1
|
Gao C, Yuan W, Wang D, Zhang X, Zhang T, Zhou Z. Adipose-derived mesenchymal stem cell-incorporated PLLA porous microspheres for cartilage regeneration. Animal Model Exp Med 2024; 7:685-695. [PMID: 38785141 PMCID: PMC11528392 DOI: 10.1002/ame2.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In facial plastic surgery, patients with nasal deformity are often treated by rib cartilage transplantation. In recent years, cartilage tissue engineering has developed as an alternative to complex surgery for patients with minor nasal defects via injection of nasal filler material. In this study, we prepared an injectable nasal filler material containing poly-L-lactic acid (PLLA) porous microspheres (PMs), hyaluronic acid (HA) and adipose-derived mesenchymal stem cells (ADMSCs). METHODS We seeded ADMSCs into as-prepared PLLA PMs using our newly invented centrifugation perfusion technique. Then, HA was mixed with ADMSC-incorporated PLLA PMs to form a hydrophilic and injectable cell delivery system (ADMSC-incorporated PMH). RESULTS We evaluated the biocompatibility of PMH in vitro and in vivo. PMH has good injectability and provides a favorable environment for the proliferation and chondrogenic differentiation of ADMSCs. In vivo experiments, we observed that PMH has good biocompatibility and cartilage regeneration ability. CONCLUSION In this study, a injectable cell delivery system was successfully constructed. We believe that PMH has potential application in cartilage tissue engineering, especially in nasal cartilage regeneration.
Collapse
Affiliation(s)
- Chang Gao
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Wenlong Yuan
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Dongcheng Wang
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Xin Zhang
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Tong Zhang
- Clinical LaboratoryTianjin HospitalTianjinChina
| | - Zhimin Zhou
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| |
Collapse
|
2
|
Xu M, He Y, Li Y, Liu K, Zhang Y, Su T, Yao Y, Jin X, Zhang X, Lu F. Combined Use of Autologous Sustained-Release Scaffold of Adipokines and Acellular Adipose Matrix to Construct Vascularized Adipose Tissue. Plast Reconstr Surg 2024; 153:348e-360e. [PMID: 37171265 DOI: 10.1097/prs.0000000000010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Adipose tissue engineering plays a key role in the reconstruction of soft-tissue defects. The acellular adipose matrix (AAM) is a promising biomaterial for the construction of engineered adipose tissue. However, AAM lacks sufficient adipoinduction potency because of the abundant loss of matrix-bound adipokines during decellularization. METHODS An adipose-derived extracellular matrix collagen scaffold, "adipose collagen fragment" (ACF), was prepared using a novel mechanical method that provides sustained release of adipokines. Here, the authors used label-free proteomics methods to detect the protein components in AAM and ACF. In vivo, ACF was incorporated into AAM or acellular dermal matrix and implanted into nude mice to evaluate adipogenesis. Neoadipocytes, neovessels, and corresponding gene expression were evaluated. The effects of ACF on adipogenic differentiation of human adipose-derived stem cells and tube formation by human umbilical vein endothelial cells were tested in vitro. RESULTS Proteomics analysis showed that ACF contains diverse adipogenic and angiogenic proteins. ACF can release diverse adipokines and induce highly vascularized, mature adipose tissue in AAM, and even in nonadipogenic acellular dermal matrix. Higher expression of adipogenic markers peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha and greater numbers of tubule structures were observed in ACF-treated groups in vitro. CONCLUSION The combination of ACF and AAM could serve as a novel and promising strategy to construct mature, vascularized adipose tissue for soft-tissue reconstruction. CLINICAL RELEVANCE STATEMENT The combined use of AAM and ACF has been proven to induce a highly vascularized, mature, engineered adipose tissue in the nude mouse model, which may serve as a promising strategy for soft-tissue reconstruction.
Collapse
Affiliation(s)
- Mimi Xu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunfan He
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yibao Li
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Kaiyang Liu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yuchen Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Ting Su
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yao Yao
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiaoxuan Jin
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiangdong Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
3
|
Sato H, Kohyama K, Uchibori T, Takanari K, Huard J, Badylak SF, D'Amore A, Wagner WR. Creating and Transferring an Innervated, Vascularized Muscle Flap Made from an Elastic, Cellularized Tissue Construct Developed In Situ. Adv Healthc Mater 2023; 12:e2301335. [PMID: 37499214 DOI: 10.1002/adhm.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.
Collapse
Affiliation(s)
- Hideyoshi Sato
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keishi Kohyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Takafumi Uchibori
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 West Meadow Dr., Vail, CO, 81657, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Fondazione Ri.MED, Palermo, 90133, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| |
Collapse
|
4
|
Debski T, Siennicka K, Idaszek J, Roszkowski B, Swieszkowski W, Pojda Z. Effect of adipose-derived stem cells seeding and surgical prefabrication on composite scaffold vascularization. J Biomater Appl 2023; 38:548-561. [PMID: 37732423 DOI: 10.1177/08853282231202601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The study aimed to evaluate an angiogenic effect of adipose-derived stem cells (ASCs) seeding and surgical prefabrication (placing a vascular pedicle inside the scaffold) on developed composite scaffolds made of poly-ε-caprolactone (PCL), β-tricalcium phosphate (β-TCP), and poly (lactic-co-glycolic acid) (PLGA) (PCL+β-TCP+PLGA). Moreover, we aimed to compare our data with previously tested PCL scaffolds to assess whether the new material has better angiogenic properties. The study included 18 inbred male WAG rats. There were three scaffold groups (six animals each): with non-seeded PCL+β-TCP+PLGA scaffolds, with PCL+β-TCP+PLGA scaffolds seeded with ASCs and with PCL+β-TCP+PLGA scaffolds seeded with ASCs and osteogenic-induced. Each rat was implanted with two scaffolds in the inguinal region (one prefabricated and one non-prefabricated). After 2 months from implantation, the scaffolds were explanted, and vessel density was determined by histopathological examination. Prefabricated ASC-seeded PCL+β-TCP+PLGA scaffolds promoted greater vessel formation than non-seeded scaffolds (19.73 ± 5.46 vs 12.54 ± 0.81; p = .006) and those seeded with osteogenic-induced ASCs (19.73 ± 5.46 vs 11.87±2.21; p = .004). The developed composite scaffold promotes vessel formation more effectively than the previously described PCL scaffold.
Collapse
Affiliation(s)
- Tomasz Debski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Idaszek
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Bartlomiej Roszkowski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
5
|
Zhang Q, Chiu Y, Chen Y, Wu Y, Dunne LW, Largo RD, Chang EI, Adelman DM, Schaverien MV, Butler CE. Harnessing the synergy of perfusable muscle flap matrix and adipose-derived stem cells for prevascularization and macrophage polarization to reconstruct volumetric muscle loss. Bioact Mater 2023; 22:588-614. [PMID: 36382023 PMCID: PMC9646752 DOI: 10.1016/j.bioactmat.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Muscle flaps must have a strong vascular network to support a large tissue volume and ensure successful engraftment. We developed porcine stomach musculofascial flap matrix (PDSF) comprising extracellular matrix (ECM) and intact vasculature. PDSF had a dominant vascular pedicle, microcirculatory vessels, a nerve network, well-retained 3-dimensional (3D) nanofibrous ECM structures, and no allo- or xenoantigenicity. In-depth proteomic analysis demonstrated that PDSF was composed of core matrisome proteins (e.g., collagens, glycoproteins, proteoglycans, and ECM regulators) that, as shown by Gene Ontology term enrichment analysis, are functionally related to musculofascial biological processes. Moreover, PDSF-human adipose-derived stem cell (hASC) synergy not only induced monocytes towards IL-10-producing M2 macrophage polarization through the enhancement of hASCs' paracrine effect but also promoted the proliferation and interconnection of both human skeletal muscle myoblasts (HSMMs) and human umbilical vein endothelial cells (HUVECs) in static triculture conditions. Furthermore, PDSF was successfully prevascularized through a dynamic perfusion coculture of hASCs and HUVECs, which integrated with PDSF and induced the maturation of vascular networks in vitro. In a xenotransplantation model, PDSF demonstrated myoconductive and immunomodulatory properties associated with the predominance of M2 macrophages and regulatory T cells. In a volumetric muscle loss (VML) model, prevascularized PDSF augmented neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant musculofascial tissue formation. These results indicate that hASCs' integration with PDSF enhances the cells' dual function in immunomodulation and angiogenesis. Owing in part to this PDSF-hASC synergy, our platform shows promise for vascularized muscle flap engineering for VML reconstruction.
