport processes in living cells as well as intracellular dynamic parameters.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China and Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Md Noor A Alam
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Sandra Michel-Souzy
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Measurement and Automation, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, Neubiberg 85579, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Anna Ermakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Jeroen J L M Cornelissen
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
33
|
Yuan SJ, Wang C, Xu HZ, Liu Y, Zheng MY, Li K, Sun SK, Komatsu N, Zhao L, Chen X. Conjugation with nanodiamonds via hydrazone bond fundamentally alters intracellular distribution and activity of doxorubicin. Int J Pharm 2021; 606:120872. [PMID: 34246743 DOI: 10.1016/j.ijpharm.2021.120872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
Doxorubicin (DOX) has been widely incorporated in various delivery forms for tareted treatment of malignant tumors such as triple-negative breast cancer (TNBC), with numerous studies reporting higher therapeutic efficacy and lower toxicity at the same time. However, little attention has been paid to whether DOX in a delivery form acts with the same actions and processes as in free form at the cellular level. This question was investigated in the present study wherein DOX conjugated with polyglycerol-coated nanodiamonds through the pH-sensitive hydrazone bond (Nano-DOX) was compared with DOX in free form on the 4T1 mouse TNBC model. We first found Nano-DOX to have a distinct intracellular distribution profile from DOX. Internalized Nano-DOX mainly stayed in the lysosomes slowly releasing DOX into the cytoplasm and then the nucleus whereas DOX displayed both nuclear and lysosomal distribution after cell uptake. Next, Nano-DOX was shown to induce endoplasmic reticulum (ER) stress without substantial DNA damage while DOX caused massive DNA damage as well as ER stress. Consequently, Nano-DOX only caused minimal activation of pro-inflammatory signaling mediated by MAPK/ERK, NF-κB and STAT3 as seen in response to DOX-inflicted DNA damage. Consistently, DOX-induced activities of ABC transporters, CXCL-1, GM-CSF and IL-6, which are tumor protective events downstream to the pro-inflammatory signaling, were also minimal in Nano-DOX-treated cancer cells. These findings are compelling proof that a chemotherapy in nano form can have distinct intracellular pharmacokinetics from its free from, which can result in altered cellular effects of the drug. Implications of these findings are discussed with an emphasis on nano-drug design, tumor pharmacology and chemoresistance.
Collapse
Affiliation(s)
- Shen-Jun Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan 430072, China; Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Chao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan 430072, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan 430072, China
| | - Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan 430072, China
| | - Mei-Yan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan 430072, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Shi-Kuan Sun
- School of Material Science and Energy Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430072, China.
| |
Collapse
|
34
|
Han HH, Kang H, Kim SJ, Pal R, Kumar ATN, Choi HS, Hahn SK. Fluorescent nanodiamond - hyaluronate conjugates for target-specific molecular imaging. RSC Adv 2021; 11:23073-23081. [PMID: 34262698 PMCID: PMC8240508 DOI: 10.1039/d1ra03936a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Despite wide investigation on molecular imaging contrast agents, there are still strong unmet medical needs to enhance their signal-to background ratio, brightness, photostability, and biocompatibility with multimodal imaging capability. Here, we assessed the feasibility of fluorescent nanodiamonds (FNDs) as carbon based photostable and biocompatible materials for molecular imaging applications. Because FNDs have negatively charged nitrogen vacancy (NV) centers, they can emit bright red light. FNDs were conjugated to hyaluronate (HA) for target-specific molecular imaging. HA is a biocompatible, biodegradable, and linear polysaccharide with abundant HA receptors in the liver, enabling liver targeted molecular imaging. In vitro cell viability tests revealed the biocompatibility of HA-FND conjugates and the competitive cellular uptake test confirmed their target-specific intracellular delivery to HepG2 cells with HA receptors. In addition, in vivo fluorescence lifetime (FLT) assessment revealed the imaging capability of FNDs and HA-FND conjugates. After that, we could confirm the statistically significant liver-targeted delivery of HA-FND conjugates by in vivo imaging system (IVIS) analysis and ex vivo biodistribution tests in various organs. The renal clearance test and histological analysis corroborated the in vivo biocompatibility and safety of HA-FND conjugates. All these results demonstrated the feasibility of HA-FND conjugates for further molecular imaging applications.
