1
|
Chen N, Zhang Z, Liu X, Wang H, Guo RC, Wang H, Hu B, Shi Y, Zhang P, Liu Z, Yu Z. Sulfatase-Induced In Situ Formulation of Antineoplastic Supra-PROTACs. J Am Chem Soc 2024; 146:10753-10766. [PMID: 38578841 DOI: 10.1021/jacs.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Proteolysis targeting chimera (PROTAC) technology is an innovative strategy for cancer therapy, which, however, suffers from poor targeting delivery and limited capability for protein of interest (POI) degradation. Here, we report a strategy for the in situ formulation of antineoplastic Supra-PROTACs via intracellular sulfatase-responsive assembly of peptides. Coassembling a sulfated peptide with two ligands binding to ubiquitin VHL and Bcl-xL leads to the formation of a pro-Supra-PROTAC, in which the ratio of the two ligands is rationally optimized based on their protein binding affinity. The resulting pro-Supra-PROTAC precisely undergoes enzyme-responsive assembly into nanofibrous Supra-PROTACs in cancer cells overexpressing sulfatase. Mechanistic studies reveal that the pro-Supra-PROTACs selectively cause apparent cytotoxicity to cancer cells through the degradation of Bcl-xL and the activation of caspase-dependent apoptosis, during which the rationally optimized ligand ratio improves the bioactivity for POI degradation and cell death. In vivo studies show that in situ formulation enhanced the tumor accumulation and retention of the pro-Supra-PROTACs, as well as the capability for inhibiting tumor growth with excellent biosafety when coadministrating with chemodrugs. Our findings provide a new approach for enzyme-regulated assembly of peptides in living cells and the development of PROTACs with high targeting delivering and POI degradation efficiency.
Collapse
Affiliation(s)
- Ninglin Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hongbo Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yang Shi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
2
|
Gong Z, Peng S, Cao J, Tan H, Zhao H, Bai J. Advances in the variations and biomedical applications of stimuli-responsive nanodrug delivery systems. NANOTECHNOLOGY 2024; 35:132001. [PMID: 38198449 DOI: 10.1088/1361-6528/ad170b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Chemotherapy is an important cancer treatment modality, but the clinical utility of chemotherapeutics is limited by their toxic side effects, inadequate distribution and insufficient intracellular concentrations. Nanodrug delivery systems (NDDSs) have shown significant advantages in cancer diagnosis and treatment. Variable NDDSs that respond to endogenous and exogenous triggers have attracted much research interest. Here, we summarized nanomaterials commonly used for tumor therapy, such as peptides, liposomes, and carbon nanotubes, as well as the responses of NDDSs to pH, enzymes, magnetic fields, light, and multiple stimuli. Specifically, well-designed NDDSs can change in size or morphology or rupture when induced by one or more stimuli. The varying responses of NDDSs to stimulation contribute to the molecular design and development of novel NDDSs, providing new ideas for improving drug penetration and accumulation, inhibiting tumor resistance and metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhongying Gong
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Jinan 250012, People's Republic of China
| | - Hongxia Zhao
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| |
Collapse
|
3
|
Mohammadi R, Ghani S, Arezumand R, Farhadi S, Khazaee-Poul Y, Kazemi B, Yarian F, Noruzi S, Alibakhshi A, Jalili M, Aghamiri S. Physicochemical Stimulus-Responsive Systems Targeted with Antibody Derivatives. Curr Mol Med 2024; 24:1250-1268. [PMID: 37594115 DOI: 10.2174/1566524023666230818093016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023]
Abstract
The application of monoclonal antibodies and antibody fragments with the advent of recombinant antibody technology has made notable progress in clinical trials to provide a regulated drug release and extra targeting to the special conditions in the function site. Modification of antibodies has facilitated using mAbs and antibody fragments in numerous models of therapeutic and detection utilizations, such as stimuliresponsive systems. Antibodies and antibody derivatives conjugated with diverse stimuliresponsive materials have been constructed for drug delivery in response to a wide range of endogenous (electric, magnetic, light, radiation, ultrasound) and exogenous (temperature, pH, redox potential, enzymes) stimuli. In this report, we highlighted the recent progress on antibody-conjugated stimuli-responsive and dual/multi-responsive systems that affect modern medicine by improving a multitude of diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rezvan Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Advanced Technology, School of Medicine, North Khorasan University of Medical Sciences, North Khorasan, Iran
| | - Shohreh Farhadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Khazaee-Poul
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Jalili
- Preventive and Clinical Nutrition Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Singh D, Irham LM, Singh A, Kurmi BD. Guanidinium-based Integrated Peptide Dendrimers: Pioneer Nanocarrier in Cancer Therapy. Protein Pept Lett 2024; 31:261-274. [PMID: 38629378 DOI: 10.2174/0109298665292042240325052536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 08/13/2024]
Abstract
The landscape of cancer therapy has witnessed a paradigm shift with the emergence of innovative delivery systems, and Guanidinium-based Peptide Dendrimers have emerged as a vanguard in this transformative journey. With their unique molecular architecture and intrinsic biocompatibility, these dendrimers offer a promising avenue for the targeted delivery of therapeutic cargo in cancer treatment. This comprehensive review delves into the intricate world of Guanidinium- based Peptide Dendrimers, unraveling their structural intricacies, mechanisms of action, and advancements that have propelled them from laboratory curiosities to potential clinical champions. Exploiting the potent properties of guanidinium, these dendrimers exhibit unparalleled precision in encapsulating and transporting diverse cargo molecules, ranging from conventional chemotherapeutics to cutting-edge nucleic acids. The review navigates the depths of their design principles, investigating their prowess in traversing the complex terrain of cellular barriers for optimal cargo delivery. Moreover, it delves into emerging trends, such as personalized therapeutic approaches, multimodal imaging, and bioinformatics-driven design, highlighting their potential to redefine the future of cancer therapy. Crucially, the review addresses the pivotal concerns of biocompatibility and safety, examining cytotoxicity profiles, immune responses, and in vivo studies. It underscores the importance of aligning scientific marvels with the stringent demands of clinical applications. Through each section, the narrative underscores the promises and possibilities that Guanidinium-based Peptide Dendrimers hold and how they can potentially reshape the landscape of precision cancer therapy.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan (140413), India
| | | | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
5
|
Li Y, Kim M, Pial TH, Lin Y, Cui H, Olvera de la Cruz M. Aggregation-Induced Asymmetric Charge States of Amino Acids in Supramolecular Nanofibers. J Phys Chem B 2023; 127:8176-8184. [PMID: 37721979 DOI: 10.1021/acs.jpcb.3c05598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrostatic interactions contribute critically to the kinetic pathways and thermodynamic outcomes of peptide self-assembly involving one or more than one charged amino acids. While it is well understood in protein folding that those amino acids with acidic/basic side chains could shift their pKas when placed in a hydrophobic microenvironment, to what extent aggregation of monomeric peptide units from the bulk solution could alter their charged status and how this change in pKa values would reciprocally impact their assembly outcomes. Here, we design and analyze two solution systems containing peptide amphiphiles with hydrocarbon chains of different lengths to determine the factor of deprotonation on assembly. Our results suggest that models of supramolecular nanofibers with uniformly distributed, fully charged amino acids are oversimplified. We demonstrate, with molecular dynamics simulations, and validate with experimental results that asymmetric, different protonation states of the peptides lead to distinct nanostructures after self-assembly. The results give estimates on the electrostatic interactions in peptide amphiphiles required for their self-assembly and shed light on modeling molecular assembly systems containing charged amino acids.
Collapse
Affiliation(s)
- Y Li
- Department of Chemical and Biomolecular Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M Kim
- Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - T H Pial
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Y Lin
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - H Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - M Olvera de la Cruz
- Department of Chemical and Biomolecular Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Sun S, Wang YH, Gao X, Wang HY, Zhang L, Wang N, Li CM, Xiong SQ. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Front Bioeng Biotechnol 2023; 11:1253048. [PMID: 37771575 PMCID: PMC10523396 DOI: 10.3389/fbioe.2023.1253048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
The treatment of breast cancer (BC) is a serious challenge due to its heterogeneous nature, multidrug resistance (MDR), and limited therapeutic options. Nanoparticle-based drug delivery systems (NDDSs) represent a promising tool for overcoming toxicity and chemotherapy drug resistance in BC treatment. No bibliometric studies have yet been published on the research landscape of NDDS-based treatment of BC. In this review, we extracted data from 1,752 articles on NDDS-based treatment of BC published between 2012 and 2022 from the Web of Science Core Collection (WOSCC) database. VOSviewer, CiteSpace, and some online platforms were used for bibliometric analysis and visualization. Publication trends were initially observed: in terms of geographical distribution, China and the United States had the most papers on this subject. The highest contributing institution was Sichuan University. In terms of authorship and co-cited authorship, the most prolific author was Yu Zhang. Furthermore, Qiang Zhang and co-workers have made tremendous achievements in the field of NDDS-based BC treatment. The article titled "Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications" had the most citations. The Journal of Controlled Release was one of the most active publishers in the field. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries" was the most cited reference. We also analysed "hot" and cutting-edge research for NDDSs in BC treatment. There were nine topic clusters: "tumour microenvironment," "nanoparticles (drug delivery)," "breast cancer/triple-negative breast cancer," "combination therapy," "drug release (pathway)," "multidrug resistance," "recent advance," "targeted drug delivery", and "cancer nanomedicine." We also reviewed the core themes of research. In summary, this article reviewed the application of NDDSs in the treatment of BC.