Collapse
Affiliation(s)
- Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youbai Chen
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Plastic Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yewen Wu
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lina W. Dunne
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rene D. Largo
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Edward I. Chang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David M. Adelman
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark V. Schaverien
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles E. Butler
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Wang X, Chan V, Corridon PR. Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers (Basel) 2022; 14:4825. [PMID: 36432950 PMCID: PMC9695055 DOI: 10.3390/polym14224825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive and permanent damage to the vasculature leading to different pathogenesis calls for developing innovative therapeutics, including drugs, medical devices, and cell therapies. Innovative strategies to engineer bioartificial/biomimetic vessels have been extensively exploited as an effective replacement for vessels that have seriously malfunctioned. However, further studies in polymer chemistry, additive manufacturing, and rapid prototyping are required to generate highly engineered vascular segments that can be effectively integrated into the existing vasculature of patients. One recently developed approach involves designing and fabricating acellular vessel equivalents from novel polymeric materials. This review aims to assess the design criteria, engineering factors, and innovative approaches for the fabrication and characterization of biomimetic macro- and micro-scale vessels. At the same time, the engineering correlation between the physical properties of the polymer and biological functionalities of multiscale acellular vascular segments are thoroughly elucidated. Moreover, several emerging characterization techniques for probing the mechanical properties of tissue-engineered vascular grafts are revealed. Finally, significant challenges to the clinical transformation of the highly promising engineered vessels derived from polymers are identified, and unique perspectives on future research directions are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Peter R. Corridon
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
7
|
Techniques and Innovations in Flap Engineering: A Review. Plast Reconstr Surg Glob Open 2022; 10:e4523. [PMID: 36168612 PMCID: PMC9509183 DOI: 10.1097/gox.0000000000004523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Currently, the gold standard for complex defect reconstruction is autologous tissue flaps, with vascularized composite allografts as its highest level. Good clinical results are obtained despite considerable obstacles, such as limited donor sites, donor site morbidity, and complex operations. Researchers in the field of tissue engineering are trying to generate novel tissue flaps requiring small or no donor site sacrifice. At the base of existing technologies is the tissue’s potential for regeneration and neovascularization.
Collapse
|
8
|
Su T, Xu M, Lu F, Chang Q. Adipogenesis or osteogenesis: destiny decision made by mechanical properties of biomaterials. RSC Adv 2022; 12:24501-24510. [PMID: 36128379 PMCID: PMC9425444 DOI: 10.1039/d2ra02841g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Regenerative medicine affords an effective approach for restoring defect-associated diseases, and biomaterials play a pivotal role as cell niches to support the cell behavior and decide the destiny of cell differentiation. Except for chemical inducers, mechanical properties such as stiffness, pore size and topography of biomaterials play a crucial role in the regulation of cell behaviors and functions. Stiffness may determine the adipogenesis or osteogenesis of mesenchymal stem cells (MSCs) via the translocation of yes-associated protein (YAP) and the transcriptional coactivator with a PDZ-binding motif (TAZ). External forces transmit through cytoskeleton reorientation to assist nuclear deformation and molecule transport, meanwhile, signal pathways including the Hippo, FAK/RhoA/ROCK, and Wnt/β-catenin have been evidenced to participate in the mechanotransduction. Different pore sizes not only tailor the scaffold stiffness but also conform to the requirements of cell migration and vessels in-growth. Topography guides cell geometry along with mobility and determines the cell fate ascribed to micro/nano-scale contact. Herein, we highlight the recent progress in exploring the regulation mechanism by the physical properties of biomaterials, which might lead to more innovative regenerative strategies for adipose or bone tissue repair.
Collapse
Affiliation(s)
- Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| |
Collapse
|
9
|
Guimarães CF, Marques AP, Reis RL. Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105645. [PMID: 35419887 DOI: 10.1002/adma.202105645] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The engineering of fully functional, biological-like tissues requires biomaterials to direct cellular events to a near-native, 3D niche extent. Natural biomaterials are generally seen as a safe option for cell support, but their biocompatibility and biodegradability can be just as limited as their bioactive/biomimetic performance. Furthermore, integrating different biomaterial cues and their final impact on cellular behavior is a complex equation where the outcome might be very different from the sum of individual parts. This review critically analyses recent progress on biomaterial-induced cellular responses, from simple adhesion to more complex stem cell differentiation, looking at the ever-growing possibilities of natural materials modification. Starting with a discussion on native material formulation and the inclusion of cell-instructive cues, the roles of shape and mechanical stimuli, the susceptibility to cellular remodeling, and the often-overlooked impact of cellular density and cell-cell interactions within constructs, are delved into. Along the way, synergistic and antagonistic combinations reported in vitro and in vivo are singled out, identifying needs and current lessons on the development of natural biomaterial libraries to solve the cell-material puzzle efficiently. This review brings together knowledge from different fields envisioning next-generation, combinatorial biomaterial development toward complex tissue engineering.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Allen BN, Wang Q, Filali Y, Worthington KS, Kacmarynski DSF. Full-Thickness Oral Mucoperiosteal Defects: Challenges and Opportunities. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:813-829. [PMID: 34409870 PMCID: PMC9469748 DOI: 10.1089/ten.teb.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Regenerative engineering strategies for the oral mucoperiosteum, as may be needed following surgeries, such as cleft palate repair and tumor resection, are underdeveloped compared with those for maxillofacial bone. However, critical-size tissue defects left to heal by secondary intention can lead to complications, such as infection, fistula formation, scarring, and midface hypoplasia. This review describes current clinical practice for replacing mucoperiosteal tissue, including autografts and allografts. Potentially paradigm-shifting experimental regenerative engineering strategies for mucoperiosteal wound healing, such as hybrid grafts and engineered matrices, are also discussed. Throughout the review, the advantages and disadvantages of each replacement or regeneration strategy are outlined in the context of clinical outcomes, quality of life for the patient, availability of materials, and cost of care. Finally, future directions for research and development in the area of mucoperiosteum repair are proposed, with an emphasis on identifying globally available and affordable solutions for promoting mucoperiosteal regeneration. Impact statement Unassisted oral mucoperiosteal wound healing can lead to severe complications such as infection, fistulae, scarring, and developmental abnormalities. Thus, strategies for promoting wound healing must be considered when mucoperiosteal defects are incident to oral surgery, as in palatoplasty or tumor resection. Emerging mucoperiosteal tissue engineering strategies, described in this study, have the potential to overcome the limitations of current standard-of-care donor tissue grafts. For example, the use of engineered mucoperiosteal biomaterials could circumvent concerns about tissue availability and immunogenicity. Moreover, employment of tissue engineering strategies may improve the equity of oral wound care by increasing global affordability and accessibility of materials.
Collapse
Affiliation(s)
- Brittany N Allen
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Qi Wang
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Yassine Filali
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Deborah S F Kacmarynski
- Department of Otolaryngology - Head and Neck Surgery, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Liu K, He Y, Lu F. Research Progress on the Immunogenicity and Regeneration of Acellular Adipose Matrix: A Mini Review. Front Bioeng Biotechnol 2022; 10:881523. [PMID: 35733521 PMCID: PMC9207478 DOI: 10.3389/fbioe.2022.881523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acellular adipose matrix (AAM) has received increasing attention for soft tissue reconstruction, due to its abundant source, high long-term retention rate and in vivo adipogenic induction ability. However, the current decellularization methods inevitably affect native extracellular matrix (ECM) properties, and the residual antigens can trigger adverse immune reactions after transplantation. The behavior of host inflammatory cells mainly decides the regeneration of AAM after transplantation. In this review, recent knowledge of inflammatory cells for acellular matrix regeneration will be discussed. These advancements will inform further development of AAM products with better properties.
Collapse
|
12
|
Kreimendahl F, Kniebs C, Tavares Sobreiro AM, Schmitz-Rode T, Jockenhoevel S, Thiebes AL. FRESH bioprinting technology for tissue engineering - the influence of printing process and bioink composition on cell behavior and vascularization. J Appl Biomater Funct Mater 2021; 19:22808000211028808. [PMID: 34282976 DOI: 10.1177/22808000211028808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The rapid and tailored biofabrication of natural materials is of high interest for the field of tissue engineering and regenerative medicine. Scaffolds require both high biocompatibility and tissue-dependent mechanical strength to function as basis for tissue-engineered implants. Thus, natural hydrogels such as fibrin are promising but their rapid biofabrication remains challenging. Printing of low viscosity and slow polymerizing solutions with good spatial resolution can be achieved by freeform reversible embedding of suspended hydrogels (FRESH) bioprinting of cell-laden natural hydrogels. In this study, fibrin and hyaluronic acid were used as single components as well as blended ink mixtures for the FRESH bioprinting. Rheometry revealed that single materials were less viscous than the blended bioink showing higher values for viscosity over a shear rate of 10-1000 s-1. While fibrin showed viscosities between 0.1624 and 0.0017 Pa·s, the blended ink containing fibrin and hyaluronic acid were found to be in a range of 0.1-1 Pa·s. In 3D vascularization assays, formation of vascular structures within the printed constructs was investigated indicating that the printing process did not harm cells and allowed formation of vasculature comparable to moulded control samples. Best values for vascularization were achieved in bioinks consisting of 1.0% fibrin-0.5% hyaluronic acid. The vascular structure area and length were three times higher compared to other tested bioinks, and structure volume as well as number of branches revealed almost four times higher values. In this study, we combined the benefits of the FRESH printing technique with in vitro vascularization, showing that it is possible to achieve a mechanically stable small-scale hydrogel construct incorporating vascular network formation.
