1
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Liu X, Dong Y, Wang C, Guo Z. Application of chitosan as nano carrier in the treatment of inflammatory bowel disease. Int J Biol Macromol 2024; 278:134899. [PMID: 39187100 DOI: 10.1016/j.ijbiomac.2024.134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is characterized by persistent and recurrent gastrointestinal inflammation. Conventional IBD therapies often involve the use of antibiotics, NSAIDs, biological agents, and immunomodulators. While these medications can mitigate acute inflammatory symptoms, their long-term efficacy is frequently compromised due to cumulative toxic effects. In recent years, significant attention has shifted toward nanoparticle (NP)-based therapies as potential alternatives for IBD management. Various drug delivery strategies, including those targeting microbiota interactions, ligand-receptor binding, pH sensitivity, biodegradability, pressure response, and specific charge and size parameters, have been explored and optimized in animal studies. This review provides a comprehensive overview of the current landscape of chitosan NP-mediated drug delivery systems for IBD treatment. Additionally, it will discuss the prevailing challenges and propose future research directions to advance chitosan NP-based therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Yunrui Dong
- Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, China
| | - Chenyu Wang
- Department of General Surgery, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No.616 Bianyangsan Road, Suzhou 234000, Anhui, China.
| |
Collapse
|
3
|
Pitchakarn P, Buacheen P, Taya S, Karinchai J, Temviriyanukul P, Inthachat W, Chaipoot S, Wiriyacharee P, Phongphisutthinant R, Ounjaijean S, Boonyapranai K. Anti-Inflammatory, Cytotoxic, and Genotoxic Effects of Soybean Oligopeptides Conjugated with Mannose. Foods 2024; 13:2558. [PMID: 39200485 PMCID: PMC11353420 DOI: 10.3390/foods13162558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Soy protein is considered to be a high-quality protein with a range of important biological functions. However, the applications of soy protein are limited due to its poor solubility and high level of allergenicity. Its peptides have been of interest because they exert the same biological functions as soy protein, but are easier to absorb, more stable and soluble, and have a lower allergenicity. Moreover, recent research found that an attachment of chemical moieties to peptides could improve their properties including their biodistribution, pharmacokinetic, and biological activities with lower toxicity. This study therefore aimed to acquire scientific evidence to support the further application and safe use of the soybean oligopeptide (OT) conjugated with allulose (OT-AL) or D-mannose (OT-Man). The anti-inflammation, cytotoxicity, and genotoxicity of OT, OT-AL, and OT-Man were investigated. The results showed that OT, AL, Man, OT-AL, and OT-Man at doses of up to 1000 µg/mL were not toxic to HepG2 (liver cancer cells), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and pre- and mature-3T3-L1 (fibroblasts and adipocytes, respectively), while slightly delaying the proliferation of RAW 264.7 cells (macrophages) at high doses. In addition, the oligopeptides at up to 800 µg/mL were not toxic to isolated human peripheral blood mononuclear cells (PBMCs) and did not induce hemolysis in human red blood cells (RBCs). OT-Man (200 and 400 µg/mL), but not OT, AL, Man, and OT-AL, significantly reduced the production of NO and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) stimulated by lipopolysaccharide (LPS) in RAW 264.7 cells, suggesting that the mannose conjugation of soy peptide had an inhibitory effect against LPS-stimulated inflammation. In addition, the secretion of interleukin-6 (IL-6) stimulated by LPS was significantly reduced by OT-AL (200 and 400 µg/mL) and OT-Man (400 µg/mL). The tumor necrosis factor-α (TNF-α) level was significantly decreased by OT (400 µg/mL), AL (400 µg/mL), OT-AL (200 µg/mL), and OT-Man (200 and 400 µg/mL) in the LPS-stimulated cells. The conjugation of the peptides with either AL or Man is likely to be enhance the anti-inflammation ability to inhibit the secretion of cytokines. As OT-Man exhibited a high potential to inhibit LPS-induced inflammation in macrophages, its mutagenicity ability was then assessed in bacteria and Drosophila. These findings showed that OT-Man did not trigger DNA mutations and was genome-safe. This study provides possible insights into the health advantages and safe use of conjugated soybean peptides.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Pensiri Buacheen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Sirinya Taya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; (P.T.); (W.I.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; (P.T.); (W.I.)
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Pairote Wiriyacharee
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
4
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
5
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Qin Y, Ou L, Zha L, Zeng Y, Li L. Delivery of nucleic acids using nanomaterials. MOLECULAR BIOMEDICINE 2023; 4:48. [PMID: 38092998 PMCID: PMC10719232 DOI: 10.1186/s43556-023-00160-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The increasing number of approved nucleic acid therapeutics demonstrates the potential for the prevention and treatment of a broad spectrum of diseases. This trend underscores the significant impact and promise of nucleic acid-based treatments in the field of medicine. Nevertheless, employing nucleic acids as therapeutics is challenging due to their susceptibility to degradation by nucleases and their unfavorable physicochemical characteristics that hinder delivery into cells. Appropriate vectors play a pivotal role in improving nucleic acid stability and delivering nucleic acids into specific cells. The maturation of delivery systems has led to breakthroughs in the development of therapeutics based on nucleic acids such as DNA, siRNA, and mRNA. Non-viral vectors have gained prominence among the myriad of nanomaterials due to low immunogenicity, ease of manufacturing, and simplicity of cost-effective, large-scale production. Here, we provide an overview of the recent advancements in nanomaterials for nucleic acid delivery. Specifically, we give a detailed introduction to the characteristics of polymers, lipids, and polymer-lipid hybrids, and provide comprehensive descriptions of their applications in nucleic acid delivery. Also, biological barriers, administration routes, and strategies for organ-selective delivery of nucleic acids are discussed. In summary, this review offers insights into the rational design of next-generation delivery vectors for nucleic acid delivery.
Collapse
Affiliation(s)
- Yuyang Qin
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lili Zha
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yue Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Wang Y, Chen L, Wang Y, Wang X, Qian D, Yan J, Sun Z, Cui P, Yu L, Wu J, He Z. Marine biomaterials in biomedical nano/micro-systems. J Nanobiotechnology 2023; 21:408. [PMID: 37926815 PMCID: PMC10626837 DOI: 10.1186/s12951-023-02112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China.
