1
|
Visonà A, Cavalaglio S, Labau S, Soulan S, Joisten H, Berger F, Dieny B, Morel R, Nicolas A. Substrate softness increases magnetic microdiscs-induced cytotoxicity. NANOSCALE ADVANCES 2024; 7:219-230. [PMID: 39569335 PMCID: PMC11575620 DOI: 10.1039/d4na00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Cytotoxicity of nanoparticles is primarily assessed on cells grown in plastic culture plates, a mechanical environment that is a million times stiffer than most of the human tissues. Here we question whether nanoparticles cytotoxicity is sensitive to the stiffness of the extracellular environment. To this end, we compare the metabolic activity, the proliferation and death rates, and the motility of a glioblastoma cancer cell line and a fibroblast cell line exposed to gold-coated Ni80Fe20 microdiscs when grown on a glass substrate or on a soft substrate whose mechanical properties are close to physiology. Our main result is that cells grown on soft substrates take up more microdiscs which results in greater toxic effects, but also that toxicity at similar particle load is more pronounced on soft substrates especially at large concentration of nanoparticles. These results suggest that both microdiscs uptake and their intracellular processing differ between soft and rigid substrates.
Collapse
Affiliation(s)
- Andrea Visonà
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
- Univ. Grenoble Alpes, CEA, CNRS, Spintec Grenoble F-38000 France
| | - Sébastien Cavalaglio
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
| | - Sébastien Labau
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
| | - Sébastien Soulan
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
| | - Hélène Joisten
- Univ. Grenoble Alpes, CEA, CNRS, Spintec Grenoble F-38000 France
| | - François Berger
- Univ. Grenoble Alpes, INSERM, CHU Grenoble, BrainTech Lab Grenoble F-38000 France
| | - Bernard Dieny
- Univ. Grenoble Alpes, CEA, CNRS, Spintec Grenoble F-38000 France
| | - Robert Morel
- Univ. Grenoble Alpes, CEA, CNRS, Spintec Grenoble F-38000 France
| | - Alice Nicolas
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
| |
Collapse
|
2
|
Dey S, Bhat A, Janani G, Shandilya V, Gupta R, Mandal BB. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury. Biomaterials 2024; 310:122627. [PMID: 38823194 DOI: 10.1016/j.biomaterials.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The pre-clinical animal models often fail to predict intrinsic and idiosyncratic drug induced liver injury (DILI), thus contributing to drug failures in clinical trials, black box warnings and withdrawal of marketed drugs. This suggests a critical need for human-relevant in vitro models to predict diverse DILI phenotypes. In this study, a porcine liver extracellular matrix (ECM) based biomaterial ink with high printing fidelity, biocompatibility and tunable rheological and mechanical properties is formulated for supporting both parenchymal and non-parenchymal cells. Further, we applied 3D printing and microfluidic technology to bioengineer a human physiomimetic liver acinus model (HPLAM), recapitulating the radial hepatic cord-like structure with functional sinusoidal microvasculature network, biochemical and biophysical properties of native liver acinus. Intriguingly, the human derived hepatic cells incorporated HPLAM cultured under physiologically relevant microenvironment, acts as metabolic biofactories manifesting enhanced hepatic functionality, secretome levels and biomarkers expression over several weeks. We also report that the matured HPLAM reproduces dose- and time-dependent hepatotoxic response of human clinical relevance to drugs typically recognized for inducing diverse DILI phenotypes as compared to conventional static culture. Overall, the developed HPLAM emulates in vivo like functions and may provide a useful platform for DILI risk assessment to better determine safety and human risk.
Collapse
Affiliation(s)
- Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amritha Bhat
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - G Janani
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vartik Shandilya
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Raghvendra Gupta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Biman B Mandal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Shao T, Gao Q, Ma Y, Gu J, Yu Z. Hyperforin improves matrix stiffness induced nucleus pulposus inflammatory degeneration by activating mitochondrial fission. Int Immunopharmacol 2024; 137:112444. [PMID: 38901245 DOI: 10.1016/j.intimp.2024.112444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE The continuously increasing extracellular matrix stiffness during intervertebral disc degeneration promotes disease progression. In an attempt to obtain novel treatment methods, this study aims to investigate the changes in nucleus pulposus cells under the stimulation of a stiff microenvironment. DESIGN RNA sequencing and metabolomics experiments were combined to evaluate the primary nucleus pulposus and screen key targets under mechanical biological stimulation. Additionally, small molecules work in vitro were used to confirm the target regulatory effect and investigate the mechanism. In vivo, treatment effects were validated using a rat caudal vertebrae compression model. RESULTS Our research results revealed that by activating TRPC6, hyperforin, a herbaceous extract can rescue the inflammatory phenotype caused by the stiff microenvironment, hence reducing intervertebral disc degeneration (IDD). Mechanically, it activates mitochondrial fission to inhibit PFKFB3. CONCLUSION In summary, this study reveals the important bridging role of TRPC6 between mechanical stiffness, metabolism, and inflammation in the context of nucleus pulposus degeneration. TRPC6 activation with hyperforin may become a promising treatment for IDD.
