1
|
Lou S, Hu W, Wei P, He D, Fu P, Ding K, Chen Z, Dong Z, Zheng J, Wang K. Artificial Nanovesicles Derived from Cells: A Promising Alternative to Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39692623 DOI: 10.1021/acsami.4c12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
As naturally secreted vesicles by cells, extracellular vesicles (EVs) play essential roles in modulating cell-cell communication and have significant potential in tissue regeneration, immune regulation, and drug delivery. However, the low yield and uncontrollable heterogeneity of EVs have been obstacles to their widespread translation into clinical practice. Recently, it has been discovered that artificial nanovesicles (NVs) produced by cell processing can inherit the components and functions of the parent cells and possess similar structures and functions to EVs, with significantly higher yields and more flexible functionalization, making them a powerful complement to natural EVs. This review focuses on recent advances in the research of artificial NVs as replacements for natural EVs. We provide an overview comparing natural EVs and artificial NVs and summarize the top-down preparation strategies of NVs. The applications of NVs prepared from stem cells, differentiated cells, and engineered cells are presented, as well as the latest advances in NV engineering. Finally, the main challenges of artificial NVs are discussed.
Collapse
Affiliation(s)
- Saiyun Lou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Wei Hu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Pengyao Wei
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Dongdong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejian Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhenyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang P, Chen W, li B, Yang S, Li W, Zhao S, Ning J, Zhou X, Cheng F. Exosomes on the development and progression of renal fibrosis. Cell Prolif 2024; 57:e13677. [PMID: 38898750 PMCID: PMC11533081 DOI: 10.1111/cpr.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Renal fibrosis is a prevalent pathological alteration that occurs throughout the progression of primary and secondary renal disorders towards end-stage renal disease. As a complex and irreversible pathophysiological phenomenon, it includes a sequence of intricate regulatory processes at the molecular and cellular levels. Exosomes are a distinct category of extracellular vesicles that play a crucial role in facilitating intercellular communication. Multiple pathways are regulated by exosomes produced by various cell types, including tubular epithelial cells and mesenchymal stem cells, in the context of renal fibrosis. Furthermore, research has shown that exosomes present in bodily fluids, including urine and blood, may be indicators of renal fibrosis. However, the regulatory mechanism of exosomes in renal fibrosis has not been fully elucidated. This article reviewed and analysed the various mechanisms by which exosomes regulate renal fibrosis, which may provide new ideas for further study of the pathophysiological process of renal fibrosis and targeted treatment of renal fibrosis with exosomes.
Collapse
Affiliation(s)
- Peihan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wu Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Bojun li
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Songyuan Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wei Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Sheng Zhao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xiangjun Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
3
|
Di Bella MA, Taverna S. Extracellular Vesicles: Diagnostic and Therapeutic Applications in Cancer. BIOLOGY 2024; 13:716. [PMID: 39336143 PMCID: PMC11446462 DOI: 10.3390/biology13090716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In recent years, knowledge of cell-released extracellular vesicle (EV) functions has undergone rapid growth. EVs are membrane vesicles loaded with proteins, nucleic acids, lipids, and bioactive molecules. Once released into the extracellular space, EVs are delivered to target cells that may go through modifications in physiological or pathological conditions. EVs are nano shuttles with a crucial role in promoting short- and long-distance cell-cell communication. Comprehension of the mechanism that regulates this process is a benefit for both medicine and basic science. Currently, EVs attract immense interest in precision and nanomedicine for their potential use in diagnosis, prognosis, and therapies. This review reports the latest advances in EV studies, focusing on the nature and features of EVs and on conventional and emerging methodologies used for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a summary of advances in nanomedical applications of EVs. Moreover, concerns that require further studies before translation to clinical applications are discussed.
Collapse
Affiliation(s)
- Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
4
|
Hyun J, Eom J, Im J, Kim YJ, Seo I, Kim SW, Im GB, Kim YH, Lee DH, Park HS, Yun DW, Kim DI, Yoon JK, Um SH, Yang DH, Bhang SH. Fibroblast function recovery through rejuvenation effect of nanovesicles extracted from human adipose-derived stem cells irradiated with red light. J Control Release 2024; 368:453-465. [PMID: 38447812 DOI: 10.1016/j.jconrel.2024.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Fibroblasts (hDFs) are widely employed for skin regeneration and the treatment of various skin disorders, yet research were rarely investigated about restoration of diminished therapeutic efficacy due to cell senescence. The application of stem cell and stem cell-derived materials, exosomes, were drawn attention for the restoration functionality of fibroblasts, but still have limitation for unintended side effect or low yield. To advance, stem cell-derived nanovesicle (NV) have developed for effective therapeutic reagents with high yield and low risk. In this study, we have developed a method using red light irradiated human adipose-derived stem cells (hADSCs) derived NV (R-NVs) for enhancing the therapeutic efficacy and rejuvenating hDFs. Through red light irradiation, we were able to significantly increase the content of stemness factors and angiogenic biomolecules in R-NVs. Treatment with these R-NVs was found to enhance the migration ability and leading to rejuvenation of old hDFs to levels similar to those of young hDFs. In subsequent in vivo experiments, the treatment of old hDFs with R-NVs demonstrated a superior skin wound healing effect, surpassing that of young hDFs. In summary, this study successfully induced rejuvenation and leading to increased therapeutic efficacy to R-NVs treated old hDFs previously considered as biowaste.
Collapse
Affiliation(s)
- Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiin Eom
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Surgery, Harvard Medical School, Boston, MA, 02115 USA
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae Won Yun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, South Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong 4726, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae Hyeok Yang
- Department of Medical Life Sciences, College of Medicine, Institute of Cell and Tissue Engineering, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Liao Y, Zhang Z, Ouyang L, Mi B, Liu G. Engineered Extracellular Vesicles in Wound Healing: Design, Paradigms, and Clinical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307058. [PMID: 37806763 DOI: 10.1002/smll.202307058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Indexed: 10/10/2023]
Abstract
The severe quality of life and economic burden imposed by non-healing skin wounds, infection risks, and treatment costs are affecting millions of patients worldwide. To mitigate these challenges, scientists are relentlessly seeking effective treatment measures. In recent years, extracellular vesicles (EVs) have emerged as a promising cell-free therapy strategy, attracting extensive attention from researchers. EVs mediate intercellular communication, possessing excellent biocompatibility and stability. These features make EVs a potential tool for treating a plethora of diseases, including those related to wound repair. However, there is a growing focus on the engineering of EVs to overcome inherent limitations such as low production, relatively fixed content, and targeting capabilities of natural EVs. This engineering could improve both the effectiveness and specificity of EVs in wound repair treatments. In light of this, the present review will introduce the latest progress in the design methods and experimental paradigms of engineered EVs applied in wound repair. Furthermore, it will comprehensively analyze the current clinical research status and prospects of engineered EVs within this field.
Collapse
Affiliation(s)
- Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
6
|
Xu X, Xu L, Wen C, Xia J, Zhang Y, Liang Y. Programming assembly of biomimetic exosomes: An emerging theranostic nanomedicine platform. Mater Today Bio 2023; 22:100760. [PMID: 37636982 PMCID: PMC10450992 DOI: 10.1016/j.mtbio.2023.100760] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes have emerged as a promising cell-free therapeutic approach. However, challenges in large-scale production, quality control, and heterogeneity must be overcome before they can be used clinically. Biomimetic exosomes containing key components of natural exosomes have been assembled through extrusion, artificial synthesis, and liposome fusion to address these limitations. These exosome-mimetics (EMs) possess similar morphology and function but provide higher yields, faster large-scale production, and similar size compared to conventional exosomes. This article provides an overview of the chemical and biological properties of various synthetic exosome systems, including nanovesicles (NVs), EMs, and hybrid exosomes. We highlight recent advances in the production and applications of nanobiotechnology and discuss the advantages, limitations, and potential clinical applications of programming assembly of exosome mimetics.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
- Jining Medical University, Jining, Shandong, 272067, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
- Jining Medical University, Jining, Shandong, 272067, China
| |
Collapse
|
7
|
Panagiotou N, McGuinness D, Jaminon AMG, Mees B, Selman C, Schurgers L, Shiels PG. Microvesicle-Mediated Tissue Regeneration Mitigates the Effects of Cellular Ageing. Cells 2023; 12:1707. [PMID: 37443741 PMCID: PMC10340655 DOI: 10.3390/cells12131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs), comprising microvesicles (MVs) and exosomes (Exos), are membranous vesicles secreted by cells which mediate the repair of cellular and tissue damage via paracrine mechanisms. The action of EVs under normative and morbid conditions in the context of ageing remains largely unexplored. We demonstrate that MVs, but not Exos, from Pathfinder cells (PCs), a putative stem cell regulatory cell type, enhance the repair of human dermal fibroblast (HDF) and mesenchymal stem cell (MSC) co-cultures, following both mechanical and genotoxic stress. Critically, this effect was found to be both cellular age and stress specific. Notably, MV treatment was unable to repair mechanical injury in older co-cultures but remained therapeutic following genotoxic stress. These observations were further confirmed in human dermal fibroblast (HDF) and vascular smooth muscle cell (VSMC) co-cultures of increasing cellular age. In a model of comorbidity comprising co-cultures of HDFs and highly senescent abdominal aortic aneurysm (AAA) VSMCs, MV administration appeared to be senotherapeutic, following both mechanical and genotoxic stress. Our data provide insights into EVs and the specific roles they play during tissue repair and ageing. These data will potentiate the development of novel cell-free therapeutic interventions capable of attenuating age-associated morbidities and avoiding undesired effects.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| | - Dagmara McGuinness
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
| | - Armand M. G. Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University,
Maastricht, 6229 ER Maastricht, NetherlandsThe Netherlands
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Centre (MUMC),
Maastricht, The Netherlands;
| | - Colin Selman
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Leon Schurgers
- School of Infection & Immunity, University of Glasgow, Glasgow G12 8QQ, UK; (D.M.)
