1
|
Debnath M, Sarkar S, Debnath SK, Dkhar DS, Kumari R, Vaskuri GSSJ, Srivastava A, Chandra P, Prasad R, Srivastava R. Photothermally Active Quantum Dots in Cancer Imaging and Therapeutics: Nanotheranostics Perspective. ACS APPLIED BIO MATERIALS 2024. [PMID: 39526826 DOI: 10.1021/acsabm.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cancer is becoming a global threat, as the cancerous cells manipulate themselves frequently, resulting in mutants and more abnormalities. Early-stage and real-time detection of cancer biomarkers can provide insight into designing cost-effective diagnostic and therapeutic modalities. Nanoparticle and quantum dot (QD)-based approaches have been recognized as clinically relevant methods to detect disease biomarkers at the molecular level. Over decades, as an emergent noninvasive approach, photothermal therapy has evolved to eradicate cancer. Moreover, various structures, viz., nanoparticles, clusters, quantum dots, etc., have been tested as bioimaging and photothermal agents to identify tumor cells selectively. Among them, QDs have been recognized as versatile probes. They have attracted enormous attention for imaging and therapeutic applications due to their unique colloidal stability, optical and physicochemical properties, biocompatibility, easy surface conjugation, scalable production, etc. However, a few critical concerns of QDs, viz., precise engineering for molecular imaging and sensing, selective interaction with the biological system, and their associated toxicity, restrict their potential intervention in curing cancer and are yet to be explored. According to the U.S. Food and Drug Administration (FDA), there is no specific regulation for the approval of nanomedicines. Therefore, these nanomedicines undergo the traditional drug, biological, and device approval process. However, the market survey of QDs is increasing, and their prospects in translational nanomedicine are very promising. From this perspective, we discuss the importance of QDs for imaging, sensing, and therapeutic usage pertinent to cancer, especially in its early stages. Moreover, we also discuss the rapidly growing translational view of QDs. The long-term safety studies and cellular interaction of these QDs could enhance their visibility and bring photothermally active QDs to the clinical stage and concurrently to FDA approval.
Collapse
Affiliation(s)
- Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sayoni Sarkar
- Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio 2024; 28:101167. [PMID: 39205871 PMCID: PMC11350444 DOI: 10.1016/j.mtbio.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy. The customizable nature of QDs, attributed to their size-dependent optical and electronic properties, has been leveraged to develop precise imaging modalities, enabling the visualization of bone growth and scaffold integration at an unprecedented resolution. Their nanoscopic scale facilitates targeted drug delivery systems, ensuring the localized release of therapeutics. QDs also possess the potential to combat infections at bone defect sites, preventing and improving bacterial infections. Additionally, they can be used in phototherapy to stimulate important bone repair processes and work well with the immune system to improve the overall healing environment. In combination with current trendy artificial intelligence (AI) technology, the development of bone organoids can also be combined with QDs. While QDs demonstrate considerable promise in BTE, the transition from laboratory research to clinical application is fraught with challenges. Concerns regarding the biocompatibility, long-term stability of QDs within the biological environment, and the cost-effectiveness of their production pose significant hurdles to their clinical adoption. This review summarizes the potential of QDs in BTE and highlights the challenges that lie ahead. By overcoming these obstacles, more effective, efficient, and personalized bone regeneration strategies will emerge, offering new hope for patients suffering from debilitating bone diseases.
Collapse
Affiliation(s)
- Ning Ding
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Deng S, Gu J, Jiang Z, Cao Y, Mao F, Xue Y, Wang J, Dai K, Qin L, Liu K, Wu K, He Q, Cai K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology 2022; 20:415. [PMID: 36109734 PMCID: PMC9479390 DOI: 10.1186/s12951-022-01613-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal cancer (GIC) is a common malignant tumour of the digestive system that seriously threatens human health. Due to the unique organ structure of the gastrointestinal tract, endoscopic and MRI diagnoses of GIC in the clinic share the problem of low sensitivity. The ineffectiveness of drugs and high recurrence rates in surgical and drug therapies are the main factors that impact the curative effect in GIC patients. Therefore, there is an urgent need to improve diagnostic accuracies and treatment efficiencies. Nanotechnology is widely used in the diagnosis and treatment of GIC by virtue of its unique size advantages and extensive modifiability. In the diagnosis and treatment of clinical GIC, surface-enhanced Raman scattering (SERS) nanoparticles, electrochemical nanobiosensors and magnetic nanoparticles, intraoperative imaging nanoparticles, drug delivery systems and other multifunctional nanoparticles have successfully improved the diagnosis and treatment of GIC. It is important to further improve the coordinated development of nanotechnology and GIC diagnosis and treatment. Herein, starting from the clinical diagnosis and treatment of GIC, this review summarizes which nanotechnologies have been applied in clinical diagnosis and treatment of GIC in recent years, and which cannot be applied in clinical practice. We also point out which challenges must be overcome by nanotechnology in the development of the clinical diagnosis and treatment of GIC and discuss how to quickly and safely combine the latest nanotechnology developed in the laboratory with clinical applications. Finally, we hope that this review can provide valuable reference information for researchers who are conducting cross-research on GIC and nanotechnology.
Collapse
Affiliation(s)
- Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kun Dai
- Department of Neonatal Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qianyuan He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
5
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
6
|
Zeng W, Wu L, Ishigaki Y, Harimoto T, Hu Y, Sun Y, Wang Y, Suzuki T, Chen H, Ye D. An Activatable Afterglow/MRI Bimodal Nanoprobe with Fast Response to H
2
S for In Vivo Imaging of Acute Hepatitis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yusuke Ishigaki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060–0810 Japan
| | - Takashi Harimoto
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060–0810 Japan
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Takanori Suzuki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060–0810 Japan
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Zeng W, Wu L, Ishigaki Y, Harimoto T, Hu Y, Sun Y, Wang Y, Suzuki T, Chen HY, Ye D. An Activatable Afterglow/MRI Bimodal Nanoprobe with Fast Response to H 2 S for In Vivo Imaging of Acute Hepatitis. Angew Chem Int Ed Engl 2021; 61:e202111759. [PMID: 34791772 DOI: 10.1002/anie.202111759] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Indexed: 11/12/2022]
Abstract
Accurate detection of hepatic hydrogen sulfide (H2 S) to monitor H2 S-related enzymes' activity is critical for acute hepatitis diagnosis, but remains a challenge due to the dynamic and transient nature of H2 S. Here, we report a H2 S-activatable near-infrared afterglow/MRI bimodal probe F1-GdNP, which shows an "always-on" MRI signal and "off-on" afterglow signal toward H2 S. F1-GdNP shows fast response, high sensitivity and specificity toward H2 S, permitting afterglow imaging of H2 S and evaluation of cystathionine γ-lyase (CSE)'s activity in living mice. We further employ the high spatial-resolution MRI signal of F1-GdNP to track its delivery and accumulation in liver. Importantly, F1-GdNP offers a high signal-to-background ratio (SBR=86.2±12.0) to sensitively report on the increased hepatic H2 S level in the acute hepatitis mice via afterglow imaging, which correlated well with the upregulated CSE activity in the liver, showcasing the good potential of F1-GdNP for monitoring of acute hepatitis process in vivo.
