1
|
Maggi F, Manfredi A, Carosio F, Maddalena L, Alongi J, Ferruti P, Ranucci E. Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227808. [PMID: 36431909 PMCID: PMC9696315 DOI: 10.3390/molecules27227808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.
Collapse
Affiliation(s)
- Filippo Maggi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Lorenza Maddalena
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-0250314132
| |
Collapse
|
2
|
Najer A, Blight J, Ducker CB, Gasbarri M, Brown JC, Che J, Høgset H, Saunders C, Ojansivu M, Lu Z, Lin Y, Yeow J, Rifaie-Graham O, Potter M, Tonkin R, Penders J, Doutch JJ, Georgiadou A, Barriga HMG, Holme MN, Cunnington AJ, Bugeon L, Dallman MJ, Barclay WS, Stellacci F, Baum J, Stevens MM. Potent Virustatic Polymer-Lipid Nanomimics Block Viral Entry and Inhibit Malaria Parasites In Vivo. ACS CENTRAL SCIENCE 2022; 8:1238-1257. [PMID: 36188342 PMCID: PMC9092191 DOI: 10.1021/acscentsci.1c01368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer-lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both in vitro and in vivo using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.
Collapse
Affiliation(s)
- Adrian Najer
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
- Department
of Life Sciences, Imperial College London, London, SW7 2AZ, U.K.
| | - Joshua Blight
- Department
of Life Sciences, Imperial College London, London, SW7 2AZ, U.K.
| | | | - Matteo Gasbarri
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jonathan C. Brown
- Department
of Infectious Disease, Imperial College
London, London, W2 1PG, U.K.
| | - Junyi Che
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Håkon Høgset
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Catherine Saunders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Miina Ojansivu
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Zixuan Lu
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Yiyang Lin
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Jonathan Yeow
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Omar Rifaie-Graham
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Michael Potter
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Renée Tonkin
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - Jelle Penders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | - James J. Doutch
- Rutherford
Appleton Laboratory, ISIS Neutron and Muon
Source, STFC, Didcot OX11 ODE, U.K.
| | - Athina Georgiadou
- Department
of Infectious Disease, Imperial College
London, London, W2 1PG, U.K.
| | - Hanna M. G. Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Laurence Bugeon
- Department
of Life Sciences, Imperial College London, London, SW7 2AZ, U.K.
| | | | - Wendy S. Barclay
- Department
of Infectious Disease, Imperial College
London, London, W2 1PG, U.K.
| | - Francesco Stellacci
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute
of Bioengineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jake Baum
- Department
of Life Sciences, Imperial College London, London, SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Jøraholmen MW, Damdimopoulou P, Acharya G, Škalko-Basnet N. Toxicity Assessment of Resveratrol Liposomes-in-Hydrogel Delivery System by EpiVaginal TM Tissue Model. Pharmaceutics 2022; 14:pharmaceutics14061295. [PMID: 35745867 PMCID: PMC9231258 DOI: 10.3390/pharmaceutics14061295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The natural polyphenol resveratrol (RES) has shown great potential as an antimicrobial, including against microbes associated with vaginal infections. To fully exploit the activities of RES, an all-natural ingredients formulation for RES delivery at vaginal site has been developed, namely liposomes loaded with RES, incorporated into a chitosan hydrogel as secondary vehicle. Although considered non-toxic and safe on their own, the compatibility of the final formulation must be evaluated for its biocompatibility and non-irritancy to the vaginal mucosa. As a preclinical safety assessment, the impact of RES formulation on the tissue viability, the effect on barrier function and cell monolayer integrity, and cytotoxicity were evaluated using the cell-based vaginal tissue model, the EpiVaginal™ tissue. RES liposomes-in-hydrogel formulations neither affected the mitochondrial activity, nor the integrity of the cell monolayer in RES concentration up to 60 µg/mL. Moreover, the barrier function was maintained to a greater extent by RES in formulation, emphasizing the benefits of the delivery system. Additionally, none of the tested formulations expressed an increase in lactate dehydrogenase activity compared to the non-treated tissues. The evaluation of the RES delivery system suggests that it is non-irritant and biocompatible with vaginal tissue in vitro in the RES concentrations considered as therapeutic.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Correspondence: ; Tel.: +47-776-23376
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway and Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusveien 38, 9019 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
| |
Collapse
|
4
|
Kunduru KR, Kutner N, Nassar‐Marjiya E, Shaheen‐Mualim M, Rizik L, Farah S. Disinfectants role in the prevention of spreading the
COVID
‐19 and other infectious diseases: The need for functional polymers! POLYM ADVAN TECHNOL 2022; 33:3853-3861. [PMID: 35572096 PMCID: PMC9088588 DOI: 10.1002/pat.5689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
The spreading of coronavirus through droplets and aerosols of an infected person is a well‐known mechanism. The main protection methods from this virus are using disinfectants/sanitizers, face masks, keeping social distance, and vaccination. With the rapid mutations of the virus accompanied by its features and contagions changing, new advanced functional materials development is highly needed. The usage of disinfectants/sanitizers in excess generates poisonous effects among the general public. Effective and simultaneously, human‐friendly sanitizers or disinfectants are required to prevent the poisoning and the associated issues. They minimize the toxic effects of the currently available materials by rapid action, high potential, long‐term stability, and excellent biocompatible nature. Here, we summarize the available antiviral materials, their features, and their limitations. We highlight the need to develop an arsenal of advanced functional antiviral polymers with intrinsic bioactive functionalities or released bioactive moieties in a controlled manner for rapid and long‐term actions for current and future anticipated viral outbreaks.