Collapse
Affiliation(s)
- Sheng Sun
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye-hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He-yong Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Chun-mei Li
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Shao-quan Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Jia J, Chen W, Xu L, Wang X, Li M, Wang B, Huang X, Wang T, Chen Y, Li M, Tian D, Zhuang J, Lin X, Li N. Codelivery of dihydroartemisinin and chlorin e6 by copolymer nanoparticles enables boosting photodynamic therapy of breast cancer with low-power irradiation. Regen Biomater 2023; 10:rbad048. [PMID: 37250978 PMCID: PMC10224804 DOI: 10.1093/rb/rbad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
Given that chemotherapy as a stand-alone therapeutic strategy may not be sufficient to effectively treat cancer, there is increasing interest in combination of chemotherapy and alternative therapies. Photodynamic therapy has the advantages of high selectivity and low side effects, so the combination of photodynamic therapy and chemotherapy has become one of the most appealing strategies for tumor treatment. In this work, we constructed a nano drug codelivery system (PPDC) to realize the combined treatment of chemotherapy and photodynamic therapy through encapsulating chemotherapeutic drug dihydroartemisinin and photosensitizer chlorin e6 in PEG-PCL. The potentials, particle size and morphology of nanoparticles were characterized by dynamic light scattering and transmission electron microscopy. We also investigated the reactive oxygen species (ROS) generation and drug release ability. The antitumor effect in vitro was investigated by methylthiazolyldiphenyl-tetrazolium bromide assays and cell apoptosis experiments, and the potential cell death mechanisms were explored by ROS detection and Western blot analysis. The in vivo antitumor effect of PPDC was evaluated under the guidance of fluorescence imaging. Our work provides a potential antitumor treatment approach and expands the application of dihydroartemisinin for breast cancer therapy.
Collapse
Affiliation(s)
| | | | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xuewen Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Min Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Bin Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiangyu Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Tao Wang
- School and Hospital of Stomatology, Fujian Stomatological Hospital, Fujian Medical University, Fuzhou 350002, China
| | - Yang Chen
- Department of Hepatobiliary Surgery, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Mengdie Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan Tian
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| | - Xinhua Lin
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| | - Ning Li
- Correspondence address: E-mail: , (N.L.); (X.L.); (J.Z.)
| |
Collapse
|
8
|
Ligorio C, Mata A. Synthetic extracellular matrices with function-encoding peptides. NATURE REVIEWS BIOENGINEERING 2023; 1:1-19. [PMID: 37359773 PMCID: PMC10127181 DOI: 10.1038/s44222-023-00055-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 06/28/2023]
Abstract
The communication of cells with their surroundings is mostly encoded in the epitopes of structural and signalling proteins present in the extracellular matrix (ECM). These peptide epitopes can be incorporated in biomaterials to serve as function-encoding molecules to modulate cell-cell and cell-ECM interactions. In this Review, we discuss natural and synthetic peptide epitopes as molecular tools to bioengineer bioactive hydrogel materials. We present a library of functional peptide sequences that selectively communicate with cells and the ECM to coordinate biological processes, including epitopes that directly signal to cells, that bind ECM components that subsequently signal to cells, and that regulate ECM turnover. We highlight how these epitopes can be incorporated in different biomaterials as individual or multiple signals, working synergistically or additively. This molecular toolbox can be applied in the design of biomaterials aimed at regulating or controlling cellular and tissue function, repair and regeneration.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
- School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Zhang Y, Yang X, Xu S, Jiang W, Gu Z, Guo M, Wei J. Multifunctional Dendritic Au@SPP@DOX Nanoparticles Integrating Chemotherapy and Low-Dose Radiotherapy for Enhanced Anticancer Activity. Mol Pharm 2023; 20:1519-1530. [PMID: 36702154 DOI: 10.1021/acs.molpharmaceut.2c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Combined chemoradiotherapy can improve antitumor efficiency and reduce the side effects of monotherapy. In this study, we aimed to construct dendritic peptide-based multifunctional nanoparticles (Au@SPP@DOX) for a prolonged circulation time, enhanced cellular uptake, and targeted cancer therapy. Amphiphilic micelle PEG-polylysine-SA (SPP) is composed of polylysine combined with hydrophilic poly(ethylene glycol) (PEG) and hydrophobic stearic acid (SA). Doxorubicin (DOX) is loaded via the hydrophilic-hydrophobic interaction of SPP, and gold nanoparticles (AuNPs) are loaded via the electrostatic interaction with SPP. Au@SPP@DOX showed good biocompatibility and could be successfully accumulated at tumor sites through the enhanced permeability and retention (EPR) effect. Then, lysosomes could be ruptured due to the proton sponge effect. DOX became protonated in response to tumor extracellular acidity and was then released from SPP. Under the action of low-dose radiation, Au@SPP@DOX could promote the production of reactive oxygen species (ROS), increase mitochondrial dysfunction, block cell division, and ultimately promote tumor cell apoptosis to achieve a better antitumor effect. This study highlighted the benefit of chemoradiotherapy and suggested that Au@SPP@DOX might serve as a high-efficiency codelivery system for cancer combination therapy in the future.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Xingang Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Shengnan Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Wenjia Jiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Miao Guo
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Jifu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| |
Collapse
|
10
|
Lin J, Fan Y, Hutchinson DJ, Malkoch M. Soft Hydroxyapatite Composites Based on Triazine-Trione Systems as Potential Biomedical Engineering Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7329-7339. [PMID: 36695708 PMCID: PMC9923673 DOI: 10.1021/acsami.2c16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Composites of triazine-trione (TATO) thiol-ene networks and hydroxyapatite (HA) have shown great potential as topological fixation materials for complex bone fractures due to their high flexural modulus, biocompatibility, and insusceptibility to forming soft-tissue adhesions. However, the rigid mechanical properties of these composites make them unsuitable for applications requiring softness. The scope of these materials could therefore be widened by the design of new TATO monomers that would lead to composites with a range of mechanical properties. In this work, four novel TATO-based monomers, decorated with either ester or amide linkages as well as alkene or alkyne end groups, have been proposed and synthesized via fluoride-promoted esterification (FPE) chemistry. The ester-modified monomers were then successfully formulated along with the thiol TATO monomer tris [2-(3-mercaptopropionyloxy)ethyl] isocyanurate (TEMPIC) and HA to give soft composites, following the established photo-initiated thiol-ene coupling (TEC) or thiol-yne coupling (TYC) chemistry methodologies. The most promising composite shows excellent softness, with a flexural modulus of 57 (2) MPa and εf at maximum σf of 11.8 (0.3)%, which are 117 and 10 times softer than the previously developed system containing the commercially available tri-allyl TATO monomer (TATATO). Meanwhile, the surgically convenient viscosity of the composite resins and their excellent cytotoxicity profile allow them to be used in the construction of soft objects in a variety of shapes through drop-casting suitable for biomedical applications.
Collapse
|
11
|
Responsive Nanostructure for Targeted Drug Delivery. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Currently, intelligent, responsive biomaterials have been widely explored, considering the fact that responsive biomaterials provide controlled and predictable results in various biomedical systems. Responsive nanostructures undergo reversible or irreversible changes in the presence of a stimulus, and that stimuli can be temperature, a magnetic field, ultrasound, pH, humidity, pressure, light, electric field, etc. Different types of stimuli being used in drug delivery shall be explained here. Recent research progress in the design, development and applications of biomaterials comprising responsive nanostructures is also described here. More emphasis will be given on the various nanostructures explored for the smart stimuli responsive drug delivery at the target site such as wound healing, cancer therapy, inflammation, and pain management in order to achieve the improved efficacy and sustainability with the lowest side effects. However, it is still a big challenge to develop well-defined responsive nanostructures with ordered output; thus, challenges faced during the design and development of these nanostructures shall also be included in this article. Clinical perspectives and applicability of the responsive nanostructures in the targeted drug delivery shall be discussed here.