Collapse
Affiliation(s)
- Franziska Kreimendahl
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.,Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Caroline Kniebs
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.,Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Ana Margarida Tavares Sobreiro
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.,Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Anja Lena Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.,Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| |
Collapse
|
13
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Del Vento F, Poels J, Vermeulen M, Ucakar B, Giudice MG, Kanbar M, des Rieux A, Wyns C. Accelerated and Improved Vascular Maturity after Transplantation of Testicular Tissue in Hydrogels Supplemented with VEGF- and PDGF-Loaded Nanoparticles. Int J Mol Sci 2021; 22:5779. [PMID: 34071329 PMCID: PMC8198558 DOI: 10.3390/ijms22115779] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023] Open
Abstract
Avascular transplantation of frozen-thawed testicular tissue fragments represents a potential future technique for fertility restoration in boys with cancer. A significant loss of spermatogonia was observed in xeno-transplants of human tissue most likely due to the hypoxic period before revascularization. To reduce the effect of hypoxia-reoxygenation injuries, several options have already been explored, like encapsulation in alginate hydrogel and supplementation with nanoparticles delivering a necrosis inhibitor (NECINH) or VEGF. While these approaches improved short-term (5 days) vascular surfaces in grafts, neovessels were not maintained up to 21 days; i.e., the time needed for achieving vessel stabilization. To better support tissue grafts, nanoparticles loaded with VEGF, PDGF and NECINH were developed. Testicular tissue fragments from 4-5-week-old mice were encapsulated in calcium-alginate hydrogels, either non-supplemented (control) or supplemented with drug-loaded nanoparticles (VEGF-nanoparticles; VEGF-nanoparticles + PDGF-nanoparticles; NECINH-nanoparticles; VEGF-nanoparticles + NECINH-nanoparticles; and VEGF-nanoparticles + PDGF-nanoparticles + NECINH-nanoparticles) before auto-transplantation. Grafts were recovered after 5 or 21 days for analyses of tissue integrity (hematoxylin-eosin staining), spermatogonial survival (immuno-histo-chemistry for promyelocytic leukemia zinc finger) and vascularization (immuno-histo-chemistry for α-smooth muscle actin and CD-31). Our results showed that a combination of VEGF and PDGF nanoparticles increased vascular maturity and induced a faster maturation of vascular structures in grafts.
Collapse
Affiliation(s)
- Federico Del Vento
- Gynecology-Andrology Unit, Institute of Experimental and Clinical Research, Medical School, Catholic University of Louvain, UCLouvain, 1200 Brussels, Belgium; (F.D.V.); (J.P.); (M.V.); (M.G.G.); (M.K.)
| | - Jonathan Poels
- Gynecology-Andrology Unit, Institute of Experimental and Clinical Research, Medical School, Catholic University of Louvain, UCLouvain, 1200 Brussels, Belgium; (F.D.V.); (J.P.); (M.V.); (M.G.G.); (M.K.)
| | - Maxime Vermeulen
- Gynecology-Andrology Unit, Institute of Experimental and Clinical Research, Medical School, Catholic University of Louvain, UCLouvain, 1200 Brussels, Belgium; (F.D.V.); (J.P.); (M.V.); (M.G.G.); (M.K.)
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Catholic University of Louvain, UCLouvain, 1200 Brussels, Belgium; (B.U.); (A.d.R.)
| | - Maria Grazia Giudice
- Gynecology-Andrology Unit, Institute of Experimental and Clinical Research, Medical School, Catholic University of Louvain, UCLouvain, 1200 Brussels, Belgium; (F.D.V.); (J.P.); (M.V.); (M.G.G.); (M.K.)
- Department of Gynecology-Andrology, Saint-Luc University Hospital, 1200 Brussels, Belgium
| | - Marc Kanbar
- Gynecology-Andrology Unit, Institute of Experimental and Clinical Research, Medical School, Catholic University of Louvain, UCLouvain, 1200 Brussels, Belgium; (F.D.V.); (J.P.); (M.V.); (M.G.G.); (M.K.)
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Catholic University of Louvain, UCLouvain, 1200 Brussels, Belgium; (B.U.); (A.d.R.)
| | - Christine Wyns
- Gynecology-Andrology Unit, Institute of Experimental and Clinical Research, Medical School, Catholic University of Louvain, UCLouvain, 1200 Brussels, Belgium; (F.D.V.); (J.P.); (M.V.); (M.G.G.); (M.K.)
- Department of Gynecology-Andrology, Saint-Luc University Hospital, 1200 Brussels, Belgium
| |
Collapse
|
15
|
Koski C, Sarkar N, Bose S. Cytotoxic and osteogenic effects of crocin and bicarbonate from calcium phosphates for potential chemopreventative and anti-inflammatory applications in vitro and in vivo. J Mater Chem B 2021; 8:2048-2062. [PMID: 32064472 DOI: 10.1039/c9tb01462d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Delayed healing and nonhealing of bone defects or resected bone sites remains an important clinical concern in the biomedical field. Osteosarcoma is one of the most common types of primary bone cancers. Among calcium phosphates, hydroxyapatite (HA) and tricalcium phosphate (TCP) are the most widely used in various biomedical applications for bone reconstruction and replacement. In this study, crocin, saffron's natural bioactive and anti-inflammatory molecule, and bicarbonate, a neutralizing agent, were directly loaded onto HA disks to evaluate their in vitro release and effect on human osteoblast and osteosarcoma cell lines. This was assessed through release, initial toxicity, drug optimization, final toxicity studies and in vivo anti-inflammatory assessment through H&E indexing. It is hypothesized that the release of crocin, bicarbonate, and the dual release of both agents will decrease osteosarcoma cellular viability with no effect on osteoblast cells. A plateaued release of crocin and bicarbonate was achieved over seven weeks in physiological and acidic environments, where bicarbonate was shown to modulate the release of crocin. Through morphological characterization and MTT assay analysis, bicarbonate showed no toxicity to human fetal osteoblast (hFOB) cells and crocin significantly enhanced osteoblast proliferation. Through drug concentration optimization, all drug loaded samples decreased human osteosarcoma (MG-63) viability by 50% compared to control samples by Day 11, with clear changes in cell spreading and morphology. Moreover, 3D printed TCP scaffolds loaded with crocin and bicarbonate were tested in vivo in order to assess their preliminary effects on inflammation in a rat distal femur model at 4 days. Lower inflammatory cellular recruitment was achieved in the presence of crocin and bicarbonate, compared to the control. These results suggest a pro-apoptotic mechanism against osteosarcoma as well as anti-inflammatory properties of crocin and bicarbonate, elucidating a potential application for osteosarcoma regulation and wound healing for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Caitlin Koski
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
16
|
Zou M, Sun J, Xiang Z. Induction of M2-Type Macrophage Differentiation for Bone Defect Repair via an Interpenetration Network Hydrogel with a GO-Based Controlled Release System. Adv Healthc Mater 2021; 10:e2001502. [PMID: 33464711 DOI: 10.1002/adhm.202001502] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Recently, biomaterials with immune-regulating properties have emerged as crucial new platforms for bone tissue engineering. Inducing macrophages to differentiate into M2 subtype can reduce immune inflammatory response and accelerate tissue repair after implantation. An interpenetration network hydrogel is developed utilizing graphene oxide (GO)-carboxymethyl chitosan (CMC)/poly(ethylene glycol) diacrylate (PEGDA), in which two bioactive molecules, interleukin-4 (IL-4) and bone morphogenetic protein-2 (BMP-2), are loaded and released in a controlled manner to induce macrophages to differentiate into M2 type and enhance bone formation. These two factors are initially loaded with GO and then embedded into the CMC/PEGDA hydrogel for sustained release. Results indicate that the hydrogel shows enhanced mechanical stiffness, strength, and stability. The hydrogel loaded with IL-4 and BMP-2 significantly promotes both macrophage M2-type differentiation and bone marrow mesenchymal stem cell osteogenesis differentiation in vitro. Furthermore, in vivo studies show that the implantation of this hydrogel markedly reduces local inflammation while enhancing bone regeneration at 8 weeks post-implantation. In all, the findings suggest that hydrogel loaded with IL-4 and BMP-2 has synergistic effects on bone regeneration. Such an induction and immunomodulation system offers a promising strategy for the development of future bone immune regulation and tissue engineering applications.