Collapse
Affiliation(s)
- Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Brar B, Ranjan K, Palria A, Kumar R, Ghosh M, Sihag S, Minakshi P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.699266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently occurring tumor in the human population. CRCs are usually adenocarcinomatous and originate as a polyp on the inner wall of the colon or rectum which may become malignant in the due course of time. Although the therapeutic options of CRC are limited, the early diagnosis of CRC may play an important role in preventive and therapeutic interventions to decrease the mortality rate. The CRC-affected tissues exhibit several molecular markers that may be exploited as the novel strategy to develop newer approaches for the treatment of the disease. Nanotechnology consists of a wide array of innovative and astonishing nanomaterials with both diagnostics and therapeutic potential. Several nanomaterials and nano formulations such as Carbon nanotubes, Dendrimer, Liposomes, Silica Nanoparticles, Gold nanoparticles, Metal-organic frameworks, Core-shell polymeric nano-formulations, Nano-emulsion System, etc can be used to targeted anticancer drug delivery and diagnostic purposes in CRC. The light-sensitive photosensitizer drugs loaded gold and silica nanoparticles can be used to diagnose as well as the killing of CRC cells by the targeted delivery of anticancer drugs to cancer cells. This review is focused on the recent advancement of nanotechnology in the diagnosis and treatment of CRC.
Collapse
|
9
|
Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021; 42:227-258. [PMID: 33891325 DOI: 10.1002/med.21809] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Firdos A Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Albalawi
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Student of the volunteer/training program at IRMC
| | - Faheem H Pottoo
- College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Zhu G, Wu Z, Lui S, Hu N, Wu M. Advances in Imaging Modalities and Contrast Agents for the Early Diagnosis of Colorectal Cancer. J Biomed Nanotechnol 2021; 17:558-581. [PMID: 35057884 DOI: 10.1166/jbn.2021.3064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer is one of the most common gastrointestinal cancers worldwide. The mortality rate of colorectal cancer has declined by more than 20% due to the rapid development of early diagnostic techniques and effective treatment. At present, there are many diagnostic modalities
available for the evaluation of colorectal cancer, such as the carcinoembryonic antigen test, the fecal occult blood test, endoscopy, X-ray barium meal, computed tomography, magnetic resonance imaging, and radionuclide examination. Sensitive and specific imaging modalities have played an increasingly
important role in the diagnosis of colorectal cancer following the rapid development of novel contrast agents. This review discusses the applications and challenges of different imaging techniques and contrast agents applied to detect colorectal cancer, for the purpose of the early diagnosis
and treatment of patients with colorectal cancer.
Collapse
Affiliation(s)
- Guannan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Vinchhi P, Patel MM. Triumph against cancer: invading colorectal cancer with nanotechnology. Expert Opin Drug Deliv 2021; 18:1169-1192. [PMID: 33567909 DOI: 10.1080/17425247.2021.1889512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recent statistics have reported colorectal cancer (CRC) as the second leading cause of cancer-associated deaths in the world. Early diagnosis of CRC may help to reduce the mortality and associated complications. However, the conventional diagnostic techniques often lead to misdiagnosis, fail to differentiate benign from malignant tissue or diagnose only at an advanced stage. For the treatment of CRC, surgery, chemotherapy, immunotherapy, and radiotherapy have been employed. However, the quality of living of the CRC patients is highly compromised after employing current therapeutic approaches owing to the toxicity issues and relapse. AREA COVERED This review accentuates the molecular mechanisms involved in the pathogenesis, stages of CRC, conventional approaches for diagnosis and therapy of CRC and the issues confronted thereby. It provides an outlook on the advantages of employing nanotechnology-based approaches for prevention, early diagnosis, and treatment of CRC. EXPERT OPINION Employing nanotechnology-based approaches has demonstrated promising outcomes in the prevention, diagnosis, and treatment of CRC. Nanotechnology-based approaches can surmount the major drawbacks of traditional diagnostic and therapeutic approaches. Nanotechnology bestows the advantage of early detection of CRC which helps to undertake instant steps for offering efficient therapy and reducing the mortality rates. For the treatment of CRC, nanocarriers offer the benefit of achieving controlled drug release, improved drug bioavailability, enhanced tumor targetability and reduced adverse effects.
Collapse
Affiliation(s)
- Preksha Vinchhi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
12
|
Albuquerque GM, Souza-Sobrinha I, Coiado SD, Santos BS, Fontes A, Pereira GAL, Pereira G. Quantum Dots and Gd 3+ Chelates: Advances and Challenges Towards Bimodal Nanoprobes for Magnetic Resonance and Optical Imaging. Top Curr Chem (Cham) 2021; 379:12. [PMID: 33550491 DOI: 10.1007/s41061-021-00325-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
The development of multimodal nanoprobes has been growing in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd3+ chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd3+ chelates and QDs, highlighting their preparation strategies and overall properties.
Collapse
Affiliation(s)
- Gabriela M Albuquerque
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Izabel Souza-Sobrinha
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Samantha D Coiado
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil.