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jun Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
8
|
Yu J, Hu N, Hou L, Hang F, Li K, Xie C. Effect of deacetylation of chitosan on the physicochemical, antioxidant and antibacterial properties activities of chitosan-mannose derivatives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6394-6405. [PMID: 37205788 DOI: 10.1002/jsfa.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The present study investigates the physical, chemical, and antibacterial properties of water-soluble chitosan derivatives. Preparation of the water-soluble chitosan derivatives was performed by the Maillard reaction (MR) between chitosan [with the degree of deacetylation (DD) being 50%, 70%, and 90%] and mannose. No organic reagent was used in the process. Systematic evaluations of the effects of chitosan DD on the reaction extent, the structure, the composition, as well as the physicochemical properties, antioxidant properties, and bacterial inhibitory properties of the finished chitosan-mannose MR products (Mc-mrps), were carried out. RESULTS Based on the experimental data obtained from Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, Pyrolysis-gas chromatography-mass spectrometry analysis, and 1 H-NMR, the Mc-mrps formed from chitosan with different DDs had different structures and components. An increase in the DD of chitosan led to a significant increase in the degree of reaction, color difference (△E), and solubility (P < 0.05). The zeta potential and particle size of the Mc-mrps were also influenced by the DD of chitosan. Additionally, the antimicrobial action against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), as well as antioxidant activity, were enhanced by the incorporation of mannose. This was also achieved by the increase of the DD of chitosan. CONCLUSION The results of the present study suggest that chitosan was derived with mannose to yield a novel, water-soluble polysaccharide with better antioxidant and antimicrobial activities. The DD of chitosan had a significant effect on the properties of the Mc-mrp, which can serve as a reference point for the subsequent preparation and application of such derivatives. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junzhe Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Na Hu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Liran Hou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| |
Collapse
|
9
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
10
|
Liu X, Ren X, Zhou L, Liu K, Deng L, Qing Q, Li J, Zhi F, Li M. Tollip Orchestrates Macrophage Polarization to Alleviate Intestinal Mucosal Inflammation. J Crohns Colitis 2022; 16:1151-1167. [PMID: 35134154 DOI: 10.1093/ecco-jcc/jjac019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Regulation of macrophage polarization is a promising strategy for treating inflammatory bowel disease [IBD]. Tollip is an important negative regulator of Toll-like receptor [TLR]-mediated innate immunity with downregulated expression in the colon tissues of patients with IBD. This study aimed to regulate the expression of Tollip to affect macrophage polarization. METHODS A molecular, targeted immunotherapy method was developed by linking mannose-modified trimethyl chitosan [MTC] with Tollip-expressing plasmids via ionic cross-linking, forming MTC-Tollip nanoparticles with a targeting function. MTC-Tollip selectively targeted mouse intestinal macrophages to regulate the polarization of macrophages for mucosal repair. RESULTS Orally administered MTC-Tollip significantly elevated Tollip expression in intestinal tissue. Compared with MTC-negative control [NC]-treated mice in which colitis was induced with dextran sodium sulphate [DSS], the MTC-Tollip nanoparticle-treated mice exhibited decreased body weight loss and colon shortening, lower proinflammatory cytokine expression in colon tissues, and greater mucosal barrier integrity. MTC-Tollip treatment decreased TNF-α and iNOS expression but increased CD206 and Arg-1 expression in colon tissue. Tollip overexpression in mouse peritoneal macrophages inhibited lipopolysaccharide [LPS]-induced proinflammatory cytokine production and promoted IL-4-induced M2 expression. The progression of peritoneal macrophages extracted from Tollip-/- mice confirmed the effect of Tollip on macrophage polarization. Western blots showed that Tollip overexpression attenuated the upregulation of TLR pathway-associated targets in M1 macrophages. CONCLUSIONS MTC nanoparticles can be 'intelligent' carriers in immunotherapy. The modulation of Tollip expression in macrophages may be a novel treatment approach for IBD.
Collapse
Affiliation(s)
- Xiaoming Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingxing Ren
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifeng Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gastroenterology, Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liangjun Deng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qing Qing
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Zhang Y, Li L, Wang J. Tuning cellular uptake of nanoparticles via ligand density: Contribution of configurational entropy. Phys Rev E 2021; 104:054405. [PMID: 34942735 DOI: 10.1103/physreve.104.054405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/25/2021] [Indexed: 01/01/2023]
Abstract
The bioactivity of nanoparticles (NPs) crucially depends on their ability to cross biological membranes. A fundamental understanding of cell-NP interaction is hence essential to improve the performance of the NP-based biomedical applications. Although extensive studies of cellular uptake have converged upon the idea that the uptake process is mainly regulated by the elastic deformation of the cell membrane or NP, recent experimental observations indicate the ligand density as another critical factor in modulating NP uptake into cells. In this study, we propose a theoretical model of the wrapping of an elastic vesicle NP by a finite lipid membrane to depict the relevant energetic and morphological evolutions during the wrapping process driven by forming receptor-ligand bonds. In this model, the deformations of the membrane and the vesicle NP are assumed to follow the continuum Canham-Helfrich framework, whereas the change of configurational entropy of receptors is described from statistical thermodynamics. Results show that the ligand density strongly affects the binding energy and configurational entropy of free receptors, thereby altering the morphology of the vesicle-membrane system in the steady wrapping state. For the wrapping process by the finite lipid membrane, we also find that there exists optimal ligand density for the maximum wrapping degree. These predictions are consistent with relevant experimental observations reported in the literature. We have further observed that there are transitions of various wrapping phases (no wrapping, partial wrapping, and full wrapping) in terms of ligand density, membrane tension, and molecular binding energy. In particular, the ligand and receptor shortage regimes for the small and high ligand density are, respectively, identified. These results may provide guidelines for the rational design of nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Yudie Zhang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Long Li
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China.,PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
12
|
Zhao Y, Shu R, Liu J. The development and improvement of ribonucleic acid therapy strategies. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:997-1013. [PMID: 34540356 PMCID: PMC8437697 DOI: 10.1016/j.omtn.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological understanding of RNA has evolved since the discovery of catalytic RNAs in the early 1980s and the establishment of RNA interference (RNAi) in the 1990s. RNA is no longer seen as the simple mid-product between transcription and translation but as potential molecules to be developed as RNA therapeutic drugs. RNA-based therapeutic drugs have gained recognition because of their ability to regulate gene expression and perform cellular functions. Various nucleobase, backbone, and sugar-modified oligonucleotides have been synthesized, as natural oligonucleotides have some limitations such as poor low nuclease resistance, binding affinity, poor cellular uptake, and toxicity, which affect their use as RNA therapeutic drugs. In this review, we briefly discuss different RNA therapeutic drugs and their internal connections, including antisense oligonucleotides, small interfering RNAs (siRNAs) and microRNAs (miRNAs), aptamers, small activating RNAs (saRNAs), and RNA vaccines. We also discuss the important roles of RNA vaccines and their use in the fight against COVID-19. In addition, various chemical modifications and delivery systems used to improve the performance of RNA therapeutic drugs and overcome their limitations are discussed.