- Graham Kerr Building, College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Paul G. Shiels
- Davidson Building, School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (N.P.)
| |
Collapse
|
8
|
Habibi A, Zarei-Behjani Z, Falamarzi K, Malekpour M, Ebrahimi F, Soleimani M, Nejabat M, Khosravi A, Moayedfard Z, Pakbaz S, Dehdari Ebrahimi N, Azarpira N. Extracellular vesicles as a new horizon in the diagnosis and treatment of inflammatory eye diseases: A narrative review of the literature. Front Immunol 2023; 14:1097456. [PMID: 36969177 PMCID: PMC10033955 DOI: 10.3389/fimmu.2023.1097456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Extracellular vesicles include exosomes, microvesicles, and apoptotic bodies. Their cargos contain a diverse variety of lipids, proteins, and nucleic acids that are involved in both normal physiology and pathology of the ocular system. Thus, studying extracellular vesicles may lead to a more comprehensive understanding of the pathogenesis, diagnosis, and even potential treatments for various diseases. The roles of extracellular vesicles in inflammatory eye disorders have been widely investigated in recent years. The term "inflammatory eye diseases" refers to a variety of eye conditions such as inflammation-related diseases, degenerative conditions with remarkable inflammatory components, neuropathy, and tumors. This study presents an overview of extracellular vesicles' and exosomes' pathogenic, diagnostic, and therapeutic values in inflammatory eye diseases, as well as existing and potential challenges.
Collapse
Affiliation(s)
- Azam Habibi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Falamarzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Nejabat
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Khosravi
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Khan SU, Khan IM, Khan MU, Ud Din MA, Khan MZ, Khan NM, Liu Y. Role of LGMN in tumor development and its progression and connection with the tumor microenvironment. Front Mol Biosci 2023; 10:1121964. [PMID: 36825203 PMCID: PMC9942682 DOI: 10.3389/fmolb.2023.1121964] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Legumain (LGMN) has been demonstrated to be overexpressed not just in breast, prostatic, and liver tumor cells, but also in the macrophages that compose the tumor microenvironment. This supports the idea that LGMN is a pivotal protein in regulating tumor development, invasion, and dissemination. Targeting LGMN with siRNA or chemotherapeutic medicines and peptides can suppress cancer cell proliferation in culture and reduce tumor growth in vivo. Furthermore, legumain can be used as a marker for cancer detection and targeting due to its expression being significantly lower in normal cells compared to tumors or tumor-associated macrophages (TAMs). Tumor formation is influenced by aberrant expression of proteins and alterations in cellular architecture, but the tumor microenvironment is a crucial deciding factor. Legumain (LGMN) is an in vivo-active cysteine protease that catalyzes the degradation of numerous proteins. Its precise biological mechanism encompasses a number of routes, including effects on tumor-associated macrophage and neovascular endothelium in the tumor microenvironment. The purpose of this work is to establish a rationale for thoroughly investigating the function of LGMN in the tumor microenvironment and discovering novel tumor early diagnosis markers and therapeutic targets by reviewing the function of LGMN in tumor genesis and progression and its relationship with tumor milieu.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,*Correspondence: Ibrar Muhammad Khan, ; Yong Liu,
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, China
| | - Muhammad Azhar Ud Din
- Faculty of Pharmacy, Gomal University Dera Ismail Khan KPK, Dera IsmailKhan, Pakistan
| | - Muhammad Zahoor Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera IsmailKhan, Pakistan
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,*Correspondence: Ibrar Muhammad Khan, ; Yong Liu,
| |
Collapse
|
10
|
Sun D, Mou S, Chen L, Yang J, Wang R, Zhong A, Wang W, Tong J, Wang Z, Sun J. High yield engineered nanovesicles from ADSC with enriched miR-21-5p promote angiogenesis in adipose tissue regeneration. Biomater Res 2022; 26:83. [PMID: 36528594 PMCID: PMC9758932 DOI: 10.1186/s40824-022-00325-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been found to have a great potential for soft tissue repair due to various biological functions, including pro-angiogenesis and low immunogenicity. However, the low yield and heterogeneity of MSC-EVs limited their clinical transformation. This study was designed to develop a novel adipose-derived stem cell engineered nanovesicles (ADSC-NVs) with high production and explore its pro-angiogenetic effect and application in adipose tissue regeneration. METHODS Adipose-derived stem cell-derived extracellular vesicles (ADSC-EVs) were isolated from an EVs-free culture medium for human ADSCs (hADSCs). ADSC-NVs were prepared by sequentially extruding ADSCs followed by iodixanol density gradient ultracentrifugation and were compared with ADSC-EVs in morphology, size distribution, protein contents and yield. The pro-angiogenetic effect of ADSC-NVs in different doses (0, 5, 20 and 80 μg/mL) in vitro was determined using transwell assay, tube formation assay, western blot and qRT-PCR. In vivo, BALB/c nude mice were administered injection of a mixture of fat granules and different dose of ADSC-NVs and grafts were harvested at 12 weeks post-transplantation for further analysis. By analyzing the weight and volume of grafts and histological evaluation, we investigated the effect of ADSC-NVs in vessel formation and adipose tissue regeneration. RESULTS Our results showed yield of purified ADSC-NVs was approximately 20 times more than that of ADSC-EVs secreted by the same number of ADSCs. In vitro, both ADSC-NVs and ADSC-EVs exhibited a dose-dependent pro-angiogenetic effect, despite their distinct miRNA profiles. These effects of ADSC-NVs may be mediated by enriched miR-21-5p via PTEN inhibition and PI3K/p-Akt signaling activation. Furthermore, after a mixed injection of ADSC-NVs, vessel formation and adipose regeneration were observed in vivo in fat implants. CONCLUSIONS Our study developed a potent alternative of ADSC-EVs. ADSC-NVs have a high pro-angiogenesis potential and can be used as cell-free therapeutic biomaterials in soft tissue regeneration.
Collapse
Affiliation(s)
- Di Sun
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Shan Mou
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Lifeng Chen
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jie Yang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Rongrong Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Aimei Zhong
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Wei Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jing Tong
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Zhenxing Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jiaming Sun
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| |
Collapse
|
11
|
Neupane YR, Handral HK, Alkaff SA, Chng WH, Venkatesan G, Huang C, Lee CK, Wang JW, Sriram G, Dienzo RA, Lu WF, Ali Y, Czarny B, Pastorin G. Cell-derived nanovesicles from mesenchymal stem cells as extracellular vesicle-mimetics in wound healing. Acta Pharm Sin B 2022; 13:1887-1902. [DOI: 10.1016/j.apsb.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
|
12
|
Hao M, Duan M, Yang Z, Zhou H, Li S, Xiang J, Wu H, Liu H, Chang L, Wang D, Liu W. Engineered stem cell exosomes for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2022; 10:1038261. [PMID: 36353739 PMCID: PMC9637828 DOI: 10.3389/fbioe.2022.1038261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 09/12/2023] Open
Abstract
Wound healing of the oral and maxillofacial area affects the quality of life and mental health of the patient; therefore, effective therapies are required to promote wound healing. However, traditional treatment methods have limited efficacy. Exosomes secreted by stem cells used for oral and maxillofacial wound healing have shown outstanding results. Stem cell-derived exosomes possess the regenerative and repair ability of stem cells. Moreover, they are nontumorigenic and have good biosafety. However, the application of natural stem cell exosomes is limited owing to their low yield, impurity, lack of targeting, and low drug delivery rate. Many modification methods have been developed to engineered stem cell exosomes with beneficial properties, such as modifying parent cells and directly processing stem cell exosomes. These methods include coincubation, genetic engineering, electroporation, ultrasound, and artificial synthesis of engineered stem cell exosomes. These engineered stem cell exosomes can cargo nucleic acids, proteins, and small molecules. This gives them anti-inflammatory and cell proliferation regulatory abilities and enables the targeted promotion of efficient soft tissue repair after trauma. Engineered stem cell exosomes can decrease inflammation, promote fibroblast proliferation, and angiogenesis, and decrease scar formation to promote oral and maxillofacial wound healing, including diabetic and burn wounds. Thus, engineered stem cell exosomes are an effective treatment that has the potential for oral and maxillofacial wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - MengNa Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
13
|
Du Y, Wang H, Yang Y, Zhang J, Huang Y, Fan S, Gu C, Shangguan L, Lin X. Extracellular Vesicle Mimetics: Preparation from Top-Down Approaches and Biological Functions. Adv Healthc Mater 2022; 11:e2200142. [PMID: 35899756 DOI: 10.1002/adhm.202200142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) have attracted attention as delivery vehicles due to their structure, composition, and unique properties in regeneration and immunomodulation. However, difficulties during production and isolation processes of EVs limit their large-scale clinical applications. EV mimetics (EVMs), prepared via top-down strategies that improve the yield of nanoparticles while retaining biological properties similar to those of EVs have been used to address these limitations. Herein, the preparation of EVMs is reviewed and their characteristics in terms of structure, composition, targeting ability, cellular uptake mechanism, and immunogenicity, as well as their strengths, limitations, and future clinical application prospects as EV alternatives are summarized.