Collapse
Affiliation(s)
- Min Zou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Orthopedics, No. 1 People's Hospital of Chengdu, Chengdu, Sichuan, 610041, P. R. China
| | - Jiachen Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Division of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
17
|
刘 鹏, 谭 秋, 张 忆, 王 红, 吕 青. [Preliminary exploration on the application of hydrogel from acellular porcine adipose tissue to assist lipofilling]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1322-1331. [PMID: 33063500 PMCID: PMC8171868 DOI: 10.7507/1002-1892.202002126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/07/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effect of hydrogel from acellular porcine adipose tissue (HAPA) on the survival of transplanted adipose tissue. METHODS For in vitro study, adipose tissue and HAPA-adipose tissue complex were cultured in normoxia and hypoxia atmospheres for 24 and 72 hours. TUNEL and Perilipin immunofluorescence staining were performed to observe the effect of HAPA on apoptosis and survival of adipocities. For in vivo study, 42 healthy male nude mice (4-6 weeks old) weighing 15-18 g were randomly divided into adipose group (group A), 10%HAPA group (group B), 20%HAPA group (group C), 30%HAPA group (group D), 40%HAPA group (group E), and 50%HAPA group (group F) according to different HAPA/adipose tissue volume ratio ( n=7). For each group, 1 mL adipose tissue or HAPA-adipose tissue complex was injected subcutaneously into the dorsum of the nude mice. At 4 weeks after transplantation, 7 nude mice in each group were sacrificed and grafts were harvested, gross observation, volume measurement, ultrasound examination, and histologic staining (HE staining, CD31 and Perilipin immunofluorescence stainings) were applied. RESULTS Hypoxia showed a tendency of promoting adipose tissue necrosis and apoptosis, while HAPA exhibited an obvious effect of inhibiting cell apoptosis in vitro study ( P<0.05). For in vivo study, grafts of all groups had intact fibrocapsule. No obvious signs of infection and necrosis were observed at 4 weeks. Volume shrinkage was observed in all groups, however, the groups A-D had significantly higher volume retention rate than groups E and F ( P<0.05). Ultrasound examination showed that there were no significant difference in the number and volume of liquify area of the grafts in each group ( P>0.05). With the increase of HAPA's volume ratio, HE staining proved an improved fat integrity while a gradually decreased vacuoles and fibrosis. CD31 immunohistochemical staining showed that the number of neo-vascularisation in groups E and F were significantly higher than those in groups A-D ( P<0.05). Perilipin immunofluorescence staining showed that with the increase of HAPA volume ratio, the number of living adipocytes increased gradually, and more new adipocytes could be seen in the field of vision. CONCLUSION As the volume ratio of HAPA gradually increased, the survival of transplanted adipose tissue also increased, but the volume retention rate decreased gradually. 30%HAPA was considered the relative optimal volume ratio for its superior adipose tissue survival and volume retation rate.
Collapse
Affiliation(s)
- 鹏程 刘
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 秋雯 谭
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
- 四川大学华西医院干细胞与组织工程实验室(成都 610041)Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 忆 张
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 红 王
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 青 吕
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
18
|
Zhao L, Deng W, Riaz Rajoka MS, Cai D, Xing T, Wu Y. Regulation of the Morphological and Physical Properties of a Soft Tissue Scaffold by Manipulating DD and DS of O-Carboxymethyl Chitin. ACS APPLIED BIO MATERIALS 2020; 3:6187-6195. [PMID: 35021751 DOI: 10.1021/acsabm.0c00730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To improve the biocompatibility/biodegradability as well as to lower the cost of the popular glycosaminoglycan/collagen scaffold, a monocomponent's polysaccharide scaffold based on biomimetic chemical modification of chitin from lower organisms was developed creatively. O-Carboxymethyl chitin (O-CMCH) was prepared by chloroacetic acid substitution of alkalized chitin. The cross-linked O-CMCH soft tissue scaffold was constructed by a sol-gel freeze-drying method. The key parameters of the O-CMCH molecular structure, the degree of deacetylation (DD), and the degree of substitution (DS) were used to regulate the morphology and physical properties of the scaffold. The optimized scaffolds were implanted subcutaneously in mice, and the inflammation reaction of surrounding tissues, dermal tissue growth, and scaffold degradation were observed dynamically by light microscopy and scanning electron microscopy. The results showed that the micropores of the scaffold constructed by O-CMCH with DD = 0.53 and DS = 0.61 were uniformly distributed and in communication with each other, and the pore size was 100-150 μm, with high porosity (93.52 ± 4.68%), high swelling ratio (1402 ± 70%), and high skeleton cross-linking degree (93.4 ± 4.6%). Its tensile strength reached 0.183 ± 0.009 MPa, and its elongation at break was 18.7 ± 0.9%. Furthermore, it could be degraded to less than 10% after 16 days in phosphate buffer solution (pH = 7.4) with 0.2 mg/mL lysozymes (≥ 20 000 U/mg). The early inflammation after implanting the optimized scaffolds in mice showed no difference compared with the control. The scaffold material induced dermal tissues to grow over it and was degraded gradually in vivo. The optimized scaffold regulated by DD and DS of O-CMCH possessed suitable morphology and physical properties for soft tissue engineering technology and exhibited a high applicable value.
Collapse
Affiliation(s)
- Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wenjing Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | | | - Dejiao Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Tao Xing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yiguang Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
19
|
邹 敏, 孙 嘉, 项 舟. [Early effect of graphene oxide-carboxymethyl chitosan hydrogel loaded with interleukin 4 and bone morphogenetic protein 2 on bone immunity and repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1044-1051. [PMID: 32794677 PMCID: PMC8171907 DOI: 10.7507/1002-1892.201911068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/27/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effect of graphene oxide (GO)-carboxymethyl chitosan (CMC) hydrogel loaded with interleukin 4 (IL-4) and bone morphogenetic protein 2 (BMP-2) on macrophages M2 type differentiation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS GO solution was mixed with CMC, then the phosphate buffered saline (PBS), IL-4, BMP-2, or IL-4+BMP-2 were added to prepare different GO-CMC hydrogel scaffolds with or without different cytokines under crosslinking agents. The characteristics of pure GO-CMC hydrogel were characterized by gross observation, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR), and the CMC hydrogel was used as control. The sustained release of GO-CMC hydrogels with different cytokines was also tested. Macrophages were isolated and cultured from female Sprague Dawley rats aged 4-5 weeks, and then cultured with GO-CMC hydrogels with and without different cytokines, respectively. CD206 immunofluorescence staining was used to detect the differentiation of macrophages after 24 hours. The 3rd generation of rats BMSCs were cultured with GO-CMC hydrogels with and without different cytokines respectively for osteogenic induction. The early osteogenesis was observed by alkaline phosphatase (ALP) staining after 10 days, and the late osteogenesis was observed by alizarin red staining after 21 days. RESULTS Generally, GO-CMC hydrogel was brown and translucent. SEM showed that the pore diameter and wall thickness of GO-CMC hydrogel were similar to that of CMC hydrogel, but the inner wall roughness increased. FTIR test showed that CMC polymerized to form hydrogel. In vitro, the sustained release experiments showed that the properties of GO-CMC hydrogels loaded with different cytokines were similar. CD206 immunofluorescence detection showed that GO-CMC hydrogels could induce macrophages differentiation into M2-type. ALP and alizarin red staining showed that GO-CMC hydrogels could induce BMSCs osteogenic differentiation, in which GO-CMC hydrogel loaded with IL-4+BMP-2 showed the most significant effect ( P<0.05). CONCLUSION The GO-CMC hydrogel loaded with IL-4 and BMP-2 can induce macrophages differentiation into M2-type and enhance the ability of BMSCs with osteogenic differentiation in vitro, which provide a new strategy for bone defect repair and immune regulation.
Collapse
Affiliation(s)
- 敏 邹
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
- 成都市第一人民医院骨科(成都 610016)Department of Orthopedics, Chengdu First People’s Hospital, Chengdu Sichuan, 610016, P.R.China
| | - 嘉辰 孙
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 舟 项
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
20
|
Kamat P, Frueh FS, McLuckie M, Sanchez-Macedo N, Wolint P, Lindenblatt N, Plock JA, Calcagni M, Buschmann J. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Cytotherapy 2020; 22:400-411. [PMID: 32507607 DOI: 10.1016/j.jcyt.2020.03.433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Tissue defects in the human body after trauma and injury require precise reconstruction to regain function. Hence, there is a great demand for clinically translatable approaches with materials that are both biocompatible and biodegradable. They should also be able to adequately integrate within the tissue through sufficient vascularization. Adipose tissue is abundant and easily accessible. It is a valuable tissue source in regenerative medicine and tissue engineering, especially with regard to its angiogenic potential. Derivatives of adipose tissue, such as microfat, nanofat, microvascular fragments, stromal vascular fraction and stem cells, are commonly used in research, but also clinically to enhance the vascularization of implants and grafts at defect sites. In plastic surgery, adipose tissue is harvested via liposuction and can be manipulated in three ways (macro-, micro- and nanofat) in the operating room, depending on its ultimate use. Whereas macro- and microfat are used as a filling material for soft tissue injuries, nanofat is an injectable viscous extract that primarily induces tissue remodeling because it is rich in growth factors and stem cells. In contrast to microfat that adds volume to a defect site, nanofat has the potential to be easily combined with scaffold materials due to its liquid and homogenous consistency and is particularly attractive for blood vessel formation. The same is true for microvascular fragments that are easily isolated from adipose tissue through collagenase digestion. In preclinical animal models, it has been convincingly shown that these vascular fragments inosculate with host vessels and subsequently accelerate scaffold perfusion and host tissue integration. Adipose tissue is also an ideal source of stem cells. It yields larger quantities of cells than any other source and is easier to access for both the patient and doctor compared with other sources such as bone marrow. They are often used for tissue regeneration in combination with biomaterials. Adipose-derived stem cells can be applied unmodified or as single cell suspensions. However, certain pretreatments, such as cultivation under hypoxic conditions or three-dimensional spheroids production, may provide substantial benefit with regard to subsequent vascularization in vivo due to induced growth factor production. In this narrative review, derivatives of adipose tissue and the vascularization of biomaterials are addressed in a comprehensive approach, including several sizes of derivatives, such as whole fat flaps for soft tissue engineering, nanofat or stem cells, their secretome and exosomes. Taken together, it can be concluded that adipose tissue and its fractions down to the molecular level promote, enhance and support vascularization of biomaterials. Therefore, there is a high potential of the individual fat component to be used in regenerative medicine.