Collapse
Affiliation(s)
- Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Rui Shu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Corresponding author: Jiang Liu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, Wang S, Wang Y. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: Opportunities and emerging strategies. Acta Pharm Sin B 2021; 11:2798-2818. [PMID: 34589398 PMCID: PMC8463263 DOI: 10.1016/j.apsb.2020.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ADR, adverse drug reaction
- AIE, aggregation-induced emission
- Active target
- BSA, bovine serum albumin
- CAM, cell adhesion molecule
- CD, Crohn's disease
- CRD, cysteine-rich domain
- CS, chondroitin sulfate
- CT, computed tomography
- CTLD, c-type lectin-like domain
- Cell adhesion molecule
- Crohn's disease
- DCs, dendritic cells
- DSS, dextran sulfate sodium salt
- Drug delivery
- EGF, epidermal growth factor
- EPR, enhanced permeability and retention
- FNII, fibronectin type II domain
- FR, folate receptor
- FRET, fluorescence resonance energy transfer
- GIT, gastrointestinal tract
- HA, hyaluronic acid
- HUVEC, human umbilical vein endothelial cells
- IBD, inflammatory bowel disease
- ICAM, intercellular adhesion molecule
- Inflammatory bowel disease
- LMWC, low molecular weight chitosan
- LPS, lipopolysaccharide
- MAP4K4, mitogen-activated protein kinase kinase kinase kinase 4
- MGL, macrophage galactose lectin
- MPO, myeloperoxidase
- MPS, mononuclear phagocyte system
- MR, mannose receptor
- MRI, magnetic resonance imaging
- PAMAM, poly(amidoamine)
- PEI, polyethylenimine
- PSGL-1, P-selectin glycoprotein ligand-1
- PepT1, peptide transporter 1
- QDs, quantum dots
- RES, reticuloendothelial system
- Receptor-mediated target
- Targeted therapy
- TfR, transferrin receptor
- UC, ulcerative colitis
- Ulcerative colitis
- VCAM, vascular cell adhesion molecule
Collapse
|
14
|
piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood 2021; 137:1603-1614. [PMID: 32967010 DOI: 10.1182/blood.2019003764] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The initiation and progression of diffuse large B-cell lymphoma (DLBCL) is governed by genetic and epigenetic aberrations. As the most abundant eukaryotic messenger RNA (mRNA) modification, N6-methyladenosine (m6A) is known to influence various fundamental bioprocesses by regulating the target gene; however, the function of m6A modifications in DLBCL is unclear. PIWI-interacting RNAs (piRNAs) have been indicated to be epigenetic effectors in cancer. Here, we show that high expression of piRNA-30473 supports the aggressive phenotype of DLBCL, and piRNA-30473 depletion decreases proliferation and induces cell cycle arrest in DLBCL cells. In xenograft DLBCL models, piRNA-30473 inhibition reduces tumor growth. Moreover, piRNA-30473 is significantly associated with overall survival in a univariate analysis and is statistically significant after adjusting for the National Comprehensive Cancer Network-International Prognostic Index in the multivariate analysis. Additional studies demonstrate that piRNA-30473 exerts its oncogenic role through a mechanism involving the upregulation of WTAP, an m6A mRNA methylase, and thus enhances the global m6A level. Integrating transcriptome and m6A-sequencing analyses reveals that WTAP increases the expression of its critical target gene, hexokinase 2 (HK2), by enhancing the HK2 m6A level, thereby promoting the progression of DLBCL. Together, the piRNA-30473/WTAP/HK2 axis contributes to tumorigenesis by regulating m6A RNA methylation in DLBCL. Furthermore, by comprehensively analyzing our clinical data and data sets, we discover that the m6A regulatory genes piRNA-30473 and WTAP improve survival prediction in DLBCL patients. Our study highlights the functional importance of the m6A modification in DLBCL and might assist in the development of a prognostic stratification and therapeutic approach for DLBCL.
Collapse
|
15
|
Fleischmann D, Goepferich A. General sites of nanoparticle biodistribution as a novel opportunity for nanomedicine. Eur J Pharm Biopharm 2021; 166:44-60. [PMID: 34087354 DOI: 10.1016/j.ejpb.2021.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
The development of nanomedical devices has led to a considerable number of clinically applied nanotherapeutics. Yet, the overall poor translation of nanoparticular concepts into marketable systems has not met the initial expectations and led to increasing criticism in recent years. Most novel nano approaches thereby use highly refined formulations including a plethora of active targeting sequences, but ultimately fail to reach their target due to a generally high off-target deposition in organs such as the liver or kidney. In this context, we argue that initial nanoparticle (NP) development should not entirely become set on conventional formulation aspects. In contrast, we propose a change of focus towards a prior analysis of general sites of NP in vivo deposition and an assessment of how accumulation in these organs or tissues can be harnessed to develop therapies for site-related pathologies. We therefore give a comprehensive overview of existing nanotherapeutic targeting strategies for specific cell types within three of the usual suspects, i.e. the liver, kidney and the vascular system. We discuss the physiological surroundings and relevant pathologies of described tissues as well as the implications for NP-mediated drug delivery. Additionally, successful cell-selective NP concepts using active targeting strategies are assessed. By bringing together both (patho)physiological aspects and concepts for cell-selective NP formulations, we hope to show a novel opportunity for the development of more promising nanotherapeutic devices.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
16
|
Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS NANO 2021; 15:8267-8282. [PMID: 33915044 DOI: 10.1021/acsnano.0c08596] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cytosolic delivery of small interfering RNA (siRNA) remains challenging, and a profound understanding of the cellular uptake and intracellular processing of siRNA delivery systems could greatly improve the development of siRNA-based therapeutics. Here, we show that caveolae-mediated endocytosis (CvME) accounts for the robust siRNA delivery of mannose-modified trimethyl chitosan-cysteine/tripolyphosphate nanoparticles (MTC/TPP NPs) to macrophages by circumventing lysosomes. We show that the Golgi complex and ER are key organelles required for the efficient delivery of siRNA to macrophages in which the siRNA accumulation positively correlates with its silencing efficiency (r = 0.94). We also identify syntaxin6 and Niemann-Pick type C1 (NPC1) as indispensable regulators for MTC/TPP NPs-delivered siRNA into macrophages both in vitro and in vivo. Syntaxin6 and NPC1 knockout substantially decrease the cellular uptake and gene silencing of the siRNA delivered in MTC/TPP NPs in macrophages, which result in poor therapeutic outcomes for mice bearing acute hepatic injury. Our results suggest that highly efficient siRNA delivery can be achieved via CvME, which would give ideas for designing optimal delivery vectors to facilitate the clinical translation of siRNA drugs.
Collapse
Affiliation(s)
- Yudong Song
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Lu Xu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Ting Jiang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
17
|
Wang L, Yu M, Yang H. Recent Progress in the Diagnosis and Precise Nanocarrier-Mediated Therapy of Inflammatory Bowel Disease. J Inflamm Res 2021; 14:1701-1716. [PMID: 33953597 PMCID: PMC8092629 DOI: 10.2147/jir.s304101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
The effective colon drug delivery remains to be an international frontier research in inflammatory bowel disease (IBD) therapy. The exploration and research of nanocarrier-based nanomedicine with great potential brings new opportunities for IBD therapy and diagnoses. Functional nanocarriers with varying morphology and characteristics can not only effectively avoid the destruction of the complex gastrointestinal (GI) tract microenvironment but also endow drugs with target therapy and improved bioavailability, thus elevating therapeutic efficacy. In this review, we illustrated several challenges in IBD therapy, then emphasis on some latest research progress of nanoparticles based therapy of oral administration, rectal administration and parenteral administration, as well as IBD diagnoses. Finally, we described the future perspective of nanocarriers in the treatment and diagnoses of IBD.