Collapse
Affiliation(s)
- Yuan Du
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongyi Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Liqing Shangguan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| |
Collapse
|
14
|
Ding Y, Li Y, Sun Z, Han X, Chen Y, Ge Y, Mao Z, Wang W. Cell-derived extracellular vesicles and membranes for tissue repair. J Nanobiotechnology 2021; 19:368. [PMID: 34789267 PMCID: PMC8600774 DOI: 10.1186/s12951-021-01113-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Humans have a limited postinjury regenerative ability. Therefore, cell-derived biomaterials have long been utilized for tissue repair. Cells with multipotent differentiation potential, such as stem cells, have been administered to patients for the treatment of various diseases. Researchers expected that these cells would mediate tissue repair and regeneration through their multipotency. However, increasing evidence has suggested that in most stem cell therapies, the paracrine effect but not cell differentiation or regeneration is the major driving force of tissue repair. Additionally, ethical and safety problems have limited the application of stem cell therapies. Therefore, nonliving cell-derived techniques such as extracellular vesicle (EV) therapy and cell membrane-based therapy to fulfil the unmet demand for tissue repair are important. Nonliving cell-derived biomaterials are safer and more controllable, and their efficacy is easier to enhance through bioengineering approaches. Here, we described the development and evolution from cell therapy to EV therapy and cell membrane-based therapy for tissue repair. Furthermore, the latest advances in nonliving cell-derived therapies empowered by advanced engineering techniques are emphatically reviewed, and their potential and challenges in the future are discussed.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Yanjie Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Xin Han
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Yao Ge
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Zhengwei Mao
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
15
|
Shi H, Wang M, Sun Y, Yang D, Xu W, Qian H. Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Front Cell Dev Biol 2021; 9:736022. [PMID: 34722517 PMCID: PMC8553038 DOI: 10.3389/fcell.2021.736022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are lipid bilayer vesicles released by multiple cell types. These bioactive vesicles are gradually becoming a leading star in intercellular communication involving in various pathological and physiological process. Exosomes convey specific and bioactive transporting cargos, including lipids, nucleic acids and proteins which can be reflective of their parent cells, rendering them attractive in cell-free therapeutics. Numerous findings have confirmed the crucial role of exosomes in restraining scars, burning, senescence and wound recovery. Moreover, the biology research of exosomes in cutting-edge studies are emerging, allowing for the development of particular guidelines and quality control methodology, which favor their possible application in the future. In this review, we discussed therapeutic potential of exosomes in different relevant mode of dermatologic diseases, as well as the various molecular mechanisms. Furthermore, given the advantages of favorable biocompatibility and transporting capacity, the bioengineering modification of exosomes is also involved.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dakai Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Wagner KT, Radisic M. A New Role for Extracellular Vesicles in Cardiac Tissue Engineering and Regenerative Medicine. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100047. [PMID: 34927167 PMCID: PMC8680295 DOI: 10.1002/anbr.202100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Discovering new therapies to treat heart disease requires improved understanding of cardiac physiology at a cellular level. Extracellular vesicles (EVs) are plasma membrane-bound nano- and microparticles secreted by cells and known to play key roles in intercellular communication, often through transfer of biomolecular cargo. Advances in EV research have established techniques for EV isolation from tissue culture media or biofluids, as well as standards for quantitation and biomolecular characterization. EVs released by cardiac cells are known to be involved in regulating cardiac physiology as well as in the progression of myocardial diseases. Due to difficulty accessing the heart in vivo, advanced in vitro cardiac 'tissues-on-a-chip' have become a recent focus for studying EVs in the heart. These physiologically relevant models are producing new insight into the role of EVs in cardiac physiology and disease while providing a useful platform for screening novel EV-based therapeutics for cardiac tissue regeneration post-injury. Numerous hurdles have stalled the clinical translation of EV therapeutics for heart patients, but tissue-on-a-chip models are playing an important role in bridging the translational gap, improving mechanistic understanding of EV signalling in cardiac physiology, disease, and repair.
Collapse
Affiliation(s)
- Karl T Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
17
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
18
|
Girón J, Maurmann N, Pranke P. The role of stem cell-derived exosomes in the repair of cutaneous and bone tissue. J Cell Biochem 2021; 123:183-201. [PMID: 34514621 DOI: 10.1002/jcb.30144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Exosomes are extracellular vesicles secreted by various cell types, which play important roles in physiological processes. In particular, stem cell-derived exosomes have been shown to play crucial functions in intercellular communication during the tissue healing process. This review summarizes the effects of exosomes derived from different stem cell sources on the repair of cutaneous and bone tissue, focusing on the different pathways that could be involved in the regeneration process. The biogenesis, isolation, and content of exosomes have also been discussed. The effectiveness of exosomes is broadly demonstrated for skin and bone regeneration in animal models, supporting the basis for clinical translation of exosomes as a ready-to-use cell-free therapeutic for skin and bone regeneration.
Collapse
Affiliation(s)
- Juliana Girón
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natasha Maurmann
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Pranke
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Stem Cell Research Institute, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Li YJ, Wu JY, Liu J, Xu W, Qiu X, Huang S, Hu XB, Xiang DX. Artificial exosomes for translational nanomedicine. J Nanobiotechnology 2021; 19:242. [PMID: 34384440 PMCID: PMC8359033 DOI: 10.1186/s12951-021-00986-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are lipid bilayer membrane vesicles and are emerging as competent nanocarriers for drug delivery. The clinical translation of exosomes faces many challenges such as massive production, standard isolation, drug loading, stability and quality control. In recent years, artificial exosomes are emerging based on nanobiotechnology to overcome the limitations of natural exosomes. Major types of artificial exosomes include 'nanovesicles (NVs)', 'exosome-mimetic (EM)' and 'hybrid exosomes (HEs)', which are obtained by top-down, bottom-up and biohybrid strategies, respectively. Artificial exosomes are powerful alternatives to natural exosomes for drug delivery. Here, we outline recent advances in artificial exosomes through nanobiotechnology and discuss their strengths, limitations and future perspectives. The development of artificial exosomes holds great values for translational nanomedicine.
Collapse
Affiliation(s)
- Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jihua Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiaohan Qiu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiong-Bin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
20
|
Zhang C, Mok J, Seong Y, Lau HC, Kim D, Yoon J, Oh SW, Park TS, Park J. PROKR1 delivery by cell-derived vesicles restores the myogenic potential of Prokr1-deficient C2C12 myoblasts. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102448. [PMID: 34314870 DOI: 10.1016/j.nano.2021.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/11/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
Cell-derived vesicles (CDVs) have been investigated as an alternative to exosomes. Here, we generated CDVs from Prokineticin receptor 1 (PROKR1) overexpressing HEK293T cells using micro-extrusion. More than 60 billion PROKR1-enriched CDV (PROKR1Tg CDVs) particles with canonical exosome properties were recovered from 107 cells. With 25 μg/mL of PROKR1Tg CDVs, we observed delivery of PROKR1, significant reduction of apoptosis, and myotube formation in C2C12Prokr1-/- myoblasts that have lost their myogenic potential but underwent apoptosis following myogenic commitment. Expression levels of early and late myogenic marker genes and glucose uptake capacity were restored to equivalent levels with wild-type control. Furthermore, PROKR1Tg CDVs were accumulated in soleus muscle comparable to the liver without significant differences. Therefore, CDVs obtained from genetically engineered cells appear to be an effective method of PROKR1 protein delivery and offer promise as an alternative therapy for muscular dystrophy.
