1
|
Walton BL, Shattuck-Brandt R, Hamann CA, Tung VW, Colazo JM, Brand DD, Hasty KA, Duvall CL, Brunger JM. A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine. Osteoarthritis Cartilage 2025; 33:231-240. [PMID: 39706287 DOI: 10.1016/j.joca.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites of cartilage degeneration. DESIGN A single-chain variable fragment specific for type II collagen (CII) that is exposed in damaged cartilage was used to produce a synthetic Notch (synNotch) receptor that enables "CII-synNotch" mesenchymal stromal cells (MSCs) to recognize degraded cartilage. Artificial signaling induced by both CII-treated culture surfaces and primary tissues was measured via fluorescence and luminescence assays. Separate studies measured the ability of CII-synNotch to govern cartilage anabolic activity of MSCs. Finally, a co-culture with ATDC5 chondrocytes was used to determine whether CII-synNotch MSCs can protect chondrocytes against deleterious effects of pro-inflammatory interleukin-1 in a CII-dependent manner. RESULTS CII-synNotch MSCs are highly and selectively responsive to CII, but not type I collagen, as measured by luminescence assays, fluorescence microscopy, and concentrations of secreted transgene products in culture media. CII-synNotch cells exhibit the capacity to distinguish between healthy and damaged cartilage tissue and constrain transgene expression to regions of exposed CII fibers. Receptor-regulated production of cartilage anabolic and anti-inflammatory transgenes was effective to mediate cartilage regenerative functions. CONCLUSION This work demonstrates proof-of-concept that the synNotch platform guides MSCs for spatially regulated, disease-dependent delivery of OA-relevant biologic drugs.
Collapse
Affiliation(s)
- Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | | | - Catherine A Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Victoria W Tung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - David D Brand
- Research Service, Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis VA Medical Center, Memphis, TN 38105, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
2
|
Zhao T, Zhou ZR, Wan HQ, Feng T, Hu XH, Li XQ, Zhao SM, Li HL, Hou JW, Li W, Lu DY, Qian MY, Shen X. Otilonium bromide ameliorates pulmonary fibrosis in mice through activating phosphatase PPM1A. Acta Pharmacol Sin 2025; 46:107-121. [PMID: 39160244 PMCID: PMC11695943 DOI: 10.1038/s41401-024-01368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease characterized by unremitting pulmonary myofibroblasts activation, extracellular matrix (ECM) deposition and inflammatory recruitment. PF has no curable medication yet. In this study we investigated the molecular pathogenesis and potential therapeutic targets of PF and discovered drug lead compounds for PF therapy. A murine PF model was established in mice by intratracheal instillation of bleomycin (BLM, 5 mg/kg). We showed that the protein level of pulmonary protein phosphatase magnesium-dependent 1A (PPM1A, also known as PP2Cα) was significantly downregulated in PF patients and BLM-induced PF mice. We demonstrated that TRIM47 promoted ubiquitination and decreased PPM1A protein in PF progression. By screening the lab in-house compound library, we discovered otilonium bromide (OB, clinically used for treating irritable bowel syndrome) as a PPM1A enzymatic activator with an EC50 value of 4.23 μM. Treatment with OB (2.5, 5 mg·kg-1·d-1, i.p., for 20 days) significantly ameliorated PF-like pathology in mice. We constructed PF mice with PPM1A-specific knockdown in the lung tissues, and determined that by targeting PPM1A, OB treatment suppressed ECM deposition through TGF-β/SMAD3 pathway in fibroblasts, repressed inflammatory responses through NF-κB/NLRP3 pathway in alveolar epithelial cells, and blunted the crosstalk between inflammation in alveolar epithelial cells and ECM deposition in fibroblasts. Together, our results demonstrate that pulmonary PPM1A activation is a promising therapeutic strategy for PF and highlighted the potential of OB in the treatment of the disease.
Collapse
Affiliation(s)
- Tong Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Ruo Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hui-Qi Wan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tian Feng
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu-Hui Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Qian Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Mei Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Lin Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ji-Wei Hou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Da-Yun Lu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min-Yi Qian
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Semerci Sevimli T, Inan U, Mantar D, Guler K, Ahmadova Z, Gulec K, Topal AE. In vitro Chondrogenic Induction Promotes the Expression Level of IL-10 via the TGF-β/SMAD and Canonical Wnt/β-catenin Signaling Pathways in Exosomes Secreted by Human Adipose Tissue-derived Mesenchymal Stem Cells. Cell Biochem Biophys 2024; 82:3741-3750. [PMID: 39266872 DOI: 10.1007/s12013-024-01461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Current treatment approaches cannot exactly regenerate cartilage tissue. Regarding some problems encountered with cell therapy, exosomes are advantageous because of their "cell-free" nature. This study examines the relationship between IL-10 and TGF-β and Canonical Wnt/β-catenin signal pathways in human adipose tissue-derived MSCs exosomes (hAT-MSCs-Exos) after in vitro chondrogenic differentiation. Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and, as a control group, human fetal chondroblast cells (hfCCs) were differentiated chondrogenically in vitro. Exosome isolation and characterization analyses were performed. Chondrogenic differentiation was shown by Alcian Blue and Safranin O stainings. The expression levels of IL-10, TGF-β/SMAD signaling pathway genes, and Canonical Wnt/β-catenin signaling pathway genes, which play an essential role in chondrogenesis, were analyzed by RT-qPCR. Conditioned media cytokine levels were measured by using the TGF-β and IL-10 ELISA kits. IL-10 expression was upregulated in both chondrogenic differentiated hAT-MSC-Exos (dhAT-MSC-Exos) (p < 0.0001). In the TGF-β signaling pathway, TGF-β (p < 0.0001), SMAD2 (p < 0.0001), SMAD4 (p < 0.001), ACAN (p < 0.0001), SOX9 (p < 0.05) and COL1A2 (p < 0.0001) expressions were upregulated in dhAT-MSC-Exos. SMAD3 expression was upregulated in non-differentiated hAT-MSC-Exos. In the Canonical Wnt/β-catenin signaling pathway, WNT (p < 0.0001) and CTNNB1(p < 0.0001) expressions were upregulated in dhAT-MSC-Exos. AXIN (p < 0.0001) expression was upregulated in non-differentiated hAT-MSC-Exos. TGF-β and IL-10 levels were higher in dhAT-MSCs) (p < 0.0001). Related to these results, IL-10 may induce TGF-β/SMAD and Canonical Wnt/β-catenin signaling pathways in hAT-MSC exosomes obtained after chondrogenic differentiation. Therefore, using these exosomes for cartilage regeneration can lead to the development of treatment methods.
Collapse
Affiliation(s)
- Tugba Semerci Sevimli
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Ulukan Inan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | | | - Kubra Guler
- Department of Biochemistry, School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| | - Zarifa Ahmadova
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Kadri Gulec
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Ahmet Emin Topal
- Department of Biochemistry, School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
4
|
Cai J, Han R, Li J, Hao J, Zhao Z, Jing D. Exploring mechanobiology network of bone and dental tissue based on Natural Language Processing. J Biomech 2024; 174:112271. [PMID: 39159585 DOI: 10.1016/j.jbiomech.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Bone and cartilage tissues are physiologically dynamic organs that are systematically regulated by mechanical inputs. At cellular level, mechanical stimulation engages an intricate network where mechano-sensors and transmitters cooperate to manipulate downstream signaling. Despite accumulating evidence, there is a notable underutilization of available information, due to limited integration and analysis. In this context, we conceived an interactive web tool named MechanoBone to introduce a new avenue of literature-based discovery. Initially, we compiled a literature database by sourcing content from Pubmed and processing it through the Natural Language Toolkit project, Pubtator, and a custom library. We identified direct co-occurrence among entities based on existing evidence, archiving in a relational database via SQLite. Latent connections were then quantified by leveraging the Link Prediction algorithm. Secondly, mechanobiological pathway maps were generated, and an entity-pathway correlation scoring system was established through weighted algorithm based on our database, String, and KEGG, predicting potential functions of specific entities. Additionally, we established a mechanical circumstance-based exploration to sort genes by their relevance based on big data, revealing the potential mechanically sensitive factors in bone research and future clinical applications. In conclusion, MechanoBone enables: 1) interpreting mechanobiological processes; 2) identifying correlations and crosstalk among molecules and pathways under specific mechanical conditions; 3) connecting clinical applications with mechanobiological processes in bone research. It offers a literature mining tool with visualization and interactivity, facilitating targeted molecule navigation and prediction within the mechanobiological framework of bone-related cells, thereby enhancing knowledge sharing and big data analysis in the biomedical realm.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - RuiYing Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Junfu Li
- Glagow College, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jin Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; ChohoTech Inc., Hangzhou 311100, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
5
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
6
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhang F, Clair AJ, Dankert JF, Lee YJ, Campbell KA, Kirsch T. Cytokine Receptor-like Factor 1 (CRLF1) and Its Role in Osteochondral Repair. Cells 2024; 13:757. [PMID: 38727293 PMCID: PMC11083199 DOI: 10.3390/cells13090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Since cytokine receptor-like factor 1 (CRLF1) has been implicated in tissue regeneration, we hypothesized that CRLF1 released by mesenchymal stem cells can promote the repair of osteochondral defects. METHODS The degree of a femoral osteochondral defect repair in rabbits after intra-articular injections of bone marrow-derived mesenchymal stem cells (BMSCs) that were transduced with empty adeno-associated virus (AAV) or AAV containing CRLF1 was determined by morphological, histological, and micro computer tomography (CT) analyses. The effects of CRLF1 on chondrogenic differentiation of BMSCs or catabolic events of interleukin-1beta-treated chondrocyte cell line TC28a2 were determined by alcian blue staining, gene expression levels of cartilage and catabolic marker genes using real-time PCR analysis, and immunoblot analysis of Smad2/3 and STAT3 signaling. RESULTS Intra-articular injections of BMSCs overexpressing CRLF1 markedly improved repair of a rabbit femoral osteochondral defect. Overexpression of CRLF1 in BMSCs resulted in the release of a homodimeric CRLF1 complex that stimulated chondrogenic differentiation of BMSCs via enhancing Smad2/3 signaling, whereas the suppression of CRLF1 expression inhibited chondrogenic differentiation. In addition, CRLF1 inhibited catabolic events in TC28a2 cells cultured in an inflammatory environment, while a heterodimeric complex of CRLF1 and cardiotrophin-like Cytokine (CLC) stimulated catabolic events via STAT3 activation. CONCLUSION A homodimeric CRLF1 complex released by BMSCs enhanced the repair of osteochondral defects via the inhibition of catabolic events in chondrocytes and the stimulation of chondrogenic differentiation of precursor cells.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Urology, New York University Grossman School of Medicine, New York, NY 10010, USA;
| | | | - John F. Dankert
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10010, USA; (J.F.D.); (Y.J.L.); (K.A.C.)
| | - You Jin Lee
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10010, USA; (J.F.D.); (Y.J.L.); (K.A.C.)
| | - Kirk A. Campbell
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10010, USA; (J.F.D.); (Y.J.L.); (K.A.C.)
| | - Thorsten Kirsch
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10010, USA; (J.F.D.); (Y.J.L.); (K.A.C.)