Collapse
Affiliation(s)
- Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Rahul Pal
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Anand T N Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| |
Collapse
|
35
|
Wu Y, Alam MNA, Balasubramanian P, Winterwerber P, Ermakova A, Müller M, Wagner M, Jelezko F, Raabe M, Weil T. Fluorescent Nanodiamond–Nanogels for Nanoscale Sensing and Photodynamic Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yingke Wu
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Md Noor A Alam
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | | | - Pia Winterwerber
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Anna Ermakova
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Michael Müller
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Manfred Wagner
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | - Marco Raabe
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | - Tanja Weil
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| |
Collapse
|
36
|
Tjo K, Varamini P. Nanodiamonds and their potential applications in breast cancer therapy: a narrative review. Drug Deliv Transl Res 2021; 12:1017-1028. [PMID: 33970463 DOI: 10.1007/s13346-021-00996-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer remains the most commonly diagnosed cancer and the leading cause of cancer-related death among women worldwide. With the projected increase in breast cancer cases in recent years, optimising treatment becomes increasingly important. Current treatment modalities in breast cancer present major limitations, including chemoresistance, dose-limiting adverse effects and lack of selectivity in aggressive subtypes of breast cancers such as triple-negative breast cancer. Nanodiamonds have demonstrated promising outcomes in preclinical models from their unique surface characteristics allowing optimised delivery of various therapeutic agents, overcoming some of the significant hurdles in conventional treatment modalities. This review will present an update on preclinical findings of nanodiamond-based drug delivery systems for breast cancer therapy to date, challenges with the use of nanodiamonds along with considerations for future research.
Collapse
Affiliation(s)
- Kenny Tjo
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2016, Australia
| | - Pegah Varamini
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2016, Australia. .,Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
37
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
38
|
Suarez-Kelly L, Sun SH, Ren C, Rampersaud IV, Albertson D, Duggan MC, Noel TC, Courtney N, Buteyn NJ, Moritz C, Yu L, Yildiz VO, Butchar JP, Tridandapani S, Rampersaud AA, Carson WE. Antibody Conjugation of Fluorescent Nanodiamonds for Targeted Innate Immune Cell Activation. ACS APPLIED NANO MATERIALS 2021; 4:3122-3139. [PMID: 34027313 PMCID: PMC8136585 DOI: 10.1021/acsanm.1c00256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.
Collapse
Affiliation(s)
- Lorena
P. Suarez-Kelly
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey Ren
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Isaac V. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - David Albertson
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Megan C. Duggan
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany C. Noel
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Courtney
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathaniel J. Buteyn
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles Moritz
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Lianbo Yu
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Vedat O. Yildiz
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan P. Butchar
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Susheela Tridandapani
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Arfaan A. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - William E. Carson
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
- . Phone: (614)
293-6306. Fax: (614) 293-3465
| |
Collapse
|
39
|
Du X, Li L, Wei S, Wang S, Li Y. A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced in vivo antitumor therapy. J Mater Chem B 2021; 8:1660-1671. [PMID: 32011619 DOI: 10.1039/c9tb02259g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing tumor homing and improving the efficacy of drugs are urgent needs for cancer treatment. Herein a novel targeted, intracellularly activatable fluorescence and cytotoxicity nanodiamond (ND) drug system (ND-PEG-HYD-FA/DOX, NPHF/D) was successfully prepared based on doxorubicin (DOX) and folate (FA) covalently bound to PEGylated NDs, in which the DOX was covalently coupled via an intracellularly hydrolyzable hydrazone bond that was stable in the physiological environment to ensure minimal drug release in circulation. Cell uptake studies demonstrated the selective internalization of NPHF/D by folate receptor (FR) mediated endocytosis in the order MCF-7 > HeLa > HepG2 ≫ CHO, using confocal laser scanning microscopy (CLSM) and flow cytometry. Interestingly, the DOX fluorescence of NPHF/D was significantly quenched, while the fluorescence recovery and cytotoxicity took place by low pH regulation in intracellular lysosomes, which made NPHF/D act as a fluorescence OFF-ON messenger for activatable imaging and cancer therapy. Of note, NPHF/D significantly inhibited the growth of tumors. Simultaneously, it was demonstrated that the introduction of FA and the cleavability of the hydrazone greatly enhanced the therapeutic performance of NPHF/D. In addition, toxicity studies in mice verified that the composites were devoid of any detected hepatotoxicity, cardiotoxicity, and nephrotoxicity using histopathology and blood biochemistry studies. Our work provides a novel strategy for cancer therapy, using ND-conjugated cancer drugs, and the exploration of theranostic drug-delivery systems.