Collapse
|
12
|
Ehm T, Shinar H, Jacoby G, Meir S, Koren G, Segal Asher M, Korpanty J, Thompson MP, Gianneschi NC, Kozlov MM, Azoulay-Ginsburg S, Amir RJ, Rädler JO, Beck R. Self-Assembly of Tunable Intrinsically Disordered Peptide Amphiphiles. Biomacromolecules 2023; 24:98-108. [PMID: 36469950 PMCID: PMC9832477 DOI: 10.1021/acs.biomac.2c00866] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered peptide amphiphiles (IDPAs) present a novel class of synthetic conjugates that consist of short hydrophilic polypeptides anchored to hydrocarbon chains. These hybrid polymer-lipid block constructs spontaneously self-assemble into dispersed nanoscopic aggregates or ordered mesophases in aqueous solution due to hydrophobic interactions. Yet, the possible sequence variations and their influence on the self-assembly structures are vast and have hardly been explored. Here, we measure the nanoscopic self-assembled structures of four IDPA systems that differ by their amino acid sequence. We show that permutations in the charge pattern along the sequence remarkably alter the headgroup conformation and consequently alter the pH-triggered phase transitions between spherical, cylindrical micelles and hexagonal condensed phases. We demonstrate that even a single amino acid mutation is sufficient to tune structural transitions in the condensed IDPA mesophases, while peptide conformations remain unfolded and disordered. Furthermore, alteration of the peptide sequence can render IDPAs to become susceptible to enzymatic cleavage and induce enzymatically activated phase transitions. These results hold great potential for embedding multiple functionalities into lipid nanoparticle delivery systems by incorporating IDPAs with the desired properties.
Collapse
Affiliation(s)
- Tamara Ehm
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,Faculty
of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, MünchenD-80539, Germany,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Shinar
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Guy Jacoby
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sagi Meir
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Koren
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Merav Segal Asher
- The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel,Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joanna Korpanty
- Department
of Chemistry, International Institute for Nanotechnology, Chemistry
of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew P. Thompson
- Department
of Chemistry, International Institute for Nanotechnology, Chemistry
of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, International Institute for Nanotechnology, Chemistry
of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States,Department
of Materials Science & Engineering, Department of Biomedical Engineering
and Department of Pharmacology, Northwestern
University, Evanston, Illinois 60208, United States
| | - Michael M. Kozlov
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,Raymond
& Beverly Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Salome Azoulay-Ginsburg
- Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roey J. Amir
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel,Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel,The
ADAMA Center for Novel Delivery Systems in Crop Protection, Tel Aviv University, Tel Aviv 6997801, Israel,Email
| | - Joachim O. Rädler
- Faculty
of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, MünchenD-80539, Germany,
| | - Roy Beck
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel,
| |
Collapse
|
13
|
Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules 2022; 27:7232. [PMID: 36364057 PMCID: PMC9658517 DOI: 10.3390/molecules27217232] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/07/2023] Open
Abstract
Cancer remains the leading cause of death worldwide despite advances in treatment options for patients. As such, safe and effective therapeutics are required. Short peptides provide advantages to be used in cancer management due to their unique properties, amazing versatility, and progress in biotechnology to overcome peptide limitations. Several appealing peptide-based therapeutic strategies have been developed. Here, we provide an overview of peptide conjugates, the better equivalents of antibody-drug conjugates, as the next generation of drugs for required precise targeting, enhanced cellular permeability, improved drug selectivity, and reduced toxicity for the efficient treatment of cancers. We discuss the basic components of drug conjugates and their release action, including the release of cytotoxins from the linker. We also present peptide-drug conjugates under different stages of clinical development as well as regulatory and other challenges.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Hetvi K. Solanki
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
14
|
Tam LKB, He L, Ng DKP, Cheung PCK, Lo P. A Tumor‐Targeting Dual‐Stimuli‐Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy. Chemistry 2022; 28:e202201652. [DOI: 10.1002/chem.202201652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Leo K. B. Tam
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Lin He
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Peter C. K. Cheung
- School of Life Sciences The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| |
Collapse
|
15
|
Li C, Zhao T, Li L, Hu X, Li C, Chen W, Hu Y. Stimuli-Responsive Gold Nanocages for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 14:1321. [PMID: 35890217 PMCID: PMC9318695 DOI: 10.3390/pharmaceutics14071321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
With advances in nanotechnology, various new drug delivery systems (DDSs) have emerged and played a key role in the diagnosis and treatment of cancers. Over the last two decades, gold nanocages (AuNCs) have been attracting considerable attention because of their outstanding properties. This review summarizes current advancements in endogenous, exogenous, and dual/multi-stimuli responsive AuNCs in drug delivery. This review focuses on the properties, clinical translation potential, and limitations of stimuli-responsive AuNCs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunming Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Tengyue Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Xiaogang Hu
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| |
Collapse
|
16
|
Liu R, Yang J, Qiu X, Ji W, Shen J, Li Y, Lu Z, Wu Y, Wang W, Wang J, Hao J, Zhang X. "Cascaded Rocket" Nanosystems with Spatiotemporal Separation for Triple-Synergistic Therapy of Alzheimer's Disease. Adv Healthc Mater 2022; 11:e2101748. [PMID: 35158417 DOI: 10.1002/adhm.202101748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) remains an incurable disease due to the intricate pathogenesis. The neuropathological hallmarks include extracellular amyloid-β (Aβ) plaques, tau phosphorylation and extensive oxidative stress in neurons, which facilitate the progression of AD. Based on the complex etiology, a spatiotemporally "cascaded rocket" delivery system (DPH/TPGAS NPs) with metal ion/enzyme responses is established in this study for triple-synergistic AD treatment. After targeting and permeating the blood-brain barrier (BBB), the histidine units in the DPH chelate excess metal ions at the extracellular microenvironment, restraining the formation of Aβ aggregates, inducing the first-stage separation. Then, the remanent system targets neuronal cells and triggers the second separation with cathepsin B for reducing the level of phosphorylated tau and oxidative stress. Accordingly, the DPH/TPGAS NPs can achieve spatiotemporal drug release, which results in enhanced synergistic therapeutic effects both in the extracellular and intracellular region of the AD brain. After treating with DPH/TPGAS NPs, the memory deficits, levels of Aβ and phosphorylated tau, inflammation and neuron damages are remarkably ameliorated in 3 × Tg-AD mice. Therefore, this "cascaded rocket" delivery system has great potential to serve as a powerful platform and provides a new horizon to the therapeutic strategy for AD and other brain diseases' treatments.
Collapse
Affiliation(s)
- Ruiyuan Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- College of Pharmacy Heze University Heze 274015 P. R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinyu Qiu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Weihong Ji
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanyue Wu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenli Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jing Wang
- School of Pharmacy Hebei Province Key Laboratory of Innovative Drug Research and Evaluation Hebei Medical University Shijiazhuang 050017 P. R. China
| | - Jifu Hao
- College of Pharmacy Shandong First Medical University & Shandong Academy of Medical Science Taian 271000 P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022; 623:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Adagen, an enzyme replacement treatment for adenosine deaminase deficiency, was the first protein-polymer conjugate to be approved in early 1990s. Post this regulatory approval, numerous polymeric drugs and polymeric nanoparticles have entered the market as advanced or next-generation polymer-based therapeutics, while many others have currently been tested clinically. The polymer conjugation to therapeutic moiety offers several advantages, like enhanced solubilization of drug, controlled release, reduced immunogenicity, and prolonged circulation. The present review intends to highlight considerations in the design of therapeutically effective polymer-drug conjugates (PDCs), including the choice of linker chemistry. The potential synthetic strategies to formulate PDCs have been discussed along with recent advancements in the different types of PDCs, i.e., polymer-small molecular weight drug conjugates, polymer-protein conjugates, and stimuli-responsive PDCs, which are under clinical/preclinical investigation. Current impediments and regulatory hurdles hindering the clinical translation of PDC into effective therapeutic regimens for the amelioration of disease conditions have been addressed.
Collapse
Affiliation(s)
- Ankit Javia
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Jigar Vanza
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Denish Bardoliwala
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India; Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra-425405, Indi
| | - Mrunali Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Hetal Thakkar
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
18
|
Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater 2022; 143:320-332. [PMID: 35235863 DOI: 10.1016/j.actbio.2022.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/23/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
In this study, we developed an enzyme- and pH-responsive dendronized poly(oligo-(ethylene glycol) methacrylate) (pOEGMA)-doxorubicin (DOX) polymeric prodrug, which combined the pOEGMA structure with a degradable peptide dendron. The introduction of the dendron in the prodrug hindered the entanglement of brush oligo-(ethylene glycol) (OEG) chains, allowed the prodrug to possess dual stimuli-responsiveness, and mediated self-assembly of the polymeric prodrug to form stable nanoparticles (NPs). Brush conformation of polyethylene glycol (PEG) side chains endowed the NPs with long-term circulation with a half-life of 16.0 h. The dual-responsive dendritic structure enhanced cellular uptake of NPs and facilitated drug release in response to overexpressed cathepsin B and an acidic pH in the tumor microenvironment, resulting in an enhanced therapeutic effect with a tumor inhibition rate of 72.9% for 4T1 tumor-bearing mice. The NPs were demonstrated to possess great hemocompatibility and biosafety. Therefore, this strategy could provide great insight for the design of poly(oligo-(ethylene glycol) methacrylate)-based copolymers as drug delivery carriers. STATEMENT OF SIGNIFICANCE: We propose a dual-stimuli-responsive dendronized strategy for improving the cancer therapeutic effect of the poly(oligo-(ethylene glycol) methacrylate) (pOEGMA)-based drug conjugates. The introduction of the functional dendron promotes self-assembly of the polymeric prodrug into nanoparticles, hindering the entanglement of brush oligo-(ethylene glycol) (OEG) chains in the conjugated drugs. The obtained poly OEGMA-GFLG-Dendron-NH-N=DOX nanoparticles maintains long circulation, while addresses the drug release issue due to the presence of high-density PEG. The drug delivery system exhibits a high therapeutic potentcy with negligible side effects.
