1
|
Kunkel GE, Treacy JW, Polite MF, Montgomery HR, Doud EA, Houk KN, Spokoyny AM, Maynard HD. Heterotelechelic Organometallic PEG Reagents Enable Modular Access to Complex Bioconjugates. ACS Macro Lett 2024:1551-1557. [PMID: 39480964 DOI: 10.1021/acsmacrolett.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Organometallic oxidative addition complexes (OACs) have recently emerged as a powerful class of reagents for the rapid and chemoselective modification of biomolecules. Notably, the steric and electronic properties of the ligand and aryl group can be modified to tune the kinetic profile of the reaction and permit regioselective S-arylation. Using the recently developed dicyclohexylphosphine-based bidentate P,N-ligated Au(III) OACs, we computationally and experimentally examined the effects of sterically bulky and electron deficient aryl substrates to achieve selective S-arylation. With this mechanistic insight, aryl substrates based on 4-iodoanisole and 3,5-dimethyl-4-iodoanisole were incorporated as end groups to generate a heterotelechelic bis-Au(III) poly(ethylene glycol) (PEG). This reagent performed rapid and regioselective S-arylation with a model biomolecule, designed ankyrin repeat protein (DARPin), to form a protein-polymer OAC in situ. This OAC mediated a second S-arylation with biologically relevant thiolated small molecules (metal chelator, saccharide, and fluorophore) and macromolecules (polymer and therapeutic peptide). It is envisioned that this approach could be utilized for the rapid construction of biomacromolecular heteroconjugates with S-aryl linkages.
Collapse
Affiliation(s)
- Grace E Kunkel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Magdalena F Polite
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Evan A Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Shi Y, Wang L, Song S, Liu M, Zhang P, Zhong D, Wang Y, Niu Y, Xu Y. Controllable Silver Release for Efficient Treatment of Drug-Resistant Bacterial-Infected Wounds. Chembiochem 2024; 25:e202400406. [PMID: 38850275 DOI: 10.1002/cbic.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/10/2024]
Abstract
The use of traditional Ag-based antibacterial agents is usually accompanied by uncontrollable silver release, which makes it difficult to find a balance between antibacterial performance and biosafety. Herein, we prepared a core-shell system of ZIF-8-derived amorphous carbon-coated Ag nanoparticles (Ag@C) as an ideal research model to reveal the synergistic effect and structure-activity relationship of the structural transformation of carbon shell and Ag core on the regulation of silver release behavior. It is found that Ag@C prepared at 600 °C (AC6) exhibits the best ion release kinetics due to the combination of relatively simple shell structure and lower crystallinity of the Ag core, thereby exerting stronger antibacterial properties (>99.999 %) at trace doses (20 μg mL-1) compared with most other Ag-based materials. Meanwhile, the carbon shell prevents the metal Ag from being directly exposed to the organism and thus endows AC6 with excellent biocompatibility. In animal experiments, AC6 can effectively promote wound healing by inactivating drug-resistant bacteria while regulating the expression of TNF-α and CD31. This work provides theoretical support for the scientific design and clinical application of controllable ion-releasing antibacterial agents.
Collapse
Affiliation(s)
- Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Siqi Song
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Miao Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Pengfei Zhang
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical School, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yanjing Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| |
Collapse
|
3
|
Krzyscik MA, Karl K, Dudeja P, Krejci P, Hristova K. Quantitative and qualitative differences in the activation of a fibroblast growth factor receptor by different FGF ligands. Cytokine Growth Factor Rev 2024; 78:77-84. [PMID: 39043538 PMCID: PMC11389727 DOI: 10.1016/j.cytogfr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The FGF system is the most complex of all receptor tyrosine kinase signaling networks with 18 FGF ligands and four FGFRs that deliver morphogenic signals to pattern most embryonic structures. Even when a single FGFR is expressed in the tissue, different FGFs can trigger dramatically different biological responses via this receptor. Here we show both quantitative and qualitative differences in the signaling of one of the FGF receptors, FGFR1c, in response to different FGFs. We provide an overview of the recent discovery that FGFs engage in biased signaling via FGFR1c. We discuss the concept of ligand bias, which represents qualitative differences in signaling as it is a measure of differential ligand preferences for different downstream responses. We show how FGF ligand bias manifests in functional data in cultured chondrocyte cells. We argue that FGF-ligand bias contributes substantially to FGF-driven developmental processes, along with known differences in FGF expression levels, FGF-FGFR binding coefficients and differences in FGF stability in vivo.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kelly Karl
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic; Institute of Animal Physiology and Genetics of the CAS, Brno 60200, Czech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Syromiatnikova VY, Kvon AI, Starostina IG, Gomzikova MO. Strategies to enhance the efficacy of FGF2-based therapies for skin wound healing. Arch Dermatol Res 2024; 316:405. [PMID: 38878084 DOI: 10.1007/s00403-024-02953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/22/2024] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
Basic fibroblast growth factor (FGF2 or bFGF) is critical for optimal wound healing. Experimental studies show that local application of FGF2 is a promising therapeutic approach to stimulate tissue regeneration, including for the treatment of chronic wounds that have a low healing potential or are characterised by a pathologically altered healing process. However, the problem of low efficiency of growth factors application due to their rapid loss of biological activity in the aggressive proteolytic environment of the wound remains. Therefore, ways to preserve the efficacy of FGF2 for wound treatment are being actively developed. This review considers the following strategies to improve the effectiveness of FGF2-based therapy: (1) use of vehicles/carriers for delivery and gradual release of FGF2; (2) chemical modification of FGF2 to increase the stability of the molecule; (3) use of genetic constructs encoding FGF2 for de novo synthesis of protein in the wound. In addition, this review discusses FGF2-based therapeutic strategies that are undergoing clinical trials and demonstrating the efficacy of FGF2 for skin wound healing.
Collapse
Affiliation(s)
- V Y Syromiatnikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - A I Kvon
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - I G Starostina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
| | - M O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420008, Russia.
| |
Collapse
|
5
|
Jiang X, Zeng YE, Li C, Wang K, Yu DG. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol 2024; 12:1354286. [PMID: 38375451 PMCID: PMC10875055 DOI: 10.3389/fbioe.2024.1354286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.
Collapse
Affiliation(s)
- Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-E Zeng
- Department of Neurology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Lolicato F, Steringer JP, Saleppico R, Beyer D, Fernandez-Sobaberas J, Unger S, Klein S, Riegerová P, Wegehingel S, Müller HM, Schmitt XJ, Kaptan S, Freund C, Hof M, Šachl R, Chlanda P, Vattulainen I, Nickel W. Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space. eLife 2024; 12:RP88579. [PMID: 38252473 PMCID: PMC10945597 DOI: 10.7554/elife.88579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergGermany
- Department of Physics, University of HelsinkiHelsinkiFinland
| | | | | | - Daniel Beyer
- Heidelberg University Biochemistry CenterHeidelbergGermany
| | | | | | - Steffen Klein
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | | | | | - Xiao J Schmitt
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Shreyas Kaptan
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | | | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergGermany
| |
Collapse
|
7
|
Krzyscik MA, Porębska N, Opaliński Ł, Otlewski J. Targeting HER2 and FGFR-positive cancer cells with a bispecific cytotoxic conjugate combining anti-HER2 Affibody and FGF2. Int J Biol Macromol 2024; 254:127657. [PMID: 38287563 DOI: 10.1016/j.ijbiomac.2023.127657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
Breast cancer remains a significant global health challenge, necessitating the development of effective targeted therapies. This study aimed to create bispecific targeting molecules against HER2 and FGFR1, two receptors known to play crucial roles in breast cancer progression. By combining the high-affinity Affibody ZHER2:2891 and a modified, stable form of fibroblast growth factor 2 (FGF2), we successfully generated bispecific proteins capable of simultaneously recognizing HER2 and FGFR1. Two variants were designed: AfHER2-sFGF2 with a shorter linker and AfHER2-lFGF2 with a longer linker between the HER2 and FGFR1-recognizing proteins. Both proteins exhibited selective binding to HER2 and FGFR1, with AfHER2-lFGF2 demonstrating simultaneous binding to both receptors. AfHER2-lFGF2 exhibited superior internalization compared to FGF2 in FGFR-positive cells and significantly increased internalization compared to AfHER2 in HER2-positive cells. To enhance their therapeutic potential, highly potent cytotoxic agent MMAE was conjugated to the targeting proteins, resulting in protein-drug conjugates. The bispecific AfHER2-lFGF2-vcMMAE conjugate demonstrated exceptional cytotoxic activity against HER2-positive, FGFR-positive, and dual-positive cancer cell lines that was significantly higher compared to monospecific conjugates. These data indicate the beneficial effect of simultaneous targeting of HER2 and FGFR1 in precise anticancer medicine and contribute valuable insights into the design and potential of bispecific targeting molecules for breast cancer treatment.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
8
|
Rakic M, Canullo L, Radovanovic S, Tatic Z, Radunovic M, Souedain A, Weiss P, Struillou X, Vojvodic D. Diagnostic value of VEGF in peri-implantitis and its correlation with titanium particles: A controlled clinical study. Dent Mater 2024; 40:28-36. [PMID: 37865576 DOI: 10.1016/j.dental.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES VEGF is prototypic marker of neovascularization, repeatedly proposed as intrinsic characteristic of peri-implantitis. This study aimed to assess pattern of VEGF in peri-implantitis, its correlation with titanium particles (TPs) and capacity as respective biomarker. MATERIAL AND METHODS Pathological specificity of VEGF was assessed in peri-implant granulations using immunohistochemistry, periodontal granulations represented Ti-free positive controls. VEGF was correlated to TPs, identified using scanning electron microscopy coupled with dispersive x-ray spectrometry. Diagnostic accuracy, sensitivity and specificity of VEGF were estimated in PICF specimens from peri-implantitis, peri-implant mucositis (PIM) and healthy peri-implant tissues (HI) using machine learning algorithms. RESULTS Peri-implantitis exhibited rich neovascular network with expressed density in contact zones toward neutrophil infiltrates without specific pattern variations around TPs, identified in all peri-implantitis specimens (mean particle size 8.9 ± 24.8 µm2; Ti-mass (%) 0.380 ± 0.163). VEGF was significantly more expressed in peri-implantitis (47,065 ± 24.2) compared to periodontitis (31,14 ± 9.15), and positively correlated with its soluble concentrations in PICF (p = 0.01). VEGF was positively correlated to all clinical endpoints and significantly increased in peri-implantitis compared to both PIM and HI, but despite high specificity (96%), its overall diagnostic capacity was average. Two patient clusters were identified in peri-implantitis, one with 8-fold higher VEGF values compared to HI, and second with lower values comparable to PIM. SIGNIFICANCE VEGF accurately reflects neovascularization in peri-implantitis that was expressed in contact zones toward implant surface without specific histopathological patter variation around TPs. VEGF answered requests for biomarker of peri-implantitis but further research is necessary to decrypt its exact underlying cause.