Collapse
Affiliation(s)
- Konda Reddy Kunduru
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Neta Kutner
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Eid Nassar‐Marjiya
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Merna Shaheen‐Mualim
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Luna Rizik
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Shady Farah
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
- The Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
5
|
Royo-Rubio E, Martín-Cañadilla V, Rusnati M, Milanesi M, Lozano-Cruz T, Gómez R, Jiménez JL, Muñoz-Fernández MÁ. Prevention of Herpesviridae Infections by Cationic PEGylated Carbosilane Dendrimers. Pharmaceutics 2022; 14:pharmaceutics14030536. [PMID: 35335912 PMCID: PMC8950866 DOI: 10.3390/pharmaceutics14030536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Infections caused by viruses from the Herpesviridae family produce some of the most prevalent transmitted diseases in the world, constituting a serious global public health issue. Some of the virus properties such as latency and the appearance of resistance to antiviral treatments complicate the development of effective therapies capable of facing the infection. In this context, dendrimers present themselves as promising alternatives to current treatments. In this study, we propose the use of PEGylated cationic carbosilane dendrimers as inhibitors of herpes simplex virus 2 (HSV-2) and human cytomegalovirus (HCMV)infections. Studies of mitochondrial toxicity, membrane integrity, internalization and viral infection inhibition indicated that G2-SN15-PEG, G3-SN31-PEG, G2-SN15-PEG fluorescein isothiocyanate (FITC) labeled and G3-SN31-PEG-FITC dendrimers are valid candidates to target HSV-2 and HCMV infections since they are biocompatible, can be effectively internalized and are able to significantly inhibit both infections. Later studies (including viral inactivation, binding inhibition, heparan sulphate proteoglycans (HSPG)binding and surface plasmon resonance assays) confirmed that inhibition takes place at first infection stages. More precisely, these studies established that their attachment to cell membrane heparan sulphate proteoglycans impede the interaction between viral glycoproteins and these cell receptors, thus preventing infection. Altogether, our research confirmed the high capacity of these PEGylated carbosilane dendrimers to prevent HSV-2 and HCMV infections, making them valid candidates as antiviral agents against Herpesviridae infections.
Collapse
Affiliation(s)
- Elena Royo-Rubio
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Vanessa Martín-Cañadilla
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.R.); (M.M.)
| | - Maria Milanesi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.R.); (M.M.)
| | - Tania Lozano-Cruz
- Departmento Quimica Organica y Quimica Inorganica, Instituto de Investigacion Quimica “Andres M. del Rio″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Madrid, Spain; (T.L.-C.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rafael Gómez
- Departmento Quimica Organica y Quimica Inorganica, Instituto de Investigacion Quimica “Andres M. del Rio″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Madrid, Spain; (T.L.-C.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - José Luís Jiménez
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Correspondence: or
| |
Collapse
|
6
|
Sureram S, Arduino I, Ueoka R, Rittà M, Francese R, Srivibool R, Darshana D, Piel J, Ruchirawat S, Muratori L, Lembo D, Kittakoop P, Donalisio M. The Peptide A-3302-B Isolated from a Marine Bacterium Micromonospora sp. Inhibits HSV-2 Infection by Preventing the Viral Egress from Host Cells. Int J Mol Sci 2022; 23:947. [PMID: 35055133 PMCID: PMC8778767 DOI: 10.3390/ijms23020947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 μM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.