Collapse
|
19
|
Wu ZY, Shen JM, Lang H, Yue T, Sun C. pH/Enzyme dual sensitive and nucleus-targeting dendrimer nanoparticles to enhance the antitumour activity of doxorubicin. Pharm Dev Technol 2022; 27:357-371. [PMID: 35350969 DOI: 10.1080/10837450.2022.2055569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zi-Yan Wu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen 518001, China
| | - Jian-Min Shen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen 518001, China
| | - Hao Lang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ting Yue
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen 518001, China
| | - Chan Sun
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Paliwal H, Parihar A, Prajapati BG. Current State-of-the-Art and New Trends in Self-Assembled Nanocarriers as Drug Delivery Systems. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.836674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Self-assembled nanocarrier drug delivery has received profuse attention in the field of diagnosis and treatment of diseases. These carriers have proved that serious life-threatening diseases can be eliminated evidently by virtue of their characteristic design and features. This review is aimed at systematically presenting the research and advances in the field of self-assembled nanocarriers such as polymeric nanoparticles, dendrimers, liposomes, inorganic nanocarriers, solid lipid nanoparticles, polymerosomes, micellar systems, niosomes, and some other nanoparticles. The self-assembled delivery of nanocarriers has been developed in recent years for targeting diseases. Some of the innovative attempts with regard to prolonging drug action, improving bioavailability, avoiding drug resistance, enhancing cellular uptake, and so on have been discussed. The discussion about various delivery systems included the investigation conducted at the preliminary stage, i.e., preclinical trials and assessment of safety. The clinical studies of some of the recently developed self-assembled products are currently at the clinical trial phase or FDA approved.
Collapse
|
21
|
Dahri M, Abolmaali SS, Maleki R, Najafi H, Abedanzadeh M, Tamaddon AM. Nanoscale aggregation of doxorubicin-short peptide conjugates for enzyme-responsive delivery with various MOF carriers: In-silico steps towards smart cancer chemotherapy. Comput Biol Med 2022; 144:105386. [PMID: 35272116 DOI: 10.1016/j.compbiomed.2022.105386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
Drug conjugation with enzyme-sensitive peptides is one of the innovative smart delivery systems for cancer therapy. This delivery method has some advantages, such as lowering side effects and increasing treatment selectivity. Herein, two conjugates of doxorubicin and small peptide are designed that are sensitive to Cathepsin B, a tumor homing enzyme. The formation of nanoparticles at three different numbers of drug peptide prodrugs (including 30, 50, and 70 prodrugs) was studied. In addition, three metal-organic frameworks (MOF) nanocarriers, including Zeolitic Imidazolate Frameworks (ZIF), Universitetet I Oslo MOF (UIO-66), and MOF of Hong Kong University of Science and Technology (HKUST-1), were used to increase the resistance of the prodrugs to decomposition during blood flow circulation. Then, the interactions between doxorubicin's prodrug and different MOFs were investigated. Furthermore, the impact of microfluidics on nanoparticle interactions was studied. Molecular dynamic simulation was used to investigate thermodynamic and conformational parameters. The results showed that the concentration of doxorubicin prodrugs affected cluster formation. Moreover, based on Gibb's free energy analysis, the interaction of these prodrugs with various types of MOFs revealed more spontaneous interactions in microfluidic modeling conditions. ZIF had the best and most stable interactions with the prodrugs in bulk and microfluidic modeling. As a result, the best and most stable state was associated with a lower concentration of these prodrugs with ZIF in the microfluidic condition.
Collapse
Affiliation(s)
- Mohammad Dahri
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG) Universal Scientific and Education and Research Network (USERN), Tehran, Iran.
| | - Haniyeh Najafi
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhgan Abedanzadeh
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
23
|
Xie F, Li R, Shu W, Zhao L, Wan J. Self-assembly of Peptide dendrimers and their bio-applications in theranostics. Mater Today Bio 2022; 14:100239. [PMID: 35295319 PMCID: PMC8919296 DOI: 10.1016/j.mtbio.2022.100239] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology has brought revolutionized advances in disease diagnosis and therapy. Self-assembled peptide dendrimers own novel physicochemical properties through the synergistic effects of the polypeptide chain, dendrimer and nano-structure, exhibiting great potential in theranostic. This review provides comprehensive insights into various peptide dendrimers for self-assembly. Their nanosize, morphology and composition are presented to understand self-assembly behaviors precisely. We further introduce the emerging theranostic applications based on specific imaging and efficient delivery recently.
Collapse
Affiliation(s)
- Fengjuan Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| |
Collapse
|
24
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Wang M, Gao B, Wang X, Li W, Feng Y. Enzyme-responsive strategy as a prospective cue to construct intelligent biomaterials for disease diagnosis and therapy. Biomater Sci 2022; 10:1883-1903. [DOI: 10.1039/d2bm00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive materials have been widely studied and applied in biomedical field. Under the stimulation of enzymes, the enzyme-responsive materials (ERMs) can be triggered to change their structures, properties and functions....
Collapse
|
26
|
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010146. [PMID: 35011376 PMCID: PMC8746670 DOI: 10.3390/molecules27010146] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a group of disorders characterized by uncontrolled cell growth that affects around 11 million people each year globally. Nanocarrier-based systems are extensively used in cancer imaging, diagnostics as well as therapeutics; owing to their promising features and potential to augment therapeutic efficacy. The focal point of research remains to develop new-fangled smart nanocarriers that can selectively respond to cancer-specific conditions and deliver medications to target cells efficiently. Nanocarriers deliver loaded therapeutic cargos to the tumour site either in a passive or active mode, with the least drug elimination from the drug delivery systems. This review chiefly focuses on current advances allied to smart nanocarriers such as dendrimers, liposomes, mesoporous silica nanoparticles, quantum dots, micelles, superparamagnetic iron-oxide nanoparticles, gold nanoparticles and carbon nanotubes, to list a few. Exhaustive discussion on crucial topics like drug targeting, surface decorated smart-nanocarriers and stimuli-responsive cancer nanotherapeutics responding to temperature, enzyme, pH and redox stimuli have been covered.
Collapse
|
27
|
Taiariol L, Chaix C, Farre C, Moreau E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021; 122:340-384. [PMID: 34705429 DOI: 10.1021/acs.chemrev.1c00484] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, click and bioorthogonal reactions have been the subject of considerable research efforts. These high-performance chemical reactions have been developed to meet requirements not often provided by the chemical reactions commonly used today in the biological environment, such as selectivity, rapid reaction rate, and biocompatibility. Click and bioorthogonal reactions have been attracting increasing attention in the biomedical field for the engineering of nanomedicines. In this review, we study a compilation of articles from 2014 to the present, using the terms "click chemistry and nanoparticles (NPs)" to highlight the application of this type of chemistry for applications involving NPs intended for biomedical applications. This study identifies the main strategies offered by click and bioorthogonal chemistry, with respect to passive and active targeting, for NP functionalization with specific and multiple properties for imaging and cancer therapy. In the final part, a novel and promising approach for "two step" targeting of NPs, called pretargeting (PT), is also discussed; the principle of this strategy as well as all the studies listed from 2014 to the present are presented in more detail.