Collapse
Affiliation(s)
- Pranitha Kamat
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Michelle McLuckie
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nadia Sanchez-Macedo
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Petra Wolint
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Fang H, Luo C, Liu S, Zhou M, Zeng Y, Hou J, Chen L, Mou S, Sun J, Wang Z. A biocompatible vascularized graphene oxide (GO)-collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration in vivo. Am J Cancer Res 2020; 10:2759-2772. [PMID: 32194833 PMCID: PMC7052891 DOI: 10.7150/thno.42006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
The survival of transplanted cells and tissues in bone regeneration requires a microenvironment with a vibrant vascular network. A tissue engineering chamber can provide this in vivo. However, the commonly used silicone chamber is biologically inert and can cause rejection reactions and fibrous capsule. Studies have revealed that collagen is highly biocompatible and graphene oxide (GO) could regulate osteogenic activity in vivo. Besides, GO can be cross-linked with natural biodegradable polymers to construct scaffolds. Methods: A vascularized GO-collagen chamber model was built by placing vessels traversing through the embedded tissue-engineered grafts (osteogenic-induced bone mesenchymal stem cells -gelatin) in the rat groin area. Osteogenic activity and inflammatory reactions were assessed using different methods including micro-CT scanning, Alizarin red staining, and immunohistochemical staining. Results: After one month, in vivo results showed that bone mineralization and inflammatory responses were significantly pronounced in the silicone model or no chamber (control) groups. Vascular perfusion analysis confirmed that the GO-collagen chamber improved the angiogenic processes. Cells labeled with EdU revealed that the GO-collagen chamber promoted the survival and osteogenic differentiation of bone mesenchymal stem cells. Conclusion: Overall, the novel biocompatible GO-collagen chamber exhibited osteoinductive and anti-fibrosis effects which improved bone regeneration in vivo. It can, therefore, be applied to other fields of regenerative medicine.
Collapse
|
22
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Application of Chitosan in Bone and Dental Engineering. Molecules 2019; 24:molecules24163009. [PMID: 31431001 PMCID: PMC6720623 DOI: 10.3390/molecules24163009] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Chitosan is a deacetylated polysaccharide from chitin, the natural biopolymer primarily found in shells of marine crustaceans and fungi cell walls. Upon deacetylation, the protonation of free amino groups of the d-glucosamine residues of chitosan turns it into a polycation, which can easily interact with DNA, proteins, lipids, or negatively charged synthetic polymers. This positive-charged characteristic of chitosan not only increases its solubility, biodegradability, and biocompatibility, but also directly contributes to the muco-adhesion, hemostasis, and antimicrobial properties of chitosan. Combined with its low-cost and economic nature, chitosan has been extensively studied and widely used in biopharmaceutical and biomedical applications for several decades. In this review, we summarize the current chitosan-based applications for bone and dental engineering. Combining chitosan-based scaffolds with other nature or synthetic polymers and biomaterials induces their mechanical properties and bioactivities, as well as promoting osteogenesis. Incorporating the bioactive molecules into these biocomposite scaffolds accelerates new bone regeneration and enhances neovascularization in vivo.
Collapse
|
24
|
Kong AM, Yap KK, Lim SY, Marre D, Pébay A, Gerrand YW, Lees JG, Palmer JA, Morrison WA, Mitchell GM. Bio-engineering a tissue flap utilizing a porous scaffold incorporating a human induced pluripotent stem cell-derived endothelial cell capillary network connected to a vascular pedicle. Acta Biomater 2019; 94:281-294. [PMID: 31152943 DOI: 10.1016/j.actbio.2019.05.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Tissue flaps are used to cover large/poorly healing wounds, but involve complex surgery and donor site morbidity. In this study a tissue flap is assembled using the mammalian body as a bioreactor to functionally connect an artery and vein to a human capillary network assembled from induced pluripotent stem cell-derived endothelial cells (hiPSC ECs). In vitro: Porous NovoSorb™ scaffolds (3 mm × 1.35 mm) were seeded with 200,000 hiPSC ECs ± 100,000 human vascular smooth muscle cells (hvSMC), and cultured for 1-3 days, with capillaries formed by 24 h which were CD31+, VE-Cadherin+, EphB4+, VEGFR2+ and Ki67+, whilst hvSMCs (calponin+) attached abluminally. In vivo: In SCID mice, bi-lateral epigastric vascular pedicles were isolated in a silicone chamber for a 3 week 'delay period' for pedicle capillary sprouting, then reopened, and two hiPSC EC ± hvSMCs seeded scaffolds transplanted over the pedicle. The chamber was either resealed (Group 1), or removed and surrounding tissue secured around the pedicle + scaffolds (Group 2), for 1 or 2 weeks. Human capillaries survived in vivo and were CD31+, VE-Cadherin+ and VEGFR2+. Human vSMCs remained attached, and host mesenchymal cells also attached abluminally. Systemically injected FITC-dextran present in human capillary lumens indicated inosculation to host capillaries. Human iPSC EC capillary morphometric parameters at one week in vivo were equal to or higher than the same parameters measured in human abdominal skin. This 'proof of concept' study has demonstrated that bio-engineering an autologous human tissue flap based on hiPSC EC could minimize the use of donor flaps and has potential applications for complex wound coverage. STATEMENT OF SIGNIFICANCE: Tissue flaps, used for surgical reconstruction of wounds, require complex surgery, often associated with morbidity. Bio-engineering a simpler alternative, we assembled a human induced pluripotent stem cell derived endothelial cell (hiPSC ECs) capillary network in a porous scaffold in vitro, which when transplanted over a mouse vascular pedicle in vivo formed a functional tissue flap with mouse blood flow in the human capillaries. Therefore it is feasible to form an autologous tissue flap derived from a hiPSC EC capillary network assembled in vitro, and functionally connect to a vascular pedicle in vivo that could be utilized in complex wound repair for chronic or acute wounds.
Collapse
Affiliation(s)
- Anne M Kong
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Kiryu K Yap
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia; Univ. of Melbourne, Dept. of Surgery at St Vincent's Hospital, Melbourne, Australia; Department of Plastic and Reconstructive Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Shiang Y Lim
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia; Univ. of Melbourne, Dept. of Surgery at St Vincent's Hospital, Melbourne, Australia
| | - Diego Marre
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Alice Pébay
- Department of Surgery, The University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Yi-Wen Gerrand
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Jarmon G Lees
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Jason A Palmer
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Wayne A Morrison
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia; Univ. of Melbourne, Dept. of Surgery at St Vincent's Hospital, Melbourne, Australia; Faculty of Health Sciences, Australian Catholic University, Fitzroy, Melbourne, Australia; Department of Plastic and Reconstructive Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Geraldine M Mitchell
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia; Univ. of Melbourne, Dept. of Surgery at St Vincent's Hospital, Melbourne, Australia; Faculty of Health Sciences, Australian Catholic University, Fitzroy, Melbourne, Australia.
| |
Collapse
|
25
|
Roi A, Ardelean LC, Roi CI, Boia ER, Boia S, Rusu LC. Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2296. [PMID: 31323766 PMCID: PMC6679077 DOI: 10.3390/ma12142296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
The advancements made in biomaterials have an important impact on oral tissue engineering, especially on the bone regeneration process. Currently known as the gold standard in bone regeneration, grafting procedures can sometimes be successfully replaced by a biomaterial scaffold with proper characteristics. Whether natural or synthetic polymers, biomaterials can serve as potential scaffolds with major influences on cell adhesion, proliferation and differentiation. Continuous research has enabled the development of scaffolds that can be specifically designed to replace the targeted tissue through changes in their surface characteristics and the addition of growth factors and biomolecules. The progress in tissue engineering is incontestable and research shows promising contributions to the further development of this field. The present review aims to outline the progress in oral tissue engineering, the advantages of biomaterial scaffolds, their direct implication in the osteogenic process and future research directions.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania.