Collapse
Affiliation(s)
- Mia Rakic
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Madrid, Spain.
| | - Luigi Canullo
- Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy; Department of Periodontology, University of Bern, Switzerland
| | - Sandro Radovanovic
- Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia; Department for Oral Implantology, Military Medical Academy, Belgrade, Serbia
| | - Zoran Tatic
- Department for Oral Implantology, Military Medical Academy, Belgrade, Serbia
| | - Milena Radunovic
- Department of Oral Microbiology, Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Assem Souedain
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes, Department of Periodontology, Faculty of Dental Surgery, France
| | - Pierre Weiss
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes, France
| | - Xavier Struillou
- Department of Periodontology, Faculty of Dental Surgery, University of Nantes, France; Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes, France
| | - Danilo Vojvodic
- Institute for Experimental Medicine, Military Medical Academy, Belgrade, Serbia
| |
Collapse
|
9
|
Roney M, Issahaku AR, Govinden U, Gazali AM, Aluwi MFFM, Zamri NB. Diabetic wound healing of aloe vera major phytoconstituents through TGF-β1 suppression via in-silico docking, molecular dynamic simulation and pharmacokinetic studies. J Biomol Struct Dyn 2023:1-14. [PMID: 37942697 DOI: 10.1080/07391102.2023.2279280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
To restore the integrity of the skin and subcutaneous tissue, the wound healing process involves a complex series of well-orchestrated biochemical and cellular events. Due to the existence of various active components, accessibility and few side effects, some plant extracts and their phytoconstituents are recognised as viable options for wound healing agents. To find possible inhibitors of diabetic wound healing, four main constituents of aloe vera were identified from the literature. TGF-β1 and the compounds were studied using molecular docking to see how they interacted with the active site of target protein (PDB ID: 6B8Y). The pharmacokinetics investigation of the aloe emodin with the highest dock score complied with all the Lipinski's rule of five and pharmacokinetics criteria. Conformational change in the docked complex of Aloe emodin was investigated with the Amber simulation software, via a molecular dynamic (MD) simulation. The MD simulations of aloe emodin bound to TGF-β1 showed the significant structural rotations and twists occurring from 0 to 200 ns. The estimate of the aloe emodin-TGF-β1 complex's binding free energy has also been done using MM-PBSA/GBSA techniques. Additionally, aloe emodin has a wide range of enzymatic activities since their probability active (Pa) values is >0.700. 'Aloe emodin', an active extract of aloe vera, has been identified as the key chemical in the current investigation that can inhibit diabetic wound healing. Both in-vitro and in-vivo experiments will be used in a wet lab to confirm the current computational findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Abdul Razak, Gambang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- West African Centre for Computational Research and Innovation, Ghana, West Africa
| | - Usha Govinden
- Discipline of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, School of Health Sciences, University of Kwazulu Natal, Westville, South Africa
| | - Ahmad Mahfuz Gazali
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Abdul Razak, Gambang, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Abdul Razak, Gambang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Malaysia
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Abdul Razak, Gambang, Malaysia
| |
Collapse
|
10
|
Zhang Y, Wang R, Fan H, Wang M, Liu H, Wang Y, Cui X, Wang E, Zhang B, Gao H, Liu X, Li H, Cheng Y. Carbon Dots from Camelina Decorating hFGF2-Linked Camelina Lipid Droplets Cooperate to Accelerate Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34451-34461. [PMID: 37458210 DOI: 10.1021/acsami.3c04523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Constant oxidative stress at the wound site prolongs the inflammation period and slows down the proliferation stage. In order to shorten the inflammatory period meanwhile promote the proliferative activity of fibroblasts, herein, we synthesized novel camelina-derived carbon dots (CDs) decorating on hFGF2-linked camelina lipid droplets (CLD-hFGF2) to form nanobiomaterial CDs-CLD-hFGF2. The CDs-CLD-hFGF2 possesses peroxidase activity and has effective reactive oxygen species radical scavenging activity while achieving proliferation of NIH/3T3 cells under oxidative stress in vitro. In the acute wound model, wound healing after CDs-CLD-hFGF2 treatment reached nearly 92% on the 10th day, compared with 82% for CLD-hFGF2. Moreover, the wound site showed significant anti-inflammatory effects characterized by the downregulation of pro-inflammatory factors and the upregulation of anti-inflammatory factor levels. Overall, this study provided a strategy for the comprehensive utilization of camelina oil crops and revealed a promising future that could be considered an effective method for wound healing on the skin.
Collapse
Affiliation(s)
- Yuan Zhang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ruinan Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Huaiyu Fan
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Manru Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Hongxiang Liu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yuqi Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xingyu Cui
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Enze Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Biao Zhang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Hongtao Gao
- College of Tropical Crops, Hainan University, Haikou 570100, P. R. China
| | - Xin Liu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Haiyan Li
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
- College of Tropical Crops, Hainan University, Haikou 570100, P. R. China
| | - Yan Cheng
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
11
|
Beheshtizadeh N, Salimi A, Golmohammadi M, Ansari JM, Azami M. In-silico engineering of RNA nanoplatforms to promote the diabetic wound healing. BMC Chem 2023; 17:52. [PMID: 37291669 PMCID: PMC10251717 DOI: 10.1186/s13065-023-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
One of the most notable required features of wound healing is the enhancement of angiogenesis, which aids in the acceleration of regeneration. Poor angiogenesis during diabetic wound healing is linked to a shortage of pro-angiogenic or an increase in anti-angiogenic factors. As a result, a potential treatment method is to increase angiogenesis promoters and decrease suppressors. Incorporating microRNAs (miRNAs) and small interfering RNAs (siRNAs), two forms of quite small RNA molecules, is one way to make use of RNA interference. Several different types of antagomirs and siRNAs are now in the works to counteract the negative effects of miRNAs. The purpose of this research is to locate novel antagonists for miRNAs and siRNAs that target multiple genes to promote angiogenesis and wound healing in diabetic ulcers.In this context, we used gene ontology analysis by exploring across several datasets. Following data analysis, it was processed using a systems biology approach. The feasibility of incorporating the proposed siRNAs and miRNA antagomirs into polymeric bioresponsive nanocarriers for wound delivery was further investigated by means of a molecular dynamics (MD) simulation study. Among the three nanocarriers tested (Poly (lactic-co-glycolic acid) (PLGA), Polyethylenimine (PEI), and Chitosan (CTS), MD simulations show that the integration of PLGA/hsa-mir-422a is the most stable (total energy = -1202.62 KJ/mol, Gyration radius = 2.154 nm, and solvent-accessible surface area = 408.416 nm2). With values of -25.437 KJ/mol, 0.047 nm for the Gyration radius, and 204.563 nm2 for the SASA, the integration of the second siRNA/ Chitosan took the last place. The results of the systems biology and MD simulations show that the suggested RNA may be delivered through bioresponsive nanocarriers to speed up wound healing by boosting angiogenesis.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Students? Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mahsa Golmohammadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Javad Mohajer Ansari
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Anatomy, School of Medicine, Hormozgan University of Medical Sciences, Jomhuri Eslami Blvd, Bandar Abbas, 7919915519, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
12
|
Gwarzo ID, Mohd Bohari SP, Abdul Wahab R, Zia A. Recent advances and future prospects in topical creams from medicinal plants to expedite wound healing: a review. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Iliyasu Datti Gwarzo
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
| | - Siti Pauliena Mohd Bohari
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Cosmetic and Fragrance Laboratory, Institute of Bioproduct Development, Universiti Teknologi Malaysia, UTM Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Arifullah Zia
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Department of Biology, Faculty of Science, Nangarhar University, Darunta, Jalalabad, Afghanistan
| |
Collapse
|
13
|
Yonehara R, Kumachi S, Kashiwagi K, Wakabayashi-Nakao K, Motohashi M, Murakami T, Yanagisawa T, Arai H, Murakami A, Ueno Y, Nemoto N, Tsuchiya M. A novel agonist with homobivalent single-domain antibodies that bind the FGF receptor 1 domain III functions as an FGF2 ligand. J Biol Chem 2022; 299:102804. [PMID: 36529290 PMCID: PMC9852558 DOI: 10.1016/j.jbc.2022.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor (FGF) is a multifunctional protein that exhibits a wide range of biological effects. Most commonly, it acts as a mitogen, but it also has regulatory, morphological, and endocrine effects. The four receptor subtypes of FGF are activated by more than 20 different FGF ligands. FGF2, one of the FGF ligands, is an essential factor for cell culture in stem cells for regenerative medicine; however, recombinant FGF2 is extremely unstable. Here, we successfully generated homobivalent agonistic single-domain antibodies (variable domain of heavy chain of heavy chain antibodies referred to as VHHs) that bind to domain III and induce activation of the FGF receptor 1 and thus transduce intracellular signaling. This agonistic VHH has similar biological activity (EC50) as the natural FGF2 ligand. Furthermore, we determined that the agonistic VHH could support the proliferation of human-induced pluripotent stem cells (PSCs) and human mesenchymal stem cells, which are PSCs for regenerative medicine. In addition, the agonistic VHH could maintain the ability of mesenchymal stem cells to differentiate into adipocytes or osteocytes, indicating that it could maintain the properties of PSCs. These results suggest that the VHH agonist may function as an FGF2 mimetic in cell preparation of stem cells for regenerative medicine with better cost effectiveness.