| |
Collapse
|
13
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Guo W, Chen Z, Chen J, Feng X, Yang Y, Huang H, Liang Y, Shen G, Liang Y, Peng C, Li Y, Li G, Huang W, Zhao B, Hu Y. Biodegradable hollow mesoporous organosilica nanotheranostics (HMON) for multi-mode imaging and mild photo-therapeutic-induced mitochondrial damage on gastric cancer. J Nanobiotechnology 2020; 18:99. [PMID: 32690085 PMCID: PMC7370480 DOI: 10.1186/s12951-020-00653-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background CuS-modified hollow mesoporous organosilica nanoparticles (HMON@CuS) have been preferred as non-invasive treatment for cancer, as near infrared (NIR)-induced photo-thermal effect (PTT) and/or photo-dynamic effect (PDT) could increase cancer cells’ apoptosis. However, the certain role of HMON@CuS-produced-PTT&PDT inducing gastric cancer (GC) cells’ mitochondrial damage, remained unclear. Moreover, theranostic efficiency of HMON@CuS might be well improved by applying multi-modal imaging, which could offer an optimal therapeutic region and time window. Herein, new nanotheranostics agents were reported by Gd doped HMON decorated by CuS nanocrystals (called HMON@CuS/Gd). Results HMON@CuS/Gd exhibited appropriate size distribution, good biocompatibility, l-Glutathione (GSH) responsive degradable properties, high photo-thermal conversion efficiency (82.4%) and a simultaneous reactive oxygen species (ROS) generation effect. Meanwhile, HMON@CuS/Gd could efficiently enter GC cells, induce combined mild PTT (43–45 °C) and PDT under mild NIR power density (0.8 W/cm2). Surprisingly, it was found that PTT might not be the only factor of cell apoptosis, as ROS induced by PDT also seemed playing an essential role. The NIR-induced ROS could attack mitochondrial transmembrane potentials (MTPs), then promote mitochondrial reactive oxygen species (mitoROS) production. Meanwhile, mitochondrial damage dramatically changed the expression of anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (Bax). Since that, mitochondrial permeability transition pore (mPTP) was opened, followed by inducing more cytochrome c (Cyto C) releasing from mitochondria into cytosol, and finally activated caspase-9/caspase-3-depended cell apoptosis pathway. Our in vivo data also showed that HMON@CuS/Gd exhibited good fluorescence (FL) imaging (wrapping fluorescent agent), enhanced T1 imaging under magnetic resonance imaging (MRI) and infrared thermal (IRT) imaging capacities. Guided by FL/MRI/IRT trimodal imaging, HMON@CuS/Gd could selectively cause mild photo-therapy at cancer region, efficiently inhibit the growth of GC cells without evident systemic toxicity in vivo. Conclusion HMON@CuS/Gd could serve as a promising multifunctional nanotheranostic platform and as a cancer photo-therapy agent through inducing mitochondrial dysfunction on GC.
Collapse
Affiliation(s)
- Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhian Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Chen
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yang Yang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Huilin Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanrui Liang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guodong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China.
| | - Bingxia Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Li T, Zhou J, Wang L, Zhang H, Song C, de la Fuente JM, Pan Y, Song J, Zhang C, Cui D. Photo-Fenton-like Metal-Protein Self-Assemblies as Multifunctional Tumor Theranostic Agent. Adv Healthc Mater 2019; 8:e1900192. [PMID: 31197956 DOI: 10.1002/adhm.201900192] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/12/2019] [Indexed: 11/07/2022]
Abstract
Emerging Fenton-like activity of copper ions has inspired great exploration for tumor microenvironment-activated tumor therapy due to the toxic ·OH production for chemodynamic therapy and extra oxygen generation for photodynamic therapy (PDT). Still, the ·OH produced by copper ions is not satisfied even when copper ions are placed in a low pH environment (pH ≈ 5.0). To amplify its Fenton-like activity, in this work, one kind of Cu2+ -protein self-assemblies (C-m-ABs) loaded with photosensitizer indocyanine green (ICG) is constructed, which can catalyze H2 O2 generating more amounts of ·OH under light irradiation once Cu2+ is reduced to Cu+ by glutathione. Such fantastic phenomena confirms that C-m-ABs can act as a photo-Fenton-like agent. Furthermore, C-m-ABs can dramatically accelerate O2 generation (catalase activity) to enhance the PDT of ICG. After loading with the anticancer drug doxorubicin, C-m-ABs are further self-assembled into novel nanobelts, which simultaneously exhibit superior photo-heat conversion effects, enhanced r1 relaxation (21.416 s-1 mm-1 ) and stimuli-responsive drug release behaviors. High cytotoxicity in vitro, effective tumor accumulation capacity observed by fluorescence/photoacoustic/magnetic resonance imaging, and enhanced chemo-/photodynamic/photothermal therapeutic performance are achieved. Based on these results, a photo-Fenton-like metal-protein self-assemblies demonstrate great potential for tumor theranostics.
Collapse
Affiliation(s)
- Tianliang Li
- Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Instrument for Diagnosis and TherapyDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jia Zhou
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's Hospital 600 Yishan Road Shanghai 200233 China
| | - Lirui Wang
- Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Instrument for Diagnosis and TherapyDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hanfu Zhang
- Research School of BiologyCollege of Biological ScienceAustralian National University Peter Baume Building 42, Linnaeus Way Canberra 2601 Australia
| | - Cunfeng Song
- Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Instrument for Diagnosis and TherapyDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jesús M. de la Fuente
- Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Instrument for Diagnosis and TherapyDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Instituto de Ciencia de MaterialesCSIC/University of Zaragoza and CIBER‐BBN Zaragoza 50018 Spain
| | - Yunxiang Pan
- Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Instrument for Diagnosis and TherapyDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jie Song
- Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Instrument for Diagnosis and TherapyDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Instrument for Diagnosis and TherapyDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and EngineeringShanghai Engineering Research Center for Intelligent Instrument for Diagnosis and TherapyDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- National Center for Translational MedicineCollaborative Innovational Center for System BiologyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
16
|
Liu J, Zheng J, Nie H, Zhang D, Cao D, Xing Z, Li B, Jia L. Molybdenum disulfide-based hyaluronic acid-guided multifunctional theranostic nanoplatform for magnetic resonance imaging and synergetic chemo-photothermal therapy. J Colloid Interface Sci 2019; 548:131-144. [PMID: 30991180 DOI: 10.1016/j.jcis.2019.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
The construction of multifunctional theranostic nanoplatforms to integrate accurate imaging and enhanced therapy to treat tumors is highly attractive but remains a challenge. Here, we developed a molybdenum disulfide (MoS2)-based hyaluronic acid (HA)-functionalized nanoplatform capable of achieving the targeted co-delivery of the gadolinium (Gd)-based contrast agents (CAs) and the anticancer drug gefitinib (Gef) for magnetic resonance imaging (MRI) and synergetic chemo-photothermal therapy of tumors. Gd3+ ions were coupled to HA-grafted MoS2 nanosheets with diethylenetriaminepentaacetic acid (DTPA) as a linker, followed by the incorporation of Gef. The resulting MoS2-HA-DTPA-Gd/Gef exhibited enhanced relaxivity, 3.3 times greater than that of the commercial CA DTPA-Gd, which facilitated the MRI in vivo. Moreover, the nanoplatform effectively converted the absorbed near-infrared (NIR) light into heat, which not only induced the photothermal ablation of cancer cells but also triggered the release of Gef from MoS2-HA-DTPA-Gd/Gef, enabling the synergetic chemo-photothermal therapy. The results of in vitro and in vivo experiments revealed that MoS2-HA-DTPA-Gd/Gef upon NIR irradiation effectively blocked the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway and activated apoptosis-related proteins to induce cell apoptosis and suppress cell proliferation, thus inhibiting the tumor growth in lung cancer cell-bearing mice. Taken together, this multifunctional theranostic nanoplatform has significant promise for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Junxia Zheng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huifang Nie