Collapse
Affiliation(s)
- Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
| | - Irene Arduino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Reiko Ueoka
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (R.U.); (J.P.)
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | | | - Dhanushka Darshana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
| | - Jörn Piel
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (R.U.); (J.P.)
| | - Somsak Ruchirawat
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, 10043 Orbassano, Italy;
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| |
Collapse
|
7
|
Chaturvedi P, Kelich P, Nitka TA, Vuković L. Computational Modeling of the Virucidal Inhibition Mechanism for Broad-Spectrum Antiviral Nanoparticles and HPV16 Capsid Segments. J Phys Chem B 2021; 125:13122-13131. [PMID: 34845905 DOI: 10.1021/acs.jpcb.1c07436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Solid core nanoparticles (NPs) coated with sulfonated ligands that mimic heparan sulfate proteoglycans (HSPGs) can exhibit virucidal activity against many viruses that utilize HSPG interactions with host cells for the initial stages of infection. How the interactions of these NPs with large capsid segments of HSPG-interacting viruses lead to their virucidal activity has been unclear. Here, we describe the interactions between sulfonated NPs and segments of the human papilloma virus type 16 (HPV16) capsids using atomistic molecular dynamics simulations. The simulations demonstrate that the NPs primarily bind at the interfaces of two HPV16 capsid proteins. After equilibration, the distances and angles between capsid proteins in the capsid segments are larger for the systems in which the NPs bind at the interfaces of capsid proteins. Over time, NP binding can lead to breaking of contacts between two neighboring proteins. The revealed mechanism of NPs targeting the interfaces between pairs of capsid proteins can be utilized for designing new generations of virucidal materials and contribute to the development of new broad-spectrum non-toxic virucidal materials.
Collapse
Affiliation(s)
- Parth Chaturvedi
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Tara A Nitka
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
8
|
Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021; 10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Indexed: 12/18/2022]
Abstract
As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.
Collapse
Affiliation(s)
- Agnès Kuroki
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| |
Collapse
|
9
|
Jiang X, Li Z, Young DJ, Liu M, Wu C, Wu YL, Loh XJ. Toward the prevention of coronavirus infection: what role can polymers play? MATERIALS TODAY. ADVANCES 2021; 10:100140. [PMID: 33778467 PMCID: PMC7980145 DOI: 10.1016/j.mtadv.2021.100140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 has caused a global public health crisis with high rates of infection and mortality. Treatment and prevention approaches include vaccine development, the design of small-molecule antiviral drugs, and macromolecular neutralizing antibodies. Polymers have been designed for effective virus inhibition and as antiviral drug delivery carriers. This review summarizes recent progress and provides a perspective on polymer-based approaches for the treatment and prevention of coronavirus infection. These polymer-based partners include polyanion/polycations, dendritic polymers, macromolecular prodrugs, and polymeric drug delivery systems that have the potential to significantly improve the efficacy of antiviral therapeutics.
Collapse
Affiliation(s)
- X Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Z Li
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - D J Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - M Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - C Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Y-L Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - X J Loh
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| |
Collapse
|
10
|
Zhao J, Ullah I, Gao B, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B 2021; 8:2418-2430. [PMID: 32115589 DOI: 10.1039/c9tb02641j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bioreducible cationic polymers have gained considerable attention in gene delivery due to their low cytotoxicity and high efficiency. In the present work, we reported a cationic polymer, poly(disulfide-l-lysine)-g-agmatine (denoted as SSL-AG), and evaluated its ability to transfer pEGFP-ZNF580 plasmid (pZNF580) into human umbilical vein endothelial cells (HUVECs). This SSL-AG polymeric carrier efficiently condensed pZNF580 into positively charged particles (<200 nm) through electrostatic interaction. This carrier also exhibited excellent buffering capacity in the physiological environment, good pDNA protection against enzymatic degradation and rapid pDNA release in a highly reducing environment mainly because of the responsive cleavage of disulfide bonds in the polymer backbone. The hemolysis assay and in vitro cytotoxicity assay suggested that the SSL-AG carrier and corresponding gene complexes possessed both good hemocompatibility and great cell