Collapse
Affiliation(s)
- Liucan Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
18
|
Dai Q, Jiang W, Liu H, Qing X, Wang G, Huang F, Yang Z, Wang C, Gu E, Zhao H, Zhang J, Liu X. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury. NANOTECHNOLOGY 2021; 32:265101. [PMID: 33472187 DOI: 10.1088/1361-6528/abde02] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study is to evaluate the effect of rare earth upconversion nanoparticles (UCNs) on hepatic ischemia reperfusion injury (IRI) and explore its possible mechanism. Hepatic IRI seriously affects the prognosis of patients undergoing liver surgery. Liver-resident Kupffer cells have been reported to promote IRI. Nanomedicines are known to be effective in the treatment of liver diseases, however, Kupffer cell-targeting nanomedicines for the treatment of IRI are yet to be developed. As potential bioimaging nanomaterials, UCNs have been found to specifically deplete Kupffer cells, but the underlying mechanism is unknown. In this study, we found that UCNs specifically depleted Kupffer cells by pyroptosis, while the co-administration of the caspase-1 inhibitor VX-765 rescued the UCN-induced Kupffer cell pyroptosis in mice. Furthermore, the pre-depletion of Kupffer cells by the UCNs significantly suppressed the release of inflammatory cytokines and effectively improved hepatic IRI. The rescue of the pyroptosis of the Kupffer cells by VX-765 abrogated the protective effect of UCNs on the liver. These results suggest that UCNs are highly promising for the development of Kupffer cell-targeting nanomedicines for intraoperative liver protection.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Wei Jiang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Hu Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xin Qing
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Guobin Wang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| |
Collapse
|
19
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary-Bobo M, Bettache N, Ulrich S. Cell-Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self-Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021; 60:5783-5787. [PMID: 33289957 DOI: 10.1002/anie.202014066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Dynamic covalent libraries enable exploring complex chemical systems from which bioactive assemblies can adaptively emerge through template effects. In this work, we studied dynamic covalent libraries made of complementary bifunctional cationic peptides, yielding a diversity of species from macrocycles to polymers. Although polymers are typically expressed only at high concentration, we found that siRNA acts as a template in the formation of dynamic covalent polymers at low concentration in a process guided by electrostatic binding. Using a glycosylated building block, we were able to show that this templated polymerization further translates into the multivalent presentation of carbohydrate ligands, which subsequently promotes cell uptake and even cell-selective siRNA delivery.
Collapse
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561, Alexandria, Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
20
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary‐Bobo M, Bettache N, Ulrich S. Cell‐Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self‐Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Department of Biochemistry Medical Research Institute University of Alexandria 21561 Alexandria Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Mihail Barboiu
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Magali Gary‐Bobo
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| |
Collapse
|
21
|
Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD). Int J Biol Macromol 2020; 169:206-215. [PMID: 33340633 DOI: 10.1016/j.ijbiomac.2020.12.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
In the present experimental series, we have developed a novel nanocomposite to target activated macrophages in the colon with real time imaging and therapeutic capabilities. This binary nanocomposite was formed by the covalent conjugation of mannosylated NPs (Man-NPs) with carbon dots (CDs). Man-NPs were prepared using a self-assembly method based on mannosylated decamethylenediamine-grafted carboxymethyl inulin amphiphilic acid. While, the CDs were synthesized using a simple bottom-up process using citric acid monohydrate and diethylenetriamine, which were tightly bonded to the Man-NPs surface by carbodimide coupling. The resulting nanocomposite had a uniform size of 241.3 nm with a negative charge and a high drug casing density of 25.54 wt% and blue self-fluorescence were emitted. Whereas, in vitro observation of cellular uptake indicated the greater nanocomposite uptake in inflamed macrophage as compared to the untreated macrophage and mannose receptor-negative cell lines, 4T1 respectively. However, in vivo bio distribution exhibited a large number (60%) of CDs/Man-NPs nanocomposite accumulated in the inflamed colon of colitis mice. It should be noted that the novel nanocomposite, as macrophage-targeted drug delivery, could have promise for the treatment of inflammatory bowel disease (IBD).
Collapse
|
22
|
Pardeshi CV, Agnihotri VV, Patil KY, Pardeshi SR, Surana SJ. Mannose-anchored N,N,N-trimethyl chitosan nanoparticles for pulmonary administration of etofylline. Int J Biol Macromol 2020; 165:445-459. [PMID: 32987078 DOI: 10.1016/j.ijbiomac.2020.09.163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 01/13/2023]
Abstract
Drug delivery to lungs via pulmonary administration offers potential for the development of new drug delivery systems. Here we fabricated the etofylline (ETO) encapsulated mannose-anchored N,N,N-trimethyl chitosan nanoparticles (Mn-TMC NPs). The prominent characteristics like biocompatibility, controlled release, targeted delivery, high penetrability, enhanced physical stability, and scalability mark Mn-TMC NPs as a viable alternative to various nanoplatform technologies for effective drug delivery. Mannosylation of TMC NPs leads to the evolution of new drug delivery vehicle with gratifying characteristics, and potential benefits in efficient drug therapy. It is widely accepted that following pulmonary administration, the introduction of mannose to the surface of drug nanocarriers provide selective macrophage targeting via receptor-mediated endocytosis. The fabricated Mn-TMC NPs exhibited particle size of 223.3 nm, PDI 0.490, and ζ-potential -19.1 mV, drug-loading capacity 76.26 ± 1.2%, and encapsulation efficiency of 91.75 ± 0.88%. Sustained drug release, biodegradation studies, stability, safety, and aerodynamic behavior revealed the effectiveness of prepared nanoformulation for pulmonary administration. In addition, the in vivo pharmacokinetic studies in Wistar rat model revealed a significant improvement in therapeutic efficacy of ETO, illustrating mannosylation a promising approach for efficient therapy of airway diseases following pulmonary administration.