Collapse
Affiliation(s)
- Ludivine Taiariol
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Carole Chaix
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Farre
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
28
|
Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J Nanobiotechnology 2021; 19:253. [PMID: 34425823 PMCID: PMC8381530 DOI: 10.1186/s12951-021-00999-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/15/2021] [Indexed: 01/10/2023] Open
Abstract
Peptide molecule has high bioactivity, good biocompatibility, and excellent biodegradability. In addition, it has adjustable amino acid structure and sequence, which can be flexible designed and tailored to form supramolecular nano-assemblies with specific biomimicking, recognition, and targeting properties via molecular self-assembly. These unique properties of peptide nano-assemblies made it possible for utilizing them for biomedical and tissue engineering applications. In this review, we summarize recent progress on the motif design, self-assembly synthesis, and functional tailoring of peptide nano-assemblies for both cancer diagnosis and therapy. For this aim, firstly we demonstrate the methodologies on the synthesis of various functional pure and hybrid peptide nano-assemblies, by which the structural and functional tailoring of peptide nano-assemblies are introduced and discussed in detail. Secondly, we present the applications of peptide nano-assemblies for cancer diagnosis applications, including optical and magnetic imaging as well as biosensing of cancer cells. Thirdly, the design of peptide nano-assemblies for enzyme-mediated killing, chemo-therapy, photothermal therapy, and multi-therapy of cancer cells are introduced. Finally, the challenges and perspectives in this promising topic are discussed. This work will be useful for readers to understand the methodologies on peptide design and functional tailoring for highly effective, specific, and targeted diagnosis and therapy of cancers, and at the same time it will promote the development of cancer diagnosis and therapy by linking those knowledges in biological science, nanotechnology, biomedicine, tissue engineering, and analytical science.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Nan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
29
|
Kapalatiya H, Madav Y, Tambe VS, Wairkar S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview. Drug Deliv Transl Res 2021; 12:1293-1305. [PMID: 34251612 DOI: 10.1007/s13346-021-01020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/02/2023]
Abstract
Nanocarriers play pivotal roles in the field of biomedical applications, particularly in anticancer therapy. One of the prominent strategies for the transport of anticancer drugs with site-specific release and improved therapeutic efficacy is the use of an enzyme-responsive drug delivery system. There is an emerging class of cancer therapeutics engineered to control the release of a drug via enzymatic degradation. Enzymes, being an essential component of bio-nanotechnology toolbox, hold exceptional biorecognition abilities as well as outstanding catalytic properties. Often, abnormal enzyme expression observed in cancer offers many opportunities in designing nanocarriers modified with enzyme-labile linkage. Through altered physical or chemical characteristics of these nanocarriers or cleavage of the drug in response to the bio-action of enzyme, an on-demand drug release can be obtained. In this review, several classes of enzymes performing critical roles in cancer such as hydrolases, lipases, and oxidoreductases are summarized. Insights on various approaches that interfere with the mechanism of these enzymes have also been included. Finally, various smart nanocarriers such as mesoporous silica nanoparticles, gold nanoparticles, carbon-nanotubes, micelles, liposomes, and dendrimers serving as excellent platforms for enzyme-responsive formulations have been discussed.
Collapse
Affiliation(s)
- Hiral Kapalatiya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Yamini Madav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Varunesh Sanjay Tambe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
30
|
Cooper BM, Iegre J, O' Donovan DH, Ölwegård Halvarsson M, Spring DR. Peptides as a platform for targeted therapeutics for cancer: peptide-drug conjugates (PDCs). Chem Soc Rev 2021; 50:1480-1494. [PMID: 33346298 DOI: 10.1039/d0cs00556h] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptides can offer the versatility needed for a successful oncology drug discovery approach. Peptide-drug conjugates (PDCs) are an emerging targeted therapeutic that present increased tumour penetration and selectivity. Despite these advantages, there are still limitations for the use of peptides as therapeutics exemplified through their slow progression to get into the clinic and limited oral bioavailability. New approaches to address these problems have been studied and successfully implemented to enhance the stability of peptides and their constructs. There is great promise for the future of PDCs with two molecules already on the market and many variations currently undergoing clinical trials, such as bicycle-toxin conjugates and peptide-dendrimer conjugates. This review summarises the entire process needed for the design and successful development of an oncology PDC including chemical and nanomaterial strategies to enhance peptide stability within circulation, the function of each component of a PDC construct, and current examples in clinical trials.
Collapse
Affiliation(s)
- Bethany M Cooper
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | - Maria Ölwegård Halvarsson
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
31
|
Sethuraman V, Janakiraman K, Krishnaswami V, Kandasamy R. Recent Progress in Stimuli-Responsive Intelligent Nano Scale Drug Delivery Systems: A Special Focus Towards pH-Sensitive Systems. Curr Drug Targets 2021; 22:947-966. [PMID: 33511953 DOI: 10.2174/1389450122999210128180058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
Stimuli-responsive nanocarriers are gaining much attention due to their versatile multifunctional activities, including disease diagnosis and treatment. Recently, clinical applications of nano-drug delivery systems for cancer treatment pose a challenge due to their limited cellular uptake, low bioavailability, poor targetability, stability issues, and unfavourable pharmacokinetics. To overcome these issues, researchers are focussing on stimuli-responsive systems. Nanocarriers elicit their role through endogenous (pH, temperature, enzyme, and redox) or exogenous (temperature, light, magnetic field, ultrasound) stimulus. These systems were designed to overcome the shortcomings such as non-specificity and toxicity associated with the conventional drug delivery systems. The pH variation between healthy cells and tumor microenvironment creates a platform for the generation of pH-sensitive nano delivery systems. Herein, we propose to present an overview of various internal and external stimuli-responsive behavior-based drug delivery systems. Herein, the present review will focus specifically on the significance of various pH-responsive nanomaterials such as polymeric nanoparticles, nano micelles, inorganic-based pH-sensitive drug delivery carriers such as calcium phosphate nanoparticles, and carbon dots in cancer treatment. Moreover, this review elaborates the recent findings on pH-based stimuli-responsive drug delivery systems with special emphasis on our reported stimuli-responsive systems for cancer treatment.
Collapse
Affiliation(s)
- Vaidevi Sethuraman
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Kumar Janakiraman
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Department of Allied Health Sciences, Noorul Islam Center for Higher Education (Deemed University), Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
32
|
Li N, Duan Z, Wang L, Guo C, Zhang H, Gu Z, Gong Q, Luo K. An Amphiphilic PEGylated Peptide Dendron-Gemcitabine Prodrug-Based Nanoagent for Cancer Therapy. Macromol Rapid Commun 2021; 42:e2100111. [PMID: 33871122 DOI: 10.1002/marc.202100111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Indexed: 02/05/2023]
Abstract
An amphiphilic peptide dendrimer conjugated with gemcitabine (GEM), PEGylated dendron-Gly-Phe-Leu-Gly-GEM (PEGylated dendron-GFLG-GEM), is developed as a nano-prodrug for breast cancer therapy. The self-assembled behavior is observed under a transmission electron microscopy and dynamic light scattering. The negatively charged surface and hydrodynamic size of the amphiphilic nanosized prodrug supported that the prodrug can maintain the stability of GEM during circulation and accumulate in the tumor tissue. Drug release assays are conducted to monitor the release of GEM from this nanodrug delivery system in response to the tumor microenvironment, and these assays confirm that GEM released from the nanocarrier is identical to free GEM. The GEM prodrug can prevent proliferation of tumor cells. The therapeutic effect against breast cancer is systematically investigated using an in vivo animal model. Immunohistochemical results are aligned with the significantly enhanced anticancer efficacy of GEM released from the prodrug. This self-assembled amphiphilic drug delivery nanocarrier may broaden the application for GEM and other anticancer agents for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Ning Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China.,School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenyu Duan
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Lili Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chunhua Guo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China.,Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| |
Collapse
|
33
|
Xia H, Liang Y, Chen K, Guo C, Wang M, Cao J, Han S, Ma Q, Sun Y, He B. Reduction-sensitive polymeric micelles as amplifying oxidative stress vehicles for enhanced antitumor therapy. Colloids Surf B Biointerfaces 2021; 203:111733. [PMID: 33862572 DOI: 10.1016/j.colsurfb.2021.111733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
Chemotherapy-photodynamic therapy (PDT)-based combination therapy is a currently frequently used means in cancer treatment that photosensitizer was able to generate reactive oxygen species (ROS) for improving chemotherapy, owing to the high oxidative stress of the tumor microenvironment (TME). Whereas, cancer cells were accustomed to oxidative stress by overexpression of antioxidant such as glutathione (GSH), which would consume the damage of ROS, as well as it could result in ineffective treatment. Herein, amplification of oxidative stress preferentially in tumor cells by consuming GSH or generating ROS is a reasonable treatment strategy to develop anticancer drugs. To achieve excellent therapeutic effects, we designed a GSH-scavenging and ROS-generating polymeric micelle mPEG-S-S-PCL-Por (MSLP) for amplifying oxidative stress and enhanced anticancer therapy. The amphiphilic polymer of methoxy poly(ethylene glycol) (mPEG)-S-S-poly(ε-caprolactone) (PCL)-Protoporphyrin (Por) was self-assembled into polymeric micelles with the anticancer drug doxorubicin (DOX) for treatment and tracking via FRET. Spherical DOX/MSLP micelles with the average size of 88.76 ± 3.52 nm was procured with negatively charged surface, reduction sensitivity and high drug loading content (17.47 ± 1.53 %). The intracellular ROS detection showed that the MSLP could deplete glutathione and regenerate additional ROS. The cellular uptake of DOX/MSLP micelles was grabbed real-time monitoring by the Fluorescence resonance energy transfer (FRET) effect between DOX and MSLP. The reduction-sensitive polymeric micelles MSLP as amplifying oxidative stress vehicles combined chemotherapy and PDT exhibited significant antitumor activity both in vitro (IC50 = 0.041 μg/mL) and much better antitumor efficacy than that of mPEG-PCL-Por (MLP) micelles in vivo.