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 10010, USA
| |
Collapse
|
8
|
Wu W, Zhao Z, Wang Y, Zhu G, Tan K, Liu M, Li L. Biomechanical Effects of Mechanical Stress on Cells Involved in Fracture Healing. Orthop Surg 2024; 16:811-820. [PMID: 38439564 PMCID: PMC10984830 DOI: 10.1111/os.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Fracture healing is a complex staged repair process in which the mechanical environment plays a key role. Bone tissue is very sensitive to mechanical stress stimuli, and the literature suggests that appropriate stress can promote fracture healing by altering cellular function. However, fracture healing is a coupled process involving multiple cell types that balance and limit each other to ensure proper fracture healing. The main cells that function during different stages of fracture healing are different, and the types and molecular mechanisms of stress required are also different. Most previous studies have used a single mechanical stimulus on individual mechanosensitive cells, and there is no relatively uniform standard for the size and frequency of the mechanical stress. Analyzing the mechanisms underlying the effects of mechanical stimulation on the metabolic regulation of signaling pathways in cells such as in bone marrow mesenchymal stem cells (BMSCs), osteoblasts, chondrocytes, and osteoclasts is currently a challenging research hotspot. Grasping how stress affects the function of different cells at the molecular biology level can contribute to the refined management of fracture healing. Therefore, in this review, we summarize the relevant literature and describe the effects of mechanical stress on cells associated with fracture healing, and their possible signaling pathways, for the treatment of fractures and the further development of regenerative medicine.
Collapse
Affiliation(s)
- Weiyong Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Zhao
- Orthopedic Department, The Fourth Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Yongqing Wang
- Orthopedic Department, The Fourth Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Gengbao Zhu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Kemeng Tan
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| | - Meiyue Liu
- Orthopedic Department, The Fourth Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, China
| |
Collapse
|
9
|
Walton BL, Shattuck-Brandt R, Hamann CA, Tung VW, Colazo JM, Brand DD, Hasty KA, Duvall CL, Brunger JM. A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578281. [PMID: 38352576 PMCID: PMC10862827 DOI: 10.1101/2024.01.31.578281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Objective Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites characterized by cartilage degeneration. Methods An scFv specific for type II collagen (CII) was used to produce a synthetic Notch (synNotch) receptor that enables "CII-synNotch" mesenchymal stromal cells (MSCs) to recognize CII fibers exposed in damaged cartilage. Engineered cell activation by both CII-treated culture surfaces and on primary tissue samples was measured via inducible reporter transgene expression. TGFβ3-expressing cells were assessed for cartilage anabolic gene expression via qRT-PCR. In a co-culture with CII-synNotch MSCs engineered to express IL-1Ra, ATDC5 chondrocytes were stimulated with IL-1α, and inflammatory responses of ATDC5s were profiled via qRT-PCR and an NF-κB reporter assay. Results CII-synNotch MSCs are highly responsive to CII, displaying activation ranges over 40-fold in response to physiologic CII inputs. CII-synNotch cells exhibit the capacity to distinguish between healthy and damaged cartilage tissue and constrain transgene expression to regions of exposed CII fibers. Receptor-regulated TGFβ3 expression resulted in upregulation of Acan and Col2a1 in MSCs, and inducible IL-1Ra expression by engineered CII-synNotch MSCs reduced pro-inflammatory gene expression in chondrocytes. Conclusion This work demonstrates proof-of-concept that the synNotch platform guides MSCs for spatially regulated, disease-dependent delivery of OA-relevant biologic drugs.
Collapse
Affiliation(s)
- Bonnie L. Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Catherine A. Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Victoria W. Tung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - David D. Brand
- Research Service, Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Karen A. Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis VA Medical Center, Memphis, TN, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Jonathan M. Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
10
|
Kapat K, Kumbhakarn S, Sable R, Gondane P, Takle S, Maity P. Peptide-Based Biomaterials for Bone and Cartilage Regeneration. Biomedicines 2024; 12:313. [PMID: 38397915 PMCID: PMC10887361 DOI: 10.3390/biomedicines12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface. As regulators of cell adhesion, proliferation, differentiation, angiogenesis, immunomodulation, and antibacterial activity, potential therapeutic strategies for OCDs utilizing bone and cartilage-specific peptides should be examined and investigated. The main goal of this review was to study how they contribute to the healing of OCDs, either alone or in conjunction with other peptides and biomaterials.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
11
|
Jia Y, Le H, Wang X, Zhang J, Liu Y, Ding J, Zheng C, Chang F. Double-edged role of mechanical stimuli and underlying mechanisms in cartilage tissue engineering. Front Bioeng Biotechnol 2023; 11:1271762. [PMID: 38053849 PMCID: PMC10694366 DOI: 10.3389/fbioe.2023.1271762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/07/2023] Open
Abstract
Mechanical stimuli regulate the chondrogenic differentiation of mesenchymal stem cells and the homeostasis of chondrocytes, thus affecting implant success in cartilage tissue engineering. The mechanical microenvironment plays fundamental roles in the maturation and maintenance of natural articular cartilage, and the progression of osteoarthritis Hence, cartilage tissue engineering attempts to mimic this environment in vivo to obtain implants that enable a superior regeneration process. However, the specific type of mechanical loading, its optimal regime, and the underlying molecular mechanisms are still under investigation. First, this review delineates the composition and structure of articular cartilage, indicating that the morphology of chondrocytes and components of the extracellular matrix differ from each other to resist forces in three top-to-bottom overlapping zones. Moreover, results from research experiments and clinical trials focusing on the effect of compression, fluid shear stress, hydrostatic pressure, and osmotic pressure are presented and critically evaluated. As a key direction, the latest advances in mechanisms involved in the transduction of external mechanical signals into biological signals are discussed. These mechanical signals are sensed by receptors in the cell membrane, such as primary cilia, integrins, and ion channels, which next activate downstream pathways. Finally, biomaterials with various modifications to mimic the mechanical properties of natural cartilage and the self-designed bioreactors for experiment in vitro are outlined. An improved understanding of biomechanically driven cartilage tissue engineering and the underlying mechanisms is expected to lead to efficient articular cartilage repair for cartilage degeneration and disease.
Collapse
Affiliation(s)
- Yao Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
- The Fourth Treatment Area of Trauma Hip Joint Surgery Department, Tianjin Hospital, Tianjin, China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Yan Liu
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Jiacheng Ding
- The Second Bethune Clinical Medical College of Jilin University, Jilin, China
| | - Changjun Zheng
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
12
|
Vinikoor T, Dzidotor GK, Le TT, Liu Y, Kan HM, Barui S, Chorsi MT, Curry EJ, Reinhardt E, Wang H, Singh P, Merriman MA, D'Orio E, Park J, Xiao S, Chapman JH, Lin F, Truong CS, Prasadh S, Chuba L, Killoh S, Lee SW, Wu Q, Chidambaram RM, Lo KWH, Laurencin CT, Nguyen TD. Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun 2023; 14:6257. [PMID: 37802985 PMCID: PMC10558537 DOI: 10.1038/s41467-023-41594-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023] Open
Abstract
Osteoarthritis affects millions of people worldwide but current treatments using analgesics or anti-inflammatory drugs only alleviate symptoms of this disease. Here, we present an injectable, biodegradable piezoelectric hydrogel, made of short electrospun poly-L-lactic acid nanofibers embedded inside a collagen matrix, which can be injected into the joints and self-produce localized electrical cues under ultrasound activation to drive cartilage healing. In vitro, data shows that the piezoelectric hydrogel with ultrasound can enhance cell migration and induce stem cells to secrete TGF-β1, which promotes chondrogenesis. In vivo, the rabbits with osteochondral critical-size defects receiving the ultrasound-activated piezoelectric hydrogel show increased subchondral bone formation, improved hyaline-cartilage structure, and good mechanical properties, close to healthy native cartilage. This piezoelectric hydrogel is not only useful for cartilage healing but also potentially applicable to other tissue regeneration, offering a significant impact on the field of regenerative tissue engineering.