Collapse
Affiliation(s)
- Tuo Shao
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; First Clinical Medical College, Harbin Medical University, Harbin, China; Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, China.
| | - Qichang Gao
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; First Clinical Medical College, Harbin Medical University, Harbin, China; Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, China.
| | - Yiming Ma
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; First Clinical Medical College, Harbin Medical University, Harbin, China; Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, China
| | - Jiaao Gu
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; First Clinical Medical College, Harbin Medical University, Harbin, China.
| | - Zhange Yu
- Department of Spinal Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; First Clinical Medical College, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Luo Y, Gao Y. Potential Role of Hydrogels in Stem Cell Culture and Hepatocyte Differentiation. NANO BIOMEDICINE AND ENGINEERING 2024; 16:188-202. [DOI: 10.26599/nbe.2024.9290055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
5
|
Ryoo H, Kimmel H, Rondo E, Underhill GH. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioeng Transl Med 2024; 9:e10627. [PMID: 38818120 PMCID: PMC11135158 DOI: 10.1002/btm2.10627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 06/01/2024] Open
Abstract
Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Hannah Kimmel
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Evi Rondo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Gregory H. Underhill
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
6
|
Zambuto SG, Jain I, Theriault HS, Underhill GH, Harley BAC. Cell Chirality of Micropatterned Endometrial Microvascular Endothelial Cells. Adv Healthc Mater 2024; 13:e2303928. [PMID: 38291861 PMCID: PMC11076162 DOI: 10.1002/adhm.202303928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as in the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality is systematically examined using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishita Jain
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hannah S Theriault
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gregory H Underhill
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Ryoo H, Giovanni R, Kimmel H, Jain I, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303128. [PMID: 38348560 PMCID: PMC11022709 DOI: 10.1002/advs.202303128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Indexed: 02/15/2024]
Abstract
Nonalcoholic fatty liver disease affects 30% of the United States population and its progression can lead to nonalcoholic steatohepatitis (NASH), and increased risks for cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, the use of stiffness-variable, extracellular matrix (ECM) protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation is demonstrated. These microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions are further employed. The 6 kPa fibronectin microgels are shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple-component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. The study envisions this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Regina Giovanni
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Hannah Kimmel
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Gregory H. Underhill
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
8
|
Zambuto SG, Jain I, Theriault HS, Underhill GH, Harley BAC. Cell Chirality of Micropatterned Endometrial Microvascular Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563368. [PMID: 37961315 PMCID: PMC10634711 DOI: 10.1101/2023.10.20.563368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, we systematically examine the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.
Collapse
|
9
|
Ryoo H, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539608. [PMID: 37214995 PMCID: PMC10197534 DOI: 10.1101/2023.05.05.539608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Non-alcoholic fatty liver disease affects 30% of the United States population and its progression can lead to non-alcoholic steatohepatitis (NASH), which can result in cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically-relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, we have demonstrated the use of stiffness-variable, ECM protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation. We further employed these microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions. In particular, 6 kPa fibronectin microgels were shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. We envision this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Li J, Huang F, Ma Q, Guo W, Feng K, Huang T, Cai YD. Identification of genes related to immune enhancement caused by heterologous ChAdOx1-BNT162b2 vaccines in lymphocytes at single-cell resolution with machine learning methods. Front Immunol 2023; 14:1131051. [PMID: 36936955 PMCID: PMC10017451 DOI: 10.3389/fimmu.2023.1131051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The widely used ChAdOx1 nCoV-19 (ChAd) vector and BNT162b2 (BNT) mRNA vaccines have been shown to induce robust immune responses. Recent studies demonstrated that the immune responses of people who received one dose of ChAdOx1 and one dose of BNT were better than those of people who received vaccines with two homologous ChAdOx1 or two BNT doses. However, how heterologous vaccines function has not been extensively investigated. In this study, single-cell RNA sequencing data from three classes of samples: volunteers vaccinated with heterologous ChAdOx1-BNT and volunteers vaccinated with homologous ChAd-ChAd and BNT-BNT vaccinations after 7 days were divided into three types of immune cells (3654 B, 8212 CD4+ T, and 5608 CD8+ T cells). To identify differences in gene expression in various cell types induced by vaccines administered through different vaccination strategies, multiple advanced feature selection methods (max-relevance and min-redundancy, Monte Carlo feature selection, least absolute shrinkage and selection operator, light gradient boosting machine, and permutation feature importance) and classification algorithms (decision tree and random forest) were integrated into a computational framework. Feature selection methods were in charge of analyzing the importance of gene features, yielding multiple gene lists. These lists were fed into incremental feature selection, incorporating decision tree and random forest, to extract essential genes, classification rules and build efficient classifiers. Highly ranked genes include PLCG2, whose differential expression is important to the B cell immune pathway and is positively correlated with immune cells, such as CD8+ T cells, and B2M, which is associated with thymic T cell differentiation. This study gave an important contribution to the mechanistic explanation of results showing the stronger immune response of a heterologous ChAdOx1-BNT vaccination schedule than two doses of either BNT or ChAdOx1, offering a theoretical foundation for vaccine modification.
Collapse
Affiliation(s)
- Jing Li
- School of Computer Science, Baicheng Normal University, Baicheng, Jilin, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Guo T, Wantono C, Tan Y, Deng F, Duan T, Liu D. Regulators, functions, and mechanotransduction pathways of matrix stiffness in hepatic disease. Front Physiol 2023; 14:1098129. [PMID: 36711017 PMCID: PMC9878334 DOI: 10.3389/fphys.2023.1098129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The extracellular matrix (ECM) provides physical support and imparts significant biochemical and mechanical cues to cells. Matrix stiffening is a hallmark of liver fibrosis and is associated with many hepatic diseases, especially liver cirrhosis and carcinoma. Increased matrix stiffness is not only a consequence of liver fibrosis but is also recognized as an active driver in the progression of fibrotic hepatic disease. In this article, we provide a comprehensive view of the role of matrix stiffness in the pathological progression of hepatic disease. The regulators that modulate matrix stiffness including ECM components, MMPs, and crosslinking modifications are discussed. The latest advances of the research on the matrix mechanics in regulating intercellular signaling and cell phenotype are classified, especially for hepatic stellate cells, hepatocytes, and immunocytes. The molecular mechanism that sensing and transducing mechanical signaling is highlighted. The current progress of ECM stiffness's role in hepatic cirrhosis and liver cancer is introduced and summarized. Finally, the recent trials targeting ECM stiffness for the treatment of liver disease are detailed.