Collapse
Affiliation(s)
- Xiangbin Du
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China. and Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, P. R. China
| | - Shiguo Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Songbai Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Yingqi Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
40
|
Dolmatov VY, Ozerin AN, Kulakova II, Bochechka OO, Lapchuk NM, Myllymäki V, Vehanen A. Detonation nanodiamonds: new aspects in the theory and practice of synthesis, properties and applications. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4924] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD). Int J Biol Macromol 2020; 169:206-215. [PMID: 33340633 DOI: 10.1016/j.ijbiomac.2020.12.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
In the present experimental series, we have developed a novel nanocomposite to target activated macrophages in the colon with real time imaging and therapeutic capabilities. This binary nanocomposite was formed by the covalent conjugation of mannosylated NPs (Man-NPs) with carbon dots (CDs). Man-NPs were prepared using a self-assembly method based on mannosylated decamethylenediamine-grafted carboxymethyl inulin amphiphilic acid. While, the CDs were synthesized using a simple bottom-up process using citric acid monohydrate and diethylenetriamine, which were tightly bonded to the Man-NPs surface by carbodimide coupling. The resulting nanocomposite had a uniform size of 241.3 nm with a negative charge and a high drug casing density of 25.54 wt% and blue self-fluorescence were emitted. Whereas, in vitro observation of cellular uptake indicated the greater nanocomposite uptake in inflamed macrophage as compared to the untreated macrophage and mannose receptor-negative cell lines, 4T1 respectively. However, in vivo bio distribution exhibited a large number (60%) of CDs/Man-NPs nanocomposite accumulated in the inflamed colon of colitis mice. It should be noted that the novel nanocomposite, as macrophage-targeted drug delivery, could have promise for the treatment of inflammatory bowel disease (IBD).
Collapse
|
42
|
Perevedentseva E, Lin YC, Cheng CL. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv 2020; 18:369-382. [PMID: 33047984 DOI: 10.1080/17425247.2021.1832988] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Nanodiamond (ND) refers to diamond particles with sizes from few to near 100 nanometers. For its superb physical, chemical and spectroscopic properties, it has been proposed and studied with the aims for bio imaging and drug delivery. Many modalities on conjugating drug molecules on ND to form ND-X for more efficient drug delivery have been demonstrated in the cellular and animal models. AREA COVERED Many novel drug delivery approaches utilizing nanodiamond as a platform have been demonstrated recently. This review summarizes recent developments on the nanodiamond facilitated drug delivery, from the ND-X complexes preparations to tests in the cellular and animal models. The outlook on clinical translation is discussed. EXPERT OPINION Nanodiamond and drug complexes (ND-X) produced from different methods are realized for drug delivery; almost all studies reported ND-X being more efficient compared to pure drug alone. However, ND of particle size less than 10 nm are found more toxic due to size and surface structure, and strongly aggregate. In vivo studies demonstrate ND accumulation in animal organs and no confirmed long-term effect studies on their release from organs are available. Standardized nanodiamond materials and drug delivery approaches are needed to advance the applications to the clinical level.