Collapse
Affiliation(s)
- Chandrakantsing V Pardeshi
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India.
| | - Vinit V Agnihotri
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| | - Kusumakar Y Patil
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| | - Sagar R Pardeshi
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425 001, Maharashtra, India
| | - Sanjay J Surana
- Department of Pharmacognosy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| |
Collapse
|
23
|
Babii O, Wang Z, Liu G, Martinez EC, van Drunen Littel-van den Hurk S, Chen L. Low molecular weight chitosan nanoparticles for CpG oligodeoxynucleotides delivery: Impact of molecular weight, degree of deacetylation, and mannosylation on intracellular uptake and cytokine induction. Int J Biol Macromol 2020; 159:46-56. [PMID: 32437810 DOI: 10.1016/j.ijbiomac.2020.05.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Although synthetic CpG oligodeoxynucleotides (ODNs) have shown substantial potential as immunotherapeutic agents, their effective intracellular delivery remains challenging. In this work, nanoparticles prepared from low-molecular weight (LMW) chitosans were investigated as CpG ODN delivery systems. Chitosan samples with a molecular weight (Mw) of 5 and 15 kDa and degree of deacetylation (DDA) of 50 and 80% were prepared. Additionally, mannosylated chitosans with a substitution degree of 15% were synthesized. The impact of LMW chitosan Mw and DDA on nanoparticle physical properties and the associated immunostimulatory effect in RAW 264.7 cells was studied. Nanoparticles prepared with chitosan of higher DDA and larger Mw exhibited better CpG ODN binding ability and intracellular uptake. Nevertheless, the most efficient immunostimulatory effect was observed while using 50% acetylated and mannosylated samples. The decreased charge density on chitosan backbone resulted in the enhanced intracellular CpG ODN release, which promoted in vitro cytokine secretion. Moreover, mannose ligand grafting promoted nanoparticle uptake through receptor-mediated recognition. Overall, this research suggests that chitosan structural parameters can be modulated to prepare LMW chitosan nanoparticles that first efficiently encapsulate CpG ODN, and then release it in immune cells, thus may be used as an efficient vector for intracellular CpG ODN delivery.
Collapse
Affiliation(s)
- Oksana Babii
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Zhenggang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guangyu Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Elisa C Martinez
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | | | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
24
|
Colino CI, Lanao JM, Gutierrez-Millan C. Targeting of Hepatic Macrophages by Therapeutic Nanoparticles. Front Immunol 2020; 11:218. [PMID: 32194546 PMCID: PMC7065596 DOI: 10.3389/fimmu.2020.00218] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatic macrophage populations include different types of cells with plastic properties that can differentiate into diverse phenotypes to modulate their properties in response to different stimuli. They often regulate the activity of other cells and play an important role in many hepatic diseases. In response to those pathological situations, they are activated, releasing cytokines and chemokines; they may attract circulating monocytes and exert functions that can aggravate the symptoms or drive reparation processes. As a result, liver macrophages are potential therapeutic targets that can be oriented toward a variety of aims, with emergent nanotechnology platforms potentially offering new perspectives for macrophage vectorization. Macrophages play an essential role in the final destination of nanoparticles (NPs) in the organism, as they are involved in their uptake and trafficking in vivo. Different types of delivery nanosystems for macrophage recognition and targeting, such as liposomes, solid-lipid, polymeric, or metallic nanoparticles, have been developed. Passive targeting promotes the accumulation of the NPs in the liver due to their anatomical and physiological features. This process is modulated by NP characteristics such as size, charge, and surface modifications. Active targeting approaches with specific ligands may also be used to reach liver macrophages. In order to design new systems, the NP recognition mechanism of macrophages must be understood, taking into account that variations in local microenvironment may change the phenotype of macrophages in a way that will affect the uptake and toxicity of NPs. This kind of information may be applied to diseases where macrophages play a pathogenic role, such as metabolic disorders, infections, or cancer. The kinetics of nanoparticles strongly affects their therapeutic efficacy when administered in vivo. Release kinetics could predict the behavior of nanosystems targeting macrophages and be applied to improve their characteristics. PBPK models have been developed to characterize nanoparticle biodistribution in organs of the reticuloendothelial system (RES) such as liver or spleen. Another controversial issue is the possible toxicity of non-degradable nanoparticles, which in many cases accumulate in high percentages in macrophage clearance organs such as the liver, spleen, and kidney.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
25
|
Shmendel EV, Kabilova TO, Morozova NG, Zenkova MA, Maslov MA. Targeted Delivery of Nucleic Acids by Folate-Containing Liposomes into KB-3-1 and HEK 293 Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Abstract
Sugar ligand molecules, such as mannose, galactose and glucose, can bind to drug-delivery systems, making them targeted. These glycosylation ligands have the advantages of nontoxicity, no immunogenicity, good biocompatibility and biodegradation. They can be widely used in glycosylation-modified drug-delivery systems. Herein, the targeting mechanisms, synthesis methods and targeting characteristics of glycosylation-modified drug-delivery systems were reviewed.
Collapse
|
27
|
Chen F, Huang G. Application of glycosylation in targeted drug delivery. Eur J Med Chem 2019; 182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
|
28
|
Deng F, He S, Cui S, Shi Y, Tan Y, Li Z, Huang C, Liu D, Zhi F, Peng L. A Molecular Targeted Immunotherapeutic Strategy for Ulcerative Colitis via Dual-targeting Nanoparticles Delivering miR-146b to Intestinal Macrophages. J Crohns Colitis 2019; 13:482-494. [PMID: 30445446 DOI: 10.1093/ecco-jcc/jjy181] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Macrophages are a promising therapeutic target for intestinal mucosal repair. MiR-146b appears to control macrophage activation and cell proliferation. METHODS By loading miR-146b mimic on mannose-modified trimethyl chitosan [MTC]-conjugated nanoparticles [NPs] [MTC-miR146b], a molecular targeted immunotherapeutic approach was developed to selectively target intestinal macrophages for mucosal regeneration and tumourigenesis in mouse models. RESULTS We first confirmed that miR-146b expression was significantly enhanced during mucosal regeneration in a murine colitis model. Moreover, after mucosal damage, MTC-miR146b mimic-treated wild-type mice had dramatically restored body weight and mucosal barrier function compared with MTC-NC treated mice. Strikingly, MTC-miR146b mimic oral administration protected miR-146b-deficient mice from dextran sodium sulphate [DSS] injury and the colitis-associated cancer process. Mechanistically, miR-146b strongly inhibited M1 macrophage activation by suppressing the Toll-like receptor 4 [TLR4] signalling pathway, resulting in the repression of the induction of pro-inflammatory cytokines including TNF-α, IL-6, and IL-1β. More importantly, miR-146b overexpression in bone marrow-derived macrophages [BMDMs] in M1 differentiation conditions induced a phenotype similar to M2 macrophages and improved the proliferation of co-cultured colonic epithelial cells via STAT3-dependent IL-10 production. CONCLUSIONS MTC-miR146b should be regarded as an effective candidate for oral delivery and could improve the efficacy of immunotherapies for ulcerative colitis and colitis-associated cancer.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shudan Cui