Collapse
Affiliation(s)
- Ting Guo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Cindy Wantono
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Tianying Duan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu,
| |
Collapse
|
12
|
Zheng G, Xue C, Cao F, Hu M, Li M, Xie H, Yu W, Zhao D. Effect of the uronic acid composition of alginate in alginate/collagen hybrid hydrogel on chondrocyte behavior. Front Bioeng Biotechnol 2023; 11:1118975. [PMID: 36959903 PMCID: PMC10027720 DOI: 10.3389/fbioe.2023.1118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Chundong Xue
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Fang Cao
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Minghui Hu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Maoyuan Li
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Hui Xie
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiting Yu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| |
Collapse
|
13
|
Rizwan M, Ling C, Guo C, Liu T, Jiang JX, Bear CE, Ogawa S, Shoichet MS. Viscoelastic Notch Signaling Hydrogel Induces Liver Bile Duct Organoid Growth and Morphogenesis. Adv Healthc Mater 2022; 11:e2200880. [PMID: 36180392 DOI: 10.1002/adhm.202200880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/09/2022] [Indexed: 01/28/2023]
Abstract
Cholangiocyte organoids can be used to model liver biliary disease; however, both a defined matrix to emulate cholangiocyte self-assembly and the mechano-transduction pathways involved therein remain elusive. A series of defined viscoelastic hyaluronan hydrogels to culture primary cholangiocytes are designed and it is found that by mimicking the stress relaxation rate of liver tissue, cholangiocyte organoid growth can be induced and expression of Yes-associated protein (YAP) target genes could be significantly increased. Strikingly, inhibition of matrix metalloproteinases (MMPs) does not significantly affect organoid growth in 3D culture, suggesting that mechanical remodeling of the viscoelastic microenvironment-and not MMP-mediated degradation-is the key to cholangiocyte organoid growth. By immobilizing Jagged1 to the hyaluronan, stress relaxing hydrogel, self-assembled bile duct structures form in organoid culture, indicating the synergistic effects of Notch signaling and viscoelasticity. By uncovering critical roles of hydrogel viscoelasticity, YAP signaling, and Notch activation, cholangiocyte organogenesis is controlled, thereby paving the way for their use in disease modeling and/or transplantation.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Christopher Ling
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Chengyu Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Tracy Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Jia-Xin Jiang
- Molecular Medicine Programme, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Christine E Bear
- Molecular Medicine Programme, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 0A4, Canada
| | - Shinichiro Ogawa
- McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada.,Soham & Shalia Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
14
|
Brougham-Cook A, Kimmel HRC, Monckton CP, Owen D, Khetani SR, Underhill GH. Engineered matrix microenvironments reveal the heterogeneity of liver sinusoidal endothelial cell phenotypic responses. APL Bioeng 2022; 6:046102. [PMID: 36345318 PMCID: PMC9637025 DOI: 10.1063/5.0097602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is one of the hallmarks of chronic liver disease and is associated with aberrant wound healing. Changes in the composition of the liver microenvironment during fibrosis result in a complex crosstalk of extracellular cues that promote altered behaviors in the cell types that comprise the liver sinusoid, particularly liver sinusoidal endothelial cells (LSECs). Recently, it has been observed that LSECs may sustain injury before other fibrogenesis-associated cells of the sinusoid, implicating LSECs as key actors in the fibrotic cascade. A high-throughput cellular microarray platform was used to deconstruct the collective influences of defined combinations of extracellular matrix (ECM) proteins, substrate stiffness, and soluble factors on primary human LSEC phenotype in vitro. We observed remarkable heterogeneity in LSEC phenotype as a function of stiffness, ECM, and soluble factor context. LYVE-1 and CD-31 expressions were highest on 1 kPa substrates, and the VE-cadherin junction localization was highest on 25 kPa substrates. Also, LSECs formed distinct spatial patterns of LYVE-1 expression, with LYVE-1+ cells observed in the center of multicellular domains, and pattern size regulated by microenvironmental context. ECM composition also influenced a substantial dynamic range of expression levels for all markers, and the collagen type IV was observed to promote elevated expressions of LYVE-1, VE-cadherin, and CD-31. These studies highlight key microenvironmental regulators of LSEC phenotype and reveal unique spatial patterning of the sinusoidal marker LYVE-1. Furthermore, these data provide insight into understanding more precisely how LSECs respond to fibrotic microenvironments, which will aid drug development and identification of targets to treat liver fibrosis.