Collapse
Affiliation(s)
- Elena Perevedentseva
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan.,Russian Academy of Sciences, P.N. Lebedev Physics Institute, Moskva, Russian Federation
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
43
|
Morita A, Hamoh T, Sigaeva A, Norouzi N, Nagl A, van der Laan KJ, Evans EPP, Schirhagl R. Targeting Nanodiamonds to the Nucleus in Yeast Cells. NANOMATERIALS 2020; 10:nano10101962. [PMID: 33023102 PMCID: PMC7601435 DOI: 10.3390/nano10101962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In terms of particle uptake, these cells are challenging due to their rigid cell wall. Thus, we used a spheroplasting protocol to remove the cell wall prior to uptake. To achieve nuclear targeting we used nanodiamonds, which were attached to antibodies. When using non-targeted particles, only 20% end up at the nucleus. In comparison, by using diamonds linked to antibodies, 70% of the diamond particles reach the nucleus.
Collapse
Affiliation(s)
- Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Thamir Hamoh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Alina Sigaeva
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Neda Norouzi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Andreas Nagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Kiran J. van der Laan
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Emily P. P. Evans
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Correspondence:
| |
Collapse
|
44
|
Yu B, Wang J, Mo X, Yang X, Wang W, Cai X. Hyperbranched polyglycerol-grafted WOx nanowires: Synthesis, characterization, functionalization and as effective drug targeted delivery vehicle. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Zou Y, Ito S, Yoshino F, Suzuki Y, Zhao L, Komatsu N. Polyglycerol Grafting Shields Nanoparticles from Protein Corona Formation to Avoid Macrophage Uptake. ACS NANO 2020; 14:7216-7226. [PMID: 32379425 DOI: 10.1021/acsnano.0c02289] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Upon contact with biofluids, proteins are quickly adsorbed onto the nanoparticle (NP) surface to form a protein corona, which initiates the opsonization and facilitates the rapid clearance of the NP by macrophage uptake. Although polyethylene glycol (PEG) functionalization has been the standard approach to evade macrophage uptake by reducing protein adsorption, it cannot fully eliminate nonspecific uptake. Herein, polyglycerol (PG) grafting is demonstrated as a better alternative to PEG. NPs of various size and material were grafted with PG and PEG at 30, 20, and 10 wt % contents by controlling the reaction conditions, and the resulting NP-PG and NP-PEG were characterized qualitatively by IR spectroscopy and quantitatively by thermogravimetric analysis. Their resistivity to adsorption of the proteins in fetal bovine serum and human plasma were compared by polyacrylamide gel electrophoresis, bicinchoninic acid assay, and liquid chromatography-tandem mass spectrometry, giving a consistent conclusion that PG shields protein adsorption more efficiently than does PEG. The macrophage uptake was assayed by transmission electron microscopy and by extinction spectroscopy or inductively coupled plasma mass spectrometry, revealing that PG avoids macrophage uptake more efficiently than does PEG. In particular, a NP coated with PG at 30 wt % (NP-PG-h) prevents corona formation almost completely, regardless of NP size and core material, leading to the complete evasion of macrophage uptake. Our findings demonstrate that PG grafting is a promising strategy in nanomedicine to improve anti-biofouling property and stealth efficiency in nanoformulations.