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanqiang Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuyong Tan
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chongyang Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Deliang Liu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Zhang Y, Cheng M, Cao J, Zhang Y, Yuan Z, Wu Q, Wang W. Multivalent nanoparticles for personalized theranostics based on tumor receptor distribution behavior. NANOSCALE 2019; 11:5005-5013. [PMID: 30839969 DOI: 10.1039/c8nr09347d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is acknowledged that the targeting ability of multivalent ligand-modified nanoparticles (MLNs) strongly depends on the ligand spatial presentation determined by ligand valency. However, the receptor overexpression level varies between different types or stages of tumors. Thus, it is essential to explore the influence of ligand valency on the targeting ability of MLNs to tumors with different levels of receptor overexpression. In this study, a dual-acting agent raltitrexed was used as a ligand to target the folate receptor (FR). Different copies of the raltitrexed-modified multivalent dendritic polyethyleneimine ligand cluster PRn (n = 2, 4, and 8) were conjugated onto magnetic nanoparticles to form multivalent magnetic NPs (MMNs) with different valences. The in vitro studies demonstrated that Fe-PR4 was the most effective valency in the treatment of high FR overexpressing KB cells with a decentralized receptor distribution, owing to the fact that Fe-PR2 was negative in statistical rebinding and Fe-PR8 could induce steric hindrance in the limited binding area. Instead, in moderate FR overexpressing HeLa cells with clustered receptor display, the extra ligands on Fe-PR8 would facilitate statistical rebinding more beneficially. Furthermore, in in vivo tumor inhibition and targeted magnetic resonance imaging (MRI) of KB tumors and another moderate FR expressing H22 tumor, similar results were obtained with the cell experiments. Overall, the optimizable treatment effect of Fe-PRn by modulating the ligand valency based on the overexpressing tumor receptor distribution behavior supports the potential of Fe-PRn as a nanomedicine for personalized theranostics.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
31
|
Sun YX, Zhu JY, Qiu WX, Lei Q, Chen S, Zhang XZ. Versatile Supermolecular Inclusion Complex Based on Host-Guest Interaction for Targeted Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42622-42632. [PMID: 29148707 DOI: 10.1021/acsami.7b14963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A facile and targeted gene delivery system was prepared by conjugating β-cyclodextrin modified polyethylenimine (PEI-CD) and adamantyl peptide (AdGRGDS) based on host-guest interaction. With the rational design between PEI-CD and AdGRGDS, the PEI-CD/AdGRGDS gene delivery system showed excellent DNA binding capability and exhibited good ability to compact DNA into uniform spherical nanoparticles. In vitro luciferase assay showed that gene expression transfected by PEI-CD/AdGRGDS was stronger than that by PEI-CD in HeLa cells, whereas gene expression transfected by PEI-CD/AdGRGDS and PEI-CD was similar to each other in COS7 cells. Internalization of complexes was qualitatively studied using a confocal laser scanning microscope (CLSM) and quantitatively analyzed by flow cytometry, respectively, and targeting specificity was also evaluated by CLSM. Results of CLSM and flow cytometry indicated that PEI-CD/AdGRGDS had good targeting specificity to tumor cells with integrin αvβ3 overexpression. To further evaluate the targeting specificity and transfection efficiency in vivo, a rat model with murine hepatic carcinoma cell line H22 was used. PEI-CD/AdGRGDS showed stronger gene expression efficiency than PEI-CD via in vivo transfection of pORF-LacZ and pGL-3 plasmids after subcutaneous injection. Interestingly, PEI-CD/AdGRGDS also showed high targeting specificity and transfection distribution to tumor xenograft after tail-vein injection. In vitro and in vivo assays highlighted the importance of GRGDS targeting specificity to tumor cells with integrin αvβ3 overexpression and demonstrated that the PEI-CD/AdGRGDS gene delivery system would have great potential for targeted tumor therapy.
Collapse
Affiliation(s)
- Yun-Xia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Si Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
32
|
Cao J, Zhang Y, Wu Y, Wu J, Wang W, Wu Q, Yuan Z. The effects of ligand valency and density on the targeting ability of multivalent nanoparticles based on negatively charged chitosan nanoparticles. Colloids Surf B Biointerfaces 2017; 161:508-518. [PMID: 29128837 DOI: 10.1016/j.colsurfb.2017.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 02/09/2023]
Abstract
It has been shown that multivalent ligands could significantly enhance the binding avidity compared with the monovalent ones; therefore, once incorporated into nanoparticles, they promote superior targeting ability without increasing the ligand density. Although ligand valency and density play a key role on the targeting ability of corresponding nanoparticles, these facotrs remain largely unexplored and detailed studies are lacking. Herein, a series of multivalent ligands with certain valencies (FAn, n indicates the valency of ligand: n=3, 5, 7) has been conveniently synthesized by conjugating different copies of folate ligands with poly(acrylic acid) (PAA). Negatively charged chitosan nanoparticles (CTS-SA NPs) have been utilized as proper multivalent platforms because they can strongly suppress non-specific protein adsorption and cellular uptake without interfering with the targeting ability of multivalent ligands. Subsequently, the structure of CTS-SA NPs has been modified using different amounts of FAn to form multivalent nanoparticles (FAn-CTS-SA NPs) with various valencies and densities. A series of specific investigations of them suggested that the cellular uptake of multivalent nanoparticles has largely varied with the ligand valency variation even at similar ligand densities; and also largely varied with ligand density variation even at the same ligand valencies. The intermediate valency and density values determined in the current study (ie., 5 and 2.4wt%, respectively) have provided the best cellular uptake, facilitating superior targeting ability at relatively low ligand valency and density. Unexpectedly, no conspicuous difference has been observed during endocytotic inhibition assays with single inhibitors, which may be attributed to the synergetic endocytotic mechanism with multiple pathways of multivalent nanoparticles. The optimal multivalent nanoparticles have also exhibited excellent biocompatibility, long-term stability in vitro and enhanced circulation time in vivo, thus demonstrating their potential for targeted drug delivery.
Collapse
Affiliation(s)
- Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yukun Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| |
Collapse
|
33
|
Hua H, Zhang N, Liu D, Song L, Liu T, Li S, Zhao Y. Multifunctional gold nanorods and docetaxel-encapsulated liposomes for combined thermo- and chemotherapy. Int J Nanomedicine 2017; 12:7869-7884. [PMID: 29123399 PMCID: PMC5661837 DOI: 10.2147/ijn.s143977] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Personalized and precise nanomedicines are highly demanded for today’s medical needs. Liposomes are ideal candidates for the construction of multifunctional drug delivery systems. In this study, a liposome was used to improve the clinical issues of docetaxel (Doc), a potent antimitotic chemotherapy for prostate cancer (PC). RLT, a low-density lipoprotein receptor (LDLR)-binding peptide, and PEG were conjugated to the liposomes, and gold nanorods (GNRs) were also incorporated into the liposomes. The GNRs/Doc-liposome-RLT (GNRs/DocL-R) was tested in PC-3 cells and in PC-3 tumor-bearing nude mice. Results showed that GNRs/DocL-R possessed a diameter approximately 163.15±1.83 nm and a zeta potential approximately −32.8±2.16 mV. GNRs/DocL-R showed enhanced intracellular entrance, increased accumulation in the implanted tumor region, and the highest tumor inhibition in vitro and in vivo. Therefore, the multifunctional GNRs/DocL-R was a potential cancer treatment via combined chemo- and thermotherapy.