Collapse
Affiliation(s)
- Aidan Brougham-Cook
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hannah R. C. Kimmel
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chase P. Monckton
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Daniel Owen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA,Author to whom correspondence should be addressed:. Tel.: 217–244-2169
| |
Collapse
|
15
|
Modulation of human iPSC-derived hepatocyte phenotype via extracellular matrix microarrays. Acta Biomater 2022; 153:216-230. [PMID: 36115650 PMCID: PMC9869484 DOI: 10.1016/j.actbio.2022.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023]
Abstract
In vitro human liver models are essential for drug screening, disease modeling, and cell-based therapies. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHeps) mitigate sourcing limitations of primary human hepatocytes (PHHs) and enable precision medicine; however, current protocols yield iHeps with very low differentiated functions. The composition and stiffness of liver's extracellular matrix (ECM) cooperatively regulate hepatic phenotype in vivo, but such effects on iHeps remain unelucidated. Here, we utilized ECM microarrays and high content imaging to assess human iHep attachment and functions on ten major liver ECM proteins in single and two-way combinations robotically spotted onto polyacrylamide gels of liver-like stiffnesses; microarray findings were validated using hydrogel-conjugated multiwell plates. Collagen-IV supported higher iHep attachment than collagen-I over 2 weeks on 1 kPa, while laminin and its combinations with collagen-III, fibronectin, tenascin C, or hyaluronic acid led to both high iHep attachment and differentiated functions; laminin and its combination with tenascin or fibronectin led to similar albumin expression in iHeps and PHHs. Additionally, several collagen-IV-, laminin-, fibronectin-, and collagen-V-containing combinations on 1 kPa led to similar or higher CYP3A4 staining in iHeps than PHHs. Lastly, collagen-I or -III mixed with laminin, collagen-IV mixed with lumican, and collagen-V mixed with fibronectin led to high and stable functional output (albumin/urea secretions; CYP1A2/2C9/3A4 activities) in iHep cultures versus declining PHH numbers/functions for 3 weeks within multiwell plates containing 1 kPa hydrogels. Ultimately, these platforms can help elucidate ECM's role in liver diseases and serve as building blocks of engineered tissues for applications. STATEMENT OF SIGNIFICANCE: We utilized high-throughput extracellular matrix (ECM) microarrays and high content imaging to assess the attachment and differentiated functions of iPSC-derived human hepatocyte-like cells (iHep) on major liver ECM protein combinations spotted onto polyacrylamide gels of liver-like stiffnesses. We observed that iHep responses are regulated in unexpected ways via the cooperation between ECM stiffness and protein composition. Using this approach, we induced mature functions in iHeps on substrates of physiological stiffness and select ECM coatings at higher levels over 3+ weeks than analogous primary human hepatocyte cultures, which is useful for building platforms for drug screening, disease modeling, and regenerative medicine.
Collapse
|
16
|
Jain I, Berg IC, Acharya A, Blaauw M, Gosstola N, Perez-Pinera P, Underhill GH. Delineating cooperative effects of Notch and biomechanical signals on patterned liver differentiation. Commun Biol 2022; 5:1073. [PMID: 36207581 PMCID: PMC9546876 DOI: 10.1038/s42003-022-03840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Controlled in vitro multicellular culture systems with defined biophysical microenvironment have been used to elucidate the role of Notch signaling in the spatiotemporal regulation of stem and progenitor cell differentiation. In addition, computational models incorporating features of Notch ligand-receptor interactions have provided important insights into Notch pathway signaling dynamics. However, the mechanistic relationship between Notch-mediated intercellular signaling and cooperative microenvironmental cues is less clear. Here, liver progenitor cell differentiation patterning was used as a model to systematically evaluate the complex interplay of cellular mechanics and Notch signaling along with identifying combinatorial mechanisms guiding progenitor fate. We present an integrated approach that pairs a computational intercellular signaling model with defined microscale culture configurations provided within a cell microarray platform. Specifically, the cell microarray-based experiments were used to validate and optimize parameters of the intercellular Notch signaling model. This model incorporated the experimentally established multicellular dimensions of the cellular microarray domains, mechanical stress-related activation parameters, and distinct Notch receptor-ligand interactions based on the roles of the Notch ligands Jagged-1 and Delta-like-1. Overall, these studies demonstrate the spatial control of mechanotransduction-associated components, key growth factor and Notch signaling interactions, and point towards a possible role of E-Cadherin in translating intercellular mechanical gradients to downstream Notch signaling.
Collapse
Affiliation(s)
- Ishita Jain
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Ian C Berg
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Ayusha Acharya
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Maddie Blaauw
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Nicholas Gosstola
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA.