viability in HUVECs. The cellular uptake of the SSL-AG/Cy5-oligonucleotide group was 3.6 times that of the poly(l-lysine)/Cy5-oligonucleotide group, and its mean fluorescence intensity value was even higher than that of the PEI 25 kDa/Cy5-oligonucleotide group. Further, the intracellular trafficking results demonstrated that the SSL-AG/Cy5-oligonucleotide complexes exhibited a high nucleus co-localization rate (CLR) value (36.0 ± 2.8%, 3.4 times that of the poly (l-lysine)/Cy5-oligonucleotide group, 1.6 times that of the poly(disulfide-l-lysine)-g-butylenediamine/Cy5-oligonucleotide group) at 24 h, while the endo/lysosomal CLR value was relatively low. This suggested that SSL-AG successfully delivered plasmid into HUVECs with high cellular uptake, rapid endosomal escape and efficient nuclear accumulation owing to the structural advantages of the bioreducible and agmatine groups. In vitro transfection assay also verified the enhanced transfection efficiency in the SSL-AG/pZNF580 group. Furthermore, the results of CCK-8, cell migration and in vitro/vivo angiogenesis assays revealed that pZNF580 delivered by SSL-AG could effectively enhance the proliferation, migration and vascularization of HUVECs. In a word, the SSL-AG polymer has great potential as a safe and efficient gene carrier for gene therapy.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Marcioni M, Alongi J, Ranucci E, Malinconico M, Laurienzo P, Ferruti P, Manfredi A. Semi-Crystalline Hydrophobic Polyamidoamines: A New Family of Technological Materials? Polymers (Basel) 2021; 13:polym13071018. [PMID: 33806055 PMCID: PMC8036605 DOI: 10.3390/polym13071018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.
Collapse
Affiliation(s)
- Massimo Marcioni
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale T. Michel, 15121 Alessandria, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
| | - Mario Malinconico
- Istituto Polimeri, Compositi e Biomateriali (IPCB), Consiglio Nazionale Delle Ricerche, via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (P.L.)
| | - Paola Laurienzo
- Istituto Polimeri, Compositi e Biomateriali (IPCB), Consiglio Nazionale Delle Ricerche, via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (P.L.)
| | - Paolo Ferruti
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
- Correspondence: (P.F.); (A.M.); Tel.: +39-02-50314128 (P.F.); +39-02-50314181 (A.M.)
| | - Amedea Manfredi
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
- Correspondence: (P.F.); (A.M.); Tel.: +39-02-50314128 (P.F.); +39-02-50314181 (A.M.)
| |
Collapse
|
12
|
Acquadro S, Civra A, Cagliero C, Marengo A, Rittà M, Francese R, Sanna C, Bertea C, Sgorbini B, Lembo D, Donalisio M, Rubiolo P. Punica granatum Leaf Ethanolic Extract and Ellagic Acid as Inhibitors of Zika Virus Infection. PLANTA MEDICA 2020; 86:1363-1374. [PMID: 32937663 DOI: 10.1055/a-1232-5705] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zika virus, an arthropod-borne flavivirus, is an emerging healthcare threat worldwide. Zika virus is responsible for severe neurological effects, such as paralytic Guillain-Barrè syndrome, in adults, and also congenital malformations, especially microcephaly. No specific antiviral drugs and vaccines are currently available, and treatments are palliative, but medicinal plants show great potential as natural sources of anti-Zika phytochemicals. This study deals with the investigation of the composition, cytotoxicity, and anti-Zika activity of Punica granatum leaf ethanolic extract, fractions, and phytoconstituents. P. granatum leaves were collected from different areas in Italy and Greece in different seasons. Crude extracts were analyzed and fractionated, and the pure compounds were isolated. The phytochemical and biomolecular fingerprint of the pomegranate leaves was determined. The antiviral activities of the leaf extract, fractions, and compounds were investigated against the MR766 and HPF2013 Zika virus strains in vitro. Both the extract and its fractions were found to be active against Zika virus infection. Of the compounds isolated, ellagic acid showed particular anti-Zika activities, with EC50 values of 30.86 µM for MR766 and 46.23 µM for HPF2013. The mechanism of action was investigated using specific antiviral assays, and it was demonstrated that ellagic acid was primarily active as it prevented Zika virus infection and was able to significantly reduce Zika virus progeny production. Our data demonstrate the anti-Zika activity of pomegranate leaf extract and ellagic acid for the first time. These findings identify ellagic acid as a possible anti-Zika candidate compound that can be used for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Stefano Acquadro
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cecilia Cagliero
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cinzia Sanna
- Department of Environmental and Life Sciences University of Cagliari, Cagliari, Italy
| | - Cinzia Bertea
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Barbara Sgorbini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Donalisio M, Argenziano M, Rittà M, Bastiancich C, Civra A, Lembo D, Cavalli R. Acyclovir-loaded sulfobutyl ether-β-cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. Int J Pharm 2020; 587:119676. [DOI: 10.1016/j.ijpharm.2020.119676] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