Collapse
Affiliation(s)
- Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Godwin K Dzidotor
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Thinh T Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Yang Liu
- Center of Digital Dentistry/Department of Prosthodontics/Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Srimanta Barui
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Meysam T Chorsi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Eli J Curry
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Emily Reinhardt
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT, 06269, USA
| | - Hanzhang Wang
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 63 Farmington Avenue, Farmington, CT, 06030, USA
| | - Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Marc A Merriman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ethan D'Orio
- Department of Advanced Manufacturing for Energy Systems Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Shuyang Xiao
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
| | - James H Chapman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cao-Sang Truong
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Lisa Chuba
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Shaelyn Killoh
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Seok-Woo Lee
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Qian Wu
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 63 Farmington Avenue, Farmington, CT, 06030, USA
| | - Ramaswamy M Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Kevin W H Lo
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Cato T Laurencin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery University of Connecticut Health, Farmington, CT, 06030, USA
| | - Thanh D Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
13
|
Wu Y, Jing Z, Deng D, Yan J, Liu M, Li L, Zuo Y, Wu W, Hu Q, Xie Y. Dkk-1-TNF-α crosstalk regulates MC3T3E1 pre-osteoblast proliferation and differentiation under mechanical stress through the ERK signaling pathway. Mol Cell Biochem 2023; 478:2191-2206. [PMID: 36640256 DOI: 10.1007/s11010-022-04645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The study aims to explore the role of the ERK signaling pathway in the crosstalk between Dkk-1 and TNF-α in MC3T3E1 pre-osteoblasts under cyclic tensile/compressive stress. A forced four-point bending system was used to apply cyclic uniaxial tensile/compressive strain (2000 μ, 0.5 Hz) to MC3T3E1 cells. Dkk-1 and TNF-α expression were upregulated in MC3T3E1 cells under compressive strain. Cell proliferation, the cell cycle, osteogenesis-related gene (Wnt5a, Runx2, Osterix) expression, β-catenin expression, and the p-ERK/ERK ratio were significantly enhanced, whereas apoptosis, the RANKL/OPG ratio, and TNF-α expression were significantly attenuated, by Dkk-1 silencing. Dkk-1 expression increased and the effects of Dkk-1 silencing were reversed when exogenous TNF-α was added. Mechanically, TNF-α crosstalked with Dkk-1 through ERK signaling in MC3T3E1 cells. ERK signaling blockade impaired Dkk-1-induced TNF-α expression and TNF-α-mediated Dkk-1 expression. Dkk-1 and TNF-α crosstalked, partially through ERK signaling, in MC3T3E1 cells under compressive/tensile strain, synergistically modulating various biological behaviors of the cells. These findings not only provide mechanical insight into the cellular events and molecular regulation of orthodontic tooth movement (OTM), but also aid the development of novel strategies to accelerate OTM.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Disi Deng
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jin Yan
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Wenbin Wu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, #39 Shierqiao Rd, Chengdu, 610072, People's Republic of China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
14
|
Menezes R, Sherman L, Rameshwar P, Arinzeh TL. Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC Chondrogenesis over native GAGs. J Biomed Mater Res A 2023; 111:1135-1150. [PMID: 36708060 PMCID: PMC10277227 DOI: 10.1002/jbm.a.37496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/29/2023]
Abstract
Cartilage tissue engineering strategies seek to repair damaged tissue using approaches that include scaffolds containing components of the native extracellular matrix (ECM). Articular cartilage consists of glycosaminoglycans (GAGs) which are known to sequester growth factors. In order to more closely mimic the native ECM, this study evaluated the chondrogenic differentiation of mesenchymal stem cells (MSCs), a promising cell source for cartilage regeneration, on fibrous scaffolds that contained the GAG-mimetic cellulose sulfate. The degree of sulfation was evaluated, examining partially sulfated cellulose (pSC) and fully sulfated cellulose (NaCS). Comparisons were made with scaffolds containing native GAGs (chondroitin sulfate A, chondroitin sulfate C and heparin). Transforming growth factor-beta3 (TGF-β3) sequestration, as measured by rate of association, was higher for sulfated cellulose-containing scaffolds as compared to native GAGs. In addition, TGF-β3 sequestration and retention over time was highest for NaCS-containing scaffolds. Sulfated cellulose-containing scaffolds loaded with TGF-β3 showed enhanced chondrogenesis as indicated by a higher Collagen Type II:I ratio over native GAGs. NaCS-containing scaffolds loaded with TGF-β3 had the highest expression of chondrogenic markers and a reduction of hypertrophic markers in dynamic loading conditions, which more closely mimic in vivo conditions. Studies also demonstrated that TGF-β3 mediated its effect through the Smad2/3 signaling pathway where the specificity of TGF-β receptor (TGF- βRI)-phosphorylated SMAD2/3 was verified with a receptor inhibitor. Therefore, studies demonstrate that scaffolds containing cellulose sulfate enhance TGF-β3-induced MSC chondrogenic differentiation and show promise for promoting cartilage tissue regeneration.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Lauren Sherman
- Department of Medicine, Rutgers University School of Medicine, Newark, New Jersey, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers University School of Medicine, Newark, New Jersey, USA
| | | |
Collapse
|
15
|
Xiong Y, Huang X, Jiao Y, Zhou C, Yu T. Synergistic effect of Mn-Si-COS on wound immune microenvironment by inhibiting excessive skin fibrosis mediated with ROS/TGF-β1/Smad7 signal. BIOMATERIALS ADVANCES 2023; 152:213497. [PMID: 37321008 DOI: 10.1016/j.bioadv.2023.213497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Excessive oxidative stress and inflammation often impede wound healing and ultimately lead to excessive skin fibrosis formation. It was known that the structural properties of biomaterials can affect the healing and immune response of surrounding tissues. In this work, a composite structure of Mn-Si-chitooligosaccharides (COS) was designed (COS@Mn-MSN) and the ability of regulating wound microenvironment for inhibiting skin fibrosis was investigated. In order to reduce the negative effects of Mn, the nano-level Mn was doped into MSN to minimize its content. The results show that Mn in COS@Mn-MSN showed significant ability of scavenging excess intracellular ROS within 1 d. The Si released from COS@Mn-MSN can shift M2 macrophage polarization in the later stage (1-3 d), showing anti-inflammatory effect. Macrophage (RAW264.7) were activated alternatively by COS released from COS@Mn-MSN, with upregulated expression of anti-inflammatory factors (IL-10 and CD206) and downregulated expression of pro-inflammatory factors (TNF-α, CD80, and IL-1β) in the whole time. The expression of fibrosis associated factor TGF-β1 and CD26 in fibroblast cells (L929) were inhibited by COS and Si. Besides, the inflammatory microenvironment mediated by COS@Mn-MSN downregulated Smad-7 gene expression and upregulated Col-1α gene expression. With the function of reducing oxidative stress (0-1 d), the TGF-β1 inhibition (1-3 d) and anti-inflammatory effects (0-3 d), COS@Mn-MSN could inhibit excessive skin fibrosis formation mediated with ROS/TGF-β1/Smad7 signal. Therefore, the prepared COS@Mn-MSN shows great potential to active scarless wound therapy.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, 510632, China
| | - Xiuhong Huang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, 510632, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, 510632, China
| | - Tao Yu
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, 510632, China; Guandgong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| |
Collapse
|
16
|
CD44 mediates hyaluronan to promote the differentiation of human amniotic mesenchymal stem cells into chondrocytes. Biotechnol Lett 2023; 45:411-422. [PMID: 36680638 DOI: 10.1007/s10529-022-03322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES CD44 is the major receptor for hyaluronan (HA), but its effect on HA-induced differentiation of human amnion mesenchymal stem cells into chondrocytes is unclear. This study aimed to investigate the effects and mechanisms of CD44 in HA-induced chondrogenesis. METHODS Immunocytochemistry and toluidine blue staining were used to assess the secretion of type II collagen and aggrecan, respectively. qRT-PCR and western blotting were performed to evaluate the expression of key genes and proteins. RESULTS The expression of aggrecan and type II collagen was downregulated after using the anti-CD44 antibody (A3D8). The transcriptional levels of chondrocytes‑associated genes SRY‑box transcription factor 9, aggrecan, and collagen type II alpha 1 chain were also decreased. Thus, CD44 may mediate HA-induced differentiation of hAMSCs into chondrocytes. Further investigation indicated that expression of phosphorylated (p)‑Erk1/2 and p‑Smad2 decreased following CD44 inhibition. The changes in the expression of p-Erk1/2 and p-Smad2 were consistent after using the ERK1/2 inhibitor (U0126) and agonist (EGF), respectively. After administering the p-Smad2 inhibitor, the expression levels of p-ERK1/2 and p-Smad2 appeared downregulated. The results showed crosstalk between Erk1/2 and Smad2. Moreover, inhibition of p-Erk1/2 and p-Smad2 significantly reduced the accumulation of aggrecan and type II collagen. CONCLUSION These data indicate that CD44 mediates HA-induced differentiation of hAMSCs into chondrocytes by regulating Erk1/2 and Smad2 signaling.
Collapse
|
17
|
Han B, Cao C, Wang A, Zhao Y, Jin M, Wang Y, Chen S, Yu M, Yang Z, Qu X, Wang X. Injectable Double-Network Hydrogel-Based Three-Dimensional Cell Culture Systems for Regenerating Dental Pulp. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7821-7832. [PMID: 36734883 DOI: 10.1021/acsami.2c20848] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The regeneration of dental pulp tissue is very important, but difficult, in dentistry. The biocompatibility, water content, and viscoelastic properties of pulp-like tissue must be optimized to achieve the efficient transfer of metabolites and nutrients, a suitable degradation rate, distribution of encapsulated cells, injectability, and gelation in situ under physiological conditions. As promising materials for pulp regeneration, hydrogel scaffolds have been produced to simulate the extracellular matrix and transmit signaling molecules. It is imperative to develop hydrogels to effectively regenerate pulp tissue for clinical application. Here, two injectable double-network (DN) hydrogel-based three-dimensional (3D) cell culture systems were developed for regenerating dental pulp. The microstructure, mechanical property, rheology property, and degradation behavior of the injectable DN glycol chitosan-based hydrogels in a simulated root canal model were characterized and compared to a single-network (SN) glycol chitosan-based hydrogel. Human dental pulp stem cells (hDPSCs) were then encapsulated into the GC-based hydrogels for the regeneration of pulp tissue, and the biological performance was investigated both in vitro and in vivo. The results showed that the DN hydrogels had ideal injectability under physiological conditions due to the dynamic nature of the crosslinks. Besides, the DN hydrogels exhibited better mechanical properties and longer degradation duration than the corresponding SN hydrogel. As a 3D cell culture system, the characteristics of the DN hydrogel facilitated odontogenic differentiation and mineralization of hDPSCs in vitro. Further in vivo analysis confirmed that the chemical composition, matrix stiffness, and degradation rate of the DN hydrogel matched those of pulp-like fibrous connective tissue, which might be related to Smad3 activation. These findings demonstrate that DN glycol chitosan-based hydrogels are suitable for the regeneration of pulp tissue.