| |
Collapse
|
17
|
Zambuto SG, Jain I, Clancy KBH, Underhill GH, Harley BAC. Role of Extracellular Matrix Biomolecules on Endometrial Epithelial Cell Attachment and Cytokeratin 18 Expression on Gelatin Hydrogels. ACS Biomater Sci Eng 2022; 8:3819-3830. [PMID: 35994527 PMCID: PMC9581737 DOI: 10.1021/acsbiomaterials.2c00247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endometrium undergoes profound changes in tissue architecture and composition, both during the menstrual cycle as well as in the context of pregnancy. Dynamic remodeling processes of the endometrial extracellular matrix (ECM) are a major element of endometrial homeostasis, including changes across the menstrual cycle. A critical element of this tissue microenvironment is the endometrial basement membrane, a specialized layer of proteins that separates the endometrial epithelium from the underlying endometrial ECM. Bioengineering models of the endometrial microenvironment that present an appropriate endometrial ECM and basement membrane may provide an improved environment to study endometrial epithelial cell (EEC) function. Here, we exploit a tiered approach using two-dimensional high-throughput microarrays and three-dimensional gelatin hydrogels to define patterns of EEC attachment and cytokeratin 18 (CK18) expression in response to combinations of endometrial basement membrane proteins. We identify combinations (collagen IV + tenascin C; collagen I + collagen III; hyaluronic acid + tenascin C; collagen V; collagen V + hyaluronic acid; collagen III; and collagen I) that facilitate increased EEC attachment, increased CK18 intensity, or both. We also identify significant EEC mediated remodeling of the methacrylamide-functionalized gelatin matrix environment via analysis of nascent protein deposition. Together, we report efforts to tailor the localization of basement membrane-associated proteins and proteoglycans in order to investigate tissue-engineered models of the endometrial microenvironment.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ishita Jain
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kathryn B H Clancy
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brendan A C Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Mowla A, Belford R, Köhn-Gaone J, Main N, Tirnitz-Parker JEE, Yeoh GC, Kennedy BF. Biomechanical assessment of chronic liver injury using quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5050-5066. [PMID: 36187256 PMCID: PMC9484444 DOI: 10.1364/boe.467684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Hepatocellular carcinoma is one of the most lethal cancers worldwide, causing almost 700,000 deaths annually. It mainly arises from cirrhosis, which, in turn, results from chronic injury to liver cells and corresponding fibrotic changes. Although it is known that chronic liver injury increases the elasticity of liver tissue, the role of increased elasticity of the microenvironment as a possible hepatocarcinogen is yet to be investigated. One reason for this is the paucity of imaging techniques capable of mapping the micro-scale elasticity variation in liver and correlating that with cancerous mechanisms on the cellular scale. The clinical techniques of ultrasound elastography and magnetic resonance elastography typically do not provide micro-scale resolution, while atomic force microscopy can only assess the elasticity of a limited number of cells. We propose quantitative micro-elastography (QME) for mapping the micro-scale elasticity of liver tissue into images known as micro-elastograms, and therefore, as a technique capable of correlating the micro-environment elasticity of tissue with cellular scale cancerous mechanisms in liver. We performed QME on 13 freshly excised healthy and diseased mouse livers and present micro-elastograms, together with co-registered histology, in four representative cases. Our results indicate a significant increase in the mean (×6.3) and standard deviation (×6.0) of elasticity caused by chronic liver injury and demonstrate that the onset and progression of pathological features such as fibrosis, hepatocyte damage, and immune cell infiltration correlate with localized variations in micro-elastograms.
Collapse
Affiliation(s)
- Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Rose Belford
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Julia Köhn-Gaone
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Nathan Main
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Janina E. E. Tirnitz-Parker
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Centre for Medical Research, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - George C. Yeoh
- Centre for Medical Research, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
19
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
20
|
Li Z, Huang F, Chen L, Huang T, Cai YD. Identifying In Vitro Cultured Human Hepatocytes Markers with Machine Learning Methods Based on Single-Cell RNA-Seq Data. Front Bioeng Biotechnol 2022; 10:916309. [PMID: 35706505 PMCID: PMC9189284 DOI: 10.3389/fbioe.2022.916309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/11/2022] [Indexed: 01/12/2023] Open
Abstract
Cell transplantation is an effective method for compensating for the loss of liver function and improve patient survival. However, given that hepatocytes cultivated in vitro have diverse developmental processes and physiological features, obtaining hepatocytes that can properly function in vivo is difficult. In the present study, we present an advanced computational analysis on single-cell transcriptional profiling to resolve the heterogeneity of the hepatocyte differentiation process in vitro and to mine biomarkers at different periods of differentiation. We obtained a batch of compressed and effective classification features with the Boruta method and ranked them using the Max-Relevance and Min-Redundancy method. Some key genes were identified during the in vitro culture of hepatocytes, including CD147, which not only regulates terminally differentiated cells in the liver but also affects cell differentiation. PPIA, which encodes a CD147 ligand, also appeared in the identified gene list, and the combination of the two proteins mediated multiple biological pathways. Other genes, such as TMSB10, TMEM176B, and CD63, which are involved in the maturation and differentiation of hepatocytes and assist different hepatic cell types in performing their roles were also identified. Then, several classifiers were trained and evaluated to obtain optimal classifiers and optimal feature subsets, using three classification algorithms (random forest, k-nearest neighbor, and decision tree) and the incremental feature selection method. The best random forest classifier with a 0.940 Matthews correlation coefficient was constructed to distinguish different hepatic cell types. Finally, classification rules were created for quantitatively describing hepatic cell types. In summary, This study provided potential targets for cell transplantation associated liver disease treatment strategies by elucidating the process and mechanism of hepatocyte development at both qualitative and quantitative levels.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
21
|
Zhou H, Wang M, Zhang Y, Su Q, Xie Z, Chen X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Li S, Liu Y. Functions and clinical significance of mechanical tumor microenvironment: cancer cell sensing, mechanobiology and metastasis. Cancer Commun (Lond) 2022; 42:374-400. [PMID: 35470988 PMCID: PMC9118059 DOI: 10.1002/cac2.12294] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Dynamic and heterogeneous interaction between tumor cells and the surrounding microenvironment fuels the occurrence, progression, invasion, and metastasis of solid tumors. In this process, the tumor microenvironment (TME) fractures cellular and matrix architecture normality through biochemical and mechanical means, abetting tumorigenesis and treatment resistance. Tumor cells sense and respond to the strength, direction, and duration of mechanical cues in the TME by various mechanotransduction pathways. However, far less understood is the comprehensive perspective of the functions and mechanisms of mechanotransduction. Due to the great therapeutic difficulties brought by the mechanical changes in the TME, emerging studies have focused on targeting the adverse mechanical factors in the TME to attenuate disease rather than conventionally targeting tumor cells themselves, which has been proven to be a potential therapeutic approach. In this review, we discussed the origins and roles of mechanical factors in the TME, cell sensing, mechano‐biological coupling and signal transduction, in vitro construction of the tumor mechanical microenvironment, applications and clinical significance in the TME.