Collapse
Affiliation(s)
- Haoran Xia
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Keqi Chen
- Department of Clinical Laboratory, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao 266021, China
| | - Chunhua Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mengdi Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
34
|
Efficient drug delivery and anticancer effect of micelles based on vitamin E succinate and chitosan derivatives. Bioact Mater 2021; 6:3025-3035. [PMID: 33778185 PMCID: PMC7960945 DOI: 10.1016/j.bioactmat.2021.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 12/26/2022] Open
Abstract
Nanocarriers have emerged as a promising cancer drug delivery strategy. Multi-drug resistance caused by overexpression of multiple-drug excretion transporters in tumor cells is the major obstacle to successful chemotherapy. Vitamin E derivatives have many essential functions for drug delivery applications, such as biological components that are hydrophobic, stable, water-soluble enhancing compounds, and anticancer activity. In addition, vitamin E derivatives are also effective mitocan which can overcome multi-drug resistance by binding to P glycoproteins. Here, we developed a carboxymethyl chitosan/vitamin E succinate nano-micellar system (O-CMCTS-VES). The synthesized polymers were characterized by Fourier Transform IR, and 1H NMR spectra. The mean sizes of O-CMCTS-VES and DOX-loaded nanoparticles were around 177 nm and 208 nm. The drug loading contents were 6.1%, 13.0% and 10.6% with the weight ratio of DOX to O-CMCTS-VES corresponding 1:10, 2:10 and 3:10, and the corresponding EEs were 64.3%, 74.5% and 39.7%. Cytotoxicity test, hemolysis test and histocompatibility test showed that it had good biocompatibility in vitro and in vivo. Drug release experiments implied good pH sensitivity and sustained-release effect. The DOX/O-CMCTS-VES nanoparticles can be efficiently taken up by HepG2 cancer cells and the tumor inhibition rate is up to 62.57%. In the in vivo study by using H22 cells implanted Balb/C mice, DOX/O-CMCTS-VES reduced the tumor volume and weight efficiently with a TIR of 35.58%. The newly developed polymeric micelles could successfully be utilized as a nanocarrier system for hydrophobic chemotherapeutic agents for the treatment of solid tumors. A nano-micellar system (O-CMCTS-VES) constituted by carboxymethyl chitosan and vitamin E succinate was fabricated. The micelles hold high cytocompatibility, hemocompatibility, tissue compatibility, and drug load contents. Drug release experiments implied good pH sensitivity and sustained-release effect of O-CMCTS-VES. O-CMCTS-VES loading DOX showed efficient anti-tumor effect in vitro and in vivo.
Collapse
|
35
|
Xu C, Xu L, Han R, Zhu Y, Zhang J. Blood circulation stable doxorubicin prodrug nanoparticles containing hydrazone and thioketal moieties for antitumor chemotherapy. Colloids Surf B Biointerfaces 2021; 201:111632. [PMID: 33667865 DOI: 10.1016/j.colsurfb.2021.111632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Prodrug nanoparticles with cleavable moieties sensitive to intracellular stimuli have drawn great attention on cancer chemotherapy. Herein, a reactive oxygen species (ROS)-responsive doxorubicin prodrug mPEG-Phe-TK-Phe-hyd-DOX was synthesized, in which hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic anticancer drug doxorubicin (DOX) were conjugated with hydrazone (hyd) and ROS-responsive thioketal (TK) moieties. The ROS-responsiveness of prodrug was confirmed by proton nuclear magnetic resonance (1H NMR) and dynamic light scattering (DLS). Unexpectedly, the results of in vitro drug release indicated that the hydrazone bond of prodrug nanoparticles was insensitive to pH, which may be due to the strong hydrophobicity, π-π interactions and cation-π interactions jointly inhibited the hydrolysis of hydrazone bonds under acidic conditions. The cellular uptake and in vitro anticancer study showed that ROS-responsive prodrug nanoparticles exhibited faster cellular uptake and better anticancer efficacy. The in vivo experiments showed that the ROS-responsive prodrug nanoparticles had comparable antitumor efficacy with free anticancer drug DOX and reduced organ toxicity. Our results provide novel idea of successfully design multi-stimuli-responsive nano-drug carrier.
Collapse
Affiliation(s)
- Caidie Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Long Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Renlu Han
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- Medical School of Ningbo University, Ningbo, 315211, China
| | - Jianfeng Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
36
|
Cathepsin B-responsive and gadolinium-labeled branched glycopolymer-PTX conjugate-derived nanotheranostics for cancer treatment. Acta Pharm Sin B 2021; 11:544-559. [PMID: 33643830 PMCID: PMC7893117 DOI: 10.1016/j.apsb.2020.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
Multi-modal therapeutics are emerging for simultaneous diagnosis and treatment of cancer. Polymeric carriers are often employed for loading multiple drugs due to their versatility and controlled release of these drugs in response to a tumor specific microenvironment. A theranostic nanomedicine was designed and prepared by complexing a small gadolinium chelate, conjugating a chemotherapeutic drug PTX through a cathepsin B-responsive linker and covalently bonding a fluorescent probe pheophorbide a (Ppa) with a branched glycopolymer. The branched prodrug-based nanosystem was degradable in the tumor microenvironment with overexpressed cathepsin B, and PTX was simultaneously released to exert its therapeutic effect. The theranostic nanomedicine, branched glycopolymer-PTX-DOTA-Gd, had an extended circulation time, enhanced accumulation in tumors, and excellent biocompatibility with significantly reduced gadolinium ion (Gd3+) retention after 96 h post-injection. Enhanced imaging contrast up to 24 h post-injection and excellent antitumor efficacy with a tumor inhibition rate more than 90% were achieved from glycopolymer-PTX-DOTA-Gd without obvious systematic toxicity. This branched polymeric prodrug-based nanomedicine is very promising for safe and effective diagnosis and treatment of cancer. A cathepsin B-responsive theranostic nanomedicine (glycopolymer-PTX-DOTA-Gd) based on a branched glycopolymer was prepared. Glycopolymer-PTX-DOTA-Gd can be specifically degradated and release drug at tumor enviornment. Glycopolymer-PTX-DOTA-Gd enhance the contrast of magnetic resonance imaging (MRI) at tumor sites. The nanomedicine have good biocompatibility, excellent tumor targeting and anti-tumor efficacy.
Collapse
|
37
|
Li Z, Li Y, Lin Y, Alam MZ, Wu Y. Synthesizing Ag +: MgS, Ag +: Nb 2S 5, Sm 3+: Y 2S 3, Sm 3+:Er 2S 3, and Sm 3+:ZrS 2 Compound Nanoparticles for Multicolor Fluorescence Imaging of Biotissues. ACS OMEGA 2020; 5:32868-32876. [PMID: 33403247 PMCID: PMC7774074 DOI: 10.1021/acsomega.0c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Development of the fluorophores whose fluorescence bands can be flexibly selected is of great interest for biotissue imaging. Compounds of Ag+:MgS, Ag+:Nb2S5, Sm3+:Y2S3, Sm3+:Er2S3, and Sm3+:ZrS2 were obtained through new chemical synthesis. They were characterized by X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy, and transmission electron microscopy. They revealed polychromatic-photoluminescence spectra when excited by 280, 380, 480, 580, 680, and 785 nm light. Especially, near-infrared emission ranging from 800-1100 nm was found upon 785 nm light excitation. A band model was proposed to explain transitions responsible for the observed components of emission. Their broad fluorescence spectra cover from the ultraviolet to near-infrared spectral range. Their ability of emitting wide-range fluorescence was utilized for multicolor fluorescence imaging of biotissues, as demonstrated by pig-kidney tissue samples.