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Doudou Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Zhen Xing
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Bifei Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
17
|
Blended gold/MnO2@BSA nanoparticles for fluorometric and magnetic resonance determination of ascorbic acid. Mikrochim Acta 2019; 186:89. [DOI: 10.1007/s00604-018-3205-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/23/2018] [Indexed: 01/03/2023]
|
18
|
Pellino G, Gallo G, Pallante P, Capasso R, De Stefano A, Maretto I, Malapelle U, Qiu S, Nikolaou S, Barina A, Clerico G, Reginelli A, Giuliani A, Sciaudone G, Kontovounisios C, Brunese L, Trompetto M, Selvaggi F. Noninvasive Biomarkers of Colorectal Cancer: Role in Diagnosis and Personalised Treatment Perspectives. Gastroenterol Res Pract 2018; 2018:2397863. [PMID: 30008744 PMCID: PMC6020538 DOI: 10.1155/2018/2397863] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. It has been estimated that more than one-third of patients are diagnosed when CRC has already spread to the lymph nodes. One out of five patients is diagnosed with metastatic CRC. The stage of diagnosis influences treatment outcome and survival. Notwithstanding the recent advances in multidisciplinary management and treatment of CRC, patients are still reluctant to undergo screening tests because of the associated invasiveness and discomfort (e.g., colonoscopy with biopsies). Moreover, the serological markers currently used for diagnosis are not reliable and, even if they were useful to detect disease recurrence after treatment, they are not always detected in patients with CRC (e.g., CEA). Recently, translational research in CRC has produced a wide spectrum of potential biomarkers that could be useful for diagnosis, treatment, and follow-up of these patients. The aim of this review is to provide an overview of the newer noninvasive or minimally invasive biomarkers of CRC. Here, we discuss imaging and biomolecular diagnostics ranging from their potential usefulness to obtain early and less-invasive diagnosis to their potential implementation in the development of a bespoke treatment of CRC.
Collapse
Affiliation(s)
- Gianluca Pellino
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
- Colorectal Surgery Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gaetano Gallo
- Department of Medical and Surgical Sciences, OU of General Surgery, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, Naples, Italy
| | - Raffaella Capasso
- Department of Medicine and Health Sciences, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy
| | - Alfonso De Stefano
- Department of Abdominal Oncology, Division of Abdominal Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione G. Pascale, ” IRCCS, Naples, Italy
| | - Isacco Maretto
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Umberto Malapelle
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Shengyang Qiu
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
| | - Stella Nikolaou
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
| | - Andrea Barina
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Giuseppe Clerico
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Alfonso Reginelli
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| | - Antonio Giuliani
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Guido Sciaudone
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
- Department of Surgery and Cancer, Chelsea and Westminster Hospital Campus, Imperial College London, London, UK
| | - Luca Brunese
- Department of Medicine and Health Sciences, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Francesco Selvaggi
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
19
|
Zhou J, Li T, Zhang C, Xiao J, Cui D, Cheng Y. Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging. NANOSCALE 2018; 10:9707-9719. [PMID: 29762622 DOI: 10.1039/c8nr00994e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multifunctional nanoplatforms have been developed into advanced drug delivery systems for cancer therapy. In this study, we report a charge-switchable nanocapsule with multistage pH-responsive behaviors. First, DOX-encapsulated and oleylamine-embedded hollow structures with a diameter of 132 ± 21 nm are prepared via the double emulsion method. Subsequently, the hollow structures are encompassed by Gd-DTPA-, chlorin e6 (Ce6)-, and folate (FA)-modified BSA to form tumour-targeted, dual NIR/MR imaging-guided and chemo-photodynamic therapeutic nanoplatforms. Importantly, the nanocapsule can intelligently switch its surface charge to positive under mildly acidic conditions (pH 6.5) with no release of Ce6 and DOX, which is confirmed by ξ-potential and cumulative release measurements. Moreover, confocal imaging pictures demonstrate that acid-sensitive DOX sealed in nanocapsules is progressively released into the nuclei of MGC-803 cells. These advantages as well as FA-targeting facilitate effective endocytosis and synergistic therapeutic efficacy. Selective tumour accumulation and long tumour retention time are further indicated by NIR/MR in vivo imaging. In addition, excellent therapeutic efficacy combined with chemotherapy (DOX) and photodynamic therapy (PDT) is observed with the tumour eventually ablating at the 15th day. All results demonstrate that the as-prepared nanocapsules hold great potential for clinical cancer theranostics.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | | | | | | | | | | |
Collapse
|
20
|
Huang X, Fan C, Zhu H, Le W, Cui S, Chen X, Li W, Zhang F, Huang Y, Sh D, Cui Z, Shao C, Chen B. Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer. Int J Nanomedicine 2018; 13:2585-2599. [PMID: 29750031 PMCID: PMC5933399 DOI: 10.2147/ijn.s158559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Pancreatic cancer (PC) has a poor prognosis with high mortality, due to the lack of effective early diagnostic and prognostic tools. Materials and methods In order to target and diagnose PC, we developed a dual-modal imaging probe using Glypican-1 (GPC-1) antibody conjugated with Gd–Au nanoclusters (NCs; Gd-Au-NC-GPC-1). GPC-1 is a type of cell surface heparan sulfate proteoglycan, which is often highly expressed in PC. The probe was successfully prepared with a hydrodynamic diameter ranging from 13.5 to 24.4 nm. Results Spectral characteristics showed absorption at 280 nm and prominent emission at 650 nm. Confocal microscopic imaging showed effective detection of GPC-1 highly expressed PC cells by Gd-Au-NC-GPC-1, which was consistent with flow cytometry results. In vitro relaxivity characterization demonstrated that the r1 value of the probe was 17.722 s−1 mM−1 Gd, which was almost 4 times higher compared with that of Gd-diethylenetriaminepentacetate (DTPA; r1 value =4.6 s−1 mM−1 Gd). Gd-Au-NC-GPC-1 exhibited similar magnetic resonance (MR) signals when compared to Gd-DTPA even at lower Gd concentrations. Much higher MR signals were registered in PC cells (COLO-357) compared with normal cells (293T). Furthermore, Gd-Au-NC-GPC-1 could effectively detect PC cells in vivo by dual-modal fluorescence imaging/magnetic resonance imaging (FI/MRI) at 30 minutes postinjection. In addition, Gd-Au-NC-GPC-1 did not show significant biotoxicity to normal cells at tested concentrations both in vitro and in vivo. Conclusion Gd-Au-NC-GPC-1 has demonstrated to be a promising dual-modal FI/MRI contrast agent for targeted diagnosis of PC.