Collapse
Affiliation(s)
- Hanying Zhou
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Meng Wang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Qingqing Su
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Zhengxin Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Ran Yan
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Fengming You
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
22
|
Brougham-Cook A, Jain I, Kukla DA, Masood F, Kimmel H, Ryoo H, Khetani SR, Underhill GH. High throughput interrogation of human liver stellate cells reveals microenvironmental regulation of phenotype. Acta Biomater 2022; 138:240-253. [PMID: 34800715 PMCID: PMC8738161 DOI: 10.1016/j.actbio.2021.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023]
Abstract
Liver fibrosis is a common feature of progressive liver disease and is manifested as a dynamic series of alterations in both the biochemical and biophysical properties of the liver. Hepatic stellate cells (HSCs) reside within the perisinusoidal space of the liver sinusoid and are one of the main drivers of liver fibrosis, yet it remains unclear how changes to the sinusoidal microenvironment impact HSC phenotype in the context of liver fibrosis. Cellular microarrays were used to examine and deconstruct the impacts of bio-chemo-mechanical changes on activated HSCs in vitro. Extracellular matrix (ECM) composition and stiffness were found to act individually and in combination to regulate HSC fibrogenic phenotype and proliferation. Hyaluronic acid and collagen III promoted elevated collagen I expression while collagen IV mediated a decrease. Previously activated HSCs exhibited reduced lysyl oxidase (Lox) expression as array substrate stiffness increased, with less dependence on ECM composition. Collagens III and IV increased HSC proliferation, whereas hyaluronic acid had the opposite effect. Meta-analysis performed on these data revealed distinct phenotypic clusters (e.g. low fibrogenesis/high proliferation) as a direct function of their microenvironmental composition. Notably, soft microenvironments mimicking healthy tissue (1 kPa), promoted higher levels of intracellular collagen I and Lox expression in activated HSCs, compared to stiff microenvironments mimicking fibrotic tissue (25 kPa). Collectively, these data suggest potential HSC functional adaptations in response to specific bio-chemo-mechanical changes relevant towards the development of therapeutic interventions. These findings also underscore the importance of the microenvironment when interrogating HSC behavior in healthy, disease, and treatment settings. STATEMENT OF SIGNIFICANCE: In this work we utilized high-throughput cellular microarray technology to systematically interrogate the complex interactions between HSCs and their microenvironment in the context of liver fibrosis. We observed that HSC phenotype is regulated by ECM composition and stiffness, and that these phenotypes can be classified into distinct clusters based on their microenvironmental context. Moreover, the range of these phenotypic responses to microenvironmental stimuli is substantial and a direct consequence of the combinatorial pairing of ECM protein and stiffness signals. We also observed a novel role for microenvironmental context in affecting HSC responses to potential fibrosis therapeutics.
Collapse
Affiliation(s)
- Aidan Brougham-Cook
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - Ishita Jain
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - David A Kukla
- University of Illinois Chicago, Department of Bioengineering, United States.
| | - Faisal Masood
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - Hannah Kimmel
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - Hyeon Ryoo
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - Salman R Khetani
- University of Illinois Chicago, Department of Bioengineering, United States.
| | - Gregory H Underhill
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| |
Collapse
|
23
|
Wang AJ, Allen A, Sofman M, Sphabmixay P, Yildiz E, Griffith LG. Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100049. [PMID: 35872804 PMCID: PMC9307216 DOI: 10.1002/anbr.202100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study investigates how the interplay between biophysical and biochemical microenvironment cues influence phenotypic responses, including inflammation signatures, of primary human hepatocytes (PHH) cultured in a commercially available perfused bioreactor. A 3D printing-based alginate microwell system was designed to form thousands of hepatic spheroids in a scalable manner as a comparator 3D culture modality to the bioreactor. Soft, synthetic extracellular matrix (ECM) hydrogel scaffolds with biophysical properties mimicking features of liver were engineered to replace polystyrene scaffolds, and the biochemical microenvironment was modulated with a defined set of growth factors and signaling modulators. The supplemented media significantly increased tissue density, albumin secretion, and CYP3A4 activity but also upregulated inflammatory markers. Basal inflammatory markers were lower for cells maintained in ECM hydrogel scaffolds or spheroid formats than polystyrene scaffolds, while hydrogel scaffolds exhibited the most sensitive response to inflammation as assessed by multiplexed cytokine and RNA-seq analyses. Together, these engineered 3D liver microenvironments provide insights for probing human liver functions and inflammatory response in vitro.
Collapse
Affiliation(s)
- Alex J Wang
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Allysa Allen
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Marianna Sofman
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Pierre Sphabmixay
- Mechanical Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Ece Yildiz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Linda G. Griffith
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
24
|
A deep-learning-based workflow to deal with the defocusing problem in high-throughput experiments. Bioact Mater 2021; 11:218-229. [PMID: 34938925 PMCID: PMC8665348 DOI: 10.1016/j.bioactmat.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing throughput of experiments in biomaterials research makes automatic techniques more and more necessary. Among all the characterization methods, microscopy makes fundamental contributions to biomaterials science where precisely focused images are the basis of related research. Although automatic focusing has been widely applied in all kinds of microscopes, defocused images can still be acquired now and then due to factors including background noises of materials and mechanical errors. Herein, we present a deep-learning-based method for the automatic sorting and reconstruction of defocused cell images. First, the defocusing problem is illustrated on a high-throughput cell microarray. Then, a comprehensive dataset of phase-contrast images captured from varied conditions containing multiple cell types, magnifications, and substrate materials is prepared to establish and test our method. We obtain high accuracy of over 0.993 on the dataset using a simple network architecture that requires less than half of the training time compared with the classical ResNetV2 architecture. Moreover, the subcellular-level reconstruction of heavily defocused cell images is achieved with another architecture. The applicability of the established workflow in practice is finally demonstrated on the high-throughput cell microarray. The intelligent workflow does not require a priori knowledge of focusing algorithms, possessing widespread application value in cell experiments concerning high-throughput or time-lapse imaging. An automatic workflow for the sorting and reconstruction of defocused images. Representative data containing varied cells, substrate materials, and magnifications. Effectiveness of the workflow in high-throughput experiments. Publicly accessible image datasets and codes.