Collapse
Affiliation(s)
- Haiying Hua
- Academy of Medical and Pharmaceutical Sciences
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| | - Dan Liu
- Academy of Medical and Pharmaceutical Sciences
| | - Lili Song
- Academy of Medical and Pharmaceutical Sciences
| | - Tuanbing Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| | - Shasha Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Wu M, Zhao H, Li M, Yue Y, Xiong S, Xu W. Intranasal Vaccination with Mannosylated Chitosan Formulated DNA Vaccine Enables Robust IgA and Cellular Response Induction in the Lungs of Mice and Improves Protection against Pulmonary Mycobacterial Challenge. Front Cell Infect Microbiol 2017; 7:445. [PMID: 29085809 PMCID: PMC5650621 DOI: 10.3389/fcimb.2017.00445] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Induction of specific humoral and cellular immunity in the lung airways is proposed to be critical for vaccine protection against Mycobacterium tuberculosis (M. tb). To facilitate airway delivery and antigen targeting to the antigen presenting cells in the alveoli, we employed mannosylated chitosan (MCS) to formulate a multi-T-epitope DNA vaccine, pPES, as an intranasal TB vaccine. MCS-DNA nanoparticles appeared spherical with the average particle sizes as 400 nm. HSP65-specific bronchoalveolar lavage fluid SIgA level was significantly elevated by 4 doses of MCS-pPES intranasal immunization as compared to chitosan (CS)-DNA and BCG vaccine. I.n. immunization with MCS-DNA induced a modest peptide-specific Th1(IFN-γ, TNF-α, and IL-2) response in the spleen, while a potent poly-functional CD4+ T response that largely produced TNF-α and IFN-γ, as well as IL-2 in the lung, qualitatively better than that induced by CS-DNA and BCG vaccination. Such response by i.n. immunization with MCS-DNA provided improved protection in the lung against airway Mycobacterial bovis BCG challenge over i.n. CS-DNA and DNA, that is comparable to protection achieved by s.c. BCG vaccination. This enhanced protection was correlated with much greater accessibility of DNA particles to the alveolar macrophages in the lung mediated by man-chitosan. Thus, man-chitosan TB vaccine represents a promising vaccine platform capable of eliciting robust multi-functional T response in the lung mucus and achieving enhanced mucosal immune protection against pulmonary TB.
Collapse
Affiliation(s)
- Manli Wu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Haoxin Zhao
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Dai X, He J, Zhang R, Wu G, Xiong F, Zhao B. Co-delivery of polyinosinic:polycytidylic acid and flagellin by poly(lactic- co-glycolic acid) MPs synergistically enhances immune response elicited by intranasally delivered hepatitis B surface antigen. Int J Nanomedicine 2017; 12:6617-6632. [PMID: 28924346 PMCID: PMC5595363 DOI: 10.2147/ijn.s146912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of the present work was to investigate the synergistic effect between toll-like receptor (TLR) 3 ligand polyinosinic:polycytidylic acid (pI:C) and TLR5 ligand flagellin (FLN) on immune responses induced by nasally delivered hepatitis B virus surface antigen (HBsAg). Mannan and chitosan oligosaccharide-modified, pH-responsive poly(lactic-co-glycolic acid) (MC-PLGA) microparticles (MPs) containing HBsAg, FLN, pI:C or both ligands were prepared with a double-emulsion method. In vitro uptake experiments show that cellular uptake of MC-PLGA MPs by macrophages was through energy-dependent, receptor-mediated endocytosis mechanism. After uptake of MPs by macrophages, MC-PLGA MPs existed both in the endo-some and in the cytoplasm. FLN and pI:C in solution or MP formulation could synergize to activate macrophages and induce higher pro-inflammatory cytokines interleukin (IL)-6, IL-12, interferon-γ and anti-inflammatory cytokines IL-10 compared to single TLR ligand (P<0.05). In vivo immunogenicity studies indicated that co-delivery of FLN and pI:C within MC-PLGA MPs synergistically induced higher serum anti-HBsAg IgG levels and Th1 cytokine levels compared with MC-PLGA MPs encapsulated single TLR ligand plus MPs encapsulated HBsAg (P<0.05). These results suggest that synergic TLR3 and TLR5 stimulation might be a promising novel tool for nasally delivered HBsAg.
Collapse
Affiliation(s)
- Xiaojing Dai
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Jintian He
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Ruxia Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Guanghao Wu
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Fangfang Xiong
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| |
Collapse
|
36
|
Zhang J, Shi Y, Zheng Y, Pan C, Yang X, Dou T, Wang B, Lu W. Homing in on an intracellular target for delivery of loaded nanoparticles functionalized with a histone deacetylase inhibitor. Oncotarget 2017; 8:68242-68251. [PMID: 28978112 PMCID: PMC5620252 DOI: 10.18632/oncotarget.20021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Functionalized nanoparticles (NPs) are usually used to enhance cellular penetration for targeted drug delivery that can improve efficacy and reduce side effects. However, it is difficult to exploit intracellular targets for similar delivery applications. Herein we describe the targeted delivery of functionalized NPs by homing in on an intracellular target, histone deacetylases (HDACs). Specifically, a modified poly-lactide-co-glycolideacid (FPLGA) was yielded by conjugation with an HDAC inhibitor. Subsequently, FPLGA was used to prepare functionalized FPLGA NPs. Compared to unmodified NPs, FPLGA NPs were more efficiently uptaken or retained by MCF-7 cells and showed longer retention time intracellular. In vivo fluorescence imaging also revealed that they had a higher accumulation and a slower elimination than unmodified NPs. FPLGA NPs loaded with paclitaxel exhibited superior anticancer efficacy compared with unmodified NPs. These results offer a promising approach for intracellular drug delivery through elevating the concentration of NPs.