| | - Ciprian Ioan Roi
- Department of Anaesthesiology and Oral Surgery, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Eugen-Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
26
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
27
|
Contessi Negrini N, Bonnetier M, Giatsidis G, Orgill DP, Farè S, Marelli B. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater 2019; 87:61-75. [PMID: 30654214 DOI: 10.1016/j.actbio.2019.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Abstract
When adipose tissue (AT) is impaired by trauma or disease, AT engineering could provide a shelf-ready structural and functional restoration as alternative to current clinical treatments, which mainly aim at aesthetic replacement. Yet, the lack of an efficient vascular network within the scaffolds represents a major limitation to their translation application in patients. Here, we propose the use of microstructured crosslinked gelatin hydrogels with an embedded prevascular channel as scaffolding materials for AT engineering. The scaffolds are fabricated using - simultaneously - alginate-based microbeads and 3D printed filaments as sacrificial material encapsulated in gelatin at the point of material fabrication and removed post-crosslinking. This method yields the formation of microstructures that resemble the micro-architecture of physiological human fat tissue and of microvessels that can facilitate vascularization through anastomosis with patients' own blood vessels. The cytocompatible method used to prepare the gelatin scaffolds showed structural stability over time while allowing for cell infiltration and protease-based remodeling/degradation. Scaffolds' mechanical properties were also designed to mimic the one of natural breast adipose tissue, a key parameter for AT regeneration. Scaffold's embedded channel (∅ = 300-400 µm) allowed for cell infiltration and enabled blood flow in vitro when an anastomosis with a rat blood artery was performed using surgical glue. In vitro tests with human mesenchymal stem cells (hMSC) showed colonization of the porous structure of the gelatin hydrogels, differentiation into adipocytes and accumulation of lipid droplets, as shown by Oil Red O staining. STATEMENT OF SIGNIFICANCE: The potential clinical use of scaffolds for adipose tissue (AT) regeneration is currently limited by an unmet simultaneous achievement of adequate structural/morphological properties together with a promoted scaffold vascularization. Sacrificial materials, currently used either to obtain a tissue-mimicking structure or hollow channels to promote scaffold' vascularization, are powerful versatile tools for the fabrication of scaffolds with desired features. However, an integrated approach by means of sacrificial templates aiming at simultaneously achieving an adequate AT-mimicking structure and hollow channels for vascularization is missing. Here, we prove the suitability of crosslinked gelatin scaffolds obtained by using sacrificial alginate microbeads and 3D printed strands to achieve proper features and hollow channels useful for scaffolds vascularization.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States; Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Mathilde Bonnetier
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States.
| |
Collapse
|
28
|
Yin R, He J, Bai M, Huang C, Wang K, Zhang H, Yang SM, Zhang W. Engineering synthetic artificial pancreas using chitosan hydrogels integrated with glucose-responsive microspheres for insulin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:374-382. [DOI: 10.1016/j.msec.2018.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
29
|
Rasheed T, Bilal M, Zhao Y, Raza A, Shah SZH, Iqbal HMN. Physiochemical characteristics and bone/cartilage tissue engineering potentialities of protein-based macromolecules - A review. Int J Biol Macromol 2019; 121:13-22. [PMID: 30291929 DOI: 10.1016/j.ijbiomac.2018.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Protein-based macromolecules such as keratin, silk fibroin, collagen, gelatin, and fibrin have emerged as potential candidate materials with unique structural and functional characteristics. Despite many advantages, the development of tissue-engineered constructs that can match the biological context of real tissue matrix remains a challenge in tissue engineering (TE). The tissue-engineered constructs should also support vascularization. Protein-based macromolecules, in pristine or combine form, provide a promising platform to engineer constructs with unique design and functionalities which are highly essential for an appropriate stimulation and differentiation of cells in a specific TE approach. However, much work remains to be undertaken with particular reference to in-depth interactions between constructed cues and target host tissues. Thus, modern advancements are emphasizing to understand critiques and functionalization of protein-based macromolecule that organize not only cellular activities but also tissue regenerations. In this review, numerous physicochemical, functional, and structural characteristics of protein-based macromolecules such as keratin, silk fibroin, collagen, gelatin, and fibrin are discussed. This review also presents the hope vs. hype phenomenon for tissue engineering. Later part of the review focuses on different requisite characteristics and their role in TE. The discussion presented here could prove highly useful for the construction of scaffolds with requisite features.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
30
|
Wang X, Gao L, Han Y, Xing M, Zhao C, Peng J, Chang J. Silicon-Enhanced Adipogenesis and Angiogenesis for Vascularized Adipose Tissue Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800776. [PMID: 30479923 PMCID: PMC6247030 DOI: 10.1002/advs.201800776] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/30/2018] [Indexed: 05/22/2023]
Abstract
The enhancement of adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and sufficient vascularization remain great challenges for the successful reconstruction of engineered adipose tissue. Here, the bioactive effects of silicon (Si) ions on adipogenic differentiation of human BMSCs (HBMSCs) and the stimulation of vascularization during adipose tissue regeneration are reported. The results show that Si ions can enhance adipogenic differentiation of HBMSCs through the stimulation of the expression of adipogenic differentiation switches such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α. Furthermore, Si ions can enhance both angiogenesis and adipogenesis, and inhibit dedifferentiation of cocultured adipocytes by regulating the interactions between HBMSC-derived adipocytes and human umbilical vein endothelial cells, in which the promotion of the expression of insulin-like growth factor 1 and vascular endothelial growth factor plays vital roles. The in vivo studies further demonstrate that the designed composite hydrogel with the ability to release bioactive Si ions clearly stimulates neovascularization and adipose tissue regeneration. The study suggests that Si ions released from biomaterials are important chemical cues for adipogenic differentiation and biomaterials with the ability to release Si ions can be designed for adipose tissue engineering.
Collapse
Affiliation(s)
- Xiaoya Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049P. R. China
| | - Yan Han
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Min Xing
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049P. R. China
| | - Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049P. R. China
| | - Jinliang Peng
- School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| |
Collapse
|
31
|
Zheng ZW, Chen YH, Wu DY, Wang JB, Lv MM, Wang XS, Sun J, Zhang ZY. Development of an Accurate and Proactive Immunomodulatory Strategy to Improve Bone Substitute Material-Mediated Osteogenesis and Angiogenesis. Theranostics 2018; 8:5482-5500. [PMID: 30555559 PMCID: PMC6276091 DOI: 10.7150/thno.28315] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Treatment of large bone defects represents a major clinical problem worldwide. Suitable bone substitute materials are commonly required to achieve successful bone regeneration, and much effort has been spent to optimize their chemical compositions, 3D architecture and mechanical properties. However, material-immune system interactions are increasingly being recognized as a crucial factor influencing regeneration. Here, we envisioned an accurate and proactive immunomodulation strategy via delivery of IL-4 (key regulator of macrophage polarization) to promote bone substitute material-mediated regeneration. Methods: Four different IL-4 doses (0 ng, 10 ng, 50 ng and 100 ng) were delivered into rat large cranial bone defects at day 3 post-operation of decellularized bone matrix (DBM) material implantation, and the osteogenesis, angiogenesis and macrophage polarization were meticulously evaluated. Results: Micro-CT analysis showed that immunomodulation with 10 ng IL-4 significantly outperformed the other groups in terms of new bone formation (1.23-5.05 fold) and vascularization (1.29-6.08 fold), achieving successful defect bridging and good vascularization at 12 weeks. Histological analysis at 7 and 14 days showed that the 10 ng group generated the most preferable M1/M2 macrophage polarization profile, resulting in a pro-healing microenvironment with more IL-10 and less TNF-α secretion, a reduced apoptosis level in tissues around the materials, and enhanced mesenchymal stem cell migration and osteogenic differentiation. Moreover, in vitro studies revealed that M1 macrophages facilitated mesenchymal stem cell migration, while M2 macrophages significantly increased cell survival, proliferation and osteogenic differentiation, explaining the in vivo findings. Conclusions: Accurate immunomodulation via IL4 delivery significantly enhanced DBM-mediated osteogenesis and angiogenesis via the coordinated involvement of M1 and M2 macrophages, revealing the promise of this accurate and proactive immunomodulatory strategy for developing new bone substitute materials.
Collapse
|
32
|
Yap KK, Yeoh GC, Morrison WA, Mitchell GM. The Vascularised Chamber as an In Vivo Bioreactor. Trends Biotechnol 2018; 36:1011-1024. [DOI: 10.1016/j.tibtech.2018.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
33
|
Armentano I, Puglia D, Luzi F, Arciola CR, Morena F, Martino S, Torre L. Nanocomposites Based on Biodegradable Polymers. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E795. [PMID: 29762482 PMCID: PMC5978172 DOI: 10.3390/ma11050795] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors' contribution to the state of the art in the field of biodegradable polymeric nanocomposites.
Collapse
Affiliation(s)
- Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University, 01100 Viterbo, Italy.