Collapse
|
25
|
Li R, Liu J, Ma J, Sun X, Wang Y, Yan J, Yu Q, Diao J, Yang C, Reid LM, Wang Y. Fibrinogen improves liver function via promoting cell aggregation and fibronectin assembly in hepatic spheroids. Biomaterials 2021; 280:121266. [PMID: 34875515 DOI: 10.1016/j.biomaterials.2021.121266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Many key functions performed by the liver depend on the interaction between parenchymal cells and the microenvironment comprised of neighboring cells and extracellular matrix. The biological macromolecules in the matrix, which are dynamically changing, participate in various physiological processes through interactions with cell surface receptors, antigens, and ion channels. We found the rat liver biomatrix scaffold (LBS) prepared from adult rats is more effective in enhancing the function of hepatic spheroids than those derived from newborn or senile rats. Combined with matrisome and bioinformatics analyses, we further found that the glycoproteins, fibronectin and fibrinogen may have special potential for improving hepatocyte function. Human primary hepatocyte organoids and HepaRG spheroids showed more mature hepatocyte phenotype after adding fibronectin and fibrinogen to the culture system. During the cultivation of hepatic spheroids, fibrinogen resulted in an increase in cell-cell junction by promoting cell aggregation and helping fibronectin to assemble on cell surface, which resulted in activation of Wnt/β-catenin pathway. Fibronectin-integrin αVβ1-Wnt/β-catenin may be the axis of signal transduction in parenchymal cell microenvironment. Importantly, fibrinogen enhances the signal transduction. These results suggest that the addition of fibronectin and fibrinogen to the 3D culture system is a new strategy for inducing parenchymal cell functional maturation.
Collapse
Affiliation(s)
- Ruihong Li
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Juan Liu
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, 102206, China
| | - Xuer Sun
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yi Wang
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jiexin Yan
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Qunfang Yu
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jinmei Diao
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Chun Yang
- Institute of Biomechanics and Medical Engineering, School of Aerospace, Tsinghua University, Beijing, 100084, China
| | - Lola M Reid
- Biology and Biotechnology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, 27599, USA
| | - Yunfang Wang
- Stem Cell and Tissue Engineering Lab, Beijing Institute of Health Service and Transfusion Medicine, Beijing, 100850, China; Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
26
|
Pou Casellas C, Rookmaaker MB, Verhaar MC. Controlling cellular plasticity to improve in vitro models for kidney regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Monckton CP, Brougham-Cook A, Kaylan KB, Underhill GH, Khetani SR. Elucidating Extracellular Matrix and Stiffness Control of Primary Human Hepatocyte Phenotype Via Cell Microarrays. ADVANCED MATERIALS INTERFACES 2021; 8:2101284. [PMID: 35111564 PMCID: PMC8803000 DOI: 10.1002/admi.202101284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 05/30/2023]
Abstract
How the liver's extracellular matrix (ECM) protein composition and stiffness cooperatively regulate primary human hepatocyte (PHH) phenotype is unelucidated. Here, we utilize protein microarrays and high content imaging with single-cell resolution to assess PHH attachment/functions on 10 major liver ECM proteins in single and two-way combinations robotically spotted onto polyacrylamide gels of 1 kPa or 25 kPa stiffness. Albumin, cytochrome-P450 3A4 (CYP3A4), and hepatocyte nuclear factor alpha (HNF4α) positively correlate with each other and cell density on both stiffnesses. The 25 kPa stiffness supports higher average albumin and HNF4α expression after 14 days, while ECM protein composition significantly modulates PHH functions across both stiffnesses. Unlike previous rodent data, PHH functions are highest only when collagen-IV or fibronectin are mixed with specific proteins, whereas non-collagenous proteins without mixed collagens downregulate functions. Combination of collagen-IV and hyaluronic acid retains high CYP3A4 on 1 kPa, whereas collagens-IV and -V better retain HNF4α on 25 kPa over 14 days. Adapting ECM conditions to 96-well plates containing conjugated hydrogels reveals novel regulation of other functions (urea, CYP1A2/2A6/2C9) and drug-mediated CYP induction by the ECM protein composition/stiffness. This high-throughput pipeline can be adapted to elucidate ECM's role in liver diseases and facilitate optimization of engineered tissues.