Collapse
Affiliation(s)
- Bing Han
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Chunling Cao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Aijing Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yanran Zhao
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moran Jin
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuhan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Shuqin Chen
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Min Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaozhong Qu
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
18
|
Strecanska M, Danisovic L, Ziaran S, Cehakova M. The Role of Extracellular Matrix and Hydrogels in Mesenchymal Stem Cell Chondrogenesis and Cartilage Regeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122066. [PMID: 36556431 PMCID: PMC9784885 DOI: 10.3390/life12122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Diseases associated with articular cartilage disintegration or loss are still therapeutically challenging. The traditional treatment approaches only alleviate the symptoms while potentially causing serious side effects. The limited self-renewal potential of articular cartilage provides opportunities for advanced therapies involving mesenchymal stem cells (MSCs) that are characterized by a remarkable regenerative capacity. The chondrogenic potential of MSCs is known to be regulated by the local environment, including soluble factors and the less discussed extracellular matrix (ECM) components. This review summarizes the process of chondrogenesis, and also the biological properties of the ECM mediated by mechanotransduction as well as canonical and non-canonical signaling. Our focus is also on the influence of the ECM's physical parameters, molecular composition, and chondrogenic factor affinity on the adhesion, survival, and chondrogenic differentiation of MSCs. These basic biological insights are crucial for a more precise fabrication of ECM-mimicking hydrogels to improve cartilage tissue reconstruction. Lastly, we provide an overview of hydrogel classification and characterization. We also include the results from preclinical models combining MSCs with hydrogels for the treatment of cartilage defects, to support clinical application of this construct. Overall, it is believed that the proper combination of MSCs, hydrogels, and chondrogenic factors can lead to complex cartilage regeneration.
Collapse
Affiliation(s)
- Magdalena Strecanska
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Michaela Cehakova
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-5935-7215
| |
Collapse
|
19
|
Nguyen TH, Dao HH, Duong CM, Nguyen XH, Hoang DH, Do XH, Truong TQ, Nguyen TD, Nguyen LT, Than UTT. Cytokine-primed umbilical cord mesenchymal stem cells enhanced therapeutic effects of extracellular vesicles on osteoarthritic chondrocytes. Front Immunol 2022; 13:1041592. [PMID: 36389838 PMCID: PMC9647019 DOI: 10.3389/fimmu.2022.1041592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, extracellular vesicles (EVs) secreted by mesenchymal stem cells (MSCs) have emerged as a potential cell-free therapy against osteoarthritis (OA). Thus, we investigated the therapeutic effects of EVs released by cytokine-primed umbilical cord-derived MSCs (UCMSCs) on osteoarthritic chondrocyte physiology. Priming UCMSCs individually with transforming growth factor beta (TGFβ), interferon alpha (IFNα), or tumor necrosis factor alpha (TNFα) significantly reduced the sorting of miR-181b-3p but not miR-320a-3p; two negative regulators of chondrocyte regeneration, into EVs. However, the EV treatment did not show any significant effect on chondrocyte proliferation. Meanwhile, EVs from both non-priming and cytokine-primed UCMSCs induced migration at later time points of measurement. Moreover, TGFβ-primed UCMSCs secreted EVs that could upregulate the expression of chondrogenesis markers (COL2 and ACAN) and downregulate fibrotic markers (COL1 and RUNX2) in chondrocytes. Hence, priming UCMSCs with cytokines can deliver selective therapeutic effects of EV treatment in OA and chondrocyte-related disorders.
Collapse
Affiliation(s)
- Thu Huyen Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
| | - Huy Hoang Dao
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Chau Minh Duong
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
- Department of Biology, Clark University, Worcester, MA, United States
| | - Xuan-Hung Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Diem Huong Hoang
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
| | - Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, Hanoi, Vietnam
| | - Trung Quang Truong
- Hanoi Medical University, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Tu Dac Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
| | - Liem Thanh Nguyen
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Uyen Thi Trang Than
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
- *Correspondence: Uyen Thi Trang Than,
| |
Collapse
|
20
|
Zhao M, Gao X, Wei J, Tu C, Zheng H, Jing K, Chu J, Ye W, Groth T. Chondrogenic differentiation of mesenchymal stem cells through cartilage matrix-inspired surface coatings. Front Bioeng Biotechnol 2022; 10:991855. [PMID: 36246378 PMCID: PMC9557131 DOI: 10.3389/fbioe.2022.991855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The stem cell niche comprises soluble molecules and extracellular matrix components which provide chemical and mechanical cues that determine the differentiation of stem cells. Here, the effect of polyelectrolyte multilayer (PEM) composition and terminal layer fabricated with layer-by-layer technique (LBL) pairing either hyaluronan [in its native (nHA) and oxidized form (oHA)] or chondroitin sulfate (CS) with type I collagen (Col I) is investigated on chondrogenic differentiation of human umbilical mesenchymal stem cells (hUC-MSCs). Physical studies performed to investigate the establishment and structure of the surface coatings show that PEM composed of HA and Col I show a dominance of nHA or oHA with considerably lesser organization of Col I fibrils. In contrast, distinguished fibrilized Col I is found in nCS-containing PEM. Generally, Col I-terminated PEM promote the adhesion, migration, and growth of hUC-MSCs more than GAG-terminated surfaces due to the presence of fibrillar Col I but show a lower degree of differentiation towards the chondrogenic lineage. Notably, the Col I/nHA PEM not only supports adhesion and growth of hUC-MSCs but also significantly promotes cartilage-associated gene and protein expression as found by histochemical and molecular biology studies, which is not seen on the Col I/oHA PEM. This is related to ligation of HA to the cell receptor CD44 followed by activation of ERK/Sox9 and noncanonical TGF-β signaling-p38 pathways that depends on the molecular weight of HA as found by immune histochemical and western blotting. Hence, surface coatings on scaffolds and other implants by PEM composed of nHA and Col I may be useful for programming MSC towards cartilage regeneration.
Collapse
Affiliation(s)
- Mingyan Zhao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Mingyan Zhao, ; Thomas Groth,
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinsong Wei
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chenlin Tu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Zheng
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kaipeng Jing
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany
- *Correspondence: Mingyan Zhao, ; Thomas Groth,
| |
Collapse
|
21
|
Ke W, Ma L, Wang B, Song Y, Luo R, Li G, Liao Z, Shi Y, Wang K, Feng X, Li S, Hua W, Yang C. N-cadherin mimetic hydrogel enhances MSC chondrogenesis through cell metabolism. Acta Biomater 2022; 150:83-95. [DOI: 10.1016/j.actbio.2022.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
|
22
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
23
|
Molnar V, Pavelić E, Vrdoljak K, Čemerin M, Klarić E, Matišić V, Bjelica R, Brlek P, Kovačić I, Tremolada C, Primorac D. Mesenchymal Stem Cell Mechanisms of Action and Clinical Effects in Osteoarthritis: A Narrative Review. Genes (Basel) 2022; 13:genes13060949. [PMID: 35741711 PMCID: PMC9222975 DOI: 10.3390/genes13060949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
With the insufficient satisfaction rates and high cost of operative treatment for osteoarthritis (OA), alternatives have been sought. Furthermore, the inability of current medications to arrest disease progression has led to rapidly growing clinical research relating to mesenchymal stem cells (MSCs). The availability and function of MSCs vary according to tissue source. The three primary sources include the placenta, bone marrow, and adipose tissue, all of which offer excellent safety profiles. The primary mechanisms of action are trophic and immunomodulatory effects, which prevent the further degradation of joints. However, the function and degree to which benefits are observed vary significantly based on the exosomes secreted by MSCs. Paracrine and autocrine mechanisms prevent cell apoptosis and tissue fibrosis, initiate angiogenesis, and stimulate mitosis via growth factors. MSCs have even been shown to exhibit antimicrobial effects. Clinical results incorporating clinical scores and objective radiological imaging have been promising, but a lack of standardization in isolating MSCs prevents their incorporation in current guidelines.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Pavelić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Kristijan Vrdoljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Martin Čemerin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Emil Klarić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Vid Matišić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Roko Bjelica
- Department of Oral Surgery, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | | | | | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Correspondence:
| |
Collapse
|
24
|
Ochiai J, Villanueva L, Niihara H, Niihara Y, Oliva J. Posology and Serum-/Xeno-Free Engineered Adipose Stromal Cells Cell Sheets. Front Cell Dev Biol 2022; 10:873603. [PMID: 35557946 PMCID: PMC9086846 DOI: 10.3389/fcell.2022.873603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Well-characterized adipose stem cells and chemically defined culture media are important factors that control the production of the cell sheet, used in translational medicine. In this study, we have developed and engineered multilayer adipose stem cell cell sheets (ASCCSs) using chemically defined/serum-free culture media: undifferentiated or differentiated into osteoblasts and chondrocytes. In addition, using the cell sheet transmittance, we estimated the number of cells per cell sheet. Undifferentiated ASCCSs were engineered in 10 days, using serum-free/xeno-free culture media. They were CD29+, CD73+, CD90+, CD105+, HLA-A+, and HLA-DR-. ASCCSs differentiated into chondrocytes and osteoblasts were also engineered using chemically defined and animal-free culture media, in only 14 days. The addition of an ROCK inhibitor improved the chondrocyte cell sheet engineering. The decrease in the cell sheet transmittance rate was higher for the osteoblast cell sheets due to the intracellular Ca2+ accumulation. The estimation of cell number per cell sheet was carried out with the transmittance, which will provide important information for cell sheet posology. In conclusion, three types of ASCCSs were engineered using serum-free, xeno-free culture media, expressing their specific markers. Their transmittance measurement allowed estimating the number of cells per cell sheet, with a non-invasive methodology.