Collapse
Affiliation(s)
- Chunjuan Zhang
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Republic of Korea
| | - Jongsoo Mok
- Institute of GreenBio Science and Technology, Seoul National University, Republic of Korea
| | - Yeonwoo Seong
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Republic of Korea
| | - Hui-Chong Lau
- Biodrone Research Institute, MDimune Inc., Republic of Korea
| | - Dayeon Kim
- Biodrone Research Institute, MDimune Inc., Republic of Korea
| | - Junsik Yoon
- Biodrone Research Institute, MDimune Inc., Republic of Korea
| | - Seung Wook Oh
- Biodrone Research Institute, MDimune Inc., Republic of Korea
| | - Tae Sub Park
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Republic of Korea; Institute of GreenBio Science and Technology, Seoul National University, Republic of Korea
| | - Joonghoon Park
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Republic of Korea; Institute of GreenBio Science and Technology, Seoul National University, Republic of Korea.
| |
Collapse
|
21
|
Yu L, Liu S, Wang C, Zhang C, Wen Y, Zhang K, Chen S, Huang H, Liu Y, Wu L, Han Z, Chen X, Li Z, Liu N. Embryonic stem cell-derived extracellular vesicles promote the recovery of kidney injury. Stem Cell Res Ther 2021; 12:379. [PMID: 34215331 PMCID: PMC8254253 DOI: 10.1186/s13287-021-02460-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Embryonic stem cell-derived extracellular vesicles (ESC-EVs) possess therapeutic potential for a variety of diseases and are considered as an alternative of ES cells. Acute kidney injury (AKI) is a common acute and severe disease in clinical practice, which seriously threatens human life and health. However, the roles and mechanisms of ESC-EVs on AKI remain unclear. METHODS In this study, we evaluated the effects of ESC-EVs on physiological repair and pathological repair using murine ischemia-reperfusion injury-induced AKI model, the potential mechanisms of which were next investigated. EVs were isolated from ESCs and EVs derived from mouse fibroblasts as therapeutic controls. We then investigated whether ESC-EVs can restore the structure and function of the damaged kidney by promoting physiological repair and inhibiting the pathological repair process after AKI in vivo and in vitro. RESULTS We found that ESC-EVs significantly promoted the recovery of the structure and function of the damaged kidney. ESC-EVs increased the proliferation of renal tubular epithelial cells, facilitated renal angiogenesis, inhibited the progression of renal fibrosis, and rescued DNA damage caused by ischemia and reperfusion after AKI. Finally, we found that ESC-EVs play a therapeutic effect by activating Sox9+ cells. CONCLUSIONS ESC-EVs significantly promote the physiological repair and inhibit the pathological repair after AKI, enabling restoration of the structure and function of the damaged kidney. This strategy might emerge as a novel therapeutic strategy for ESC clinical application.
Collapse
Affiliation(s)
- Lu Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Siying Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chen Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yajie Wen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Kaiyue Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Haoyan Huang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yue Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhongchao Han
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
22
|
Zhang Z, Liang X, Zhou J, Meng M, Gao Y, Yi G, Fu M. Exosomes in the pathogenesis and treatment of ocular diseases. Exp Eye Res 2021; 209:108626. [PMID: 34087205 DOI: 10.1016/j.exer.2021.108626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Exosomes have diverse functions and rich content and are involved in intercellular communication, immune regulation, viral infection, tissue regeneration, and the occurrence, development and metastasis of tumours. Notably, various stem cell-derived exosomes are expected to become new therapeutic approaches for inflammatory diseases and tumours and have good clinical application prospects. However, few studies have examined exosomes in ophthalmic diseases. Therefore, based on the functions of exosomes, this paper summarizes progress in the possible use of exosomes as treatment for specific ophthalmic diseases, aiming to determine the pathogenesis of exosomes to achieve more effective clinical diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhihan Zhang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaotian Liang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhou
- Southern Medical University, Guangzhou, Guangdong, China
| | - Meijun Meng
- Southern Medical University, Guangzhou, Guangdong, China
| | - Ya Gao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Effect of Stem Cell-Derived Extracellular Vesicles on Damaged Human Corneal Endothelial Cells. Stem Cells Int 2021; 2021:6644463. [PMID: 33531909 PMCID: PMC7834816 DOI: 10.1155/2021/6644463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Human corneal endothelial cells (HCECs) are essential to visual function; however, since they have limited proliferative capacity in vivo, they are prone to corneal endothelial dysfunction. At present, the only treatment is a corneal transplantation from donor cadavers. Also, due to a global shortage of donor corneas, it is important to find alternative strategies. Recent studies highlight that stem cell–derived extracellular vesicles (EVs) play a relevant role in stem cell-induced regeneration by reprogramming injured cells and inducing proregenerative pathways. The aim of this work is to evaluate whether EVs derived from mesenchymal stem cells (MSC-EVs) are able to promote regeneration of damaged HCECs. Methods We isolated HCECs from discarded corneas in patients undergoing corneal transplantation or enucleation (N = 23 patients). Bone marrow mesenchymal stem cells (MSCs) were obtained from Lonza, cultured, and characterized. MSC-EVs were obtained from supernatants of MSCs. In order to establish a valid in vitro damage model to test the regenerative potential of EVs on HCECs, we evaluated the proliferation rate and the apoptosis after exposing the cells to serum-deprived medium at different concentrations for 24 hours. We then evaluated the HCEC migration through a wound healing assay. Results In the selected serum deprivation damage conditions, the treatment with different doses of MSC-EVs resulted in a significantly higher proliferation rate of HCECs at all the tested concentrations of EVs (5‐20 × 103 MSC-EV/cell). MSC-EVs/cell induced a significant decrease in number of total apoptotic cells after 24 hours of serum deprivation. Finally, the wound healing assay showed a significantly faster repair of the wound after HCEC treatment with MSC-EVs. Conclusions Results highlight the already well-known proregenerative potential of MSC-EVs in a totally new biological model, the endothelium of the cornea. MSC-EVs, indeed, induced proliferation and survival of HCECs, promoting the migration of HCECs in vitro.
Collapse
|
24
|
Cha H, Hong S, Park JH, Park HH. Stem Cell-Derived Exosomes and Nanovesicles: Promotion of Cell Proliferation, Migration, and Anti-Senescence for Treatment of Wound Damage and Skin Ageing. Pharmaceutics 2020; 12:E1135. [PMID: 33255430 PMCID: PMC7761250 DOI: 10.3390/pharmaceutics12121135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, are nano-sized vesicles derived from endocytic membranes and contain biomolecules such as proteins, lipids, RNAs, and DNAs for the transfer of signals to recipient cells, playing significant roles in cell-to-cell communication. Discovery of exosomes has attracted attention for possible use as next generation therapies in clinical applications; however, several studies suggest that cells secrete exosomes that perform as mediators in the tumor niche and play several roles in tumorigenesis, angiogenesis, and metastasis. Recently, stem cell-derived exosomes have been suggested as a desirable source for regenerative medicine due to their roles in the promotion of angiogenesis via migratory and proliferative mechanisms. This review is aimed at demonstrating the present knowledge of stem cell-derived exosomes and cell-engineered nanovesicles (CNVs) as proliferative, migratory, and anti-senescent therapeutic biomaterial for use in tissue regeneration; wound healing and anti-ageing are explained. We conclude this review by discussing the future perspectives of stem cell-derived exosomes and CNVs as a platform in therapeutic strategies for treatment of wound damage and skin aging.
Collapse
Affiliation(s)
- Hyeonjin Cha
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
| | - Seyoung Hong
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
| | - Hee Ho Park
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| |
Collapse
|
25
|
Lee H, Kang H, Kang M, Han C, Yi J, Kwon Y, Park J. Heterogeneous Subcellular Origin of Exosome-Mimetic Nanovesicles Engineered from Cells. ACS Biomater Sci Eng 2020; 6:6063-6068. [PMID: 33449634 DOI: 10.1021/acsbiomaterials.0c01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-engineered nanovesicles (CNVs) are considered as an alternative to exosomes, because they can be produced efficiently on a large scale and have been successfully reported in several applied research studies. However, CNVs may originate from various organelles, i.e., some of them may cause adverse effects on recipient cells, and their origin has not yet been identified. In this study, we air-sprayed human embryonic kidney 293 (HEK293) cells into lipid-bilayer CNVs. To identify the subcellular origin of the CNVs, we prepared nine different HEK293 cell lines by transfection with organelle-specific fluorescent protein plasmids that target the plasma membrane, peroxisome, lysosome, early endosome, late endosome, nucleus, mitochondrion, Golgi apparatus, and endoplasmic reticulum. The origin of CNVs were identified by measuring fluorescence expressions for organelle-specific markers using fluorescence nanoparticle tracking analysis (NTA). In the results, we found that CNVs derived from the plasma membrane constituted the largest portion, but CNVs derived from the other organelles comprised a non-negligible portion as well. This information will be useful to guide advanced research on outer membrane vesicles and exosome-mimetic nanovesicles engineered from cells.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Hyejin Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Minsu Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Chungmin Han
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Johan Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Yongmin Kwon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| |
Collapse
|
26
|
Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials 2020; 269:120467. [PMID: 33189359 DOI: 10.1016/j.biomaterials.2020.120467] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have unique structural, compositional, and morphological characteristics as well as predominant physiochemical stability and biocompatibility properties. They play a crucial role in pathophysiological regulation, and also have broad prospects for clinical application in the diagnosis, prognosis, and therapy of disease, and tissue regeneration and repair. Herein, the biosynthesis and physiological functions and current methods for separation and identification of EVs are summarized. Specifically, engineered EVs may be used to enhance targeted therapy in cancer and repair damaged tissues, and they may be developed as an individualized imaging diagnostic reagent, among other potential applications. We will focus on reviewing recent studies on engineered EVs in which alterations enhanced their therapeutic capability or diagnostic imaging potential via physical, chemical, and biological modification approaches. This review will clarify the superior biological functions and powerful therapeutic potential of EVs, particularly with regard to new designs based on EVs and their utilization in a new generation of nanomedicine diagnosis and treatment platforms.