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Francesca Luzi
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Luigi Torre
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| |
Collapse
|
34
|
Moradi SL, Golchin A, Hajishafieeha Z, Khani M, Ardeshirylajimi A. Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds. J Cell Physiol 2018; 233:6509-6522. [DOI: 10.1002/jcp.26606] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sadegh L. Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Golchin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Hajishafieeha
- Department of Microbiology Qazvin University of Medical Sciences Qazvin Iran
| | - Mohammad‐Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Edward A. Doisy Department of Biochemistry and Molecular Biology Saint Louis University School of Medicine Saint Louis MO
| |
Collapse
|
35
|
Collagen-Elastin and Collagen-Glycosaminoglycan Scaffolds Promote Distinct Patterns of Matrix Maturation and Axial Vascularization in Arteriovenous Loop-Based Soft Tissue Flaps. Ann Plast Surg 2018; 79:92-100. [PMID: 28542070 DOI: 10.1097/sap.0000000000001096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Autologous free flaps are the criterion standard for reconstructions of complex soft tissue defects; however, they are limited by donor-site morbidities. The arteriovenous (AV) loop model enables the generation of soft tissue constructs based on acellular dermal matrices with a functional microvasculature and minimal donor site morbidity. The ideal scaffold for AV loop-based tissue engineering has not been determined. METHODS AV loops were placed into subcutaneous isolation chambers filled with either a collagen-elastin scaffold or a collagen-glycosaminoglycan scaffold in the thighs of rats. Matrix elasticity, neoangiogenesis, cell migration, and proliferation were compared after 14 and 28 days. RESULTS Mean vessel count and area had increased in both matrices at 28 compared with 14 days. Collagen-elastin matrices showed a higher mean vessel count and area compared with collagen-glycosaminoglycan matrices at 14 days. At 28 days, a more homogeneous vascular network and higher cell counts were observed in collagen-elastin matrices. Collagen-glycosaminoglycan matrices, however, exhibited less volume loss at day 28. CONCLUSIONS Collagen-based scaffolds are suitable for soft tissue engineering in conjunction with the AV loop technique. These scaffolds exhibit distinct patterns of angiogenesis, cell migration, and proliferation and may in the future serve as the basis of tissue-engineered free flaps as an individualized treatment concept for critical wounds.
Collapse
|
36
|
Wang X, Yu Y, Li M, Alkhawaji A, Chen C, Liu X, Jiang J, Zhang J, Wang Z, Li T, Zhang W, Mei J. EPCs enhance angiogenesis in renal regeneration. Oncotarget 2018; 7:44941-44949. [PMID: 27384488 PMCID: PMC5216696 DOI: 10.18632/oncotarget.10377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023] Open
Abstract
Decellularized renal scaffolds have previously been used for renal regeneration following partial nephrectomy, in which angiogenesis played a key role. In this study, rats underwent partial nephrectomy and repaired with decellularized renal scaffolds. Subsequently, the labeled EPCs were intravenously injected into rats in EPCs group, and the control group received an equal amount of phosphate-buffer saline (PBS). We chose 1, 2 and 4 weeks post operation as time point. Average microvascular density (aMVD) analyses revealed higher angiogenesis in EPCs group compared with the control group. The expression of angiogenic growth factors including vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and hypoxia-inducible factors 1-alpha (HIF-1α), was generally higher in the EPCs group in all weeks (1, 2 and 4), and peaked in week 2. EPCs were observed to home into renal injury site, promoting angiogenesis across the renal parenchyma-scaffold interface to be potentially used as bridges for EPCs to migrate into the implanted scaffolds. Administration of exogenous EPCs promotes angiogenesis and vasculogenesis in decellularized renal scaffolds-mediated renal regeneration, providing adequate microenvironment for kidney recovery post renal injury.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Medical School of Ningbo University, Ningbo, China.,Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, China
| | - Yaling Yu
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Anatomy Department, Wenzhou Medical University, Wenzhou, China
| | - Miaozhong Li
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Medical School of Ningbo University, Ningbo, China.,Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, China
| | - Ali Alkhawaji
- Department of Anatomy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Medical Neuroscience, Dalhousie University, Nova Scotia, Canada
| | - Chuan Chen
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Medical School of Ningbo University, Ningbo, China
| | - Xiaolin Liu
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Anatomy Department, Wenzhou Medical University, Wenzhou, China
| | - Junqun Jiang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Anatomy Department, Wenzhou Medical University, Wenzhou, China
| | - Jianse Zhang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Anatomy Department, Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Anatomy Department, Wenzhou Medical University, Wenzhou, China
| | - Ting Li
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Anatomy Department, Wenzhou Medical University, Wenzhou, China
| | - Weiwen Zhang
- Medical School of Ningbo University, Ningbo, China.,Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, China
| | - Jin Mei
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Anatomy Department, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Kreimendahl F, Köpf M, Thiebes AL, Duarte Campos DF, Blaeser A, Schmitz-Rode T, Apel C, Jockenhoevel S, Fischer H. Three-Dimensional Printing and Angiogenesis: Tailored Agarose-Type I Collagen Blends Comprise Three-Dimensional Printability and Angiogenesis Potential for Tissue-Engineered Substitutes. Tissue Eng Part C Methods 2017; 23:604-615. [DOI: 10.1089/ten.tec.2017.0234] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Franziska Kreimendahl
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Marius Köpf
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Anja Lena Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Daniela F. Duarte Campos
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Blaeser
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Christian Apel
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
38
|
O’Halloran N, Courtney D, Kerin MJ, Lowery AJ. Adipose-Derived Stem Cells in Novel Approaches to Breast Reconstruction: Their Suitability for Tissue Engineering and Oncological Safety. Breast Cancer (Auckl) 2017; 11:1178223417726777. [PMID: 29104428 PMCID: PMC5562338 DOI: 10.1177/1178223417726777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are rapidly becoming the gold standard cell source for tissue engineering strategies and hold great potential for novel breast reconstruction strategies. However, their use in patients with breast cancer is controversial and their oncological safety, particularly in relation to local disease recurrence, has been questioned. In vitro, in vivo, and clinical studies using ADSCs report conflicting data on their suitability for adipose tissue regeneration in patients with cancer. This review aims to provide an overview of the potential role for ADSCs in breast reconstruction and to examine the evidence relating to the oncologic safety of their use in patients with breast cancer.
Collapse
Affiliation(s)
- Niamh O’Halloran
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Donald Courtney
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Aoife J Lowery
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|
39
|
Ding ZZ, Ma J, He W, Ge ZL, Lu Q, Kaplan DL. Simulation of ECM with Silk and Chitosan Nanocomposite Materials. J Mater Chem B 2017; 5:4789-4796. [PMID: 29098078 PMCID: PMC5662207 DOI: 10.1039/c7tb00486a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular matrix (ECM) is a system used to model the design of biomaterial matrices for tissue regeneration. Various biomaterial systems have been developed to mimic the composition or microstructure of the ECM. However, emulating multiple facets of the ECM in these systems remains a challenge. Here, a new strategy is reported which addresses this need by using silk fibroin and chitosan (CS) nanocomposite materials. Silk fibroin was first assembled into ECM-mimetic nanofibers in water and then blended with CS to introduce the nanostructural cues. Then the ratios of silk fibroin and CS were optimized to imitate the protein and glycosaminoglycan compositions. These biomaterial scaffolds had suitable compositions, hierarchical nano-to-micro structures, and appropriate mechanical properties to promote cell proliferation in vitro, and vascularization and tissue regeneration in vivo. Compared to previous silk-based scaffolds, these scaffolds achieved improvements in biocompatibility, suggesting promising applications in the future in tissue regeneration.
Collapse
Affiliation(s)
- Z. Z. Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - J. Ma
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People’s Republic of China
| | - W. He
- Department of Maxillofacial Surgery, The People’s Hospital, Qinghai 4000115-4, People’s Republic of China
| | - Z. L. Ge
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People’s Republic of China
| | - Q. Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - D. L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
40
|
Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Acta Biomater 2017; 51:246-257. [PMID: 28093366 DOI: 10.1016/j.actbio.2017.01.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/29/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
Vascularization is of great importance to adipose tissue regeneration. Here we introduced a paradigm that using scaffold to induce ASC spheroids, so to promote vascularized adipose tissue regeneration. Poly (l-glutamic acid) (PLGA) was activated by EDC, followed by being cross-linked by Adipic dihydrazide (ADH) to form a homogeneous hydrogel. Lyophilization was then carried out to create porous structure. The PLGA hydrogel scaffold possessed a significant swollen hydrophilic network to weaken cell-scaffold adhesion but drive ASCs to aggregate to form spheroids. Increase of seeding cell density was proved to result in the increase of spheroid size, upregulating angiogenic genes (VEGF and FGF-2) expression by enhancing the hypoxia-induced paracrine secretion. Also, the adipogenic differentiation of ASCs was achieved in spheroids in vitro. Moreover, the in vivo vascularized adipose tissue regeneration was evaluated in the dorsum of nude mice. After 12weeks post-implantation, the significant angiogenesis was found in both adipogenic induced and non-induced engineered tissue. In adipogenic induced group, the clear ring-like morphology, the large vacuole in the middle of the cell and the Oil red O staining demonstrated adipose tissue formation. STATEMENT OF SIGNIFICANCE Vascularization is of great importance to adipose tissue regeneration. Adipose derived stem cell (ASC) spheroids possessed not only the high efficiency of vascularization, but also the improved differentiation ability. Several research works have illustrated the advantage of ASC spheroids in vascularization. However, in adipose regeneration, ASC spheroid was rarely used. Even so, it is reasonable to believe that ASC spheroids hold a great promise in vascularized adipose tissue engineering. Thus in the present study, we introduced a method to create lots of ASC spheroids that acted as lots of individual adipogenesis and angiogenesis units inside of a porous hydrogel scaffold. Then, the scaffold carrying ASC spheroids was implanted subcutaneously in nude mice to preliminarily evaluate the adipose tissue generation and blood vessel formation.