Collapse
Affiliation(s)
- Jun Ochiai
- Emmaus Life Sciences, Inc., Torrance, CA, United States
| | | | - Hope Niihara
- Emmaus Life Sciences, Inc., Torrance, CA, United States
| | | | - Joan Oliva
- Emmaus Life Sciences, Inc., Torrance, CA, United States
| |
Collapse
|
25
|
Lückgen J, Raqué E, Reiner T, Diederichs S, Richter W. NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels. Stem Cell Res Ther 2022; 13:168. [PMID: 35477424 PMCID: PMC9044876 DOI: 10.1186/s13287-022-02843-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Fully functional regeneration of skeletal defects by multipotent progenitor cells requires that differentiating cells gain the specific mechano-competence needed in the target tissue. Using cartilage neogenesis as an example, we asked whether proper phenotypic differentiation of mesenchymal stromal cells (MSC) into chondrocytes in vitro will install the adequate biological mechano-competence of native articular chondrocytes (AC). Methods The mechano-competence of human MSC- and AC-derived neocartilage was compared during differentiation for up to 35 days. The neocartilage layer was subjected to physiologic dynamic loading in a custom-designed bioreactor and assayed for mechano-sensitive gene and pathway activation, extracellular matrix (ECM) synthesis by radiolabel incorporation, nitric oxide (NO) and prostaglandin E2 (PGE2) production. Input from different pathways was tested by application of agonists or antagonists. Results MSC and AC formed neocartilage of similar proteoglycan content with a hardness close to native tissue. Mechano-stimulation on day 21 and 35 induced a similar upregulation of mechano-response genes, ERK phosphorylation, NO production and PGE2 release in both groups, indicating an overall similar transduction of external mechanical signals. However, while AC maintained or enhanced proteoglycan synthesis after loading dependent on tissue maturity, ECM synthesis was always significantly disturbed by loading in MSC-derived neocartilage. This was accompanied by significantly higher COX2 and BMP2 background expression, > 100-fold higher PGE2 production and a weaker SOX9 stimulation in response to loading in MSC-derived neocartilage. Anabolic BMP-pathway activity was not rate limiting for ECM synthesis after loading in both groups. However, NFκB activation mimicked the negative loading effects and enhanced PGE2 production while inhibition of catabolic NFκB signaling rescued the load-induced negative effects on ECM synthesis in MSC-derived neocartilage. Conclusions MSC-derived chondrocytes showed a higher vulnerability to be disturbed by loading despite proper differentiation and did not acquire an AC-like mechano-competence to cope with the mechanical stress of a physiologic loading protocol. Managing catabolic NFκB influences was one important adaptation to install a mechano-resistance closer to AC-derived neocartilage. This new knowledge asks for a more functional adaptation of MSC chondrogenesis, novel pharmacologic co-treatment strategies for MSC-based clinical cartilage repair strategies and may aid a more rational design of physical rehabilitation therapy after AC- versus MSC-based surgical cartilage intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02843-x.
Collapse
Affiliation(s)
- Janine Lückgen
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Elisabeth Raqué
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Tobias Reiner
- Department of Orthopaedic and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
26
|
Cai J, Li C, Li S, Yi J, Wang J, Yao K, Gan X, Shen Y, Yang P, Jing D, Zhao Z. A Quartet Network Analysis Identifying Mechanically Responsive Long Noncoding RNAs in Bone Remodeling. Front Bioeng Biotechnol 2022; 10:780211. [PMID: 35356768 PMCID: PMC8959777 DOI: 10.3389/fbioe.2022.780211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mechanical force, being so ubiquitous that it is often taken for granted and overlooked, is now gaining the spotlight for reams of evidence corroborating their crucial roles in the living body. The bone, particularly, experiences manifold extraneous force like strain and compression, as well as intrinsic cues like fluid shear stress and physical properties of the microenvironment. Though sparkled in diversified background, long noncoding RNAs (lncRNAs) concerning the mechanotransduction process that bone undergoes are not yet detailed in a systematic way. Our principal goal in this research is to highlight the potential lncRNA-focused mechanical signaling systems which may be adapted by bone-related cells for biophysical environment response. Based on credible lists of force-sensitive mRNAs and miRNAs, we constructed a force-responsive competing endogenous RNA network for lncRNA identification. To elucidate the underlying mechanism, we then illustrated the possible crosstalk between lncRNAs and mRNAs as well as transcriptional factors and mapped lncRNAs to known signaling pathways involved in bone remodeling and mechanotransduction. Last, we developed combinative analysis between predicted and established lncRNAs, constructing a pathway–lncRNA network which suggests interactive relationships and new roles of known factors such as H19. In conclusion, our work provided a systematic quartet network analysis, uncovered candidate force-related lncRNAs, and highlighted both the upstream and downstream processes that are possibly involved. A new mode of bioinformatic analysis integrating sequencing data, literature retrieval, and computational algorithm was also introduced. Hopefully, our work would provide a moment of clarity against the multiplicity and complexity of the lncRNA world confronting mechanical input.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Shun Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Pu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, China Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| |
Collapse
|
27
|
Liu Y, Dzidotor G, Le TT, Vinikoor T, Morgan K, Curry EJ, Das R, McClinton A, Eisenberg E, Apuzzo LN, Tran KTM, Prasad P, Flanagan TJ, Lee SW, Kan HM, Chorsi MT, Lo KWH, Laurencin CT, Nguyen TD. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci Transl Med 2022; 14:eabi7282. [PMID: 35020409 DOI: 10.1126/scitranslmed.abi7282] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
More than 32.5 million American adults suffer from osteoarthritis, and current treatments including pain medicines and anti-inflammatory drugs only alleviate symptoms but do not cure the disease. Here, we have demonstrated that a biodegradable piezoelectric poly(L-lactic acid) (PLLA) nanofiber scaffold under applied force or joint load could act as a battery-less electrical stimulator to promote chondrogenesis and cartilage regeneration. The PLLA scaffold under applied force or joint load generated a controllable piezoelectric charge, which promoted extracellular protein adsorption, facilitated cell migration or recruitment, induced endogenous TGF-β via calcium signaling pathway, and improved chondrogenesis and cartilage regeneration both in vitro and in vivo. Rabbits with critical-sized osteochondral defects receiving the piezoelectric scaffold and exercise treatment experienced hyaline-cartilage regeneration and completely healed cartilage with abundant chondrocytes and type II collagen after 1 to 2 months of exercise (2 to 3 months after surgery including 1 month of recovery before exercise), whereas rabbits treated with nonpiezoelectric scaffold and exercise treatment had unfilled defect and limited healing. The approach of combining biodegradable piezoelectric tissue scaffolds with controlled mechanical activation (via physical exercise) may therefore be useful for the treatment of osteoarthritis and is potentially applicable to regenerating other injured tissues.
Collapse
Affiliation(s)
- Yang Liu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Godwin Dzidotor
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Thinh T Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Kristin Morgan
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Eli J Curry
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Aneesah McClinton
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ellen Eisenberg
- Division of Oral and Maxillofacial Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT 06030, USA
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Lorraine N Apuzzo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Khanh T M Tran
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Pooja Prasad
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Tyler J Flanagan
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Seok-Woo Lee
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Meysam T Chorsi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Kevin W H Lo
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Thanh D Nguyen
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
28
|
Voga M, Majdic G. Articular Cartilage Regeneration in Veterinary Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:23-55. [DOI: 10.1007/5584_2022_717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Reed DA, Zhao Y, Han M, Mercuri LG, Miloro M. Mechanical Loading Disrupts Focal Adhesion Kinase Activation in Mandibular Fibrochondrocytes During Murine Temporomandibular Joint Osteoarthritis. J Oral Maxillofac Surg 2021; 79:2058.e1-2058.e15. [PMID: 34153254 PMCID: PMC8500914 DOI: 10.1016/j.joms.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Mechanical overloading is a key initiating condition for temporomandibular joint (TMJ) osteoarthritis (OA). The integrin-focal adhesion kinase (FAK) signaling axis is implicated in the mechanobiological response of cells through phosphorylation at Tyr397 (pFAK) but poorly defined in TMJ health and disease. We hypothesize that mechanical overloading disrupts TMJ homeostasis through dysregulation of FAK signaling. MATERIALS AND METHODS To assess if FAK and pFAK are viable clinical targets for TMJ OA, peri-articular tissues were collected from patients with TMJ OA receiving a total TMJ replacement. To compare clinical samples with preclinical in vivo studies of TMJ OA, the joints of c57/bl6 mice were surgically destabilized and treated with and without inhibitor of pFAK (iFAK). FAK signaling and TMJ OA progression was evaluated and compared using RT-PCR, western blot, immunohistochemistry, and histomorphometry. To evaluate mechanical overloading in vitro, primary murine mandibular fibrochondrocytes were seeded in a 4% agarose-collagen scaffold and loaded in a compression bioreactor with and without iFAK. RESULTS FAK/pFAK was mostly absent from the articular cartilage layer in the clinical sample and suppressed on the central condyle and elevated on the lateral and medial condyle in murine TMJ OA. In vitro, compressive loading lowered FAK/pFAK levels and elevated the expression of TGFβ, NG2, and MMP-13. iFAK treatment suppressed MMP13 and Col6 and elevated TGFβ, NG2, and ACAN in a load independent manner. In vivo, iFAK treatment moderately attenuated OA progression and increased collagen maturation. CONCLUSION These data illustrate that FAK/pFAK is implicated in the signaled dysfunction of excessive mechanical loading during TMJ OA and that iFAK treatment can moderately attenuate the progression of cartilage degeneration in the mandibular condyle.
Collapse
Affiliation(s)
- David A. Reed
- Department of Oral Biology, University of Illinois at Chicago, Chicago IL,Corresponding author: David A. Reed,
| | - Yan Zhao
- Department of Oral Biology, University of Illinois at Chicago, Chicago IL
| | - Michael Han
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago, Chicago IL
| | - Louis G. Mercuri
- Department of Orthopaedic Surgery, Rush University, Chicago IL, Adjunct Professor, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Michael Miloro
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago, Chicago IL
| |
Collapse
|
30
|
Wang L, Zheng F, Song R, Zhuang L, Yang M, Suo J, Li L. Integrins in the Regulation of Mesenchymal Stem Cell Differentiation by Mechanical Signals. Stem Cell Rev Rep 2021; 18:126-141. [PMID: 34536203 DOI: 10.1007/s12015-021-10260-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem cells (MSCs) can sense and convert mechanical stimuli signals into a chemical response. Integrins are involved in the mechanotransduction from inside to outside and from outside to inside, and ultimately affect the fate of MSCs responding to different mechanical signals. Different integrins participate in different signaling pathways to regulate MSCs multi-differentiation. In this review, we summarize the latest advances in the effects of mechanical signals on the differentiation of MSCs, the importance of integrins in mechanotransduction, the relationship between integrin heterodimers and different mechanical signals, and the interaction among mechanical signals. We put forward our views on the prospect and challenges of developing mechanical biology in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Jilin University, 130021, Changchun, People's Republic of China
| | - Fuwen Zheng
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Ruixue Song
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Lequan Zhuang
- Norman Bethune College of Medicine, Jilin University, 130021, Changchun, People's Republic of China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, People's Republic of China.