Collapse
Affiliation(s)
- Xin Huang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chengqi Fan
- Radiology Department of Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Huanhuan Zhu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Wenjun Le
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Shaobin Cui
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of Thyroid Surgery, The First Bethune Hospital of Jilin University, Jilin, China
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Fulei Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Yong Huang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Donglu Sh
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China.,The Materials Science & Engineering Program, Department of Mechanical & Materials Engineering, College of Engineering & Applied Science, University of Cincinnati, OH, USA
| | - Zheng Cui
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China.,Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chengwei Shao
- Radiology Department of Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bingdi Chen
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Yu N, Peng C, Wang Z, Liu Z, Zhu B, Yi Z, Zhu M, Liu X, Chen Z. Dopant-dependent crystallization and photothermal effect of Sb-doped SnO 2 nanoparticles as stable theranostic nanoagents for tumor ablation. NANOSCALE 2018; 10:2542-2554. [PMID: 29349469 DOI: 10.1039/c7nr08811f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ideal theranostic nanoagents should be "all-in-one" type nanocrystals that have a single-semiconductor component and all-required properties (such as imaging and photothermal effects), but most semiconductor nanocrystals do not have these required properties. With SnO2 as a model of a typical wide-band semiconductor, we report the tuning from UV-responsive SnO2 to blue SnO2 nanocrystals with imaging ability and a Sb-doping-dependent photothermal effect. Sb-Doped SnO2 nanocrystals were prepared by heating SbCl3 and SnCl4 in benzyl alcohol solution through a facile solvothermal route. When the SbCl3/SnCl4 molar ratio increases from 0 to 0.2/1, the obtained samples exhibit an increased photothermal effect under the irradiation of a 1064 nm laser, accompanied by gradually decreased size and crystallinity. With a further increase of the molar ratio from 0.3/1.0 to 1.0/1.0, the resulting samples demonstrate the tetragonal SnO2 phase with amorphous-like compounds and they show no obvious enhancement of a photothermal effect. After a surface modification with biological molecules, the optimized Sb0.2-SnO2 nanocrystals demonstrated good stability and a high photothermal conversion efficiency of 48.3% as well as low cytotoxicity. When Sb0.2-SnO2 was injected into a tumor of mice, the tumor could be simultaneously detected by X-ray computed tomography (CT) and photoacoustic (PA) imaging, and then thermally ablated when exposed to a 1064 nm laser. Therefore, these nanocrystals can be used as "all-in-one" type nanoagents for imaging guided photothermal ablation of tumors under the irradiation of a laser in the second bio-transparent window.
Collapse
Affiliation(s)
- Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Paramagnetic Quantum Dots as Multimodal Probes for Potential Applications in Nervous System Imaging. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0766-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Alipour A, Gokyar S, Algin O, Atalar E, Demir HV. An inductively coupled ultra-thin, flexible, and passive RF resonator for MRI marking and guiding purposes: Clinical feasibility. Magn Reson Med 2017; 80:361-370. [PMID: 29148092 DOI: 10.1002/mrm.26996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/17/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study is to develop a wireless, flexible, ultra-thin, and passive radiofrequency-based MRI resonant fiducial marker, and to validate its feasibility in a phantom model and several body regions. METHODS Standard microfabrication processing was used to fabricate the resonant marker. The proposed marker consists of two metal traces in the shape of a square with an edge length of 8 mm, with upper and lower traces connected to each other by a metalized via. A 3T MRI fiducial marking procedure was tested in phantom and ex vivo, and then the marker's performance was evaluated in an MRI experiment using humans. The radiofrequency safety was also tested using temperature sensors in the proximity of the resonator. RESULTS A flexible resonator with a thickness of 115 μm and a dimension of 8 × 8 mm was obtained. The experimental results in the phantom show that at low background flip angles (6-18°), the resonant marker enables precise and rapid visibility, with high marker-to-background contrast and signal-to-noise ratio improvement of greater than 10 in the vicinity of the marker. Temperature analysis showed a specific absorption ratio gain of 1.3. Clinical studies further showed a successful biopsy procedure using the fiducial marking functionality of our device. CONCLUSIONS The ultra-thin and flexible structure of this wireless flexible radiofrequency resonant marker offers effective and safe MR visualization with high feasibility for anatomic marking and guiding at various regions of the body. Magn Reson Med 80:361-370, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Akbar Alipour
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Sayim Gokyar
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Oktay Algin
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey.,Department of Radiology, Ankara Ataturk Training and Research Hospital, Ankara, Turkey
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey.,LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Mathematical and Physical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
24
|
Nanda SS, Kim MJ, Kim K, Papaefthymiou GC, Selvan ST, Yi DK. Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications. Colloids Surf B Biointerfaces 2017; 159:644-654. [DOI: 10.1016/j.colsurfb.2017.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
|
25
|
Wu X, Wang L, Yang D, Qu M, Yang Y, Guo F, Han L, Xue J. Retracted
: Effects of Glut1 gene silencing on proliferation, differentiation, and apoptosis of colorectal cancer cells by targeting the TGF‐β/PI3K‐AKT‐mTOR signaling pathway. J Cell Biochem 2017; 119:2356-2367. [DOI: 10.1002/jcb.26399] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Xue‐Liang Wu
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Li‐Kun Wang
- Department of UltrasoundThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Dong‐Dong Yang
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Ming Qu
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Yong‐Jiang Yang
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Fei Guo
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Lei Han
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| | - Jun Xue
- Department of General SurgeryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouHebeiChina
| |
Collapse
|
26
|
Zhao P, Xu Q, Tao J, Jin Z, Pan Y, Yu C, Yu Z. Near infrared quantum dots in biomedical applications: current status and future perspective. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1483. [DOI: 10.1002/wnan.1483] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Peng Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening; Southern Medical University; Guangzhou China
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan University; Changsha China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing); Beijing China
| | - Jia Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan University; Changsha China
- School of Chemistry and Engineering; South China University of Technology; Guangzhou China
| | - Zongwen Jin
- Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; Shenzhen China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou China