Collapse
Affiliation(s)
- Peipei Wu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Dickson Kofi Wiredu Ocansey
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China
| | - Wenrong Xu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, PR China.
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, PR China; Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, PR China.
| |
Collapse
|
27
|
Huang C, Neupane YR, Lim XC, Shekhani R, Czarny B, Wacker MG, Pastorin G, Wang JW. Extracellular vesicles in cardiovascular disease. Adv Clin Chem 2020; 103:47-95. [PMID: 34229852 DOI: 10.1016/bs.acc.2020.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality globally. Extracellular vesicles (EVs), a group of heterogeneous nanosized cell-derived vesicles, have attracted great interest as liquid biopsy material for biomarker discovery in a variety of diseases including cardiovascular disease. Because EVs inherit bioactive components from parent cells and are able to transfer their contents to recipient cells, EVs hold great promise as potential cell-free therapeutics and drug delivery systems. However, the development of EV-based diagnostics, therapeutics or drug delivery systems has been challenging due to the heterogenicity of EVs in biogenesis, size and cellular origin, the lack of standardized isolation and purification methods as well as the low production yield. In this review, we will provide an overview of the recent advances in EV-based biomarker discovery, highlight the potential usefulness of EVs and EV mimetics for therapeutic treatment and drug delivery in cardiovascular disease. In view of the fast development in this field, we will also discuss the challenges of current methodologies for isolation, purification and fabrication of EVs and potential alternatives.
Collapse
Affiliation(s)
- Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
| | - Yub Raj Neupane
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xiong Chang Lim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rawan Shekhani
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
| | - Bertrand Czarny
- School of Materials, Science and Engineering, and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
28
|
Villata S, Canta M, Cauda V. EVs and Bioengineering: From Cellular Products to Engineered Nanomachines. Int J Mol Sci 2020; 21:ijms21176048. [PMID: 32842627 PMCID: PMC7504061 DOI: 10.3390/ijms21176048] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are natural carriers produced by many different cell types that have a plethora of functions and roles that are still under discovery. This review aims to be a compendium on the current advancement in terms of EV modifications and re-engineering, as well as their potential use in nanomedicine. In particular, the latest advancements on artificial EVs are discussed, with these being the frontier of nanomedicine-based therapeutics. The first part of this review gives an overview of the EVs naturally produced by cells and their extraction methods, focusing on the possibility to use them to carry desired cargo. The main issues for the production of the EV-based carriers are addressed, and several examples of the techniques used to upload the cargo are provided. The second part focuses on the engineered EVs, obtained through surface modification, both using direct and indirect methods, i.e., engineering of the parental cells. Several examples of the current literature are proposed to show the broad variety of engineered EVs produced thus far. In particular, we also report the possibility to engineer the parental cells to produce cargo-loaded EVs or EVs displaying specific surface markers. The third and last part focuses on the most recent advancements based on synthetic and chimeric EVs and the methods for their production. Both top-down or bottom-up techniques are analyzed, with many examples of applications.
Collapse
|
29
|
Hu W, Song X, Yu H, Sun J, Zhao Y. Therapeutic Potentials of Extracellular Vesicles for the Treatment of Diabetes and Diabetic Complications. Int J Mol Sci 2020; 21:ijms21145163. [PMID: 32708290 PMCID: PMC7404127 DOI: 10.3390/ijms21145163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are nano-to-micrometer vesicles released from nearly all cellular types. EVs comprise a mixture of bioactive molecules (e.g., mRNAs, miRNAs, lipids, and proteins) that can be transported to the targeted cells/tissues via the blood or lymph circulation. Recently, EVs have received increased attention, owing to their emerging roles in cell-to-cell communication, or as biomarkers with the therapeutic potential to replace cell-based therapy. Diabetes comprises a group of metabolic disorders characterized by hyperglycemia that cause the development of life-threatening complications. The impacts of conventional clinical treatment are generally limited and are followed by many side effects, including hypoglycemia, obesity, and damage to the liver and kidney. Recently, several studies have shown that EVs released by stem cells and immune cells can regulate gene expression in the recipient cells, thus providing a strategy to treat diabetes and its complications. In this review, we summarize the results from currently available studies, demonstrating the therapeutic potentials of EVs in diabetes and diabetic complications. Additionally, we highlight recommendations for future research.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
- Correspondence: ; Tel.: +1-201-880-3460
| |
Collapse
|
30
|
Wei F, Wang A, Wang Q, Han W, Rong R, Wang L, Liu S, Zhang Y, Dong C, Li Y. Plasma endothelial cells-derived extracellular vesicles promote wound healing in diabetes through YAP and the PI3K/Akt/mTOR pathway. Aging (Albany NY) 2020; 12:12002-12018. [PMID: 32570219 PMCID: PMC7343472 DOI: 10.18632/aging.103366] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles are involved in skin wound healing and diabetes. After enrichment and identification, plasma endothelial cells-derived-extracellular vesicles were cocultured with skin fibroblasts or HaCaT. The gain-and loss-of functions were performed to measure fibroblast proliferation, senescence, and reactive oxygen species. Levels of senescence-related proteins, senescence-associated secretory phenotypes, vascular markers, YAP and the PI3K/Akt/mTOR pathway-related proteins were determined. Diabetic mice were induced to establish skin wound model. After endothelial cells-derived-extracellular vesicles were injected into skin wound modeling mice, skin wound healing was evaluated. Endothelial cells-derived-extracellular vesicles treatment enhanced fibroblast proliferation, and decreased senescence through the elevation of YAP nuclear translocation and activation the PI3K/Akt/mTOR pathway. YAP inhibition reversed the effect of plasma endothelial cells-derived-extracellular vesicles on fibroblast proliferation. Endothelial cells-derived-extracellular vesicles also promoted wound healing in diabetic mice, increased microvascular density, collagen deposition, macrophage infiltration and positive rates of vascular markers, and inhibited YAP phosphorylation and senescence. Plasma endothelial cells-derived-extracellular vesicles prevent fibroblast senescence and accelerate skin wound healing in diabetic mice by reducing YAP phosphorylation and activating the PI3K/Akt/mTOR pathway. This study may provide novel insights for skin disorders in diabetic mice.
Collapse
Affiliation(s)
- Feng Wei
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Aixue Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Qing Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Wenrui Han
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Rong Rong
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Lijuan Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Sijia Liu
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Yimeng Zhang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Chao Dong
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Yanling Li
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| |
Collapse
|
31
|
Shedding Light on the Role of Extracellular Vesicles in HIV Infection and Wound Healing. Viruses 2020; 12:v12060584. [PMID: 32471020 PMCID: PMC7354510 DOI: 10.3390/v12060584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication. They are naturally released from cells into the extracellular environment. Based on their biogenesis, release pathways, size, content, and function, EVs are classified into exosomes, microvesicles (MVs), and apoptotic bodies (ApoBDs). Previous research has documented that EVs, specifically exosomes and MVs, play an important role in HIV infection, either by promoting HIV infection and pathogenesis or by inhibiting HIV-1 to a certain extent. We have also previously reported that EVs (particularly exosomes) from vaginal fluids inhibit HIV at the post-entry step (i.e., reverse transcription, integration). Besides the role that EVs play in HIV, they are also known to regulate the process of wound healing by regulating both the immune and inflammatory responses. It is noted that during the advanced stages of HIV infection, patients are at greater risk of wound-healing and wound-related complications. Despite ongoing research, the data on the actual effects of EVs in HIV infection and wound healing are still premature. This review aimed to update the current knowledge about the roles of EVs in regulating HIV pathogenesis and wound healing. Additionally, we highlighted several avenues of EV involvement in the process of wound healing, including coagulation, inflammation, proliferation, and extracellular matrix remodeling. Understanding the role of EVs in HIV infection and wound healing could significantly contribute to the development of new and potent antiviral therapeutic strategies and approaches to resolve impaired wounds in HIV patients.
Collapse
|
32
|
Selected Tetraspanins Functionalized Niosomes as Potential Standards for Exosome Immunoassays. NANOMATERIALS 2020; 10:nano10050971. [PMID: 32443605 PMCID: PMC7712311 DOI: 10.3390/nano10050971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Quantitative detection of exosomes in bio-fluids is a challenging task in a dynamic research field. The absence of a well-established reference material (RM) for method development and inter-comparison studies could be potentially overcome with artificial exosomes: lab-produced biomimetic particles with morphological and functional properties close to natural exosomes. This work presents the design, development and functional characteristics of fully artificial exosomes based on tetraspanin extracellular loops-coated niosomes, produced by bio-nanotechnology methods based on supra-molecular chemistry and recombinant protein technology. Mono- and double-functionalized particles with CD9/CD63 tetraspanins have been developed and characterized from a morphological and functional point of view. Produced bio-particles showed close similarities with natural entities in terms of physical properties. Their utility for bioanalysis is demonstrated by their detection and molecular-type discrimination by enzyme-linked immunosorbent assays (ELISAs), one of the most frequent bio-analytical method found in routine and research labs. The basic material based on streptavidin-coated niosomes allows the surface functionalization with any biotinylated protein or peptide, introducing versatility. Although promising results have been reported, further optimizations and deeper characterization will help this innovative biomaterial become a robust RM for validation and development of diagnostic tools for exosomes determination.