| | - Jian Suo
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Jilin University, 130021, Changchun, People's Republic of China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 130021, Changchun, People's Republic of China.
| |
Collapse
|
31
|
Uzieliene I, Bironaite D, Bernotas P, Sobolev A, Bernotiene E. Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation In Vitro. Int J Mol Sci 2021; 22:9690. [PMID: 34575847 PMCID: PMC8469886 DOI: 10.3390/ijms22189690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a long-term chronic joint disease characterized by the deterioration of bones and cartilage, which results in rubbing of bones which causes joint stiffness, pain, and restriction of movement. Tissue engineering strategies for repairing damaged and diseased cartilage tissue have been widely studied with various types of stem cells, chondrocytes, and extracellular matrices being on the lead of new discoveries. The application of natural or synthetic compound-based scaffolds for the improvement of chondrogenic differentiation efficiency and cartilage tissue engineering is of great interest in regenerative medicine. However, the properties of such constructs under conditions of mechanical load, which is one of the most important factors for the successful cartilage regeneration and functioning in vivo is poorly understood. In this review, we have primarily focused on natural compounds, particularly extracellular matrix macromolecule-based scaffolds and their combinations for the chondrogenic differentiation of stem cells and chondrocytes. We also discuss different mechanical forces and compression models that are used for In Vitro studies to improve chondrogenic differentiation. Summary of provided mechanical stimulation models In Vitro reviews the current state of the cartilage tissue regeneration technologies and to the potential for more efficient application of cell- and scaffold-based technologies for osteoarthritis or other cartilage disorders.
Collapse
Affiliation(s)
- Ilona Uzieliene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Daiva Bironaite
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Paulius Bernotas
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia;
| | - Eiva Bernotiene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| |
Collapse
|
32
|
Ge Y, Li Y, Wang Z, Li L, Teng H, Jiang Q. Effects of Mechanical Compression on Chondrogenesis of Human Synovium-Derived Mesenchymal Stem Cells in Agarose Hydrogel. Front Bioeng Biotechnol 2021; 9:697281. [PMID: 34350163 PMCID: PMC8327094 DOI: 10.3389/fbioe.2021.697281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023] Open
Abstract
Mechanical compression is a double-edged sword for cartilage remodeling, and the effect of mechanical compression on chondrogenic differentiation still remains elusive to date. Herein, we investigate the effect of mechanical dynamic compression on the chondrogenic differentiation of human synovium-derived mesenchymal stem cells (SMSCs). To this aim, SMSCs encapsulated in agarose hydrogels were cultured in chondrogenic-induced medium with or without dynamic compression. Dynamic compression was applied at either early time-point (day 1) or late time-point (day 21) during chondrogenic induction period. We found that dynamic compression initiated at early time-point downregulated the expression level of chondrocyte-specific markers as well as hypertrophy-specific markers compared with unloaded control. On the contrary, dynamic compression applied at late time-point not only enhanced the levels of cartilage matrix gene expression, but also suppressed the hypertrophic development of SMSCs compared with unloaded controls. Taken together, our findings suggest that dynamic mechanical compression loading not only promotes chondrogenic differentiation of SMSCs, but also plays a vital role in the maintenance of cartilage phenotype, and our findings also provide an experimental guide for stem cell-based cartilage repair and regeneration.
Collapse
Affiliation(s)
- Yuxiang Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yixuan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zixu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
34
|
Wang W, Zhu Y, Sun Z, Jin C, Wang X. Positive feedback regulation between USP15 and ERK2 inhibits osteoarthritis progression through TGF-β/SMAD2 signaling. Arthritis Res Ther 2021; 23:84. [PMID: 33726807 PMCID: PMC7962367 DOI: 10.1186/s13075-021-02456-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/18/2021] [Indexed: 01/14/2023] Open
Abstract
Background The transforming growth factor-β (TGF-β) signaling pathway plays an essential role in maintaining homeostasis in joints affected by osteoarthritis (OA). However, the specific mechanism of non-SMAD and classical SMAD signaling interactions is still unclear, which needs to be further explored. Methods In ATDC5 cells, USP15 overexpression and knockout were performed using the transfected lentivirus USP15 and Crispr/Cas9. Western blotting and immunofluorescence staining were used to test p-SMAD2 and cartilage phenotype-related molecular markers. In rat OA models, immunohistochemistry, hematoxylin and eosin (HE)/Safranin-O fast green staining, and histology were used to examine the regulatory activity of USP15 in TGF-β/SMAD2 signaling and the cartilage phenotype. Then, ERK2 overexpression and knockout were performed. The expressions of USP15, p-SMAD2, and the cartilage phenotype were evaluated in vitro and in vivo. To address whether USP15 is required for ERK2 and TGF-β/SMAD2 signaling, we performed rescue experiments in vitro and in vivo. Immunoprecipitation and deubiquitination assays were used to examine whether USP15 could bind to ERK2 and affect the deubiquitination of ERK2. Finally, whether USP15 regulates the level of p-ERK1/2 was evaluated by western blotting, immunofluorescence staining, and immunohistochemistry in vitro and in vivo. Results Our results indicated that USP15 stimulated TGF-β/SMAD2 signaling and the cartilage phenotype. Moreover, ERK2 required USP15 to influence TGF-β/SMAD2 signaling for regulating the cartilage phenotype in vivo and in vitro. And USP15 can form a complex with ERK2 to regulate ubiquitination of ERK2. Interestingly, USP15 did not regulate the stability of ERK2 but increased the level of p-ERK1/2 to further enhance the TGF-β/SMAD2 signaling pathway. Conclusions Taken together, our study revealed positive feedback regulation between USP15 and ERK2, which played a critical role in TGF-β/SMAD2 signaling to inhibit OA progression. Therefore, this specific mechanism can guide the clinical treatment of OA.
Collapse
Affiliation(s)
- Wenjuan Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Zhu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Jin
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Thorp H, Kim K, Kondo M, Maak T, Grainger DW, Okano T. Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Cells 2021; 10:cells10030643. [PMID: 33805764 PMCID: PMC7998529 DOI: 10.3390/cells10030643] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage defects represent an inciting factor for future osteoarthritis (OA) and degenerative joint disease progression. Despite multiple clinically available therapies that succeed in providing short term pain reduction and restoration of limited mobility, current treatments do not reliably regenerate native hyaline cartilage or halt cartilage degeneration at these defect sites. Novel therapeutics aimed at addressing limitations of current clinical cartilage regeneration therapies increasingly focus on allogeneic cells, specifically mesenchymal stem cells (MSCs), as potent, banked, and available cell sources that express chondrogenic lineage commitment capabilities. Innovative tissue engineering approaches employing allogeneic MSCs aim to develop three-dimensional (3D), chondrogenically differentiated constructs for direct and immediate replacement of hyaline cartilage, improve local site tissue integration, and optimize treatment outcomes. Among emerging tissue engineering technologies, advancements in cell sheet tissue engineering offer promising capabilities for achieving both in vitro hyaline-like differentiation and effective transplantation, based on controlled 3D cellular interactions and retained cellular adhesion molecules. This review focuses on 3D MSC-based tissue engineering approaches for fabricating “ready-to-use” hyaline-like cartilage constructs for future rapid in vivo regenerative cartilage therapies. We highlight current approaches and future directions regarding development of MSC-derived cartilage therapies, emphasizing cell sheet tissue engineering, with specific focus on regulating 3D cellular interactions for controlled chondrogenic differentiation and post-differentiation transplantation capabilities.
Collapse
Affiliation(s)
- Hallie Thorp
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Correspondence: (K.K.); (T.O.); Tel.: +1-801-585-0070 (K.K. & T.O.); Fax: +1-801-581-3674 (K.K. & T.O.)
| | - Makoto Kondo
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
| | - Travis Maak
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA;
| | - David W. Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; (H.T.); (M.K.); (D.W.G.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Wakamatsucho, 2−2, Shinjuku-ku, Tokyo 162-8480, Japan
- Correspondence: (K.K.); (T.O.); Tel.: +1-801-585-0070 (K.K. & T.O.); Fax: +1-801-581-3674 (K.K. & T.O.)
| |
Collapse
|
36
|
Manokawinchoke J, Pavasant P, Limjeerajarus CN, Limjeerajarus N, Osathanon T, Egusa H. Mechanical loading and the control of stem cell behavior. Arch Oral Biol 2021; 125:105092. [PMID: 33652301 DOI: 10.1016/j.archoralbio.2021.105092] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Mechanical stimulation regulates many cell responses. The present study describes the effects of different in vitro mechanical stimulation approaches on stem cell behavior. DESIGN The narrative review approach was performed. The articles published in English language that addressed the effects of mechanical force on stem cells were searched on Pubmed and Scopus database. The effects of extrinsic mechanical force on stem cell response was reviewed and discussed. RESULTS Cells sense mechanical stimuli by the function of mechanoreceptors and further transduce force stimulation into intracellular signaling. Cell responses to mechanical stimuli depend on several factors including type, magnitude, and duration. Further, similar mechanical stimuli exhibit distinct cell responses based on numerous factors including cell type and differentiation stage. Various mechanical applications modulate stemness maintenance and cell differentiation toward specific lineages. CONCLUSIONS Mechanical force application modulates stemness maintenance and differentiation. Modification of force regimens could be utilized to precisely control appropriate stem cell behavior toward specific applications.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand; Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand; Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chalida Nakalekha Limjeerajarus
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nuttapol Limjeerajarus
- Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, 10250, Thailand.