Collapse
Affiliation(s)
- Ryo Yonehara
- Epsilon Molecular Engineering, Inc, Saitama, Japan.
| | | | | | | | | | | | | | - Hidenao Arai
- Epsilon Molecular Engineering, Inc, Saitama, Japan
| | | | | | - Naoto Nemoto
- Epsilon Molecular Engineering, Inc, Saitama, Japan
| | | |
Collapse
|
14
|
Krzyscik MA, Opaliński Ł, Szymczyk J, Otlewski J. Cyclic and dimeric fibroblast growth factor 2 variants with high biomedical potential. Int J Biol Macromol 2022; 218:243-258. [PMID: 35878661 DOI: 10.1016/j.ijbiomac.2022.07.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a pleiotropic protein engaged in the regulation of key cellular processes in a wide spectrum of cells. FGF2 is an important object of basic research as well as a molecule used in regenerative medicine, in vitro cell culture maintenance, and as an anticancer drug carrier. However, the unsatisfactory stability and pleiotropic activities of the wild-type FGF2 largely limit its use as a medical product. To overcome these limitations, we have designed a set of FGF2-based macromolecules via sortase A-mediated cyclization and oligomerization. We obtained heparin-switchable FGF2 variants with enhanced stability and improved ability to stimulate cell proliferation and migration. We have shown that stimulation of glucose uptake by adipocytes is modulated by the architecture of FGF2 oligomers. Moreover, we used hyper-stable FGF2 variants for the construction of highly effective drug carriers for selective killing of FGFR1-overproducing cancer cells. The strategy for FGF2 engineering presented in this work provides novel insights into the design of growth factor variants for regenerative and anti-cancer precise medicine.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Łukasz Opaliński
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Jakub Szymczyk
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland.
| |
Collapse
|
15
|
Berg MC, Beck J, Karner A, Holzer K, Dürauer A, Hahn R. Mass transfer of proteins in chromatographic media: Comparison of pure and crude feed solutions. J Chromatogr A 2022; 1676:463264. [PMID: 35752146 DOI: 10.1016/j.chroma.2022.463264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022]
Abstract
Elucidation of intraparticle mass transfer mechanisms in protein chromatography is essential for process design. This study investigates the differences of adsorption and diffusion parameters of basic human fibroblast factor 2 (hFGF2) in a simple (purified) and a complex (clarified homogenate) feed solution on the grafted agarose-based strong cation exchanger Capto S. Microscopic investigations using confocal laser scanning microscopy revealed slower intraparticle diffusion of hFGF2 in the clarified homogenate compared to purified hFGF2. Diffusive adsorption fronts indicated a strong contribution of solid diffusion to the overall mass transfer flux. Protein adsorption methods such as batch uptake and shallow bed as well as breakthrough curve experiments confirmed a 40-fold reduction of the mass transfer flux for hFGF2 in the homogenate compared to pure hFGF2. The slower mass transfer was induced by components of the clarified homogenate. Essentially, the increased dynamic viscosity caused by a higher concentration of dsDNA and membrane lipids in the clarified homogenate contributed to this decrease in mass transfer. Moreover, binding capacity for hFGF2 was much lower in the clarified homogenate and substantially decreased the adsorbed phase driving force for mass transfer.
Collapse
Affiliation(s)
- Markus C Berg
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria
| | - Jürgen Beck
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Alex Karner
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Kerstin Holzer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Astrid Dürauer
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Rainer Hahn
- Austrian Center of Industrial Biotechnology, Muthgasse 18, Vienna 1190, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria.
| |
Collapse
|
16
|
Li J, Shen J, Zhuang B, Wei M, Liu Y, Liu D, Yan W, Jia X, Jin Y. Light-triggered on-site rapid formation of antibacterial hydrogel dressings for accelerated healing of infected wounds. BIOMATERIALS ADVANCES 2022; 136:212784. [PMID: 35929299 DOI: 10.1016/j.bioadv.2022.212784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
An optimal wound dressing can seal variously shaped wounds and provide a complete barrier to resist bacterial invasion; more importantly, the dressing can be stretched or compressed when the wounds are subjected to external forces and quickly return to its original state after the forces are withdrawn. Here, we designed dressings with light-triggered on-site rapid formation of antibacterial hydrogel for the accelerated healing of infected wounds. The pro-hydrogel, composed of acrylamide (AM) and dopamine-hyaluronic acid-ε-poly-l-lysine (DA-HA-EPL), was filled into the Vibrio vulnificus-infected wound. A 405-nm blue light was exerted on the wound to rapidly photopolymerize AM to its polymer, i.e., polyacrylamide (PAM). A hydrogel network of PAM/DA-HA-EPL immediately formed on site within several seconds to insulate the wound. PAM/DA-HA-EPL possessed adhesion performance to adapt to changes in wound morphologies due to external forces. Moreover, it presented high antibacterial ability due to the presence of EPL, in vitro biocompatibility and the ability to promote cell migration. Vibrio vulnificus-infected wounds were established on full-thickness mouse skin, and the hydrogel dressing exhibited high healing efficiency in terms of skin tissue regeneration, collagen deposition, and angiogenesis. PAM/DA-HA-EPL is a promising hydrogel dressing for the accelerated healing of infected wounds.
Collapse
Affiliation(s)
- Jingfei Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jintao Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Zhuang
- Department of Chemical Defense, Institute of NBC Defense, Beijing 102205, China
| | - Meng Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Dongdong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenrui Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xueli Jia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
17
|
Shi W, Song N, Huang Y, He C, Zhang M, Zhao W, Zhao C. Improved Cooling Performance of Hydrogel Wound Dressings via Integrating Thermal Conductivity and Heat Storage Capacity for Burn Therapy. Biomacromolecules 2022; 23:889-902. [PMID: 35090105 DOI: 10.1021/acs.biomac.1c01334] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Burn injury has become a crucial public health issue worldwide. It is necessary to explore new methods to reduce heat damage and improve healing efficiency during burn injury treatment. In this study, a kind of hydrogel combining heat storage capacity and thermal conductivity was fabricated via a one-pot method for burn therapy. The novel hydrogel was easily prepared by in situ cross-linking polymerization, using poly(ethylene glycol) (PEG) derivatives, oligo(ethylene glycol) methacrylate and 2-(2-methoxyethoxy) ethyl methacrylate, as thermally responsive base materials and hydroxylated multiwall carbon nanotubes (CNT-OH) as thermally conductive fillers. By dispersing CNT-OH, a thermally conductive network was formed in the hydrogel, leading to an increase in the thermal conductivity. The cooling performance, thermal conductivity, heat storage property, swelling performance, rheological and mechanical properties, biocompatibility, in vivo cooling effect, and wound healing properties of the prepared hydrogel were systematically investigated. The hydrogel consisted of thermally responsive PEG derivatives, and CNT-OH performed a function of rapid heat absorption, further reduced thermal damage, and promoted wound healing. The improved cooling performance of the hydrogel was ascribed to the improved thermal conductivity, enhanced heat storage capacity, and good adhesive ability. Thus, the hydrogel has great potential to be practically applied in burn therapy, laser treatment, cooling fabrics, heat-protective clothing, and other emergency scenarios.
Collapse
Affiliation(s)
- Wenbin Shi
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nijia Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yanping Huang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Man Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Changsheng Zhao
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Gao Z, Wang Q, Yao Q, Zhang P. Application of Electrospun Nanofiber Membrane in the Treatment of Diabetic Wounds. Pharmaceutics 2021; 14:6. [PMID: 35056901 PMCID: PMC8780153 DOI: 10.3390/pharmaceutics14010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetic wounds are complications of diabetes which are caused by skin dystrophy because of local ischemia and hypoxia. Diabetes causes wounds in a pathological state of inflammation, resulting in delayed wound healing. The structure of electrospun nanofibers is similar to that of the extracellular matrix (ECM), which is conducive to the attachment, growth, and migration of fibroblasts, thus favoring the formation of new skin tissue at the wound. The composition and size of electrospun nanofiber membranes can be easily adjusted, and the controlled release of loaded drugs can be realized by regulating the fiber structure. The porous structure of the fiber membrane is beneficial to gas exchange and exudate absorption at the wound, and the fiber surface can be easily modified to give it function. Electrospun fibers can be used as wound dressing and have great application potential in the treatment of diabetic wounds. In this study, the applications of polymer electrospun fibers, nanoparticle-loaded electrospun fibers, drug-loaded electrospun fibers, and cell-loaded electrospun fibers, in the treatment of diabetic wounds were reviewed, and provide new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
| | | | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; (Z.G.); (Q.W.)