Collapse
|
33
|
Tsiapalis D, O’Driscoll L. Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells 2020; 9:E991. [PMID: 32316248 PMCID: PMC7226943 DOI: 10.3390/cells9040991] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being extensively investigated for their potential in tissue engineering and regenerative medicine. However, recent evidence suggests that the beneficial effects of MSCs may be manifest by their released extracellular vesicles (EVs); typically not requiring the administration of MSCs. This evidence, predominantly from pre-clinical in vitro and in vivo studies, suggests that MSC-EVs may exhibit substantial therapeutic properties in many pathophysiological conditions, potentially restoring an extensive range of damaged or diseased tissues and organs. These benefits of MSC EVs are apparently found, regardless of the anatomical or body fluid origin of the MSCs (and include e.g., bone marrow, adipose tissue, umbilical cord, urine, etc). Furthermore, early indications suggest that the favourable effects of MSC-EVs could be further enhanced by modifying the way in which the donor MSCs are cultured (for example, in hypoxic compared to normoxic conditions, in 3D compared to 2D culture formats) and/or if the EVs are subsequently bio-engineered (for example, loaded with specific cargo). So far, few human clinical trials of MSC-EVs have been conducted and questions remain unanswered on whether the heterogeneous population of EVs is beneficial or some specific sub-populations, how best we can culture and scale-up MSC-EV production and isolation for clinical utility, and in what format they should be administered. However, as reviewed here, there is now substantial evidence supporting the use of MSC-EVs in tissue engineering and regenerative medicine and further research to establish how best to exploit this approach for societal and economic benefit is warranted.
Collapse
Affiliation(s)
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland;
| |
Collapse
|
34
|
High-throughput fluorescence correlation spectroscopy enables analysis of surface components of cell-derived vesicles. Anal Bioanal Chem 2020; 412:2589-2597. [PMID: 32146499 DOI: 10.1007/s00216-020-02485-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 10/24/2022]
Abstract
Extracellular vesicles (EVs) and cell-derived vesicles (CDVs), generated by fragmenting cellular membranes, have both been explored as therapeutic delivery vehicles. Surface proteins on these vesicles are of great importance as they are characteristic to the cell of origin and modulate vesicle interactions with target cells. Here, we introduced a high-throughput fluorescence correlation spectroscopy (ht-FCS) approach capable of characterizing vesicle surface proteins across a large number of samples. We used automated screening and acquisition of FCS data to profile surface proteins of cell-derived vesicles with high fidelity based on changes in diffusion time upon antibody-vesicle interactions. We characterized vesicles generated from 4 cell types using antibodies for known exosome biomarkers. The ht-FCS technique presented here offers the capability to screen EVs or cell-derived vesicles against a library of surface markers or to screen a library of cell-derived vesicles for a specific identifying marker at a high speed.
Collapse
|
35
|
Lu M, Huang Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 2020; 242:119925. [PMID: 32151860 DOI: 10.1016/j.biomaterials.2020.119925] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Exosomes have emerged as appealing candidate therapeutic agents and delivery nanoplatforms due to their endogenous features and unique biological properties. However, obstacles such as low isolation yield, considerable complexity and potential safety concerns, and inefficient drug payload substantially hamper their therapeutic applicability. To this end, developing bioinspired exosome-like nanoparticles has become a promising area to overcome certain limitations of their natural counterparts. Synthetically fabrication of exosome-like nanoparticles that harbor only crucial components of exosomes through controllable protocols strongly increases the pharmaceutical acceptability of these vesicles. Assembly of exosome-like nanovesicles derived from producer cells allows for a promising strategy for scale-up production. To improve the loading capability and delivery efficiency of exosomes, hybrid exosome-like nanovesicles and membrane-camouflaged nanoparticles towards better bridging synthetic nanocarriers with natural exosomes could be designed. Building off these observations, herein, efforts are made to give an overview of bioinspired exosome-like therapeutics and delivery nanoplatforms. We briefly recapitulate the recent advance in exosome biology with focus on tailoring exosomes as therapeutics and delivery vehicles. Furthermore, we elaborately discuss the biomimicry methodologies for preparation of exosome-like nanoparticles with special emphasis on offering insights into strategies for rational design of exosome-like biomaterials as effective and safe therapeutics and delivery nanoplatforms.
Collapse
Affiliation(s)
- Mei Lu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
36
|
Lee H, Cha H, Park JH. Derivation of Cell-Engineered Nanovesicles from Human Induced Pluripotent Stem Cells and Their Protective Effect on the Senescence of Dermal Fibroblasts. Int J Mol Sci 2020; 21:E343. [PMID: 31948013 PMCID: PMC6981782 DOI: 10.3390/ijms21010343] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
Stem cells secrete numerous paracrine factors, such as cytokines, growth factors, and extracellular vesicles. As a kind of extracellular vesicle (EV), exosomes produced in the endosomal compartment of eukaryotic cells have recently emerged as a biomedical material for regenerative medicine, because they contain many valuable contents that are derived from the host cells, and can stably deliver those contents to other recipient cells. Although we have previously demonstrated the beneficial effects of human induced potent stem cell-derived exosomes (iPSC-Exo) on the aging of skin fibroblasts, low production yield has remained an obstacle for clinical applications. In this study, we generated cell-engineered nanovesicles (CENVs) by serial extrusion of human iPSCs through membrane filters with diminishing pore sizes, and explored whether the iPSC-CENV ameliorates physiological alterations of human dermal fibroblasts (HDFs) that occur by natural senescence. The iPSC-CENV exhibited similar characteristics to the iPSC-Exo, while the production yield was drastically increased compared to that of iPSC-derived EVs, including exosomes. The proliferation and migration of both young and senescent HDFs were stimulated by the treatment with iPSC-CENVs. In addition, it was revealed that the iPSC-CNEV restored senescence-related alterations of gene expression. Treatment with iPSC-CENVs significantly reduced the activity of senescence-associated-β-galactosidase (SA-β-Gal) in senescent HDFs, as well as suppressing the elevated expression of p53 and p21, key factors involved in cell cycle arrest, apoptosis, and cellular senescence signaling pathways. Taken together, these results suggest that iPSC-CENV could provide an excellent alternative to iPSC-exo, and be exploited as a resource for the treatment of signs of skin aging.
Collapse
Affiliation(s)
| | | | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea; (H.L.); (H.C.)
| |
Collapse
|
37
|
Strategies for the use of Extracellular Vesicles for the Delivery of Therapeutics. J Neuroimmune Pharmacol 2019; 15:422-442. [PMID: 31456107 DOI: 10.1007/s11481-019-09873-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles released from eukaryotic and prokaryotic cells that can transport cargo containing DNA, RNA, lipids and proteins, between cells as a means of intercellular communication. Although EVs were initially considered to be cellular debris deprived of any essential biological functions, emerging literature highlights the critical roles of EVs in the context of intercellular signaling, maintenance of tissue homeostasis, modulation of immune responses, inflammation, cancer progression, angiogenesis, and coagulation under both physiological and pathological states. Based on the ability of EVs to shuttle proteins, lipids, carbohydrates, mRNAs, long non-coding RNAs (lncRNAs), microRNAs, chromosomal DNA, and mitochondrial DNA into target cells, the presence and content of EVs in biofluids have been exploited for biomarker research in the context of diagnosis, prognosis and treatment strategies. Additionally, owing to the characteristics of EVs such as stability in circulation, biocompatibility as well as low immunogenicity and toxicity, these vesicles have become attractive systems for the delivery of therapeutics. More recently, EVs are increasingly being exploited as conduits for delivery of therapeutics for anticancer strategies, immunomodulation, targeted drug delivery, tissue regeneration, and vaccination. In this review, we highlight and discuss the multiple strategies that are employed for the use of EVs as delivery vehicles for therapeutic agents, including the potential advantages and challenges involved. Graphical abstract.
Collapse
|
38
|
Snell A, Neupane KR, McCorkle JR, Fu X, Moonschi FH, Caudill EB, Kolesar J, Richards CI. Cell-Derived Vesicles for in Vitro and in Vivo Targeted Therapeutic Delivery. ACS OMEGA 2019; 4:12657-12664. [PMID: 31460386 PMCID: PMC6681979 DOI: 10.1021/acsomega.9b01353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/11/2019] [Indexed: 06/01/2023]
Abstract
Efficient delivery of therapeutics across the cell membrane to the interior of the cell remains a challenge both in vitro and in vivo. Here, we demonstrate that vesicles derived from cellular membranes can be efficiently loaded with cargo that can then be delivered to the interior of the cell. These vesicles demonstrated cell-targeting specificity as well as the ability to deliver a wide range of different cargos. We utilized this approach to deliver both lipophilic and hydrophilic cargos including therapeutics and DNA in vitro. We further demonstrated in vivo targeting and delivery using fluorescently labeled vesicles to target tumor xenografts in an animal. Cell-derived vesicles can be generated in high yields and are easily loaded with a variety of cargos. The ability of these vesicles to specifically target the same cell type from which they originated provides an efficient means of delivering cargo, such as therapeutics, both in vitro and in vivo.