| | - Changmin Yu
- College of Materials Science & Engineering; South China University of Technology; Guangzhou China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening; Southern Medical University; Guangzhou China
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan University; Changsha China
| |
Collapse
|
27
|
Zhang B, Yang W, Yu J, Guo W, Wang J, Liu S, Xiao Y, Shi D. Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging. Adv Healthc Mater 2017; 6. [PMID: 28004887 DOI: 10.1002/adhm.201600865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Gadolinium (Gd)-based nanoparticles are known for their high potential in magnetic resonance imaging (MRI). However, further MRI applications of these nanoparticles are hampered by their relatively large sizes resulting in poor organ/tumor targeting. In this study, ultrafine sub-10 nm and biocompatible Gd-based nanoparticles are synthesized in a bioinspired, environmentally benign, and straightforward fashion. This novel green synthetic strategy is developed for growing dextran-coated Gd-based nanoparticles (GdNPs@Dex). The as-prepared GdNPs@Dex is not only biocompatible but also stable with a sub-10 nm size. It exhibits higher longitudinal and transverse relaxivities in water (r1 and r2 values of 5.43 and 7.502 s-1 × 10-3 m-1 of Gd3+ , respectively) than those measured for Gd-DTPA solution (r1 and r2 values of 3.42 and 3.86 s-1 × 10-3 m-1 of Gd3+ , respectively). In vivo dynamic T1 -weighted MRI in tumor-bearing mice shows GdNPs@Dex can selectively target kidneys and tumor, in addition to liver and spleen. GdNPs@Dex is found particularly capable for determining the tumor boundary with clearly enhanced tumor angiogenesis. GdNPs@Dex is also found cleared from body gradually mainly via hepatobiliary and renal processing with no obvious systemic toxicity. With this green synthesis strategy, the sub-10 nm GdNPs@Dex presents promising potentials for translational biomedical imaging applications.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Weitao Yang
- School of Materials Science and Engineering; School of Life Science; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology; Tianjin University; Tianjin 300072 China
| | - Jiani Yu
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Weisheng Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Jun Wang
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Shiyuan Liu
- Department of Radiology; Changzheng Hospital; The Second Military Medical University; Shanghai 200003 China
| | - Yi Xiao
- Department of Radiology; Changzheng Hospital; The Second Military Medical University; Shanghai 200003 China
| | - Donglu Shi
- The Institute for Translational Nanomedicine; Shanghai East Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200092 P. R. China
- Department of Mechanical and Materials Engineering; College of Engineering and Applied Science; University of Cincinnati; Cincinnati OH 45221-0072 USA
| |
Collapse
|
28
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
29
|
Yang W, Guo W, Chang J, Zhang B. Protein/peptide-templated biomimetic synthesis of inorganic nanoparticles for biomedical applications. J Mater Chem B 2017; 5:401-417. [DOI: 10.1039/c6tb02308h] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, protein/peptide-based biomimetic mineralization has been demonstrated to be an efficient and promising strategy for synthesis of inorganic/metal nanoparticles (NPs) for bioapplications.
Collapse
Affiliation(s)
- Weitao Yang
- School of Life Science
- School of Materials Science and Engineering
- Tianjin University
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
| | - Weisheng Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Jin Chang
- School of Life Science
- School of Materials Science and Engineering
- Tianjin University
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
| | - Bingbo Zhang
- Institute of Photomedicine
- Shanghai Skin Disease Hospital
- The Institute for Biomedical Engineering & Nano Science
- Tongji University School of Medicine
- Shanghai 200443
| |
Collapse
|
30
|
Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016; 101:321-40. [PMID: 27318094 PMCID: PMC4921206 DOI: 10.1016/j.biomaterials.2016.06.018] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Meena Prasad
- Veterans Affairs Medical Center, Decatur, GA, USA; Emory University, Department of Medicine, USA
| | - Yunchen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lixin Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Veterans Affairs Medical Center, Decatur, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Bo Xiao
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Changlong Xu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Shanthi Srinivasan
- Veterans Affairs Medical Center, Decatur, GA, USA; Emory University, Department of Medicine, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
31
|
Fang S, Fang X. Advances in glucose metabolism research in colorectal cancer. Biomed Rep 2016; 5:289-295. [PMID: 27602209 PMCID: PMC4998148 DOI: 10.3892/br.2016.719] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer cells uptake glucose at a higher rate and produce lactic acid rather than metabolizing pyruvate through the tricarboxylic acid cycle. This adaptive metabolic shift is termed the Warburg effect. Recently progress had been made regarding the mechanistic understanding of glucose metabolism and associated diagnostic and therapeutic methods, which have been investigated in colorectal cancer. The majority of novel mechanisms involve important glucose metabolism associated genes and miRNA regulation. The present review discusses the contribution of these research results to facilitate with the development of novel diagnosis and anticancer treatment options.
Collapse
Affiliation(s)
- Sitian Fang
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China; Hangzhou No. 4 High School, Hangzhou, Zhejiang 310018, P.R. China
| | - Xiao Fang
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China; Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
32
|
Zhang J, Hao G, Yao C, Yu J, Wang J, Yang W, Hu C, Zhang B. Albumin-Mediated Biomineralization of Paramagnetic NIR Ag2S QDs for Tiny Tumor Bimodal Targeted Imaging in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16612-16621. [PMID: 27300300 DOI: 10.1021/acsami.6b04738] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bimodal imaging has captured increasing interests due to its complementary characteristics of two kinds of imaging modalities. Among the various dual-modal imaging techniques, MR/fluorescence imaging has been widely studied owing to its high 3D resolution and sensitivity. There is, however, still a strong demand to construct biocompatible MR/fluorescence contrast agents with near-infrared (NIR) fluorescent emissions and high relaxivities. In this study, BSA-DTPA(Gd) derived from bovine serum albumin (BSA) as a novel kind of biotemplate is employed for biomineralization of paramagnetic NIR Ag2S quantum dots (denoted as Ag2S@BSA-DTPA(Gd) pQDs). This synthetic strategy is found to be bioinspired, environmentally benign, and straightforward. The obtained Ag2S@BSA-DTPA(Gd) pQDs have fine sizes (ca. 6 nm) and good colloidal stability. They exhibit unabated NIR fluorescent emission (ca. 790 nm) as well as high longitudinal relaxivity (r1 = 12.6 mM(-1) s(-1)) compared to that of commercial Magnevist (r1 = 3.13 mM(-1) s(-1)). In vivo tumor-bearing MR and fluorescence imaging both demonstrate that Ag2S@BSA-DTPA(Gd) pQDs have pronounced tiny tumor targeting capability. In vitro and in vivo toxicity study show Ag2S@BSA-DTPA(Gd) pQDs are biocompatible. Also, biodistribution analysis indicates they can be cleared from body mainly via liver metabolism. This protein-mediated biomineralized Ag2S@BSA-DTPA(Gd) pQDs presents great potential as a novel bimodal imaging contrast agent for tiny tumor diagnosis.