Collapse
Affiliation(s)
- Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yaling Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Chengcheng Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xiaoying Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Taoyan Dou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| |
Collapse
|
37
|
|
38
|
Lu KY, Lin PY, Chuang EY, Shih CM, Cheng TM, Lin TY, Sung HW, Mi FL. H 2O 2-Depleting and O 2-Generating Selenium Nanoparticles for Fluorescence Imaging and Photodynamic Treatment of Proinflammatory-Activated Macrophages. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5158-5172. [PMID: 28120612 DOI: 10.1021/acsami.6b15515] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Macrophages have a pivotal role in chronic inflammatory diseases (CIDs), so imaging and controlling activated macrophage is critical for detecting and reducing chronic inflammation. In this study, photodynamic selenium nanoparticles (SeNPs) with photosensitive and macrophage-targeting bilayers were developed. The first layer of the photosensitive macromolecule was composed of a conjugate of a photosensitizer (rose bengal, RB) and a thiolated chitosan (chitosan-glutathione), resulting in a plasmonic coupling-induced red shift and broadening of RB absorption bands with increased absorption intensity. Electron paramagnetic resonance (EPR) and diphenylanthracene (DPA) quenching studies revealed that the SeNPs that were coated with the photosensitive layer were more effective than RB alone in producing singlet oxygen (1O2) under photoirradiation. The second layer of the activated macrophage-targetable macromolecule was synthesized by conjugation of hyaluronic acid with folic acid using an ethylenediamine linker. Proinflammatory-activated macrophages rapidly internalized the SeNPs that were covered with the targeting ligand, exhibiting a much stronger fluorescence signal of the SeNPs than did the nonactivated macrophages. Since proinflammatory-activated macrophage was known to generate a substantial amount of H2O2 while the inflamed site generally caused inflammation-associated tissue hypoxia, the SeNPs were further modified with O2 self-sufficient function for photodynamic therapy. Catalase was immobilized on the SeNPs by the formation of disulfide bonds. Intracellular reduction of disulfide bonds induced the subsequent release of catalase, which catalyzed the decomposition of H2O2. The H2O2-depleting and O2-generating photodynamic SeNPs efficiently killed activated macrophages and quenched the intracellular H2O2 and NO that are associated with inflammation. The SeNPs may have potential as a theranostic nanomaterial to image and control the activation of macrophages.
Collapse
Affiliation(s)
- Kun-Ying Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University , Taipei 11031, Taiwan
| | - Po-Yen Lin
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University , Taipei 11031, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University , Taipei 11031, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University , Taipei 11031, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology, Taipei Medical University , Taipei 11031, Taiwan
| | - Tsung-Yao Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University , Taipei 11031, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, ROC
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University , Taipei 11031, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University , Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University , Taipei 11031, Taiwan
| |
Collapse
|
39
|
|
40
|
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use.
Collapse
Affiliation(s)
- Jian Guo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Xiaojing Jiang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
41
|
Li Z, Xiong F, He J, Dai X, Wang G. Surface-functionalized, pH-responsive poly(lactic-co-glycolic acid)-based microparticles for intranasal vaccine delivery: Effect of surface modification with chitosan and mannan. Eur J Pharm Biopharm 2016; 109:24-34. [PMID: 27569030 DOI: 10.1016/j.ejpb.2016.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 01/05/2023]
Abstract
In the present study, surface-functionalized, pH-responsive poly(lactic-co-glycolic acid) (PLGA) microparticles were investigated for nasal delivery of hepatitis B surface Antigen (HBsAg). pH-responsive PLGA, chitosan modified PLGA (CS-PLGA), mannan modified PLGA (MN-PLGA), mannan and chitosan co-modified PLGA (MN-CS-PLGA) microparticles were prepared utilizing a double-emulsion method. Antigen was released rapidly from four types of microparticles at pH5.0 and pH 6.0, but slowly released at pH 7.4. Mannan and chitosan surface modification enhanced intracellular microparticle uptake by macrophages. Following intracellular macrophage antigen uptake, antigen release occurred in three different patterns: fast release from PLGA and MN-PLGA microparticles in endosomes/lysosomes, slow release from CS-PLGA microparticles in cytoplasm and a combination of fast release and slow release patterns from MN-CS-PLGA microparticles. Furthermore, chitosan coating modification increased the residence time of CS-PLGA and MN-CS-PLGA microparticles in the nasal cavity. In vivo immunogenicity studies indicated that MN-CS-PLGA microparticles induced stronger humoral and cell-mediated immune responses compared with PLGA, MN-PLGA and CS-PLGA microparticles. These results suggest that surface modification of pH-responsive PLGA microparticles with mannan and chitosan is a promising tool for nasal delivery of HBsAg.
Collapse
Affiliation(s)
- Ze Li
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, China
| | - Fangfang Xiong
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, China
| | - Jintian He
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, China.
| | - Xiaojing Dai
- College of Life Science, Hebei Normal University, NO. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, China
| | - Gaizhen Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
42
|
Conjugates of small targeting molecules to non-viral vectors for the mediation of siRNA. Acta Biomater 2016; 36:21-41. [PMID: 27045350 DOI: 10.1016/j.actbio.2016.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED To use siRNA (small interfering RNA) for gene therapy, a gene delivery system is often necessary to overcome several challenging requirements including rapid excretion, low stability in blood serum, non-specific accumulation in tissues, poor cellular uptake and inefficient intracellular release. Active and/or passive targeting should help the delivery system to reach the desired tissue or cell, to be internalized, and to deliver siRNA to the cytoplasm so that siRNA can inhibit protein synthesis. This review covers conjugates of small targeting molecules and non-viral delivery systems for the mediation of siRNA, with a focus on their transfection properties in order to help the development of new and efficient siRNA delivery systems, as the therapeutic solutions of tomorrow. STATEMENT OF SIGNIFICANCE The delivery of siRNA into cells or tissues remains to be a challenge for its applications, an alternative strategy for siRNA delivery systems is direct conjugation of non-viral vectors with targeting moieties for cellular delivery. In comparison to macromolecules, small targeting molecules have attracted great attention due to their many potential advantages including significant simplicity and ease of production, good repeatability and biodegradability. This review will focus on the most recent advances in the delivery of siRNA using conjugates of small targeting molecules and non-viral delivery systems. Based the editor's suggestions, we hope the revised manuscript could provide more profound understanding to the conjugates of targeting molecules to vectors for mediation of siRNA.
Collapse
|
43
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 596] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Wang HY, Hua XW, Jia HR, Liu P, Gu N, Chen Z, Wu FG. Enhanced cell membrane enrichment and subsequent cellular internalization of quantum dots via cell surface engineering: illuminating plasma membranes with quantum dots. J Mater Chem B 2016; 4:834-843. [DOI: 10.1039/c5tb02183a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Through hydrophobic interaction-based cell surface engineering, enhanced plasma membrane enrichment and subsequent cellular internalization of quantum dots were achieved.
Collapse
Affiliation(s)
- Hong-Yin Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Xian-Wu Hua
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Peidang Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| |
Collapse
|
45
|
Méndez-Ardoy A, Díaz-Moscoso A, Ortiz Mellet C, Di Giorgio C, Vierling P, Benito JM, García Fernández JM. Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery. RSC Adv 2015. [DOI: 10.1039/c5ra16087a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycationic amphiphilic cyclodextrins (paCDs) have been shown to behave as efficient non-viral gene carriers paralleling the efficacy of commercial vectors towards a variety of cell lines.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | | | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | - Christophe Di Giorgio
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Pierre Vierling
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas
- CSIC – Univ. Sevilla
- E-41092 Sevilla
- Spain
| | | |
Collapse
|