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand; Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| |
Collapse
|
37
|
Kadir ND, Yang Z, Hassan A, Denslin V, Lee EH. Electrospun fibers enhanced the paracrine signaling of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther 2021; 12:100. [PMID: 33536060 PMCID: PMC7860031 DOI: 10.1186/s13287-021-02137-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/01/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Secretome profiles of mesenchymal stem cells (MSCs) are reflective of their local microenvironments. These biologically active factors exert an impact on the surrounding cells, eliciting regenerative responses that create an opportunity for exploiting MSCs towards a cell-free therapy for cartilage regeneration. The conventional method of culturing MSCs on a tissue culture plate (TCP) does not provide the physiological microenvironment for optimum secretome production. In this study, we explored the potential of electrospun fiber sheets with specific orientation in influencing the MSC secretome production and its therapeutic value in repairing cartilage. METHODS Conditioned media (CM) were generated from MSCs cultured either on TCP or electrospun fiber sheets of distinct aligned or random fiber orientation. The paracrine potential of CM in affecting chondrogenic differentiation, migration, proliferation, inflammatory modulation, and survival of MSCs and chondrocytes was assessed. The involvement of FAK and ERK mechanotransduction pathways in modulating MSC secretome were also investigated. RESULTS We showed that conditioned media of MSCs cultured on electrospun fiber sheets compared to that generated from TCP have improved secretome yield and profile, which enhanced the migration and proliferation of MSCs and chondrocytes, promoted MSC chondrogenesis, mitigated inflammation in both MSCs and chondrocytes, as well as protected chondrocytes from apoptosis. Amongst the fiber sheet-generated CM, aligned fiber-generated CM (ACM) was better at promoting cell proliferation and augmenting MSC chondrogenesis, while randomly oriented fiber-generated CM (RCM) was more efficient in mitigating the inflammation assault. FAK and ERK signalings were shown to participate in the modulation of MSC morphology and its secretome production. CONCLUSIONS This study demonstrates topographical-dependent MSC paracrine activities and the potential of employing electrospun fiber sheets to improve the MSC secretome for cartilage regeneration.
Collapse
Affiliation(s)
- Nurul Dinah Kadir
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore.,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| | - Afizah Hassan
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore
| | - Vinitha Denslin
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119288, Singapore. .,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510, Singapore.
| |
Collapse
|
38
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
39
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
40
|
Celik C, Franco-Obregón A, Lee EH, Hui JH, Yang Z. Directionalities of magnetic fields and topographic scaffolds synergise to enhance MSC chondrogenesis. Acta Biomater 2021; 119:169-183. [PMID: 33130304 DOI: 10.1016/j.actbio.2020.10.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell (MSC) chondrogenesis is modulated by diverse biophysical cues. We have previously shown that brief, low-amplitude pulsed electromagnetic fields (PEMFs) differentially enhance MSC chondrogenesis in scaffold-free pellet cultures versus conventional tissue culture plastic (TCP), indicating an interplay between magnetism and micromechanical environment. Here, we examined the influence of PEMF directionality over the chondrogenic differentiation of MSCs laden on electrospun fibrous scaffolds of either random (RND) or aligned (ALN) orientations. Correlating MSCs' chondrogenic outcome to pFAK activation and YAP localisation, MSCs on the RND scaffolds experienced the least amount of resting mechanical stress and underwent greatest chondrogenic differentiation in response to brief PEMF exposure (10 min at 1 mT) perpendicular to the dominant plane of the scaffolds (Z-directed). By contrast, in MSC-impregnated RND scaffolds, greatest mitochondrial respiration resulted from X-directed PEMF exposure (parallel to the scaffold plane), and was associated with curtailed chondrogenesis. MSCs on TCP or the ALN scaffolds exhibited greater resting mechanical stress and accordingly, were unresponsive, or negatively responsive, to PEMF exposure from all directions. The efficacy of PEMF-induced MSC chondrogenesis is hence regulated in a multifaceted manner involving focal adhesion dynamics, as well as mitochondrial responses, culminating in a final cellular response. The combined contributions of micromechanical environment and magnetic field orientation hence will need to be considered when designing magnetic exposure paradigms.
Collapse
Affiliation(s)
- Cenk Celik
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228; BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore, 117599; Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, Singapore, 117599; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117593.
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510
| | - James Hp Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117510.
| |
Collapse
|
41
|
Smith JK. Exercise as an Adjuvant to Cartilage Regeneration Therapy. Int J Mol Sci 2020; 21:ijms21249471. [PMID: 33322825 PMCID: PMC7763351 DOI: 10.3390/ijms21249471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
This article provides a brief review of the pathophysiology of osteoarthritis and the ontogeny of chondrocytes and details how physical exercise improves the health of osteoarthritic joints and enhances the potential of autologous chondrocyte implants, matrix-induced autologous chondrocyte implants, and mesenchymal stem cell implants for the successful treatment of damaged articular cartilage and subchondral bone. In response to exercise, articular chondrocytes increase their production of glycosaminoglycans, bone morphogenic proteins, and anti-inflammatory cytokines and decrease their production of proinflammatory cytokines and matrix-degrading metalloproteinases. These changes are associated with improvements in cartilage organization and reductions in cartilage degeneration. Studies in humans indicate that exercise enhances joint recruitment of bone marrow-derived mesenchymal stem cells and upregulates their expression of osteogenic and chondrogenic genes, osteogenic microRNAs, and osteogenic growth factors. Rodent experiments demonstrate that exercise enhances the osteogenic potential of bone marrow-derived mesenchymal stem cells while diminishing their adipogenic potential, and that exercise done after stem cell implantation may benefit stem cell transplant viability. Physical exercise also exerts a beneficial effect on the skeletal system by decreasing immune cell production of osteoclastogenic cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ, while increasing their production of antiosteoclastogenic cytokines interleukin-10 and transforming growth factor-β. In conclusion, physical exercise done both by bone marrow-derived mesenchymal stem cell donors and recipients and by autologous chondrocyte donor recipients may improve the outcome of osteochondral regeneration therapy and improve skeletal health by downregulating osteoclastogenic cytokine production and upregulating antiosteoclastogenic cytokine production by circulating immune cells.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70300, Johnson City, TN 37614, USA
| |
Collapse
|
42
|
Thorp H, Kim K, Kondo M, Grainger DW, Okano T. Fabrication of hyaline-like cartilage constructs using mesenchymal stem cell sheets. Sci Rep 2020; 10:20869. [PMID: 33257787 PMCID: PMC7705723 DOI: 10.1038/s41598-020-77842-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cell and tissue engineering approaches for articular cartilage regeneration increasingly focus on mesenchymal stem cells (MSCs) as allogeneic cell sources, based on availability and innate chondrogenic potential. Many MSCs exhibit chondrogenic potential as three-dimensional (3D) cultures (i.e. pellets and seeded biomaterial scaffolds) in vitro; however, these constructs present engraftment, biocompatibility, and cell functionality limitations in vivo. Cell sheet technology maintains cell functionality as scaffold-free constructs while enabling direct cell transplantation from in vitro culture to targeted sites in vivo. The present study aims to develop transplantable hyaline-like cartilage constructs by stimulating MSC chondrogenic differentiation as cell sheets. To achieve this goal, 3D MSC sheets are prepared, exploiting spontaneous post-detachment cell sheet contraction, and chondrogenically induced. Results support 3D MSC sheets' chondrogenic differentiation to hyaline cartilage in vitro via post-contraction cytoskeletal reorganization and structural transformations. These 3D cell sheets' initial thickness and cellular densities may also modulate MSC-derived chondrocyte hypertrophy in vitro. Furthermore, chondrogenically differentiated cell sheets adhere directly to cartilage surfaces via retention of adhesion molecules while maintaining the cell sheets' characteristics. Together, these data support the utility of cell sheet technology for fabricating scaffold-free, hyaline-like cartilage constructs from MSCs for future transplantable articular cartilage regeneration therapies.
Collapse
Affiliation(s)
- Hallie Thorp
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kyungsook Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Makoto Kondo
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
43
|
Luo S, Shi Q, Li W, Wu W, Zha Z. ITGB1 promotes the chondrogenic differentiation of human adipose-derived mesenchymal stem cells by activating the ERK signaling. J Mol Histol 2020; 51:729-739. [PMID: 33057850 DOI: 10.1007/s10735-020-09918-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Adipose-derived mesenchymal stem cell (ADSC) with a high capacity of chondrogenic differentiation was a promising candidate for cartilage defect treatment. This study's objective is to study the roles of integrin β1 (ITGB1) in regulating ADSC chondrogenic differentiations as well as the underlying mechanisms. The identity of ADSC was confirmed by flow cytometry. ITGB1 gene was overexpressed in human ADSC (hADSC) by transfection with LV003-recombinant plasmids. Gene mRNA and protein levels were examined using quantitative RT-PCR and western blotting, respectively. Differentially expressed mRNAs and proteins were characterized by next-generation RNA sequencing and label-free quantitative proteomics, respectively. ERK signaling and AKT signaling in hADSCs were inhibited by treating with SCH772984 and GSK690693, respectively. ITGB1 gene overexpression substantially increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and SRY-box transcription factor 9 (SOX9) expression but suppressed collagen type I alpha 1 chain (COL1A1) expression in hADSCs. Next-generation RNA sequencing identified a total of 246 genes differentially expressed in hADSCs by ITGB1 overexpression, such as 183 upregulated and 63 downregulated genes. Label-free proteomics characterized 34 proteins differentially expressed in ITGB1-overexpressing hADSCs. Differentially expressed genes and proteins were enriched by different biological processes such as cell adhesion and differentiation and numerous signaling pathways such as the ERK signaling pathway. ERK inhibitor treatment caused substantially enhanced chondrogenic differentiation in ITGB1-overexpressing hADSCs. ITGB1 promoted the chondrogenic differentiation of human ADSCs via the activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Simin Luo
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qiping Shi
- Department of Endocrine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wuji Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wenrui Wu
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhengang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
44
|
Feng Q, Gao H, Wen H, Huang H, Li Q, Liang M, Liu Y, Dong H, Cao X. Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: Insights from a microgel model. Acta Biomater 2020; 113:393-406. [PMID: 32629189 DOI: 10.1016/j.actbio.2020.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
Abstract
Biophysical cues (especially mechanical cues) embedded in cellular microenvironments show a critical impact on stem cell fate. Despite the capability of traditional hydrogels to mimic the feature of extracellular matrix (ECM) and tune their physicochemical properties via diverse approaches, their relatively large size not only induces biased results, but also hinders high-throughput screening and analysis. In this paper, a microgel model is proposed to recapitulate the role of 3D mechanical microenvironment on stem cell behaviors especially chondrogenesis in vitro. The small diameter of microgels brings the high surface area to volume ratio and then the enlarged diffusion area and shortened diffusion distance of soluble molecules, leading to uniform distribution of nutrients and negligible biochemical gradient inside microgels. To construct ECM-like microenvironment with tunable mechanical strength, three gelatin/hyaluronic acid hybrid microgels with low, medium and high crosslinking densities, i.e., Gel-HA(L), Gel-HA(M) and Gel-HA(H), are fabricated in microfluidic devices by Michael addition reaction between thiolated gelatin (Gel-SH) and ethylsulfated hyaluronic acid (HA-VS) with different substitution degrees of vinyl sulfone groups. Our results show that mouse bone marrow mesenchymal stem cell (BMSC) proliferation, distribution and chondrogenesis are all closely dependent on mechanical microenvironments in microgels. Noteworthily, BMSCs show a clear trend of differentiating into hyaline cartilage in Gel-HA(L) and fibrocartilage in Gel-HA(M) and Gel-HA(H). Whole transcriptome RNA sequencing reveals that mechanical microenvironment of microgels affects BMSC differentiation via TGF-β/Smad signaling pathway, Hippo signaling pathway and Integrin/YAP/TAZ signaling pathway. We believe this microgel model provides a new way to further explore the interaction between cells and 3D microenvironment. STATEMENT OF SIGNIFICANCE: In recent years, hydrogels have been frequently used to construct 3D microenvironment for cells. However, their relatively large size not only brings biased experimental results, but also limits high-throughput screening and analysis. Herein we propose a gelatin/hyaluronic acid microgel model to explore the effects of 3D cellular mechanical microenvironment (biophysical cues) on BMSC behaviors especially chondrogenesis, which can minimize the interference of biochemical gradients. Our results reveal that BMSC differentiation into either hyaline cartilage or fibrocartilage can be regulated via tailoring the mechanical properties of microgels. Whole transcriptome RNA sequencing proves that "TGF-β/Smad signaling pathway", "Hippo signaling pathway" and "Integrins/YAP/ TAZ signaling pathway" are activated or inhibited in this process.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hongji Wen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hanhao Huang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Minhua Liang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China.