|
15
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
16
|
Alboofetileh M, Rezaei M, Tabarsa M, Rittà M, Donalisio M, Mariatti F, You S, Lembo D, Cravotto G. Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int J Biol Macromol 2019; 124:131-137. [PMID: 30471396 DOI: 10.1016/j.ijbiomac.2018.11.201] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 11/26/2022]
Abstract
In the current study, fucoidans from brown alga Nizamuddinia zanardinii were isolated with conventional and non-conventional extraction procedures to evaluate the effects of recently introduced technologies on biochemical characteristics and saccharide composition of the extracts, along with their antibacterial, antiviral and cytotoxic properties. The results demonstrated that subcritical water extraction showed the highest fucoidans yield (13.15%), while the lowest yield was obtained using ultrasound extraction method (3.6%). The polysaccharide chains consisted of fucose, galactose, glucose, mannose and xylose, whose molar percentages differed according to the extraction method used. The weight mean average molecular weight of fucoidans varied between 444 and 1184 kDa. The FT-IR spectroscopy confirmed the presence of sulfate esters by bending vibration of COS and stretching vibration of SO peaks at 818 and 1250 cm-1, respectively. Antibacterial assays showed that microwave- and subcritical water-extracted fucoidans inhibited the growth of E.coli and that enzyme-ultrasound, ultrasound-microwave and subcritical water extracted fucoidans exhibited inhibitory effects against P. aeruginosa at 2 mg/mL. Antiviral studies revealed that all the extracted fucoidans exerted strong antiviral activity against HSV-2 infection, with EC50 values in the 0.027-0.123 μg/mL range; indeed the viscozyme-extracted macromolecules displayed the best selectivity index.
Collapse
Affiliation(s)
- Mehdi Alboofetileh
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy
| | - Francesco Mariatti
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| |
Collapse
|
17
|
Ranucci E, Manfredi A. Polyamidoamines: Versatile Bioactive Polymers with Potential for Biotechnological Applications. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s42250-019-00046-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Toujani MM, Rittà M, Civra A, Genovese S, Epifano F, Ghram A, Lembo D, Donalisio M. Inhibition of HSV-2 infection by pure compounds fromThymus capitatusextractin vitro. Phytother Res 2018; 32:1555-1563. [DOI: 10.1002/ptr.6084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/17/2018] [Accepted: 03/12/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Marwa Mekni Toujani
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis; University of Tunis El Manar; PB 74, 1002 Tunis Tunisia
| | - Massimo Rittà
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Torino Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Torino Italy
| | - Salvatore Genovese
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - Francesco Epifano
- Department of Pharmacy; University “G. d'Annunzio” of Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur of Tunis; University of Tunis El Manar; PB 74, 1002 Tunis Tunisia
| | - David Lembo
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Torino Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Torino Italy
| |
Collapse
|
19
|
Acyclovir-Loaded Chitosan Nanospheres from Nano-Emulsion Templating for the Topical Treatment of Herpesviruses Infections. Pharmaceutics 2018; 10:pharmaceutics10020046. [PMID: 29642603 PMCID: PMC6027529 DOI: 10.3390/pharmaceutics10020046] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Acyclovir is not a good candidate for passive permeation since its polarity and solubility limit is partitioning into the stratum corneum. This work aims to develop a new topical formulation for the acyclovir delivery. New chitosan nanospheres (NS) were prepared by a modified nano-emulsion template method. Chitosan NS were characterized by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and an in vitro release study. The in vitro skin permeation experiment was carried out using Franz cells and was equipped with porcine skin. Biological studies were performed on the Vero cell line infected by HSV-1 and HSV-2 strains. The acyclovir loaded chitosan NS appeared with a spherical shape, a size of about 200 nm, and a negative zeta potential of about 40.0 mV. The loading capacity of the drug was about 8.5%. In vitro release demonstrated that the percentage of acyclovir delivered from the nanospheres was approximately 30% after six hours. The in vitro skin permeation studies confirmed an improved amount of permeated acyclovir. The acyclovir-NS complex displayed a higher antiviral activity than that of free acyclovir against both the HSV-1 and the HSV-2 strain. The acyclovir-loaded NS showed no anti-proliferative activity and no signs of cytotoxicity induced by NS was detected. Confocal laser scanning microscopy confirmed that the NS are taken up by the cells.