Collapse
Affiliation(s)
- Aaron
A. Snell
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Khaga R. Neupane
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - J. Robert McCorkle
- Markey Cancer Center and Department of Pharmacy Practice &
Science, College
of Pharmacy, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Xu Fu
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Faruk H. Moonschi
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Elizabeth B. Caudill
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jill Kolesar
- Markey Cancer Center and Department of Pharmacy Practice &
Science, College
of Pharmacy, University of Kentucky, Lexington, Kentucky 40508, United States
| | | |
Collapse
|
39
|
Han C, Jeong D, Kim B, Jo W, Kang H, Cho S, Kim KH, Park J. Mesenchymal Stem Cell Engineered Nanovesicles for Accelerated Skin Wound Closure. ACS Biomater Sci Eng 2019; 5:1534-1543. [DOI: 10.1021/acsbiomaterials.8b01646] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chungmin Han
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dayeong Jeong
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Bumju Kim
- Division of Integrative Biosciences and Biotechnology, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Wonju Jo
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyejin Kang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Siwoo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro,
Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
40
|
Ge Q, Xie XX, Xiao X, Li X. Exosome-Like Vesicles as New Mediators and Therapeutic Targets for Treating Insulin Resistance and β-Cell Mass Failure in Type 2 Diabetes Mellitus. J Diabetes Res 2019; 2019:3256060. [PMID: 30993115 PMCID: PMC6434285 DOI: 10.1155/2019/3256060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/20/2019] [Indexed: 01/09/2023] Open
Abstract
Exosome-like vesicles (ELVs), the smallest class of extracellular vesicles released from cells, function in cellular crosstalk and therefore profoundly affect physiologic responses and pathologic progression. A growing body of evidence supports a novel role for ELVs as important mediators and therapeutic targets due to their effects on regulation of both insulin signaling and β-cell mass. Pathologic conditions associated with type 2 diabetes (such as high blood glucose, inflammation, hypoxia, and fatty acids) can alter the quantity and components of ELVs secreted from the pancreas or peripheral insulin-targeting tissues. These released ELVs can either enter the blood circulation or be taken up by neighboring cells or macrophages, which can lead to insulin resistance or β-cell apoptosis. This review focuses on the roles of ELVs in insulin resistance and β-cell failure and also highlights the potential use of ELVs and exosome-based delivery systems in therapeutic interventions aimed at treating type 2 diabetes mellitus as well as the challenges associated with exosome-targeting therapeutics.
Collapse
Affiliation(s)
- Qian Ge
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Xin Xin Xie
- The Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Xi Li
- The Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
41
|
Beuzelin D, Kaeffer B. Exosomes and miRNA-Loaded Biomimetic Nanovehicles, a Focus on Their Potentials Preventing Type-2 Diabetes Linked to Metabolic Syndrome. Front Immunol 2018; 9:2711. [PMID: 30519245 PMCID: PMC6258775 DOI: 10.3389/fimmu.2018.02711] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Exosomes are small membrane vesicles of 30–150 nm, members of the extracellular vesicle family and secreted by various cell types. Different studies describe specific microRNA (miRNA) with altered expression in serum and/or plasma of patients suffering from diabetes or metabolic syndrome. Diabetic cardiomyocyte-derived exosomes loaded with miRNAs like miR-320-3p (or 320a) have been shown regulating angiogenesis on endothelial cell cultures. Insufficient myocardial angiogenesis is the major manifestation of diabetes-caused ischemic cardiovascular disease. Studies on transfer of functional microRNAs between mouse dendritic cells via exosomes have shown that some miRNAs (miR-320-3p, 29b-3p, 7a-5p) are distributed in immature and mature exosomes. Among these miRNAs, miR-320-3p is better known in epigenetics for silencing polr3d gene by binding to its promoter in Human Embryonic Kidney-293 cells. Moreover, quantitative and stoichiometric analysis of the microRNA content of exosomes highlights the lack of reliable natural source of such particles loaded with miRNA opening the need for tailoring exosomes or nanoparticles delivering efficiently miRNA intimately linked to immunity, metabolism and epigenetics in target cells. However, loading of extracellular mature miRNA into recipient cells comes with a cost by at least impeding dynamic localization of miRNAs in nucleoli or inefficient miRNA delivery due to rapid recycling by exonucleases. All these works are calling for the design of new biomimetic vehicles and in vivo assessment of miRNA functionality when delivered by natural or biomimetic nanoparticles in order to control metabolic diseases from infancy to adulthood.
Collapse
|
42
|
Shanmuganathan M, Vughs J, Noseda M, Emanueli C. Exosomes: Basic Biology and Technological Advancements Suggesting Their Potential as Ischemic Heart Disease Therapeutics. Front Physiol 2018; 9:1159. [PMID: 30524292 PMCID: PMC6262308 DOI: 10.3389/fphys.2018.01159] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small nano-sized vesicles that deliver biologically active RNA molecules and proteins to recipient cells through binding, fusion or endocytosis. There is emerging evidence that endogenous exosomes released by cardiovascular cells and progenitor cells impact cell survival and proliferation, thus regulating angiogenesis, cardiac protection and repair. These cardioprotective and regenerative traits have the potential to translate in to novel therapeutic options for post-ischaemic cardiac regeneration, thus potentially delaying the progression to ischaemic heart failure. Cellular stressors influence exosomes' secretion and the molecular composition of the exosome cargo, thus impacting on the above processes. Evidences are emerging that loading of proteins and RNAs in the exosomes cargos can be manipulated. Similarly, manipulation of exosomes surface proteins' expression to target exosomes to specific cells and tissues is doable. In addition, nature-inspired synthetic exosomes can be assembled to deliver specific clues to the recipient cells, including proliferative and differentiation stimuli, or shed paracrine signals enabling to reconstructing the heart homeostatic micro-environment. This review will describe exosome biogenesis and emerging evidence of exosome-mediated regenerative cell-to-cell communications and will conclude discussing possibilities of using exosomes to treat ischemic heart disease.
Collapse
Affiliation(s)
- Mayooran Shanmuganathan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Jeff Vughs
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
43
|
Cruz L, Romero JAA, Iglesia RP, Lopes MH. Extracellular Vesicles: Decoding a New Language for Cellular Communication in Early Embryonic Development. Front Cell Dev Biol 2018; 6:94. [PMID: 30211159 PMCID: PMC6121069 DOI: 10.3389/fcell.2018.00094] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The blastocyst inner cell mass (ICM) that gives rise to a whole embryo in vivo can be derived and cultured in vitro as embryonic stem cells (ESCs), which retain full developmental potential. ICM cells receive, from diverse sources, complex molecular and spatiotemporal signals that orchestrate the finely-tuned processes associated with embryogenesis. Those instructions come, continuously, from themselves and from surrounding cells, such as those present in the trophectoderm and primitive endoderm (PrE). A key component of the ICM niche are the extracellular vesicles (EVs), produced by distinct cell types, that carry and transfer key molecules that regulate target cells and modulate cell renewal or cell fate. A growing number of studies have demonstrated the extracellular circulation of morphogens, a group of classical regulators of embryo development, are carried by EVs. miRNAs are also an important cargo of the EVs that have been implicated in tissue morphogenesis and have gained special attention due to their ability to regulate protein expression through post-transcriptional modulation, thereby influencing cell phenotype. This review explores the emerging evidence supporting the role of EVs as an additional mode of intercellular communication in early embryonic and ESCs differentiation.
Collapse
Affiliation(s)
- Lilian Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jenny A A Romero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca P Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilene H Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Oh M, Lee J, Kim YJ, Rhee WJ, Park JH. Exosomes Derived from Human Induced Pluripotent Stem Cells Ameliorate the Aging of Skin Fibroblasts. Int J Mol Sci 2018; 19:ijms19061715. [PMID: 29890746 PMCID: PMC6032439 DOI: 10.3390/ijms19061715] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Stem cells and their paracrine factors have emerged as a resource for regenerative medicine. Many studies have shown the beneficial effects of paracrine factors secreted from adult stem cells, such as exosomes, on skin aging. However, to date, few reports have demonstrated the use of exosomes derived from human pluripotent stem cells for the treatment of skin aging. In this study, we collected exosomes from the conditioned medium of human induced pluripotent stem cells (iPSCs) and investigated the effect on aged human dermal fibroblasts (HDFs). Cell proliferation and viability were determined by an MTT assay and cell migration capacity was shown by a scratch wound assay and a transwell migration assay. To induce photoaging and natural senescence, HDFs were irradiated by UVB (315 nm) and subcultured for over 30 passages, respectively. The expression level of certain mRNAs was evaluated by quantitative real-time PCR (qPCR). Senescence-associated-β-galactosidase (SA-β-Gal) activity was assessed as a marker of natural senescence. As a result, we found that exosomes derived from human iPSCs (iPSCs-Exo) stimulated the proliferation and migration of HDFs under normal conditions. Pretreatment with iPSCs-Exo inhibited the damages of HDFs and overexpression of matrix-degrading enzymes (MMP-1/3) caused by UVB irradiation. The iPSCs-Exo also increased the expression level of collagen type I in the photo-aged HDFs. In addition, we demonstrated that iPSCs-Exo significantly reduced the expression level of SA-β-Gal and MMP-1/3 and restored the collagen type I expression in senescent HDFs. Taken together, it is anticipated that these results suggest a therapeutic potential of iPSCs-Exo for the treatment of skin aging.