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; (Z.G.); (Q.W.)
| |
Collapse
|
19
|
McCarthy A, Shah R, John JV, Brown D, Xie J. Understanding and utilizing textile-based electrostatic flocking for biomedical applications. APPLIED PHYSICS REVIEWS 2021; 8:041326. [PMID: 35003482 PMCID: PMC8715800 DOI: 10.1063/5.0070658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 05/10/2023]
Abstract
Electrostatic flocking immobilizes electrical charges to the surface of microfibers from a high voltage-connected electrode and utilizes Coulombic forces to propel microfibers toward an adhesive-coated substrate, leaving a forest of aligned fibers. This traditional textile engineering technique has been used to modify surfaces or to create standalone anisotropic structures. Notably, a small body of evidence validating the use of electrostatic flocking for biomedical applications has emerged over the past several years. Noting the growing interest in utilizing electrostatic flocking in biomedical research, we aim to provide an overview of electrostatic flocking, including the principle, setups, and general and biomedical considerations, and propose a variety of biomedical applications. We begin with an introduction to the development and general applications of electrostatic flocking. Additionally, we introduce and review some of the flocking physics and mathematical considerations. We then discuss how to select, synthesize, and tune the main components (flocking fibers, adhesives, substrates) of electrostatic flocking for biomedical applications. After reviewing the considerations necessary for applying flocking toward biomedical research, we introduce a variety of proposed use cases including bone and skin tissue engineering, wound healing and wound management, and specimen swabbing. Finally, we presented the industrial comments followed by conclusions and future directions. We hope this review article inspires a broad audience of biomedical, material, and physics researchers to apply electrostatic flocking technology to solve a variety of biomedical and materials science problems.
Collapse
Affiliation(s)
- Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Rajesh Shah
- Spectro Coating Corporation, Leominster, Massachusetts 01453, USA
| | - Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Demi Brown
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Jingwei Xie
- Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Liu S, Wen F, Muthukumaran P, Rakshit M, Lau CS, Yu N, Suryani L, Dong Y, Teoh SH. Self-Assembled Nanofibrous Marine Collagen Matrix Accelerates Healing of Full-Thickness Wounds. ACS APPLIED BIO MATERIALS 2021; 4:7044-7058. [PMID: 35006937 DOI: 10.1021/acsabm.1c00685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is an urgent clinical need for wound dressings to treat skin injuries, particularly full-thickness wounds caused by acute and chronic wounds. Marine collagen has emerged as an attractive and safer alternative due to its biocompatibility, diversity, and sustainability. It has minimum risk of zoonotic diseases and less religious constraints as compared to mammalian collagen. In this study, we reported the development of a self-assembled nanofibrous barramundi (Lates calcarifer) collagen matrix (Nano-BCM), which showed good biocompatibility for full-thickness wound-healing applications. The collagen was extracted and purified from barramundi scales and skin. Thereafter, the physicochemical properties of collagen were systematically evaluated. The process to extract barramundi skin collagen (BC) gave an excellent 45% yield and superior purity (∼100%). More importantly, BC demonstrated structural integrity, native triple helix structure, and good thermal stability. BC demonstrated its efficacy in promoting human primary dermal fibroblast (HDF) and immortalized human keratinocytes (HaCaT) proliferation and migration. Nano-BCM has been prepared via self-assembly of collagen molecules in physiological conditions, which resembled the native extracellular matrix (ECM). The clinical therapeutic efficacy of the Nano-BCM was further evaluated in a full-thickness splinted skin wound mice model. In comparison to a clinically used wound dressing (DuoDerm), the Nano-BCM demonstrated significantly accelerated wound closure and re-epithelization. Moreover, Nano-BCM nanofibrous architecture and its ability to facilitate early inflammatory response significantly promoted angiogenesis and differentiated myofibroblast, leading to enhanced wound healing. Consequently, Nano-BCM demonstrates great potential as an economical and effective nonmammalian substitute to achieve skin regeneration.
Collapse
Affiliation(s)
- Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Feng Wen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, Zhejiang, People's Republic of China
| | - Padmalosini Muthukumaran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Moumita Rakshit
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Chau-Sang Lau
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Academic Clinical Programme Office (Research), National Dental Centre Singapore, Singapore 168938, Singapore
| | - Na Yu
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Academic Clinical Programme Office (Research), National Dental Centre Singapore, Singapore 168938, Singapore
| | - Luvita Suryani
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yibing Dong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Swee Hin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
21
|
Liu L, Ding Z, Yang Y, Zhang Z, Lu Q, Kaplan DL. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater Sci 2021; 9:5227-5236. [PMID: 34190240 PMCID: PMC8319114 DOI: 10.1039/d1bm00904d] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Scarless skin regeneration remains a challenge due to the complicated microenvironment involved in wound healing. Here, the hydrophobic drug, asiaticoside (AC), was loaded inside silk nanofiber hydrogels to achieve bioactive and injectable matrices for skin regeneration. AC was dispersed in aqueous silk nanofiber hydrogels with retention of biological functions that regulated inflammatory reactions and vascularization in vitro. After implantation in full-thickness wound defects, these AC-laden hydrogel matrices achieved scarless wound repair. Inflammatory reactions and angiogenesis were regulated during inflammation and remodeling, which was responsible for wound regeneration similar to normal skin. Both in vitro and in vivo studies demonstrated promising applications of these AC-laden silk hydrogels towards scarless tissue regeneration.
Collapse
Affiliation(s)
- Lutong Liu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Yan Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
22
|
Wang M, Xia A, Wu S, Shen J. Facile Synthesis of the Cu, N-CDs@GO-CS Hydrogel with Enhanced Antibacterial Activity for Effective Treatment of Wound Infection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7928-7935. [PMID: 34157835 DOI: 10.1021/acs.langmuir.1c00529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug resistance and increasing dangers during antibiotic treatment have brought a new eternal task for the research of effective antibacterial agents or therapeutics. In this work, we used Cu, N-doped carbon dots (Cu, N-CDs) to modify graphene oxide (GO) nanosheets and then loaded to chitosan (CS) hydrogels via electrostatic interaction to form Cu, N-CDs@GO-CS hydrogel nanoplatforms to treat Staphylococcus aureus and Escherichia coli. The excellent antibacterial activity is from the combined effects of hyperthermia and reactive oxygen species generated under near-infrared (NIR) laser irradiation of the Cu, N-CDs@GO-CS hydrogel, which shows excellent antibacterial activity compared with the CS hydrogel or the Cu, N-CDs@GO-CS hydrogel without NIR laser irradiation. Moreover, the inherent antibacterial nature of the CS hydrogel or the Cu, N-CDs@GO-CS hydrogel was used to treat bacteria-infected wounds in mice, which also protected the wound area from second infection. In vivo experiments demonstrate favorable wound healing results and have no significant harmful side effects to the major organs in mice. Overall, this work demonstrates that the antibacterial Cu, N-CDs@GO-CS hydrogel offers significant prospect as an antibacterial reagent for wound healing.
Collapse
Affiliation(s)
- Mingqian Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Ao Xia
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Shishan Wu
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
23
|
Gao L, Chen J, Feng W, Song Q, Huo J, Yu L, Liu N, Wang T, Li P, Huang W. A multifunctional shape-adaptive and biodegradable hydrogel with hemorrhage control and broad-spectrum antimicrobial activity for wound healing. Biomater Sci 2021; 8:6930-6945. [PMID: 32964904 DOI: 10.1039/d0bm00800a] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemorrhage is the leading cause of preventable death of injured military and civilian patients, and subsequent infection risks endanger their lives or impede the healing of their wounds. Here, we report an injectable biodegradable hydrogel with hemostatic, antimicrobial, and healing-promoting properties. The hydrogel was prepared by dynamic cross-linking of a natural polysaccharide (dextran) with antimicrobial peptide ε-poly-l-lysine (EPL) and encapsulating base fibroblast growth factor (bFGF). The amino groups of EPL were allowed to react with the aldehyde of oxidized dextran (OD) through the Schiff-base reaction for the generation of hydrogels that have fast self-healing and injectable characteristics and adapt to the shapes of wounds. The prepared OD/EPL hydrogels promoted blood clotting in vitro and stopped bleeding in a rat liver injury model within 6 min through their platelet-aggregating ability and sealing effect. These hydrogels exhibited inherent antimicrobial effects without the use of antibiotics and effectively killed a broad spectrum of pathogenic microbes, including Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative Escherichia coli, and Pseudomonas aeruginosa and fungus Candida albicans in vitro. Moreover, these OD/EPL hydrogels were compatible with mammalian cells in vitro and in vivo and biodegradable in the mouse body. The loaded bFGF can be released sustainably, and it can promote angiogenesis, endothelial cell migration, and consequently accelerate the healing of wounds. The OD/EPL hydrogel inhibited MRSA infection in a rat full-thickness skin wound model and promoted healing. This kind of multifunctional hydrogel is a promising wound dressing for the emergency treatment of acute deep or penetrating injuries.