Collapse
Affiliation(s)
- Jing Zhang
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Guangyu Hao
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Chenfei Yao
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Jiani Yu
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Jun Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Weitao Yang
- School of Materials Science and Engineering, School of Life Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Chunhong Hu
- Imaging Center, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province 215006, China
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| |
Collapse
|
33
|
Wang W, Lei Y, Sui H, Zhang W, Zhu R, Feng J, Wang H. Fabrication and evaluation of nanoparticle-assembled BSA microparticles for enhanced liver delivery of glycyrrhetinic acid. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:740-747. [DOI: 10.1080/21691401.2016.1193024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenping Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan, Ningxia, China
- Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan, Ningxia, China
| | - Yaya Lei
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan, Ningxia, China
- Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan, Ningxia, China
| | - Wenping Zhang
- Department of Pharmaceutics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rongyue Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun Feng
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Wang
- Department of Pharmaceutics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
34
|
Viswanath B, Kim S, Lee K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int J Nanomedicine 2016; 11:2491-504. [PMID: 27330292 PMCID: PMC4898029 DOI: 10.2147/ijn.s108715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The global incidence of colorectal cancer (CRC) is 1.3 million cases. It is the third most frequent cancer in males and females. Most CRCs are adenocarcinomas and often begin as a polyp on the inner wall of the rectum or colon. Some of these polyps become malignant, eventually. Detecting and removing these polyps in time can prevent CRC. Therefore, early diagnosis of CRC is advantageous for preventive and instant action interventions to decrease the mortality rates. Nanotechnology has been enhancing different methods for the detection and treatment of CRCs, and the research has provided hope within the scientific community for the development of new therapeutic strategies. This review presents the recent development of nanotechnology for the detection and treatment of CRC.
Collapse
Affiliation(s)
- Buddolla Viswanath
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Kiyoung Lee
- Division of Endocrinology and Metabolism, Gachon University Gil Hospital, Incheon, Republic of Korea
| |
Collapse
|
35
|
Przysiecka Ł, Michalska M, Nowaczyk G, Peplińska B, Jesionowski T, Schneider R, Jurga S. iRGD peptide as effective transporter of CuInZnxS2+x quantum dots into human cancer cells. Colloids Surf B Biointerfaces 2016; 146:9-18. [PMID: 27244046 DOI: 10.1016/j.colsurfb.2016.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/15/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
Abstract
In this paper, iRGD peptide-mediated quantum dots (QDs) delivery was studied. In the first step, dodecanethiol-capped CuInZnxS2+x (ZCIS) QDs were prepared and subsequently transferred into water using a standard and facile ligand exchange approach involving 3-mercaptopropionic acid (MPA). ZCIS@MPA nanocrystals possess a photoluminescence quantum yield (PL QY) of 25%, a PL emission centered at ca. 640nm and low distributions in size and shape. Next, the iRGD peptide was electrostatically associated to ZCIS@MPA QDs. After cytotoxicity evaluation, the tumor-targeting and penetrating activities of the iRGD/QD assembly were investigated by confocal microscopy. The experiments performed on various cancer cell lines revealed a high penetration ability of the assembly, while the bare QDs were not internalized. Additionally, imaging experiments were conducted on three-dimensional multicellular tumor spheroids in order to mimic the tumor microenvironment in vivo. iRGD/QD assemblies were found to be evenly distributed throughout the whole HeLa spheroid contrary to normal cells where they were not present. Therefore, iRGD/QD assemblies have a great potential to be used as targeted imaging agents and/or nanocarriers specific to cancer cells.
Collapse
Affiliation(s)
- Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Martyna Michalska
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Barbara Peplińska
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznań, Poland
| | - Raphaël Schneider
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy, Cedex, France
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland; Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|
36
|
Du H, Yu J, Guo D, Yang W, Wang J, Zhang B. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd(3+) Strategy for in Vivo Tumor-Targeted Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1155-1165. [PMID: 26740341 DOI: 10.1021/acs.langmuir.5b04186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gd(3+)-ion-doped upconversion nanoparticles (UCNPs), integrating the advantages of upconversion luminescence and magnetic resonance imaging (MRI) modalities, are capturing increasing attention because they are promising to improve the accuracy of diagnosis. The embedded Gd(3+) ions in UCNPs, however, have an indistinct MRI enhancement owing to the inefficient exchange of magnetic fields with the surrounding water protons. In this study, a novel approach is developed to improve the MR imaging sensitivity of Gd(3+)-ion-doped UCNPs. Bovine serum albumin (BSA) bundled with DTPA-Gd(3+) (DTPA(Gd)) is synthesized both as the MR imaging sensitivity synergist and phase-transfer ligand for the surface engineering of UCNPs. The external Gd(3+) ion attachment strategy is found to significant improve the MR imaging sensitivity of Gd(3+)-ion-doped UCNPs. The relaxivity analysis shows that UCNPs@BSA·DTPA(Gd) exhibit higher relaxivity values than do UCNPs@BSA without DTPA(Gd) moieties. Another relaxivity study discloses a striking message that the relaxivity value does not always reflect the realistic MRI enhancement capability. The high concentration of Gd(3+)-ion-containing UCNPs with further surface-engineered BSA·DTPA(Gd) (denoted as UCNPs-H@BSA·DTPA(Gd)) exhibits a more pronounced MRI enhancement capability compared to the other two counterparts [UCNPs-N@BSA·DTPA(Gd) and UCNPs-L@BSA·DTPA(Gd) (-N and -L are denoted as zero and low concentrations of Gd(3+) ion doping, respectively)], even though it holds the lowest r1 of 1.56 s(-1) per mmol L(-1) of Gd(3+). The physicochemical properties of UCNPs are essentially maintained after BSA·DTPA(Gd) surface decoration with good colloidal stability, in addition to improving the MR imaging sensitivity. In vivo T1-weighted MRI shows potent tumor-enhanced MRI with UCNPs-H@BSA·DTPA(Gd). An in vivo biodistribution study indicates that it is gradually excreted from the body via hepatobiliary and renal processing with no obvious toxicity. It could therefore be concluded, with improved MR imaging sensitivity by an internal and external incorporation of Gd(3+) strategy, that UCNPs-H@BSA·DTPA(Gd) presents great potential as an alternative in tumor-targeted MR imaging.