Collapse
Affiliation(s)
- Zongan Li
- School
of Electrical and Automation Engineering, Jiangsu Key Laboratory of
3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, Jiangsu 210046, China
- Nanjing
Industry Institute for Advanced Intelligent Equipment, Nanjing, Jiangsu 210042, China
| | - Yongzhe Li
- School
of Electrical and Automation Engineering, Jiangsu Key Laboratory of
3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Yingcheng Lin
- Key
Laboratory of Dependable Service Computing in Cyber Physical Society
of Ministry of Education Chongqing University, College of Microelectronics
and Communication Engineering, Chongqing
University, Chongqing 400044, China
| | - Muhammad Zulfiker Alam
- Department
of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Ye Wu
- School
of Electrical and Automation Engineering, Jiangsu Key Laboratory of
3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, Jiangsu 210046, China
- Anhui
Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui
Key Laboratory of Functional Coordination, Anqing, Anhui 246133, China
| |
Collapse
|
38
|
Irshad S, Siddiqui B, ur.Rehman A, Farooq RK, Ahmed N. Recent trends and development in targeted delivery of therapeutics through enzyme responsive intelligent nanoplatform. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sundus Irshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim. ur.Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
39
|
Wang C, Qi P, Lu Y, Liu L, Zhang Y, Sheng Q, Wang T, Zhang M, Wang R, Song S. Bicomponent polymeric micelles for pH-controlled delivery of doxorubicin. Drug Deliv 2020; 27:344-357. [PMID: 32090637 PMCID: PMC7054969 DOI: 10.1080/10717544.2020.1726526] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/01/2023] Open
Abstract
Stimuli-responsive drug delivery systems (DDSs) are expected to realize site-specific drug release and kill cancer cells selectively. In this study, a pH-responsive micelle was designed utilizing the pH-sensitivity of borate bonds formed between dopamine and boronic acid. First, methyl (polyethylene glycol)-block-polycaprolactone (mPEG-PCL) was conjugated with 4-cyano-4-(thiobenzoylthio)pentanoic acid (CTP) to obtain a macroinitiator. Two different segments poly(dopamine methacrylamide) (PDMA) and poly(vinylphenylboronic acid) (PVBA) were then grafted to the end of mPEG-PCL. Two triblock copolymers, mPEG-PCL-PDMA and mPEG-PCL-PVBA, were then obtained by reversible addition-fragmentation transfer (RAFT) polymerization. These copolymers and their mixture self-assembled in aqueous solution to form micelles that were able to load hydrophobic anticancer drug doxorubicin (DOX). These two-component micelles were found to be pH-sensitive, in contrast to the one-component micelles. Furthermore, MTT studies showed that the micelles were almost nontoxic. The DOX-loaded micelles showed cytotoxicity equivalent to that of DOX at high concentration. In vivo antitumor experiments showed that this pH-sensitive polymeric micellar system had an enhanced therapeutic effect on tumors. These two-component boronate-based pH micelles are universally applicable to the delivery of anticancer drugs, showing great potential for cancer therapy.
Collapse
Affiliation(s)
- Chunyun Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Peilan Qi
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Yan Lu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Lei Liu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Yanan Zhang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Qianli Sheng
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Tianshun Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Mengying Zhang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Rui Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| | - Shiyong Song
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
40
|
Supasena W, Muangnoi C, Praengam K, Wong TW, Qiu G, Ye S, Wu J, Tanasupawat S, Rojsitthisak P. Enhanced selective cytotoxicity of doxorubicin to breast cancer cells by methoxypolyethylene glycol conjugation via a novel beta-thiopropanamide linker. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Fana M, Gallien J, Srinageshwar B, Dunbar GL, Rossignol J. PAMAM Dendrimer Nanomolecules Utilized as Drug Delivery Systems for Potential Treatment of Glioblastoma: A Systematic Review. Int J Nanomedicine 2020; 15:2789-2808. [PMID: 32368055 PMCID: PMC7185330 DOI: 10.2147/ijn.s243155] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GB) is a grade IV astrocytoma that maintains a poor prognosis with respect to current treatment options. Despite major advancements in the fields of surgery and chemoradiotherapy over the last few decades, the life expectancy for someone with glioblastoma remains virtually unchanged and warrants a new approach for treatment. Poly(amidoamine) (PAMAM) dendrimers are a type of nanomolecule that ranges in size (between 1 and 100 nm) and shape and can offer a new viable solution for the treatment of intracranial tumors, including glioblastoma. Their ability to deliver a variety of therapeutic cargo and penetrate the blood-brain barrier (BBB), while preserving low cytotoxicity, make them a favorable candidate for further investigation into the treatment of glioblastoma. Here, we present a systematic review of the current advancements in PAMAM dendrimer technology, including the wide spectrum of dendrimer generations formulated, surface modifications, core modifications, and conjugations developed thus far to enhance tumor specificity and tumor penetration for treatment of glioblastoma. Furthermore, we highlight the extensive variety of therapeutics capable of delivery by PAMAM dendrimers for the treatment of glioblastoma, including cytokines, peptides, drugs, siRNAs, miRNAs, and organic polyphenols. While there have been prolific results stemming from aggressive research into the field of dendrimer technology, there remains a nearly inexhaustible amount of questions that remain unanswered. Nevertheless, this technology is rapidly developing and is nearing the cusp of use for aggressive tumor treatment. To that end, we further highlight future prospects in focus as researchers continue developing more optimal vehicles for the delivery of therapeutic cargo.
Collapse
Affiliation(s)
- Michael Fana
- College of Medicine, Central Michigan University, Mt. Pleasant, MI48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
| | - John Gallien
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI48859, USA
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mt. Pleasant, MI48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI48859, USA
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI48859, USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Field Neurosciences Institute, St. Mary’s of Michigan, Saginaw, MI48604, USA
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mt. Pleasant, MI48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI48859, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI48859, USA
| |
Collapse
|
42
|
Almuqbil RM, Heyder RS, Bielski ER, Durymanov M, Reineke JJ, da Rocha SRP. Dendrimer Conjugation Enhances Tumor Penetration and Efficacy of Doxorubicin in Extracellular Matrix-Expressing 3D Lung Cancer Models. Mol Pharm 2020; 17:1648-1662. [PMID: 32227969 DOI: 10.1021/acs.molpharmaceut.0c00083] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent broadly used in the treatment of a range of solid tumors. In spite of its high potency, as is the case for many other chemotherapeutic drugs, there are many challenges associated with the use of DOX in clinical oncology. This is particularly true for DOX in the treatment of lung cancer, where in vitro potency is shown to be very high, but low lung distribution and off-target toxicity (particularly cardiotoxicity) restrict its use. Nanocarrier-based drug delivery systems (nanoDDS) have been shown to help alter biodistribution and alleviate off-target toxicity associated with DOX. While significant understanding exists regarding the design parameters to achieve those clinical benefits, much less is known regarding the design of nanoDDS capable of enhancing tumor penetration of DOX (and other drugs), which is another major factor leading to DOX's reduced efficacy. The purpose of this study was to design a dendrimer-based nanoDDS capable of enhancing the penetration of DOX as measured in an in vitro 3D lung tumor model and to correlate those results with its efficacy. Spheroids formed with the A549 human lung adenocarcinoma cells/murine fibroblast cell line (NIH/3T3 cell line) are shown to produce the essential components of the extracellular matrix (ECM), which is known as a physical barrier that hinders the transport of DOX. DOX was conjugated to generation 4 succinamic acid-terminated poly(amido-amine) (PAMAM) dendrimers (G4SA) through an enzyme-liable tetrapeptide (G4SA-GFLG-DOX), resulting in a nanoDDS with ∼5.5 DOX, -17 mV surface (ζ) potential, and a 10 nm hydrodynamic diameter (HD). The penetration of DOX to the core of the spheroid in terms of DOX fluorescence was determined to be 3.1-fold greater compared to free DOX, which positively correlated with enhanced efficacy as measured by the Caspase 3/7 assay. This improved penetration happens as the interactions between the G4SA-GFLG-DOX and the highly negatively charged ECM are minimized by shielding the protonatable amine of DOX upon conjugation, and the HD of the conjugate is kept smaller than the estimated mesh size of the ECM. Interestingly, the conjugate provided more specificity for DOX to tumor cells compared to fibroblasts, while free DOX is equally distributed in both tumor and fibroblasts as assessed in the coculture spheroids. Growth inhibition studies show that the released DOX maintains its activity and leads to tumor reduction to the same extent as free DOX. The results obtained here are of relevance for the design of dendrimer-based nanoDDS and for the treatment of solid tumors as they provide critical information regarding desirable surface characteristics and sizes for efficient tumor penetration.
Collapse
Affiliation(s)
| | | | | | - Mikhail Durymanov
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Joshua J Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States
| | | |
Collapse
|
43
|
Recent advances in novel drug delivery systems and approaches for management of breast cancer: A comprehensive review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Small Peptide-Doxorubicin Co-Assembly for Synergistic Cancer Therapy. Molecules 2020; 25:molecules25030484. [PMID: 31979298 PMCID: PMC7036863 DOI: 10.3390/molecules25030484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/02/2022] Open
Abstract
Design of elaborated nanomaterials to improve the therapeutic efficacy and mitigate the side effects of chemotherapeutic anticancer drugs, such as Doxorubicin (Dox), is significant for cancer treatment. Here, we describe a co-assembled strategy, where amphiphile short peptides are co-assembled with Doxorubicin to form nanoscale particles for enhanced delivery of Dox. Two kinds of short peptides, Fmoc-FK (FK) and Fmoc-FKK (FKK), are synthesized. Through adjusting the component ratio of peptide and Dox, we obtain two kinds of co-assembled nanoparticles with homogeneous size distributions. These nanoparticles show several distinct characteristics. First, they are pH-responsive as they are stable in alkaline and neutral conditions, however, de-assembly at acidic pH enables selective Dox release in malignant cancer cells. Second, the nanoparticles show an average size of 50–100 nm with positive charges, making them effective for uptake by tumor cells. Moreover, the side effects of Dox on healthy cells are mitigated due to decreased exposure of free-Dox to normal cells. To conclude, the co-assembled peptide-Dox nanoparticles exhibit increased cellular uptake compared to free-Dox, therefore causing significant cancer cell death. Further apoptosis and cell cycle analysis indicates that there is a synergistic effect between the peptide and Doxorubicin.