Collapse
Affiliation(s)
- Lingling Gao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu J, Zhu J, Wu Q, An Y, Wang K, Xuan T, Zhang J, Song W, He H, Song L, Zheng J, Xiao J. Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2230-2244. [PMID: 33403850 DOI: 10.1021/acsami.0c18388] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient reconstruction of a fully functional skin after wounds requires multiple functionalities of wound dressing due to the complexity of healing. In these regards, topical administration of functionalized nanoparticles capable of sustainably releasing bioactive agents to the wound site may significantly accelerate wound repair. Among the various nanoparticles, superparamagnetic iron oxide (Fe3O4) nanoparticles gain increasing attractiveness due to their intrinsic response to an external magnetic field (eMF). Herein, based on the Fe3O4 nanoparticle, we developed a fibroblast growth factor (bFGF)-loaded Fe3O4 nanoparticle using a simple mussel-inspired surface immobilization method. This nanoparticle, named as bFGF-HDC@Fe3O4, could stabilize bFGF in various conditions and exhibited sustained release of bFGF. In addition, an in vitro study discovered that bFGF-HDC@Fe3O4 could promote macrophage polarization toward an anti-inflammatory (pro-healing) M2 phenotype especially under eMF. Further, in vivo full-thickness wound animal models demonstrated that bFGF-HDC@Fe3O4 could significantly accelerate wound healing through M2 macrophage polarization and increased cell proliferation. Therefore, this approach of realizing sustained the release of the growth factor with magnetically macrophage regulating behavior through modification of Fe3O4 nanoparticles offers promising potential to tissue-regenerative applications.
Collapse
Affiliation(s)
- Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Junyi Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Qiuji Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ying An
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Kangning Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Tengxiao Xuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Junwen Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wenxiang Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Liwan Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
25
|
Vascular Endothelial Growth Factor: A Translational View in Oral Non-Communicable Diseases. Biomolecules 2021; 11:biom11010085. [PMID: 33445558 PMCID: PMC7826734 DOI: 10.3390/biom11010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis that are expressed in response to soluble mediators, such as cytokines and growth factors. Their physiologic functions include blood vessel formation, regulation of vascular permeability, stem cell and monocyte/macrophage recruitment and maintenance of bone homeostasis and repair. In addition, angiogenesis plays a pivotal role in chronic pathologic conditions, such as tumorigenesis, inflammatory immune diseases and bone loss. According to their prevalence, morbidity and mortality, inflammatory diseases affecting periodontal tissues and oral cancer are relevant non-communicable diseases. Whereas oral squamous cell carcinoma (OSCC) is considered one of the most common cancers worldwide, destructive inflammatory periodontal diseases, on the other hand, are amongst the most prevalent chronic inflammatory conditions affecting humans and also represent the main cause of tooth loss in adults. In the recent years, while knowledge regarding the role of VEGF signaling in common oral diseases is expanding, new potential translational applications emerge. In the present narrative review we aim to explore the role of VEGF signaling in oral cancer and destructive periodontal inflammatory diseases, with emphasis in its translational applications as potential biomarkers and therapeutic targets.
Collapse
|
26
|
Wang Z, Hu W, You W, Huang G, Tian W, Huselstein C, Wu CL, Xiao Y, Chen Y, Wang X. Antibacterial and angiogenic wound dressings for chronic persistent skin injury. CHEMICAL ENGINEERING JOURNAL 2021; 404:126525. [DOI: 10.1016/j.cej.2020.126525] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
|
27
|
Liu Y, Liu Y, Deng J, Li W, Nie X. Fibroblast Growth Factor in Diabetic Foot Ulcer: Progress and Therapeutic Prospects. Front Endocrinol (Lausanne) 2021; 12:744868. [PMID: 34721299 PMCID: PMC8551859 DOI: 10.3389/fendo.2021.744868] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a combination of neuropathy and various degrees of peripheral vasculopathy in diabetic patients resulting in lower extremity infection, ulcer formation, and deep-tissue necrosis. The difficulty of wound healing in diabetic patients is caused by a high glucose environment and various biological factors in the patient. The patients' skin local microenvironment changes and immune chemotactic response dysfunction. Wounds are easy to be damaged and ulcerated repeatedly, but difficult to heal, and eventually develop into chronic ulcers. DFU is a complex biological process in which many cells interact with each other. A variety of growth factors released from wounds are necessary for coordination and promotion of healing. Fibroblast growth factor (FGF) is a family of cell signaling proteins, which can mediate various processes such as angiogenesis, wound healing, metabolic regulation and embryonic development through its specific receptors. FGF can stimulate angiogenesis and proliferation of fibroblasts, and it is a powerful angiogenesis factor. Twenty-three subtypes have been identified and divided into seven subfamilies. Traditional treatments for DFU can only remove necrotic tissue, delay disease progression, and have a limited ability to repair wounds. In recent years, with the increasing understanding of the function of FGF, more and more researchers have been applying FGF-1, FGF-2, FGF-4, FGF-7, FGF-21 and FGF-23 topically to DFU with good therapeutic effects. This review elaborates on the recently developed FGF family members, outlining their mechanisms of action, and describing their potential therapeutics in DFU.
Collapse
Affiliation(s)
- Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Xuqiang Nie, , orcid.org/0000-0002-6926-6515
| |
Collapse
|
28
|
Pan X, Xu S, Zhou Z, Wang F, Mao L, Li H, Wu C, Wang J, Huang Y, Li D, Wang C, Pan J. Fibroblast growth factor-2 alleviates the capillary leakage and inflammation in sepsis. Mol Med 2020; 26:108. [PMID: 33187467 PMCID: PMC7662026 DOI: 10.1186/s10020-020-00221-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute lung injury (ALI), which is induced by numerous pathogenic factors, especially sepsis, can generate alveolar damage, pulmonary edema and vascular hyper-permeability ultimately leading to severe hypoxemia. Fibroblast growth factor-2 (FGF2) is an important member of the FGF family associated with endothelial cell migration and proliferation, and injury repairment. Here, we conducted this study aiming to evaluate the therapeutic effect of FGF2 in sepsis-induced ALI. Methods Recombinant FGF2 was abdominally injected into septic mice induced by cecal ligation and puncture (CLP), and then the inflammatory factors of lung tissue, vascular permeability and lung injury-related indicators based on protein levels and gene expression were detected. In vitro, human pulmonary microvascular endothelial cells (HPMEC) and mouse peritoneal macrophages (PMs) were challenged by lipopolysaccharides (LPS) with or without FGF2 administration in different groups, and then changes in inflammation indicators and cell permeability ability were tested. Results The results revealed that FGF2 treatment reduced inflammation response, attenuated pulmonary capillary leakage, alleviated lung injury and improved survival in septic mice. The endothelial injury and macrophages inflammation induced by LPS were inhibited by FGF2 administration via AKT/P38/NF-κB signaling pathways. Conclusion These findings indicated a therapeutic role of FGF2 in ALI through ameliorating capillary leakage and inflammation.
Collapse
Affiliation(s)
- Xiaojun Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Shunyao Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Zhen Zhou
- Department of Intensive Care Unit, Hangzhou Third Hospital, Hangzhou, 310000, Zhejiang, P. R. China
| | - Fen Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Lingjie Mao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Hao Li
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Caixia Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Junfeng Wang
- The Yiwu Affiliated Hospital of Wenzhou Medical University, Jinhua, 322000, Zhejiang, P. R. China
| | - Yueyue Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Dequan Li
- Department of Traumatology Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| | - Cong Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| |
Collapse
|
29
|
Yasami-Khiabani S, Karkhaneh A, Shokrgozar MA, Amanzadeh A, Golkar M. Size effect of human epidermal growth factor-conjugated polystyrene particles on cell proliferation. Biomater Sci 2020; 8:4832-4840. [PMID: 32760979 DOI: 10.1039/d0bm00183j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugation of growth factors to a carrier is a favorable method to improve their efficacy as therapeutic molecules. Here, we report the carrier size effect on bioactivity of human epidermal growth factor (hEGF) conjugated to polystyrene particles. BALB/3T3 cells were treated with hEGF-conjugated particles (hEGF-conjs) sized from 20 to 1000 nm. At hEGF concentrations less than 0.5 ng ml-1, free hEGF was more potent than the hEGF-conjs at inducing cell proliferation. However, cell proliferation was size-dependent at higher concentrations of hEGF i.e. hEGF-conjs sized equal to or less than 200 nm displayed lower cell proliferation, compared to free hEGF, but larger particles showed increased cell proliferation. This is in agreement with previous studies showing accumulation of activated-EGFRs in early endosomes triggers apoptosis of A431 and HeLa cells. The confocal microscopy and co-localization fluorescence staining showed the 500 and 1000 nm hEGF-conjs exclusively remained on the cell surface, probably enabling them to activate EGF receptors for a longer time. Conversely, smaller particles were mostly inside the cells, indicating their rapid endocytosis. Similarly, A431 cells treated with 20 nm hEGF-conj, endocytosed the particles and experienced decreased cell proliferation, while the 500 and 1000 nm hEGF-conjs were not internalized, and induced partial cell proliferation. Moreover, we showed multivalency of hEGF-conjs is not the cause of enhanced cell proliferation by large particles, as the degree of EGFR phosphorylation by free EGF was higher, compared to hEGF-conjs. Our results suggest the potential of micron-sized particles as a carrier for hEGF to enhance cell proliferation, which could be explored as a promising approach for topical application of growth factors for accelerating wound healing.