Collapse
|
20
|
Donalisio M, Cagno V, Civra A, Gibellini D, Musumeci G, Rittà M, Ghosh M, Lembo D. The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:403-408. [PMID: 29203273 DOI: 10.1016/j.jep.2017.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vachellia (Acacia) nilotica and other plants of this genus have been used in traditional medicine of Asian and African countries to treat many disorders, including sexually transmitted diseases, but few studies were performed to validate their anti-microbial and anti-viral activity against sexually transmitted infections. AIM OF THE STUDY The present study was undertaken to explore whether the ethnomedical use of V.nilotica to treat genital lesions is substantiated by its antiviral activity against the human immunodeficiency virus (HIV), the herpes simplex virus (HSV) and the human papillomavirus (HPV). MATERIALS AND METHODS The antiviral activity of V.nilotica was tested in vitro by virus-specific inhibition assays using HSV-2 strains, sensible or resistant to acyclovir, HIV-1IIIb strain and HPV-16 pseudovirion (PsV). The potential mode of action of extract against HSV-2 and HPV-16 was further investigated by virus inactivation and time-of-addition assays on cell cultures. RESULTS V.nilotica chloroform, methanolic and water bark extracts exerted antiviral activity against HSV-2 and HPV-16 PsV infections; among these, methanolic extract showed the best EC50s with values of 4.71 and 1.80µg/ml against HSV-2 and HPV-16, respectively, and it was also active against an acyclovir-resistant HSV-2 strain with an EC50 of 6.71µg/ml. By contrast, no suppression of HIV infection was observed. Investigation of the mechanism of action revealed that the methanolic extract directly inactivated the infectivity of the HPV-16 particles, whereas a partial virus inactivation and interference with virus attachment (EC50 of 2.74µg/ml) were both found to contribute to the anti-HSV-2 activity. CONCLUSIONS These results support the traditional use of V.nilotica applied externally for the treatment of genital lesions. Further work remains to be done in order to identify the bioactive components.
Collapse
Affiliation(s)
- Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| | - Valeria Cagno
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| | - Davide Gibellini
- Department of Pathology and Diagnostic, University of Verona, 37134 Verona, Italy
| | - Giuseppina Musumeci
- Department of Experimental, Diagnostics and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy
| | - Manik Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 83215, India
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
21
|
Cagno V, Andreozzi P, D'Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, Le Goffic R, Jones ST, Vallino M, Hodek J, Weber J, Sen S, Janeček ER, Bekdemir A, Sanavio B, Martinelli C, Donalisio M, Rameix Welti MA, Eleouet JF, Han Y, Kaiser L, Vukovic L, Tapparel C, Král P, Krol S, Lembo D, Stellacci F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. NATURE MATERIALS 2018; 17:195-203. [PMID: 29251725 DOI: 10.1038/nmat5053] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/10/2017] [Indexed: 05/18/2023]
Abstract
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
Collapse
Affiliation(s)
- Valeria Cagno
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Faculty of Medicine of Geneva, Department of Microbiology and Molecular medicine, Geneva, Switzerland
| | - Patrizia Andreozzi
- IFOM - FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milan, Italy
- CIC biomaGUNE Soft Matter Nanotechnology Group San Sebastian-Donostia, 20014 Donastia San Sebastián, Spain
| | | | - Paulo Jacob Silva
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Mueller
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Galloux
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Samuel T Jones
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Jones Lab, School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Marta Vallino
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Soumyo Sen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Emma-Rose Janeček
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ahmet Bekdemir
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Barbara Sanavio
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", IFOM-IEO Campus, Milan, Italy
| | - Chiara Martinelli
- IFOM - FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milan, Italy
| | - Manuela Donalisio
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
| | - Marie-Anne Rameix Welti
- UMR INSERM U1173 I2, UFR des Sciences de la Santé Simone Veil-UVSQ, Montigny-Le-Bretonneux, France
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, 92104 Boulogne-Billancourt, France
| | | | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Laurent Kaiser
- Geneva University Hospitals, Infectious Diseases Divisions, Geneva, Switzerland
| | - Lela Vukovic
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Caroline Tapparel
- Faculty of Medicine of Geneva, Department of Microbiology and Molecular medicine, Geneva, Switzerland
- Geneva University Hospitals, Infectious Diseases Divisions, Geneva, Switzerland
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Physics and Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Silke Krol
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", IFOM-IEO Campus, Milan, Italy
- IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Interfaculty Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Donalisio M, Rittà M, Francese R, Civra A, Tonetto P, Coscia A, Giribaldi M, Cavallarin L, Moro GE, Bertino E, Lembo D. High Temperature-Short Time Pasteurization Has a Lower Impact on the Antiviral Properties of Human Milk Than Holder Pasteurization. Front Pediatr 2018; 6:304. [PMID: 30460212 PMCID: PMC6232822 DOI: 10.3389/fped.2018.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
Holder pasteurization (62. 5°C for 30 min) is recommended by all international human milk bank guidelines to prevent infections potentially transmitted by donor human milk. A drawback is that it affects some human milk bioactive and nutritive components. Recently, High Temperature-Short Time (HTST) pasteurization has been reported to be a valuable alternative technology to increase the retention of some biological features of human milk. Nevertheless, to date, few data are available about the impact of pasteurization methods other than Holder on the antiviral activity of human milk. The present study was aimed at evaluating the antiviral activity of human milk against a panel of viral pathogens common in newborns and children (i.e., herpes simplex virus 1 and 2, cytomegalovirus, respiratory syncytial virus, rotavirus, and rhinovirus), and at assessing the effect of Holder and HTST pasteurization on milk's antiviral properties. The results indicate that human milk is endowed with antiviral activity against all viruses tested, although to a different extent. Unlike the Holder pasteurization, HTST preserved the inhibitory activity against cytomegalovirus, respiratory syncytial virus, rotavirus and herpes simplex virus type 2. By contrast, both methods reduced significantly the antiviral activities against rhinovirus and herpes simplex virus type 1. Unexpectedly, Holder pasteurization improved milk's anti-rotavirus activity. In conclusion, this study contributes to the definition of the pasteurization method that allows the best compromise between microbiological safety and biological quality of the donor human milk: HTST pasteurization preserved milk antiviral activity better than Holder.
Collapse
Affiliation(s)
- Manuela Donalisio
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Massimo Rittà
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rachele Francese
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Andrea Civra
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Paola Tonetto
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marzia Giribaldi
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Bari, Italy.,Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca in Ingegneria e Trasformazioni Agroalimentari, Turin, Italy
| | - Laura Cavallarin
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Bari, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks, Milan, Italy
| | - Enrico Bertino
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
23
|
Pachota M, Klysik K, Synowiec A, Ciejka J, Szczubiałka K, Pyrć K, Nowakowska M. Inhibition of Herpes Simplex Viruses by Cationic Dextran Derivatives. J Med Chem 2017; 60:8620-8630. [DOI: 10.1021/acs.jmedchem.7b01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Magdalena Pachota
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Katarzyna Klysik
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aleksandra Synowiec
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Ciejka
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Pyrć
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
24
|
Cagno V, Sgorbini B, Sanna C, Cagliero C, Ballero M, Civra A, Donalisio M, Bicchi C, Lembo D, Rubiolo P. In vitro anti-herpes simplex virus-2 activity of Salvia desoleana Atzei & V. Picci essential oil. PLoS One 2017; 12:e0172322. [PMID: 28207861 PMCID: PMC5312961 DOI: 10.1371/journal.pone.0172322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
Salvia desoleana Atzei & V. Picci is an indigenous species in Sardinia island used in folk medicine to treat menstrual, digestive and central nervous system diseases. Nowadays, it is widely cultivated for the pleasant smell of its essential oil (EO), whose antimicrobial and antifungal activities have already been screened. This study evaluated the in vitro anti-Herpes Simplex Virus-2 (HSV-2) activity of S. desoleana EO, fractions and main components: linalyl acetate, alpha terpinyl acetate, and germacrene D. Phytochemical composition of S. desoleana EO was studied by GC-FID/MS analysis and the active fraction(s) and/or compounds in S. desoleana EO were identified with a bioassay-guided fractionation procedure through in vitro assays on cell viability and HSV-2 and RSV inhibition. S. desoleana EO inhibits both acyclovir sensitive and acyclovir resistant HSV-2 strains with EC50 values of 23.72 μg/ml for the former and 28.57 μg/ml for the latter. Moreover, a significant suppression of HSV-2 replication was observed with an EC50 value of 33.01 μg/ml (95% CI: 26.26 to 41.49) when the EO was added post-infection. Among the fractions resulting from flash column chromatography on silica gel, the one containing 54% of germacrene D showed a similar spectrum of activity of S. desoleana EO with a stronger suppression in post-infection stage. These results indicated that S. desoleana EO can be of interest to develop new and alternative anti-HSV-2 products active also against acyclovir-resistant HSV-2 strains.