Collapse
Affiliation(s)
- Myeongsik Oh
- Department of Medical Biomaterials Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea.
| | - Jinhee Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Yu Jin Kim
- Department of Medical Biomaterials Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea.
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea.
- Institute of Bioscience and Biotechnology, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea.
| |
Collapse
|
45
|
Protective effects of human induced pluripotent stem cell-derived exosomes on high glucose-induced injury in human endothelial cells. Exp Ther Med 2018; 15:4791-4797. [PMID: 29805497 PMCID: PMC5958753 DOI: 10.3892/etm.2018.6059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/25/2017] [Indexed: 11/05/2022] Open
Abstract
Exosomes are a family of extracellular vesicles that are secreted from almost all types of cells and are associated with cell-to-cell communication. The present study was performed to investigate the effects of human induced pluripotent stem cell-derived exosomes (hiPSC-exo) on cell viability, capillary-like structure formation and senescence in endothelial cells exposed to high glucose. Exosomes were isolated from the conditional medium of hiPSCs and confirmed by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis using Alix and cluster of differentiation-63 as markers. hiPSC-exo were labeled with PKH26 for tracking, and it was determined that spherical exosomes, with a typical cup-shape, were absorbed by human umbilical vascular endothelial cells (HUVECs). Cultured HUVECs were treated with high glucose (33 mM) with or without hiPSC-exo (20 µg/ml) for 48 h, and cell viability, capillary tube formation and senescence were assessed. When exposed to high glucose, viability and tube formation in HUVECs was significantly reduced (P<0.0001), whereas the proportion of senescent cells was higher compared with that in control HUVECs (P<0.0001). Furthermore, hiPSC-exo restored cell viability and capillary-like structure formation, and reduced senescence in HUVECs exposed to high glucose (P<0.0001). However, hiPSC-exo had minimal effects on normal HUVECs. These findings suggest that stem cell-derived exosomes are able to promote cell proliferation, enhance capillary-like structure formation and reduce senescence in endothelial cells exposed to high glucose.
Collapse
|
46
|
Yan Q, Yuan WB, Sun X, Zhang MJ, Cen F, Zhou SY, Wu WB, Xu YC, Tong LH, Ma ZH. Asparaginyl endopeptidase enhances pancreatic ductal adenocarcinoma cell invasion in an exosome-dependent manner and correlates with poor prognosis. Int J Oncol 2018; 52:1651-1660. [PMID: 29568945 DOI: 10.3892/ijo.2018.4318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/07/2018] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer; owing to low early detection rates and high metastasis rates, it is associated with an extremely poor prognosis. Therefore, a better understanding of the molecular mechanisms that underlie its metastasis and the identification of potential prognostic biomarkers are urgently required. Although high expression levels of asparaginyl endopeptidase (AEP) have been detected in various types of solid tumor, the expression and functions of AEP in pancreatic carcinomas have yet to be determined. The present study aimed to examine the putative functions of AEP in pancreatic carcinoma. Immunohistochemical analysis revealed that AEP was highly expressed in pancreatic cancer tissues compared with adjacent normal tissues. Patients with high AEP expression exhibited a significantly shorter overall survival time. Results from multivariate Cox regression analysis revealed that AEP was an independent prognostic factor for overall survival. Gain- and loss-of-function experiments demonstrated that knockdown of AEP expression significantly reduced the invasive ability of pancreatic cancer cells, whereas overexpression of AEP increased the invasive ability. In addition, AEP was detected in exosomes that were derived from cultured pancreatic ductal adenocarcinoma cells (PDACs) and in the serum from patients with PDAC. The Matrigel-Transwell invasion assay revealed that exosomes enriched with AEP were able to enhance the invasive ability of PDAC cells, whereas exosomes lacking AEP decreased the invasive ability. Furthermore, results from the present study suggested that AEP may be crucial for activation of the phosphoinositide 3-kinase/RAC‑α serine/threonine-protein kinase signaling pathway in PDAC cells. The present study data indicated that high AEP expression may be important for pancreatic carcinoma progression in an exosome-dependent manner, and that AEP may be an independent indicator of poor prognosis in patients with PDAC and may be a novel prognostic biomarker or therapeutic target in pancreatic carcinoma.
Collapse
Affiliation(s)
- Qiang Yan
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Wen-Bin Yuan
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Xu Sun
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Ming-Jie Zhang
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Feng Cen
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Shi-Yu Zhou
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Wan-Bo Wu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Yong-Can Xu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Li-Hui Tong
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| | - Zhi-Hong Ma
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313003, P.R. China
| |
Collapse
|
47
|
Abstract
Historically, small molecules, including steroid hormones and cytokines, have been attributed a role in paracrine and endocrine signaling, and now include a new player: biological nanoparticles, or 'exosomes'. Generated intracellularly, and defined simply as nanoparticulate packages of signaling moieties, exosomes have emerged as vehicles for highly specialized local and distant intercellular communication. Exosomes are increasingly being recognized as contributing factors in many diseases, and their potential as biomarkers and in therapeutics is rapidly emerging. This review highlights recent advances in the exploitation of exosomes in diagnostic and therapeutic applications. We discuss various facets of nanoparticles, namely the isolation and manipulation of exosomes, the construction of synthetic exosome-like particles in vivo, and their potential use in the treatment of various diseases.
Collapse
|
48
|
Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, Fang Y, Xia Y, Cheng G, He X, Zheng SY. Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Res 2018; 78:798-808. [PMID: 29217761 PMCID: PMC5811376 DOI: 10.1158/0008-5472.can-17-2880] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Extracellular nanovesicles (ENV) released by many cells contain lipids, proteins, and nucleic acids that contribute to intercellular communication. ENVs have emerged as biomarkers and therapeutic targets but they have also been explored as drug delivery vehicles. However, for the latter application, clinical translation has been limited by low yield and inadequate targeting effects. ENV vectors with desired targeting properties can be produced from parental cells engineered to express membrane-bound targeting ligands, or they can be generated by fusion with targeting liposomes; however, neither approach has met clinical requirements. In this study, we demonstrate that mechanical extrusion of approximately 107 cells grafted with lipidated ligands can generate cancer cell-targeting ENV and can be prepared in approximately 1 hour. This rapid and economic approach could pave the way for clinical implementation in the future.Significance: A new and rapid method for production of drug-targeting nanovesicles has implications for cancer treatment by chimeric antigen receptor T cells and other therapies. Cancer Res; 78(3); 798-808. ©2017 AACR.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania.
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Lixue Wang
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Chuandong Zhu
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Qin Zheng
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | | | - Jinlong Tong
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Yuan Fang
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Gong Cheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Xia He
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania.
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
49
|
García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell Vesicles 2018; 7:1422676. [PMID: 29372017 PMCID: PMC5774402 DOI: 10.1080/20013078.2017.1422676] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as novel theranostic tools. Limitations related to clinical uses are leading to a new research area on design and manufacture of artificial EVs. Several strategies have been reported in order to produce artificial EVs, but there has not yet been a clear criterion by which to differentiate these novel biomaterials. In this paper, we suggest for the first time a systematic classification of the terms used to build up the artificial EV landscape, based on the preparation method. This could be useful to guide the derivation to clinical trial routes and to clarify the literature. According to our classification, we have reviewed the main strategies reported to date for their preparation, including key points such as: cargo loading, surface targeting strategies, purification steps, generation of membrane fragments for the construction of biomimetic materials, preparation of synthetic membranes inspired in EV composition and subsequent surface decoration.
Collapse
Affiliation(s)
- Pablo García-Manrique
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Carmen Pazos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|
50
|
García-Manrique P, Gutiérrez G, Blanco-López MC. Fully Artificial Exosomes: Towards New Theranostic Biomaterials. Trends Biotechnol 2017; 36:10-14. [PMID: 29074309 DOI: 10.1016/j.tibtech.2017.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/23/2022]
Abstract
Bionanotechnology routes have been recently developed to produce fully artificial exosomes: biomimetic particles designed to overcome certain limitations in extracellular vesicle (EV) biology and applications. These particles could soon become true therapeutic biomaterials. Here, we outline their current preparation techniques, their explored and future possibilities, and their present limits.
Collapse
Affiliation(s)
- Pablo García-Manrique
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Maria Carmen Blanco-López
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|