Collapse
Affiliation(s)
- Setayesh Yasami-Khiabani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | | | | | | | | |
Collapse
|
30
|
Multipotent adult progenitor cells grown under xenobiotic-free conditions support vascularization during wound healing. Stem Cell Res Ther 2020; 11:389. [PMID: 32894199 PMCID: PMC7487685 DOI: 10.1186/s13287-020-01912-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cell therapy has been evaluated pre-clinically and clinically as a means to improve wound vascularization and healing. While translation of this approach to clinical practice ideally requires the availability of clinical grade xenobiotic-free cell preparations, studies proving the pre-clinical efficacy of the latter are mostly lacking. Here, the potential of xenobiotic-free human multipotent adult progenitor cell (XF-hMAPC®) preparations to promote vascularization was evaluated. Methods The potential of XF-hMAPC cells to support blood vessel formation was first scored in an in vivo Matrigel assay in mice. Next, a dose-response study was performed with XF-hMAPC cells in which they were tested for their ability to support vascularization and (epi) dermal healing in a physiologically relevant splinted wound mouse model. Results XF-hMAPC cells supported blood vessel formation in Matrigel by promoting the formation of mature (smooth muscle cell-coated) vessels. Furthermore, XF-hMAPC cells dose-dependently improved wound vascularization associated with increasing wound closure and re-epithelialization, granulation tissue formation, and dermal collagen organization. Conclusions Here, we demonstrated that the administration of clinical-grade XF-hMAPC cells in mice represents an effective approach for improving wound vascularization and healing that is readily applicable for translation in humans.
Collapse
|
31
|
Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 2020; 156:153-170. [DOI: 10.1016/j.ijbiomac.2020.03.207] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
|
32
|
Nawrocka D, Krzyscik MA, Opaliński Ł, Zakrzewska M, Otlewski J. Stable Fibroblast Growth Factor 2 Dimers with High Pro-Survival and Mitogenic Potential. Int J Mol Sci 2020; 21:ijms21114108. [PMID: 32526859 PMCID: PMC7312490 DOI: 10.3390/ijms21114108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a heparin-binding growth factor with broad mitogenic and cell survival activities. Its effector functions are induced upon the formation of 2:2 FGF2:FGFR1 tetrameric complex. To facilitate receptor activation, and therefore, to improve the FGF2 biological properties, we preorganized dimeric ligand by a covalent linkage of two FGF2 molecules. Mutations of the FGF2 WT protein were designed to obtain variants with a single surface-exposed reactive cysteine for the chemical conjugation via maleimide-thiol reaction with bis-functionalized linear PEG linkers. We developed eight FGF2 dimers of defined topology, differing in mutual orientation of individual FGF2 molecules. The engineered proteins remained functional in terms of FGFR downstream signaling activation and were characterized by the increased stability, mitogenic potential and anti-apoptotic activity, as well as induced greater migration responses in normal fibroblasts, as compared to FGF2 monomer. Importantly, biological activity of the dimers was much less dependent on the external heparin administration. Moreover, some dimeric FGF2 variants internalized more efficiently into FGFR overexpressing cancer cells. In summary, in the current work, we showed that preorganization of dimeric FGF2 ligand increased the stability of the growth factor, and therefore, enhanced its biological activity.
Collapse
Affiliation(s)
- Daria Nawrocka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (D.N.); (M.A.K.); (Ł.O.); (M.Z.)
| | - Mateusz Adam Krzyscik
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (D.N.); (M.A.K.); (Ł.O.); (M.Z.)
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (D.N.); (M.A.K.); (Ł.O.); (M.Z.)
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (D.N.); (M.A.K.); (Ł.O.); (M.Z.)
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (D.N.); (M.A.K.); (Ł.O.); (M.Z.)
- Correspondence: ; Tel.: +48-71-375-28-24
| |
Collapse
|
33
|
Chen S, Wang H, Su Y, John JV, McCarthy A, Wong SL, Xie J. Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater 2020; 108:153-167. [PMID: 32268240 PMCID: PMC7207021 DOI: 10.1016/j.actbio.2020.03.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
The management of diabetic wounds remains a major therapeutic challenge in clinics. Herein, we report a personalized treatment using 3D scaffolds consisting of radially or vertically aligned nanofibers in combination with bone marrow mesenchymal stem cells (BMSCs). The 3D scaffolds have customizable sizes, depths, and shapes, enabling them to fit a variety of type 2 diabetic wounds. In addition, the 3D scaffolds are shape-recoverable in atmosphere and water following compression. The BMSCs-laden 3D scaffolds are capable of enhancing the formation of granulation tissue, promoting angiogenesis, and facilitating collagen deposition. Further, such scaffolds inhibit the formation of M1-type macrophages and the expression of pro-inflammatory cytokines IL-6 and TNF-α and promote the formation of M2-type macrophages and the expression of anti-inflammatory cytokines IL-4 and IL-10. Taken together, BMSCs-laden, 3D nanofiber scaffolds with controlled structure and alignment hold great promise for the treatment of diabetic wounds. STATEMENT OF SIGNIFICANCE: In this study, we developed 3D radially and vertically aligned nanofiber scaffolds to transplant bone marrow mesenchymal stem cells (BMSCs). We personalized 3D scaffolds that could completely match the size, depth, and shape of diabetic wounds. Moreover, both the radially and vertically aligned nanofiber scaffolds could completely recover their shape and maintain structural integrity after repeated loads with compressive stresses. Furthermore, the BMSCs-laden 3D scaffolds are able to promote granulation tissue formation, angiogenesis, and collagen deposition, and switch the immune responses to the pro-regenerative direction. These 3D scaffolds consisting of radially or vertically aligned nanofibers in combination with BMSCs offer a robust, customizable platform potentially for a significant improvement of managing diabetic wounds.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Hongjun Wang
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yajuan Su
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Johnson V John
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shannon L Wong
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
34
|
Archer NK, Wang Y, Ortines RV, Liu H, Nolan SJ, Liu Q, Alphonse MP, Dikeman DA, Mazhar M, Miller RJ, Anderson LS, Francis KP, Simon SI, Miller LS. Preclinical Models and Methodologies for Monitoring Staphylococcus aureus Infections Using Noninvasive Optical Imaging. Methods Mol Biol 2020; 2069:197-228. [PMID: 31523776 PMCID: PMC7745539 DOI: 10.1007/978-1-4939-9849-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In vivo whole-animal optical (bioluminescence and fluorescence) imaging of Staphylococcus aureus infections has provided the opportunity to noninvasively and longitudinally monitor the dynamics of the bacterial burden and ensuing host immune responses in live anesthetized animals. Herein, we describe several different mouse models of S. aureus skin infection, skin inflammation, incisional/excisional wound infections, as well as mouse and rabbit models of orthopedic implant infection, which utilized this imaging technology. These animal models and imaging methodologies provide insights into the pathogenesis of these infections and innate and adaptive immune responses, as well as the preclinical evaluation of diagnostic and treatment modalities. Noninvasive approaches to investigate host-pathogen interactions are extremely important as virulent community-acquired methicillin-resistant S. aureus strains (CA-MRSA) are spreading through the normal human population, becoming more antibiotic resistant and creating a serious threat to public health.
Collapse
Affiliation(s)
- Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabrina J Nolan
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Momina Mazhar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leif S Anderson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | | | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
35
|
Roussakis E, Ortines RV, Pinsker BL, Mooers CT, Evans CL, Miller LS, Calderón-Colón X. Theranostic biocomposite scaffold membrane. Biomaterials 2019; 212:17-27. [PMID: 31100480 DOI: 10.1016/j.biomaterials.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022]
Abstract
Acute and chronic wounds affect millions and are associated with billions of dollars in healthcare costs. The use of healing markers, biochemical cues from biocompatible matrices and materials, and their correlation with wound healing has the potential to generate valuable diagnostic, prognostic, and therapeutic information. In this study, we developed a collagen-dextran oxygen-sensing biocomposite scaffold membrane in which a phosphorescent oxygen sensor was incorporated to monitor physiological oxygen using in vivo phosphorescence imaging in a preclinical mouse model of wound healing. The oxygen-sensing biocomposite scaffold membrane enabled the noninvasive and longitudinal monitoring of oxygenation changes in vivo in an approach compatible with commercially available preclinical in vivo imaging system instruments. This study provides a new and novel capability where a biocomposite material can serve as a biocompatible, biodegradable theranostic platform to promote and assess tissue oxygenation during wound healing.