Collapse
|
41
|
Wu CS, Liao HT. Polyester-based green composites for three-dimensional printing strips: preparation, characterization and antibacterial properties. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1836-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Lisovsky A, Sefton MV. Shh pathway in wounds in non-diabetic Shh-Cre-eGFP/Ptch1-LacZ mice treated with MAA beads. Biomaterials 2016; 102:198-208. [DOI: 10.1016/j.biomaterials.2016.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/06/2016] [Accepted: 06/12/2016] [Indexed: 01/20/2023]
|
43
|
Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps. Acta Biomater 2016; 35:166-84. [PMID: 26876876 DOI: 10.1016/j.actbio.2016.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Using a perfusion decellularization protocol, we developed a decellularized skin/adipose tissue flap (DSAF) comprising extracellular matrix (ECM) and intact vasculature. Our DSAF had a dominant vascular pedicle, microcirculatory vascularity, and a sensory nerve network and retained three-dimensional (3D) nanofibrous structures well. DSAF, which was composed of collagen and laminin with well-preserved growth factors (e.g., vascular endothelial growth factor, basic fibroblast growth factor), was successfully repopulated with human adipose-derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs), which integrated with DSAF and formed 3D aggregates and vessel-like structures in vitro. We used microsurgery techniques to re-anastomose the recellularized DSAF into nude rats. In vivo, the engineered flap construct underwent neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant adipose tissue formation at 3months postoperatively. Our results indicate that DSAF co-cultured with hASCs and HUVECs is a promising platform for vascularized soft tissue flap engineering. This platform is not limited by the flap size, as the entire construct can be immediately perfused by the recellularized vascular network following simple re-integration into the host using conventional microsurgical techniques. STATEMENT OF SIGNIFICANCE Significant soft tissue loss resulting from traumatic injury or tumor resection often requires surgical reconstruction using autologous soft tissue flaps. However, the limited availability of qualitative autologous flaps as well as the donor site morbidity significantly limits this approach. Engineered soft tissue flap grafts may offer a clinically relevant alternative to the autologous flap tissue. In this study, we engineered vascularized soft tissue free flap by using skin/adipose flap extracellular matrix scaffold (DSAF) in combination with multiple types of human cells. Following vascular reanastomosis in the recipient site, the engineered products successful regenerated large-scale fat tissue in vivo. This approach may provide a translatable platform for composite soft tissue free flap engineering for microsurgical reconstruction.
Collapse
|
44
|
Minardi S, Corradetti B, Taraballi F, Sandri M, Martinez JO, Powell ST, Tampieri A, Weiner BK, Tasciotti E. Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1479-1488. [PMID: 26797709 DOI: 10.1002/smll.201503484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Scaffolds functionalized with delivery systems for the release of growth factors is a robust strategy to enhance tissue regeneration. However, after implantation, macrophages infiltrate the scaffold, eventually initiating the degradation and clearance of the delivery systems. Herein, it is hypothesized that fully embedding the poly(d,l-lactide-co-glycolide acid) microspheres (MS) in a highly structured collagen-based scaffold (concealing) can prevent their detection, preserving the integrity of the payload. Confocal laser microscopy reveals that non-embedded MS are easily internalized; when concealed, J774 and bone marrow-derived macrophages (BMDM) cannot detect them. This is further demonstrated by flow cytometry, as a tenfold decrease is found in the number of MS engulfed by the cells, suggesting that collagen can cloak the MS. This correlates with the amount of nitric oxide and tumor necrosis factor-α produced by J774 and BMDM in response to the concealed MS, comparable to that found for non-functionalized collagen scaffolds. Finally, the release kinetics of a reporter protein is preserved in the presence of macrophages, only when MS are concealed. The data provide detailed strategies for fabricating three dimensional (3D) biomimetic scaffolds able to conceal delivery systems and preserve the therapeutic molecules for release.
Collapse
Affiliation(s)
- Silvia Minardi
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Bruna Corradetti
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Francesca Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Monica Sandri
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Jonathan O Martinez
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Sebastian T Powell
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Bradley K Weiner
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Orthopedic Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| |
Collapse
|
45
|
Sivashankari PR, Prabaharan M. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int J Biol Macromol 2016; 93:1382-1389. [PMID: 26899174 DOI: 10.1016/j.ijbiomac.2016.02.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 11/24/2022]
Abstract
Tissue engineering is concerned about the rejuvenation and restoration of diseased and damages tissues/organs using man-made scaffolds that mimic the native environment of the cells. In recent years, a variety of biocompatible and biodegradable natural materials is employed for the fabrication of such scaffolds. Of these natural materials, chitosan is the most preferred one as it imitates the extracellular matrix (ECM) of the cells. Moreover, chitosan-based materials are pro-angiogenic and have antibacterial activity. These materials can be easily fabricated into the desired shape of the scaffolds that are suitable for tissue support and regeneration. Growth factors are small proteins/peptides that support and enhance the growth and differentiation of cells into a specific lineage. It has been observed that scaffolds capable of delivering growth factor promote tissue repair and regeneration at a faster rate when compared to scaffolds without growth factor. The present review focuses on the recent developments on chitosan-based scaffolds for the delivery of growth factors thereby improving and enhancing tissue regeneration.
Collapse
Affiliation(s)
- P R Sivashankari
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India.
| |
Collapse
|
46
|
Saravanan S, Leena RS, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2016; 93:1354-1365. [PMID: 26845481 DOI: 10.1016/j.ijbiomac.2016.01.112] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The clinical demand for scaffolds and the diversity of available polymers provide freedom in the fabrication of scaffolds to achieve successful progress in bone tissue engineering (BTE). Chitosan (CS) has drawn much of the attention in recent years for its use as graft material either as alone or in a combination with other materials in BTE. The scaffolds should possess a number of properties like porosity, biocompatibility, water retention, protein adsorption, mechanical strength, biomineralization and biodegradability suited for BTE applications. In this review, CS and its properties, and the role of CS along with other polymeric and ceramic materials as scaffolds for bone tissue repair applications are highlighted.
Collapse
Affiliation(s)
- S Saravanan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - R S Leena
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
47
|
Li D, Deng L, Yang Z, Xie X, Kang P, Tan Z. Antigen-free bovine cancellous bone loaded with recombinant human bone morphogenetic protein-2 for the repair of tibial bone defects in goat model. J Biomater Appl 2016; 30:1322-33. [PMID: 26801475 DOI: 10.1177/0885328215627796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antigen-free bovine cancellous bone has good performances of porous network structures and mechanics with antigen extracted. To develop a bioactive scaffold for enhancing bone repair and evaluate its biological property, rhBMP-2 loaded with antigen-free bovine cancellous bone was used to treat tibial bone defect. Twenty-four healthy adult goats were chosen to establish goat defects model and randomly divided into four groups. The goats were treated with rhBMP-2/antigen-free bovine cancellous bone scaffolds (group A), autogenous cancellous bone graft (group B), porous tricalciumphosphate scaffolds (group C) and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The gray value of radiographs was used to evaluate the healing of the defects, which revealed that the group A had a better outcome of defect healing compared with group C at 4, 8 and 12 weeks, respectively (p < 0.05), while the difference between groups A and B was without significance at each time (p > 0.05). The newly formed bone area was calculated from histological sections, and the results indicated that the amount of new bone in group A increased significantly compared with that in group C (p < 0.05) but was similar to that in group B (p > 0.05) at 4, 8 and 12 weeks, respectively. In addition, the expression of collagen I and vascular endothelial growth factor by real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group C (p = 0.034, p = 0.032, respectively), but no significant differences were found when compared with that in group B (p = 0.36, p = 0.54, respectively). At the same time, group C presented better results than group D on bone defects healing. Therefore, the composites of antigen-free bovine cancellous bone loaded with rhBMP-2 have a good osteoinductive activity and capacity to promote the repair of bone defects.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liqing Deng
- Department of Orthopaedics of Cheng Ban hospital, the Branch of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhouyuan Yang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaowei Xie
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhen Tan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|