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
45
|
Tseng SJ, Wu CC, Cheng CH, Lin JC. Studies of surface grafted collagen and transforming growth factor β1 combined with cyclic stretching as a dual chemical and physical stimuli approach for rat adipose-derived stem cells (rADSCs) chondrogenesis differentiation. J Mech Behav Biomed Mater 2020; 112:104062. [PMID: 32891975 DOI: 10.1016/j.jmbbm.2020.104062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
The adipose-derived stem cell has been used in various regenerative medicine research due to its multiple differentiation capabilities. Developing a stable and quick approach for the differentiation of stem cells is a critical issue in tissue regenerative field. In this investigation, rat adipose-derived stem cells (rADSCs) were seeded onto the type I collagen/transforming growth factor β1 (TGF-β1) immobilized polydimethylsiloxane (PDMS) substrate and then combined with short term dynamic stretching stimulation (intermittent or continuous stretching for 6 h) to induce the rADSCs chondrogenesis differentiation using the induction medium without growth factors added in vitro. Via regulating the extracellular chemical- and mechano-receptors of the cultured rADSCs, the chondrogenic differentiation was examined. After 72 h of static culture, proteoglycan secretion was noted on the surfaces modified by collagen with or without TGF-β1. After different stretching stimulations, significant proteoglycan secretion was noted on the surface modified by both collagen and collagen/TGF-β1, especially after the intermittent stretching culturing. Nonetheless, genetic expression of the chondrogenic markers: SOX-9, Col2a1, and aggrecan, instead, were dependent upon the surface grafted layer and the stretching mode utilized. These findings suggested that the surface chemical characteristics and external mechanical stimulation could synergistically affect the efficacy of chondrogenic differentiation of rADSCs.
Collapse
Affiliation(s)
- Shen-Jui Tseng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Hui Cheng
- Department of Pediatrics, College of Medicine, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jui-Che Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
46
|
Wu Y, Yang Z, Denslin V, Ren X, Lee CS, Yap FL, Lee EH. Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform. Am J Sports Med 2020; 48:1735-1747. [PMID: 32191492 DOI: 10.1177/0363546520907137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Articular cartilage has a zonal architecture and biphasic mechanical properties. The recapitulation of surface lubrication properties with high compressibility of the deeper layers of articular cartilage during regeneration is essential in achieving long-term cartilage integrity. Current clinical approaches for cartilage repair, especially with the use of mesenchymal stem cells (MSCs), have yet to restore the hierarchically organized architecture of articular cartilage. HYPOTHESIS MSCs predifferentiated on surfaces with specific nanotopographic patterns can provide phenotypically stable and defined chondrogenic cells and, when delivered as a bilayered stratified construct at the cartilage defect site, will facilitate the formation of functionally superior cartilage tissue in vivo. STUDY DESIGN Controlled laboratory study. METHODS MSCs were subjected to chondrogenic differentiation on specific nanopatterned surfaces. The phenotype of the differentiated cells was assessed by the expression of cartilage markers. The ability of the 2-dimensional nanopattern-generated chondrogenic cells to retain their phenotypic characteristics after removal from the patterned surface was tested by subjecting the enzymatically harvested cells to 3-dimensional fibrin hydrogel culture. The in vivo efficacy in cartilage repair was demonstrated in an osteochondral rabbit defect model. Repair by bilayered construct with specific nanopattern predifferentiated cells was compared with implantation with cell-free fibrin hydrogel, undifferentiated MSCs, and mixed-phenotype nanopattern predifferentiated MSCs. Cartilage repair was evaluated at 12 weeks after implantation. RESULTS Three weeks of predifferentiation on 2-dimensional nanotopographic patterns was able to generate phenotypically stable chondrogenic cells. Implantation of nanopatterned differentiated MSCs as stratified bilayered hydrogel constructs improved the repair quality of cartilage defects, as indicated by histological scoring, mechanical properties, and polarized microscopy analysis. CONCLUSION Our results indicate that with an appropriate period of differentiation, 2-dimensional nanotopographic patterns can be employed to generate phenotypically stable chondrogenic cells, which, when implanted as stratified bilayered hydrogel constructs, were able to form functionally superior cartilage tissue. CLINICAL RELEVANCE Our approach provides a relatively straightforward method of obtaining large quantities of zone-specific chondrocytes from MSCs to engineer a stratified cartilage construct that could recapitulate the zonal architecture of hyaline cartilage, and it represents a significant improvement in current MSC-based cartilage regeneration.
Collapse
Affiliation(s)
- Yingnan Wu
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zheng Yang
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinitha Denslin
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
| | - XiaFei Ren
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chang Sheng Lee
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Fung Ling Yap
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Eng Hin Lee
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
47
|
Mahmoudi Z, Mohammadnejad J, Razavi Bazaz S, Abouei Mehrizi A, Saidijam M, Dinarvand R, Ebrahimi Warkiani M, Soleimani M. Promoted chondrogenesis of hMCSs with controlled release of TGF-β3 via microfluidics synthesized alginate nanogels. Carbohydr Polym 2020; 229:115551. [DOI: 10.1016/j.carbpol.2019.115551] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
|
48
|
Wang C, Zheng GF, Xu XF. MicroRNA-186 improves fracture healing through activating the bone morphogenetic protein signalling pathway by inhibiting SMAD6 in a mouse model of femoral fracture: An animal study. Bone Joint Res 2019; 8:550-562. [PMID: 31832175 PMCID: PMC6888740 DOI: 10.1302/2046-3758.811.bjr-2018-0251.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Methods Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined. Results MicroRNA-186 was predicted to regulate SMAD6. Furthermore, SMAD6 was verified as a target gene of miR-186. Overexpressed miR-186 and SMAD6 silencing resulted in increased callus formation, BMD and BV/TV, as well as maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. In addition, the mRNA and protein levels of SMAD6 were decreased, while BMP-2 and BMP-7 levels were elevated in response to upregulated miR-186 and SMAD6 silencing. Conclusion In conclusion, the study indicated that miR-186 could activate the BMP signalling pathway to promote fracture healing by inhibiting SMAD6 in a mouse model of femoral fracture. Cite this article: Bone Joint Res 2019;8:550–562.
Collapse
Affiliation(s)
- C Wang
- MRI Department, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - G-F Zheng
- Department of Orthopedics, The Yuhang Hospital Affiliated to Medical College of Hangzhou Normal University, Hangzhou, China
| | - X-F Xu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
49
|
An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials 2019; 218:119190. [DOI: 10.1016/j.biomaterials.2019.05.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
|
50
|
Fang D, Jin P, Huang Q, Yang Y, Zhao J, Zheng L. Platelet-rich plasma promotes the regeneration of cartilage engineered by mesenchymal stem cells and collagen hydrogel via the TGF-β/SMAD signaling pathway. J Cell Physiol 2019; 234:15627-15637. [PMID: 30768719 DOI: 10.1002/jcp.28211] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
The tissue engineering technique using mesenchymal stem cells (MSCs) and scaffolds is promising. Transforming growth factor-β1 (TGF-β1) is generally accepted as an chondrogenic agent, but immunorejection and unexpected side effects, such as tumorigenesis and heterogeneity, limit its clinical application. Autogenous platelet-rich plasma (PRP), marked by low immunogenicity, easy accessibility, and low-cost, may be favorable for cartilage regeneration. In our study, the effect of PRP on engineered cartilage constructed by MSCs and collagen hydrogel in vitro and in vivo was investigated and compared with TGF-β1. The results showed that PRP promoted cell proliferation and gene and protein expressions of chondrogenic markers via the TGF-β/SMAD signaling pathway. Meanwhile, it suppressed the expression of collagen type I, a marker of fibrocartilage. Furthermore, PRP accelerated cartilage regeneration on defects with engineered cartilage, advantageous over TGF-β1, as evaluated by histological analysis and immunohistochemical staining. Our work demonstrates that autogenous PRP may substitute TGF-β1 as a potent and reliable chondrogenic inducer for therapy of cartilage defect.
Collapse
Affiliation(s)
- Depeng Fang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Orthopaedics, Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Pan Jin
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Key Laboratory of Regenerative Medicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China
| | - Quanxin Huang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Key Laboratory of Regenerative Medicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China
| | - Yuan Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Orthopaedics, Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Key Laboratory of Regenerative Medicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Key Laboratory of Regenerative Medicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China.,Guangxi Key Laboratory of Regenerative Medicine, Life Sciences Institute, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|