Collapse
Affiliation(s)
- Emmanuel Roussakis
- (a)Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Bret L Pinsker
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Cavin T Mooers
- Research and Exploratory Development Department, The Johns Hopkins University - Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Conor L Evans
- (a)Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Xiomara Calderón-Colón
- Research and Exploratory Development Department, The Johns Hopkins University - Applied Physics Laboratory, Laurel, MD, 20723, USA.
| |
Collapse
|
36
|
Liang Y, Zhao X, Hu T, Chen B, Yin Z, Ma PX, Guo B. Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full-Thickness Skin Regeneration During Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900046. [PMID: 30786150 DOI: 10.1002/smll.201900046] [Citation(s) in RCA: 739] [Impact Index Per Article: 147.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/04/2019] [Indexed: 05/22/2023]
Abstract
Developing injectable nanocomposite conductive hydrogel dressings with multifunctions including adhesiveness, antibacterial, and radical scavenging ability and good mechanical property to enhance full-thickness skin wound regeneration is highly desirable in clinical application. Herein, a series of adhesive hemostatic antioxidant conductive photothermal antibacterial hydrogels based on hyaluronic acid-graft-dopamine and reduced graphene oxide (rGO) using a H2 O2 /HPR (horseradish peroxidase) system are prepared for wound dressing. These hydrogels exhibit high swelling, degradability, tunable rheological property, and similar or superior mechanical properties to human skin. The polydopamine endowed antioxidant activity, tissue adhesiveness and hemostatic ability, self-healing ability, conductivity, and NIR irradiation enhanced in vivo antibacterial behavior of the hydrogels are investigated. Moreover, drug release and zone of inhibition tests confirm sustained drug release capacity of the hydrogels. Furthermore, the hydrogel dressings significantly enhance vascularization by upregulating growth factor expression of CD31 and improve the granulation tissue thickness and collagen deposition, all of which promote wound closure and contribute to a better therapeutic effect than the commercial Tegaderm films group in a mouse full-thickness wounds model. In summary, these adhesive hemostatic antioxidative conductive hydrogels with sustained drug release property to promote complete skin regeneration are an excellent wound dressing for full-thickness skin repair.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tianli Hu
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Chen
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Peter X Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
37
|
Li Y, Wang X, Fu YN, Wei Y, Zhao L, Tao L. Self-Adapting Hydrogel to Improve the Therapeutic Effect in Wound-Healing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26046-26055. [PMID: 30009601 DOI: 10.1021/acsami.8b08874] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Smart materials that can respond to multistimuli have been broadly studied. However, the smart materials that can spontaneously answer the ever-changing inner environment of living bodies have not been reported. Here, we report a strategy based on the dynamic chemistry to develop possible self-adapting solid materials that can automatically change shape without external stimuli, as organisms do. The self-adapting property of a chitosan-based self-healing hydrogel has been rediscovered since its dynamic Schiff-base network confers the unique mobility to that solid gel. As a result, the hydrogel can move slowly, like an octopus climbing through a narrow channel, only following the natural forces of surface tension and gravity. The fascinating self-adapting feature enables this hydrogel as an excellent drug carrier for the in vivo wound treatment. In a healing process of the rat-liver laceration, this self-adapting hydrogel demonstrated remarkable superiority over traditional drug delivery methods, suggesting the great potential of this self-adapting hydrogel as a promising new material for biomedical applications. We believe the current research revealed a possible strategy to achieve self-adapting materials and may pave the way toward the further development, study, and application of new-generation smart materials.
Collapse
Affiliation(s)
- Yongsan Li
- Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Ya-Nan Fu
- Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | | | | | | |
Collapse
|
38
|
Zou J, Wang N, Liu M, Bai Y, Wang H, Liu K, Zhang H, Xiao X, Wang K. Nucleolin mediated pro-angiogenic role of Hydroxysafflor Yellow A in ischaemic cardiac dysfunction: Post-transcriptional regulation of VEGF-A and MMP-9. J Cell Mol Med 2018; 22:2692-2705. [PMID: 29512890 PMCID: PMC5908102 DOI: 10.1111/jcmm.13552] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023] Open
Abstract
Hydroxysafflor Yellow A (HSYA), a most representative ingredient of Carthamus tinctorius L., had long been used in treating ischaemic cardiovascular diseases in China and exhibited prominently anticoagulant and pro-angiogenic activities, but the underlying mechanisms remained largely unknown. This study aimed to further elucidate the pro-angiogenic effect and mechanism of HSYA on ischaemic cardiac dysfunction. A C57 mouse model of acute myocardial infarction (AMI) was firstly established, and 25 mg/kg HSYA was intraperitoneally injected immediately after operation and given once, respectively, each morning and evening for 2 weeks. It was found that HSYA significantly improved ischaemia-induced cardiac haemodynamics, enhanced the survival rate, alleviated the myocardial injury and increased the expressions of CD31, vascular endothelial growth factor-A (VEGF-A) and nucleolin in the ischaemic myocardium. In addition, HSYA promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs), enhanced the expressions of nucleolin, VEGF-A and matrix metalloproteinase-9 (MMP-9) in a dose- and time-dependent manner. However, down-regulation of nucleolin expression sharply abrogated the effect mentioned above of HSYA. Further protein-RNA coimmunoprecipitation and immunoprecipitation-RT-PCR assay showed that nucleolin binded to VEGF-A and MMP-9 mRNA and overexpression of nucleolin up-regulated the mRNA expressions of VEGF-A and MMP-9 in the HUVECs through enhancing the stability of VEGF-A and MMP-9 mRNA. Furthermore, HSYA increased the mRNA expressions of VEGF-A and MMP-9 in the extract of antinucleolin antibody-precipitated protein from the heart of AMI mice. Our data revealed that nucleolin mediated the pro-angiogenic effect of HSYA through post-transcriptional regulation of VEGF-A and MMP-9 expression, which contributed to the protective effect of HSYA on ischaemic cardiac dysfunction.
Collapse
Affiliation(s)
- Jiang Zou
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Nian Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Manting Liu
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Yongping Bai
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Hao Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Ke Liu
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Huali Zhang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Xianzhong Xiao
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
| | - Kangkai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Translational Medicine Center of SepsisKey Lab of Hunan ProvinceCentral South UniversityChangshaChina
- Department of Laboratory AnimalsXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|
39
|
Zbinden A, Browne S, Altiok EI, Svedlund FL, Jackson WM, Healy KE. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells. Biomater Sci 2018; 6:1076-1083. [PMID: 29595848 PMCID: PMC5930118 DOI: 10.1039/c7bm01052d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.
Collapse
Affiliation(s)
- Aline Zbinden
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13304-13316. [PMID: 29607644 DOI: 10.1021/acsami.7b18927] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Immediate hemorrhage control and anti-infection play important roles in the wound management. Besides, a moist environment is also beneficial for wound healing. Hydrogels are promising materials in urgent hemostasis and drug release. However, hydrogels have the disadvantage of rapid release profiles, leading to the exposure to high drug concentrations. In this study, we constructed hybrid hydrogels with rapid hemostasis and sustainable antibacterial property combining aminoethyl methacrylate hyaluronic acid (HA-AEMA) and methacrylated methoxy polyethylene glycol (mPEG-MA) hybrid hydrogels and chlorhexidine diacetate (CHX)-loaded nanogels. The CHX-loaded nanogels (CLNs) were prepared by the enzyme degradation of CHX-loaded lysine-based hydrogels. The HA-AEMA and mPEG-MA hybrid hydrogel loaded with CLNs (labeled as Gel@CLN) displayed a three-dimensional microporous structure and exhibited excellent swelling, mechanical property, and low cytotoxicity. The Gel@CLN hydrogel showed a prolonged release period of CHX over 240 h and the antibacterial property over 10 days. The hemostasis and wound-healing properties were evaluated in vivo using a mouse model. The results showed that hydrogel had the rapid hemostasis capacity and accelerated wound healing. In summary, CLN-loaded hydrogels may be excellent candidates as hemostasis and anti-infection materials for the wound dressing application.
Collapse
Affiliation(s)
- Jie Zhu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles , Donghua University , Songjiang District , Shanghai 201620 , China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles , Donghua University , Songjiang District , Shanghai 201620 , China
| | - Xueli Wang
- Modern Textile Institute , Donghua University , Changning District , Shanghai 200051 , China
| | - Jianyong Yu
- Modern Textile Institute , Donghua University , Changning District , Shanghai 200051 , China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles , Donghua University , Songjiang District , Shanghai 201620 , China
| |
Collapse
|
41
|
Jiang X, Liu L, Qiao L, Zhang B, Wang X, Han Y, Yu W. Dracorhodin perchlorate regulates fibroblast proliferation to promote rat's wound healing. J Pharmacol Sci 2018; 136:66-72. [PMID: 29428295 DOI: 10.1016/j.jphs.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
In recent years, plant-derived extracts are increasing interest from researchers worldwide due to good efficacy and lower side effects. Among the different plant extracts, Dracorhodin perchlorate (DP) is originated from Dragon's blood which has long been used as a natural medicine with various pharmacological activities. In the present study, we have explored the potential regulation of DP on fibroblast proliferation which promotes wound healing both in vitro and in vivo. DP at treatment of 12-24 h significantly induced fibroblast proliferation which is associated with increasing level of phosphorylated-extracellular signal-regulated kinase (ERK). Moreover, if ERK is halted with siRNA, DP cannot induce fibroblast proliferation. In vivo, DP ointment treatment at low- (2.5 μg/mL), medium- (5 μg/mL) and high-(10 μg/mL) doses, rat wounds healed more rapidly compared with the control group. After DP treatment for 7 days, Serpin family H member 1 (SERPINH1) staining confirmed enhanced fibroblast proliferation in the wound tissue. Finally, phosphorylated-ERK in the wound tissue remarkably increased with DP ointment treatment. Therefore, DP may be developed into a potential lead compounds for the treatment of wounds in clinical trials in the near future.
Collapse
Affiliation(s)
- Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Binqing Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuewei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuwen Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
42
|
Zhu M, Liu P, Shi H, Tian Y, Ju X, Jiang S, Li Z, Wu M, Niu Z. Balancing antimicrobial activity with biological safety: bifunctional chitosan derivative for the repair of wounds with Gram-positive bacterial infections. J Mater Chem B 2018; 6:3884-3893. [DOI: 10.1039/c8tb00620b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because of the balance between antimicrobial activity and biological safety, the bifunctional chitosan derivative could control infections and promote healing simultaneously.