Collapse
|
45
|
Wang J, Li N, Cao L, Gao C, Zhang Y, Shuai Q, Xie J, Luo K, Yang J, Gu Z. DOX-loaded peptide dendritic copolymer nanoparticles for combating multidrug resistance by regulating the lysosomal pathway of apoptosis in breast cancer cells. J Mater Chem B 2020; 8:1157-1170. [PMID: 31951231 DOI: 10.1039/c9tb02130b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multidrug resistance (MDR) is a common phenomenon in clinical oncology and is a major obstacle to cancer chemotherapy. Many nanoparticle (NP)-based drug delivery systems have been developed to overcome MDR depending on increasing intracellular drug concentrations via increased cellular uptake and rapid drug release. The objective of this work was to investigate the performance and possible mechanisms of enzyme-sensitive mPEGylated dendron-GFLG-DOX conjugate based nanoparticles for blockading the MDR phenotype of MCF-7/ADR. In vitro, mPEGylated dendron-GFLG-DOX conjugate based nanoparticles could significantly promote cellular uptake and accumulation, potent cytotoxicity and apoptosis compared to free DOX in resistant cells. mPEGylated dendron-GFLG-DOX conjugate based nanoparticles were found to translocate across the membranes of resistant cells via active endocytic pathways leading to more DOX accumulating in the nuclei of MCF-7/ADR cells. Importantly, we found that mPEGylated dendron-GFLG-DOX conjugate based nanoparticles could induce cathepsin B in the cytoplasm and enhance lysosomal-mediated cell death compared to free DOX. Furthermore, mPEGylated dendron-GFLG-DOX conjugate based nanoparticles enhanced the drug's penetration, toxicity, and growth inhibition compared to free DOX in the three-dimensional multicellular tumor spheroid model. In vivo, mPEGylated dendron-GFLG-DOX conjugate based nanoparticles significantly improved the therapeutic efficacy against MDR xenograft tumors, and showed better biocompatibility than free DOX. These results indicated that mPEGylated dendron-GFLG-DOX conjugate based nanoparticles could be used as an alternative drug delivery system for MDR tumor treatment through initiating the lysosomal apoptosis pathway.
Collapse
Affiliation(s)
- Jianxi Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Ning Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and School of Pharmacy, Fujian Medical University, Fuzhou 350122, P. R. China
| | - Lei Cao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P. R. China.
| | - Chao Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P. R. China.
| | - Yan Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P. R. China.
| | - Qizhi Shuai
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P. R. China.
| | - Jinghui Xie
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P. R. China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P. R. China.
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
46
|
Guo WW, Zhang ZT, Wei Q, Zhou Y, Lin MT, Chen JJ, Wang TT, Guo NN, Zhong XC, Lu YY, Yang QY, Han M, Gao J. Intracellular Restructured Reduced Glutathione-Responsive Peptide Nanofibers for Synergetic Tumor Chemotherapy. Biomacromolecules 2020; 21:444-453. [PMID: 31851512 DOI: 10.1021/acs.biomac.9b01202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Self-assembled peptide nanofibers have been widely studied in cancer nanotherapeutics with their excellent biocompatibility and low toxicity of degradation products, showing the significant potential in inhibiting tumor progression. However, poor solubility prevents direct intravenous administration of nanofibers. Although water-soluble peptide precursors have been formed via the method of phosphorylation for intravenous administration, their opportunities for broad in vivo application are limited by the weak capacity of encapsulating drugs. Herein, we designed a novel restructured reduced glutathione (GSH)-responsive drug delivery system encapsulating doxorubicin for systemic administration, which achieved the intracellular restructuration from three-dimensional micelles into one-dimensional nanofibers. After a long blood circulation, micelles endocytosed by tumor cells could degrade in response to high GSH levels, achieving more release and accumulation of doxorubicin at desired sites. Further, the synergistic chemotherapy effects of self-assembled nanofibers were confirmed in both in vitro and in vivo experiments.
Collapse
|
47
|
Solanesol derived therapeutic carriers for anticancer drug delivery. Int J Pharm 2019; 572:118823. [PMID: 31715346 DOI: 10.1016/j.ijpharm.2019.118823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Metabolites of a large number of inert drug carriers can cause long-term exogenous biological toxicity. Therefore, carriers with simultaneous therapeutic effects may be a good choice for drug delivery. Herein, a series of pharmacologically active solanesol derivatives were synthesized and investigated for use as micellar drug carriers for cancer therapy. Solanesyl thiosalicylic acid (STS) was first synthesized by introducing a thiosalicylic acid group to solanesol, inspired by the characteristic structure of farnesyl thiosalicylic acid (FTS) which is a non-toxic inhibitor of all active forms of the RAS protein. Then, two amphiphilic derivatives of STS were formed with ester- and hydrazone (HZ)-bond linked methyl poly(ethylene glycol)(mPEG), mPEG-STS and mPEG-HZ-STS, respectively. The PEGylated STS could be formed stable nano-sized micelles loaded with Doxorubicin (DOX). In vitro, DOX loaded mPEG-STS and mPEG-HZ-STS micelles exhibited stronger tumor inhibition ability compared with free DOX. In vivo, blank mPEG-STS and mPEG-HZ-STS micelles showed an obvious inhibiting effect on tumor growth while the drug loaded micelles had the greatest tumor inhibition effect. The enhanced therapeutic effects and the synergistic effect observed with this solanesol-based drug delivery system could be attributed to the inherent therapeutic qualities of the drug carriers.
Collapse
|
48
|
Luo L, Xu F, Peng H, Luo Y, Tian X, Battaglia G, Zhang H, Gong Q, Gu Z, Luo K. Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. J Control Release 2019; 318:124-135. [PMID: 31838206 DOI: 10.1016/j.jconrel.2019.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Functionalized drug delivery systems against malignant lung metastasis of breast cancer have been extensively studied, while metastasis remains a challenging issue. We propose a new strategy to achieve eradication of primary breast cancer cells and inhibition of pulmonary metastasis. A cathepsin B/pH dual-sensitive block copolymer with a molecular weight of 92 kDa was synthesized to conjugate with doxorubicin (DOX). The copolymer-DOX was further loaded with nifuroxazide (NFX) to self-assemble co-prodrug-loaded micelles (CLM). CLM displayed a drug release pattern in response to pH/enzyme dual stimuli and was enzymatically biodegradable. CLM was demonstrated to reduce viability and inhibit migration and invasion of 4T1 murine breast cancer cells in vitro. After i.v. injection of CLM, its nanoscale size and stimuli-responsiveness facilitated delivery of drugs to the tumor site in mice. Enhanced anti-tumor efficacy and great anti-metastatic effects were found in both orthotropic and lung metastasis 4T1 breast cancer mice models. Meanwhile, histological immunofluorescence and immunohistochemical analyses revealed a high level of apoptosis, suppressed expression of matrix metalloproteinases and reduction in MDSCs infiltration, and all these contributed to inhibit pulmonary metastasis. CLM may be explored as a potential nanomedicine against breast cancer metastasis.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Fanshu Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Huilan Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yonghuang Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaohe Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Giuseppe Battaglia
- Department of Chemistry, Department of Chemical Engineering, University College London, UK
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Petushkova AI, Savvateeva LV, Korolev DO, Zamyatnin AA. Cysteine Cathepsins: Potential Applications in Diagnostics and Therapy of Malignant Tumors. BIOCHEMISTRY (MOSCOW) 2019; 84:746-761. [PMID: 31509726 DOI: 10.1134/s000629791907006x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteine cathepsins are proteolytic enzymes involved in protein degradation in lysosomes and endosomes. Cysteine cathepsins have been also found in the tumor microenvironment during carcinogenesis, where they are implicated in proliferation, invasion and metastasis of tumor cells through the degradation of extracellular matrix, suppression of cell-cell interactions, and promotion of angiogenesis. In this regard, cathepsins can have a diagnostic value and represent promising targets for antitumor drugs aimed at inhibition of these proteases. Moreover, cysteine cathepsins can be used as activators of novel targeted therapeutic agents. This review summarizes recent discovered roles of cysteine cathepsins in carcinogenesis and discusses new trends in cancer therapy and diagnostics using cysteine cathepsins as markers, targets, or activators.
Collapse
Affiliation(s)
- A I Petushkova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - L V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - D O Korolev
- Sechenov First Moscow State Medical University, Institute of Uronephrology and Human Reproductive Health, Moscow, 119991, Russia
| | - A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
50
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|