Collapse
Affiliation(s)
- Valeria Cagno
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, Università degli Studi di Torino, Orbassano, Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Cinzia Sanna
- Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Mauro Ballero
- Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Andrea Civra
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, Università degli Studi di Torino, Orbassano, Turin, Italy
| | - Manuela Donalisio
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, Università degli Studi di Torino, Orbassano, Turin, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - David Lembo
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, Università degli Studi di Torino, Orbassano, Turin, Italy
- * E-mail: (PR); (DL)
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
- * E-mail: (PR); (DL)
| |
Collapse
|
25
|
Mauro N, Ferruti P, Ranucci E, Manfredi A, Berzi A, Clerici M, Cagno V, Lembo D, Palmioli A, Sattin S. Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases. Sci Rep 2016; 6:33393. [PMID: 27641362 PMCID: PMC5027566 DOI: 10.1038/srep33393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
The initial steps of viral infections are mediated by interactions between viral proteins and cellular receptors. Blocking the latter with high-affinity ligands may inhibit infection. DC-SIGN, a C-type lectin receptor expressed by immature dendritic cells and macrophages, mediates human immunodeficiency virus (HIV) infection by recognizing mannose clusters on the HIV-1 gp120 envelope glycoprotein. Mannosylated glycodendrimers act as HIV entry inhibitors thanks to their ability to block this receptor. Previously, an amphoteric, but prevailingly cationic polyamidoamine named AGMA1 proved effective as infection inhibitor for several heparan sulfate proteoglycan-dependent viruses, such as human papilloma virus HPV-16 and herpes simplex virus HSV-2. An amphoteric, but prevailingly anionic PAA named ISA23 proved inactive. It was speculated that the substitution of mannosylated units for a limited percentage of AGMA1 repeating units, while imparting anti-HIV activity, would preserve the fundamentals of its HPV-16 and HSV-2 infection inhibitory activity. In this work, four biocompatible linear PAAs carrying different amounts of mannosyl-triazolyl pendants, Man-ISA7, Man-ISA14, Man-AGMA6.5 and Man-AGMA14.5, were prepared by reaction of 2-(azidoethyl)-α-D-mannopyranoside and differently propargyl-substituted AGMA1 and ISA23. All mannosylated PAAs inhibited HIV infection. Both Man-AGMA6.5 and Man-AGMA14.5 maintained the HPV-16 and HSV-2 activity of the parent polymer, proving broad-spectrum, dual action mode virus infection inhibitors.
Collapse
Affiliation(s)
- Nicolò Mauro
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario di Scienza e Tecnologia dei Materiali, via G. Giusti 9, 56121 Firenze, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Angela Berzi
- Department of Biomedical and Clinical Sciences “Sacco”, University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Mario Clerici
- Department of Medical, Surgical and Transplants Physiopathology, University of Milan, via Fratelli Cervi 93, 20090 Segrate, Milan, and Don C. Gnocchi Foundation IRCCS, Via Capecelatro 66, 20148 Milan, Italy
| | - Valeria Cagno
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Azienda Ospedaliero Universitaria S. Luigi Gonzaga, via Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Azienda Ospedaliero Universitaria S. Luigi Gonzaga, via Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Alessandro Palmioli
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Sara Sattin
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy
| |
Collapse
|
26
|
Ghosh M, Civra A, Rittà M, Cagno V, Mavuduru SG, Awasthi P, Lembo D, Donalisio M. Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch Virol 2016; 161:3509-3514. [PMID: 27581805 DOI: 10.1007/s00705-016-3032-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
Abstract
Ficus religiosa extracts have been used in traditional Indian medicine to treat sexually transmitted infections such as gonorrhea and genital ulcers. The aim of this study was to investigate the antiviral activity of F. religiosa extracts against herpes simplex virus type 2 (HSV-2), the main causative agent of genital ulcers and sores. Water and chloroform bark extracts were the most active against HSV-2, and also against an acyclovir-resistant strain. We demonstrate that the water extract has a direct virus-inactivating activity. By contrast, the chloroform extract inhibits viral attachment and entry and limits the production of viral progeny.
Collapse
Affiliation(s)
- Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Andrea Civra
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy
| | - Valeria Cagno
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy
| | - Siva Ganesh Mavuduru
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Preeti Awasthi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - David Lembo
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Torino, Regione Gonzole, 10, Orbassano, 10043, Turin, Italy.
| |
Collapse
|