Collapse
Affiliation(s)
| | | | - Fumi Yoshino
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta, Otsu 520-2192, Japan
| | | | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | | |
Collapse
|
46
|
Bochenek M, Oleszko-Torbus N, Wałach W, Lipowska-Kur D, Dworak A, Utrata-Wesołek A. Polyglycidol of Linear or Branched Architecture Immobilized on a Solid Support for Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1720233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marcelina Bochenek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | - Wojciech Wałach
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | |
Collapse
|
47
|
Terada D, Genjo T, Segawa TF, Igarashi R, Shirakawa M. Nanodiamonds for bioapplications–specific targeting strategies. Biochim Biophys Acta Gen Subj 2020; 1864:129354. [DOI: 10.1016/j.bbagen.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
|
48
|
Doxorubicin-polyglycerol-nanodiamond conjugates disrupt STAT3/IL-6-mediated reciprocal activation loop between glioblastoma cells and astrocytes. J Control Release 2020; 320:469-483. [PMID: 31987922 DOI: 10.1016/j.jconrel.2020.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Astrocytes are key stromal components in glioblastoma (GBM) and have complex interactions with the GBM cells (GBC) promoting the survival, progression and therapy resistance of GBM. In this study, we first demonstrated the existence of a reciprocal activation loop mediated by the STAT3/IL-6 signaling between GBC and astrocytes. This loop of reciprocity was found to be initiated by the constitutive activity of STAT3 and downstream expression of IL-6 in the GBC. GBC-derived IL-6 activated STAT3 and thereby upregulated IL-6 expression in the astrocytes. Astrocyte-derived IL-6 acted back on the GBC causing further activation of STAT3 and leading to enhanced downstream events that promote proliferation, migration, invasion and apoptosis resistance of the GBC. Next, we showed that doxorubicin-polyglycerol-nanodiamond conjugates (Nano-DOX), which could be delivered via GBM-associated macrophages, suppressed STAT3 activity in the GBC reducing their IL-6 output to the astrocytes and thereby abolished the astrocytes' feedback activation of the GBC. Moreover, Nano-DOX also suppressed stimulated activation of STAT3 and IL-6 induced by temozolomide, a first-line anti-GBM chemotherapy, resistance to which critically involves STAT3 activation. In conclusion, Nano-DOX could disrupt the STAT3/IL-6-mediated reciprocal activation loop between the GBC and astrocytes. Nano-DOX also provides a novel approach to therapeutic modulation of the GBM microenvironment.
Collapse
|
49
|
Reina G, Zhao L, Bianco A, Komatsu N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angew Chem Int Ed Engl 2019; 58:17918-17929. [DOI: 10.1002/anie.201905997] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Giacomo Reina
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
| | - Li Zhao
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou Jiangsu 215123 China
| | - Alberto Bianco
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
50
|
Yoshino F, Amano T, Zou Y, Xu J, Kimura F, Furusho Y, Chano T, Murakami T, Zhao L, Komatsu N. Preferential Tumor Accumulation of Polyglycerol Functionalized Nanodiamond Conjugated with Cyanine Dye Leading to Near-Infrared Fluorescence In Vivo Tumor Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901930. [PMID: 31259483 DOI: 10.1002/smll.201901930] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Preferential accumulation of nanoparticles in a tumor is realized commonly by combined effects of active and passive targeting. However, passive targeting based on an enhanced permeation and retention (EPR) effect is not sufficient to observe clear tumor fluorescence images in most of the in vivo experiments using tumor-bearing mice. Herein, polyglycerol-functionalized nanodiamonds (ND-PG) conjugated with cyanine dye (Cy7) are synthesized and it is found that the resulting ND-PG-Cy7 is preferentially accumulated in the tumor, giving clear fluorescence in in vivo and ex vivo fluorescence images. One of the plausible reasons is the longer in vivo blood circulation time of ND-PG-Cy7 (half-life: 58 h determined by the pharmacokinetic analysis) than that of other nanoparticles (half-life: <20 h in most of the previous reports). In a typical example, the fluorescence intensity of tumors increases due to continuous tumor accumulation of ND-PG-Cy7, even more than one week postinjection. This may be owing to the stealth effect of PG that was reported previously, avoiding recognition and excretion by reticuloendothelial cells, which are abundant in liver and spleen. In fact, the fluorescence intensities from the liver and spleen is similar to those from other organs, while the tumor exhibits much stronger fluorescence in the ex vivo image.
Collapse
Affiliation(s)
- Fumi Yoshino
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | - Yajuan Zou
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jian Xu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|