Collapse
Affiliation(s)
| | - Jiani Yu
- Shanghai Skin Disease Hospital, The Institute for Photomedicine, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | | | - Weitao Yang
- School of Materials Science and Engineering, School of Life Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Jun Wang
- Shanghai Skin Disease Hospital, The Institute for Photomedicine, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| | - Bingbo Zhang
- Shanghai Skin Disease Hospital, The Institute for Photomedicine, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200443, China
| |
Collapse
|
37
|
Liu R, Liang S, Jiang C, Zhang L, Yuan T, Li P, Xu Z, Xu H, Chu PK. Smart polymeric particle encapsulated gadolinium oxide and europium: theranostic probes for magnetic resonance/optical imaging and antitumor drug delivery. J Mater Chem B 2016; 4:1100-1107. [DOI: 10.1039/c5tb02083b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paramagnetic, luminescent, and temperature/pH-responsive polymeric particles with MR/optical imaging and antitumor drug delivery capability are prepared by emulsifier-free emulsion polymerization.
Collapse
Affiliation(s)
- Ruiqing Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- China
| | - Shuang Liang
- Department of Radiology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Cun Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- China
| | - Li Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- China
| | - Tianmeng Yuan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- China
| | - Penghui Li
- Department of Physics and Materials Science
- City University of Hong Kong
- Tat Chee Avenue
- Hong Kong
- China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- China
| | - Haibo Xu
- Department of Radiology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Paul K. Chu
- Department of Physics and Materials Science
- City University of Hong Kong
- Tat Chee Avenue
- Hong Kong
- China
| |
Collapse
|
38
|
Zhang J, Hao G, Yao C, Hu S, Hu C, Zhang B. Paramagnetic albumin decorated CuInS2/ZnS QDs for CD133+ glioma bimodal MR/fluorescence targeted imaging. J Mater Chem B 2016; 4:4110-4118. [PMID: 32264613 DOI: 10.1039/c6tb00834h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A sensitive, specific, accurate and biocompatible molecular nanoprobe is constructed, by rational design of the structure and an advanced surface engineering strategy, with MR/fluorescence imaging modalities for CD133+ glioma bimodal targeted imaging.
Collapse
Affiliation(s)
- Jing Zhang
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Guangyu Hao
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Chenfei Yao
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Su Hu
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Chunhong Hu
- Imaging Center
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Bingbo Zhang
- Institute of Photomedicine
- Shanghai Skin Disease Hospital
- The Institute for Biomedical Engineering & Nano Science
- Tongji University School of Medicine
- Shanghai 200443
| |
Collapse
|
39
|
Mukherjee A, Shim Y, Myong Song J. Quantum dot as probe for disease diagnosis and monitoring. Biotechnol J 2015; 11:31-42. [PMID: 26709963 DOI: 10.1002/biot.201500219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/18/2015] [Accepted: 12/09/2015] [Indexed: 12/15/2022]
Abstract
Semiconductor quantum dots (QD) possess unique optical and electric properties like size-tunable light emission, narrow emission range, high brightness and photostability. Recent research advances have minimized the toxicity of QDs and they are successfully used in in vitro and in vivo imaging. Encapsulation of QDs into polymeric nanoparticles and linking them with targeting ligands enabled the detection of tumors and cancer cells in vivo. QD-antibody conjugates were successfully used in monitoring and diagnosis of HIV and myocardial infarction. Application of near infrared (NIR) QDs was found to minimize the absorption and scattering of light by native tissues thus rendering them suitable in deep tissue analysis. Aggregation and endosomal sequestration of QDs pose major challenges for the effective delivery of QDs to the cell cytosol. Toxicity minimization and effective delivery strategies may further increase their suitability for utilization in disease diagnosis. New synthesis of QDs may provide new types of bioconjugates of QDs to biomolecules, which leads to a variety of applications to many challenged research areas. QDs with narrow emission wavelength ranges are very suitable for monitoring multiple cellular targets simultaneously, and still remain the best known probes for imaging as an alternative to traditional fluorophores in disease diagnosis.
Collapse
Affiliation(s)
| | - Yumi Shim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
40
|
Yang W, Guo W, Gong X, Zhang B, Wang S, Chen N, Yang W, Tu Y, Fang X, Chang J. Facile Synthesis of Gd-Cu-In-S/ZnS Bimodal Quantum Dots with Optimized Properties for Tumor Targeted Fluorescence/MR In Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18759-18768. [PMID: 26257133 DOI: 10.1021/acsami.5b05372] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dual-modal imaging techniques have gained intense attention for their potential role in the dawning era of tumor early accurate diagnosis. Chelate-free robust dual-modal imaging nanoprobes with high efficiency and low toxicity are of essential importance for tumor targeted dual-modal in vivo imaging. It is still a crucial issue to endow Cd-free dual-modal nanoprobes with bright fluorescence as well as high relaxivity. Herein, a facile synthetic strategy was developed to prepare Gd-doped CuInS/ZnS bimodal quantum dots (GCIS/ZnS, BQDs) with optimized properties. The fluorescent properties of the GCIS/ZnS BQDs can be thoroughly optimized by varying reaction temperature, aging time, and ZnS coating. The amount of Gd precursor can be well-controlled to realize the optimized balance between the MR relaxivity and optical properties. The obtained hydrophobic GCIS/ZnS BQDs were surface engineered into aqueous phase with PEGylated dextran-stearyl acid polymeric lipid vesicles (PEG-DS PLVs). Upon the phase transfer, the hydrophilic GCIS/ZnS@PLVs exhibited pronounced near-infrared fluorescence as well as high longitudinal relaxivity (r1 = 9.45 mM(-1) S(-1)) in water with good colloidal stability. In vivo tumor-bearing animal experiments further verified GCIS/ZnS@PLVs could achieve tumor-targeted MR/fluorescence dual-modal imaging. No toxicity was observed in the in vivo and ex vivo experiments. The GCIS/ZnS@PLVs present great potential as bimodal imaging contrast agents for tumor diagnosis.
Collapse
Affiliation(s)
- Weitao Yang
- School of Materials Science and Engineering, School of Life Science, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Weisheng Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xiaoqun Gong
- School of Materials Science and Engineering, School of Life Science, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Bingbo Zhang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine , Shanghai 200092, China
| | - Sheng Wang
- School of Materials Science and Engineering, School of Life Science, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Na Chen
- Department of Medical Radioprotection, School of Radiation Medicine and Health, Soochow University , Suzhou 200072, China
| | - Wentao Yang
- School of Materials Science and Engineering, School of Life Science, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Yu Tu
- Department of Medical Radioprotection, School of Radiation Medicine and Health, Soochow University , Suzhou 200072, China
| | - Xiangming Fang
- Department of Radiology, Wuxi People's Hospital Affiliated to Nanjing Medical University , Jiangsu 214023, China
| | - Jin Chang
- School of Materials Science and Engineering, School of Life Science, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| |
Collapse
|