Collapse
Affiliation(s)
- Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Peng Liu
- TEDA Institute of Biological Sciences and Biotechnology
- Nankai University
- Tianjin 300457
- China
| | - Haigang Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shidong Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhuang Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Man Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
43
|
Yeles C, Vlachavas EI, Papadodima O, Pilalis E, Vorgias CE, Georgakilas AG, Chatziioannou A. Integrative Bioinformatic Analysis of Transcriptomic Data Identifies Conserved Molecular Pathways Underlying Ionizing Radiation-Induced Bystander Effects (RIBE). Cancers (Basel) 2017; 9:E160. [PMID: 29186820 PMCID: PMC5742808 DOI: 10.3390/cancers9120160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Ionizing radiation-induced bystander effects (RIBE) encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR), something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO) related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.
Collapse
Affiliation(s)
- Constantinos Yeles
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15701 Athens, Greece; (C.Y.); (C.E.V.)
- Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.-I.V); (O.P.)
| | - Efstathios-Iason Vlachavas
- Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.-I.V); (O.P.)
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Dragana, Greece
- Enios Applications Private Limited Company, A17671 Athens, Greece;
| | - Olga Papadodima
- Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.-I.V); (O.P.)
| | | | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15701 Athens, Greece; (C.Y.); (C.E.V.)
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece;
| | - Aristotelis Chatziioannou
- Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.-I.V); (O.P.)
- Enios Applications Private Limited Company, A17671 Athens, Greece;
| |
Collapse
|
44
|
Devalliere J, Dooley K, Hu Y, Kelangi SS, Uygun BE, Yarmush ML. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials 2017; 141:149-160. [DOI: 10.1016/j.biomaterials.2017.06.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/14/2023]
|
45
|
Abstract
Wound healing is one of the most complex processes that our bodies must perform. While our ability to repair wounds is often taken for granted, conditions such as diabetes, obesity, or simply old age can significantly impair this process. With the incidence of all three predicted to continue growing into the foreseeable future, there is an increasing push to develop strategies that facilitate healing. Biomaterials are an attractive approach for modulating all aspects of repair, and have the potential to steer the healing process towards regeneration. In this review, we will cover recent advances in developing biomaterials that actively modulate the process of wound healing, and will provide insight into how biomaterials can be used to simultaneously rewire multiple phases of the repair process.
Collapse
Affiliation(s)
- Anna Stejskalová
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
46
|
Tronci G, Yin J, Holmes RA, Liang H, Russell SJ, Wood DJ. Protease-sensitive atelocollagen hydrogels promote healing in a diabetic wound model. J Mater Chem B 2016; 4:7249-7258. [PMID: 32263727 DOI: 10.1039/c6tb02268e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The design of exudate-managing wound dressings is an established route to accelerated healing, although such design remains a challenge from material and manufacturing standpoints. Aiming towards the clinical translation of knowledge gained in vitro with highly-swollen rat tail collagen hydrogels, this study investigated the healing capability in a diabetic mouse wound model of telopeptide-free, protease-inhibiting collagen networks. 4-Vinylbenzylation and UV irradiation of type I atelocollagen (AC) led to hydrogel networks with chemical and macroscopic properties comparable to previous collagen analogues, attributable to similar lysine content and dichroic properties. After 4 days in vitro, hydrogels induced nearly 50 RFU% reduction in matrix metalloproteinase (MMP)-9 activity, whilst showing less than 20 wt% mass loss. After 20 days in vivo, dry networks promoted 99% closure of 10 × 10 mm full thickness wounds and accelerated neo-dermal tissue formation compared to Mepilex®. This collagen system can be equipped with multiple, customisable properties and functions key to personalised chronic wound care.
Collapse
Affiliation(s)
- Giuseppe Tronci
- Nonwovens Research Group, School of Design, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
47
|
Paluck S, Nguyen TH, Lee JP, Maynard HD. A Heparin-Mimicking Block Copolymer Both Stabilizes and Increases the Activity of Fibroblast Growth Factor 2 (FGF2). Biomacromolecules 2016; 17:3386-3395. [PMID: 27580376 PMCID: PMC5059753 DOI: 10.1021/acs.biomac.6b01182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/27/2016] [Indexed: 01/22/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is a protein involved in cellular functions in applications such as wound healing and tissue regeneration. Stabilization of this protein is important for its use as a therapeutic since the native protein is unstable during storage and delivery. Additionally, the ability to increase the activity of FGF2 is important for its application, particularly in chronic wound healing and the treatment of various ischemic conditions. Here we report a heparin mimicking block copolymer, poly(styrenesulfonate-co-poly(ethylene glycol) methyl ether methacrylate)-b-vinyl sulfonate) (p(SS-co-PEGMA)-b-VS, that contains a segment that enhances the stability of FGF2 and one that binds to the FGF2 receptor. The FGF2 conjugate retained activity after exposure to refrigeration (4 °C) and room temperature (23 °C) for 7 days, while unmodified FGF2 was inactive after these standard storage conditions. A cell study performed with a cell line lacking native heparan sulfate proteoglycans indicated that the conjugated block copolymer facilitated binding of FGF2 to its receptor similar to the addition of heparin to FGF2. A receptor-based enzyme-linked immunosorbant assay (ELISA) confirmed the results. The conjugate also increased the migration of endothelial cells by 80% compared to FGF2 alone. Additionally, the FGF2-p(SS-co-PEGMA)-b-VS stimulated endothelial cell sprouting 250% better than FGF2 at low concentration. These data verify that this rationally designed protein-block copolymer conjugate enhances receptor binding, cellular processes such as migration and tube-like formation, and stability, and suggest that it may be useful for applications in biomaterials, tissue regeneration, and wound healing.
Collapse
Affiliation(s)
- Samantha
J. Paluck
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Thi H. Nguyen
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Jonghan P. Lee
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Heather D. Maynard
- Department of Chemistry and
Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| |
Collapse
|
48
|
Pelegri-O’Day EM, Maynard HD. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates. Acc Chem Res 2016; 49:1777-85. [PMID: 27588677 DOI: 10.1021/acs.accounts.6b00258] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein-polymer conjugates are unique constructs that combine the chemical properties of a synthetic polymer chain with the biological properties of a biomacromolecule. This often leads to improved stabilities, solubilities, and in vivo half-lives of the resulting conjugates, and expands the range of applications for the proteins. However, early chemical methods for protein-polymer conjugation often required multiple polymer modifications, which were tedious and low yielding. To solve these issues, work in our laboratory has focused on the development of controlled radical polymerization (CRP) techniques to improve synthesis of protein-polymer conjugates. Initial efforts focused on the one-step syntheses of protein-reactive polymers through the use of functionalized initiators and chain transfer agents. A variety of functional groups such as maleimide and pyridyl disulfide could be installed with high end-group retention, which could then react with protein functional groups through mild and biocompatible chemistries. While this grafting to method represented a significant advance in conjugation technique, purification and steric hindrance between large biomacromolecules and polymer chains often led to low conjugation yields. Therefore, a grafting from approach was developed, wherein a polymer chain is grown from an initiating site on a functionalized protein. These conjugates have demonstrated improved homogeneity, characterization, and easier purification, while maintaining protein activity. Much of this early work utilizing CRP techniques focused on polymers made up of biocompatible but nonfunctional monomer units, often containing oligoethylene glycol meth(acrylate) or N-isopropylacrylamide. These branched polymers have significant advantages compared to the historically used linear poly(ethylene glycols) including decreased viscosities and thermally responsive behavior, respectively. Recently, we were motivated to use CRP techniques to develop polymers with rationally designed and functional biological properties for conjugate preparation. Specifically, two families of saccharide-inspired polymers were developed for stabilization and activation of therapeutic biomolecules. A series of polymers with trehalose side-chains and vinyl backbones were prepared and used to stabilize proteins against heat and lyophilization stress as both conjugates and additives. These materials, which combine properties of osmolytes with nonionic surfactants, have significant potential for in vivo therapeutic use. Additionally, polymers that mimic the structure of the naturally occurring polysaccharide heparin were prepared. These polymers contained negatively charged sulfonate groups and imparted stabilization to a heparin-binding growth factor after conjugation. A screen of other sulfonated polymers led to the development of a polymer with improved heparin mimesis, enhancing both stability and activity of the protein to which it was attached. Chemical improvements over the past decade have enabled the preparation of a diverse set of protein-polymer conjugates by controlled polymerization techniques. Now, the field should thoroughly explore and expand both the range of polymer structures and also the applications available to protein-polymer conjugates. As we move beyond medicine toward broader applications, increased collaboration and interdisciplinary work will result in the further development of this exciting field.
Collapse
Affiliation(s)
- Emma M. Pelegri-O’Day
- Department of Chemistry and
Biochemistry and California Nanosystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and
Biochemistry and California Nanosystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs. Data Brief 2016; 8:506-15. [PMID: 27408925 PMCID: PMC4925454 DOI: 10.1016/j.dib.2016.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.
Collapse
|
50
|
Yagi LH, Watanuki LM, Isaac C, Gemperli R, Nakamura YM, Ladeira PRS. Human fetal wound healing: a review of molecular and cellular aspects. EUROPEAN JOURNAL OF PLASTIC SURGERY 2016. [DOI: 10.1007/s00238-016-1201-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|