Collapse
Affiliation(s)
- Chase P Monckton
- Department of Biomedical Engineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois, 60607, USA
| | - Aidan Brougham-Cook
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 2112 Everitt Laboratory, 1406 West Green Street, Urbana, Illinois, 61801, USA
| | - Kerim B Kaylan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 2112 Everitt Laboratory, 1406 West Green Street, Urbana, Illinois, 61801, USA
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 2112 Everitt Laboratory, 1406 West Green Street, Urbana, Illinois, 61801, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois, 60607, USA
| |
Collapse
|
28
|
Deng S, Zhu Y, Zhao X, Chen J, Tuan RS, Chan HF. Efficient fabrication of monodisperse hepatocyte spheroids and encapsulation in hybrid hydrogel with controllable extracellular matrix effect. Biofabrication 2021; 14. [PMID: 34587587 DOI: 10.1088/1758-5090/ac2b89] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) culture techniques, such as spheroid and organoid cultures, have gained increasing interest in biomedical research. However, the understanding and control of extracellular matrix (ECM) effect in spheroid and organoid culture has been limited. Here, we report a biofabrication approach to efficiently form uniform-sized 3D hepatocyte spheroids and encapsulate them in a hybrid hydrogel composed of alginate and various ECM molecules. Cells were seeded in a microwell platform to form spheroid before being encapsulated directly in a hybrid hydrogel containing various ECM molecules, including collagen type I (COL1), collagen type IV (COL4), fibronectin (FN), and laminin (LM). A systematic analysis of the effect of ECM molecules on the primary mouse hepatocyte phenotype was then performed. Our results showed that hydrogel encapsulation of hepatocyte spheroid promoted hepatic marker expression and secretory functions. In addition, different ECM molecules elicited distinct effects on hepatic functions in 3D encapsulated hepatocyte spheroids, but not in 2D hepatocyte and 3D non-encapsulated spheroids. When encapsulated in hybrid hydrogel containing LM alone or COL1 alone, hepatocyte spheroids exhibited improved hepatic functions overall. Analysis of gene and protein expression showed an upregulation of integrinα1 and integrinα6 when LM was introduced in the hybrid hydrogel, suggesting a possible role of integrin signaling involved in the ECM effect. Finally, a combinatorial screening was performed to demonstrate the potential to screen a multitude of 3D microenvironments of varying ECM combinations that exhibited synergistic influence, indicating a strong positive effect of COL1 and a negative interaction effect of COL1·LM on both albumin and urea secretion. These findings illustrate the broad application potential of this biofabrication approach in identifying optimal ECM composition(s) for engineering 3D tissue, and elucidating defined ECM cues for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Xiaoyu Zhao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education of China, Jinan University, Guangzhou, People's Republic of China.,Aier Eye Institute, Changsha, People's Republic of China.,Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, People's Republic of China.,Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| |
Collapse
|
29
|
Wang C, Xue Y, Huang J, Ren K, Greiner A, Agarwal S, Ji J. A facile method for high-throughput screening of drug-eluting coatings in droplet microarrays based on ultrasonic spray deposition. Biomater Sci 2021; 9:6787-6794. [PMID: 34528030 DOI: 10.1039/d1bm01213d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coating modification such as drug-eluting coating is one of the most important approaches for the functionalization of biomedical devices. However, the throughputs are limited in conventional coating methods and the concept of miniaturization is rarely fulfilled. A droplet microarray (DMA), as a unique high-throughput platform, can avoid cross-contamination and reduce the consumption of materials which is inherently suitable for coating research yet is difficult to apply with coating materials via traditional methods. Here, we bring up a facile method based on ultrasonic spray deposition to integrate coating materials into a DMA. Several common polymer materials were selected to fabricate a DMA, and the obtained DMA showed the ability to anchor water droplets and form specific patterns. Coating arrays with a typical sandwich structure were also prepared for the high-throughput screening of drug-eluting coatings to demonstrate the potential of the platform in coating research. This developed method is efficient and compatible and enriches the choices of materials that can be applied in DMAs.
Collapse
Affiliation(s)
- Cong Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Yunfan Xue
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Junjie Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Kefeng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - A Greiner
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - S Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
30
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
31
|
Berg IC, Mohagheghian E, Habing K, Wang N, Underhill GH. Microtissue Geometry and Cell-Generated Forces Drive Patterning of Liver Progenitor Cell Differentiation in 3D. Adv Healthc Mater 2021; 10:e2100223. [PMID: 33890430 PMCID: PMC8222189 DOI: 10.1002/adhm.202100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Indexed: 01/13/2023]
Abstract
3D microenvironments provide a unique opportunity to investigate the impact of intrinsic mechanical signaling on progenitor cell differentiation. Using a hydrogel-based microwell platform, arrays of 3D, multicellular microtissues in constrained geometries, including toroids and cylinders are produced. These generated distinct mechanical profiles to investigate the impact of geometry and stress on early liver progenitor cell fate using a model liver development system. Image segmentation allows the tracking of individual cell fate and the characterization of distinct patterning of hepatocytic makers to the outer shell of the microtissues, and the exclusion from the inner diameter surface of the toroids. Biliary markers are distributed throughout the interior regions of micropatterned tissues and are increased in toroidal tissues when compared with those in cylindrical tissues. Finite element models of predicted stress distributions, combined with mechanical measurements, demonstrates that intercellular tension correlates with increased hepatocytic fate, while compression correlates with decreased hepatocytic and increased biliary fate. This system, which integrates microfabrication, imaging, mechanical modeling, and quantitative analysis, demonstrates how microtissue geometry can drive patterning of mechanical stresses that regulate cell differentiation trajectories. This approach may serve as a platform for further investigation of signaling mechanisms in the liver and other developmental systems.
Collapse
Affiliation(s)
- Ian C. Berg
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Erfan Mohagheghian
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Krista Habing
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Ning Wang
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Gregory H. Underhill
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
33
|
Xie J, Li X, Zhang Y, Tang T, Chen G, Mao H, Gu Z, Yang J. VE-cadherin-based matrix promoting the self-reconstruction of pro-vascularization microenvironments and endothelial differentiation of human mesenchymal stem cells. J Mater Chem B 2021; 9:3357-3370. [PMID: 33881442 DOI: 10.1039/d1tb00017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulating the secretion and endothelial differentiation of human mesenchymal stem cells (hMSCs) plays an important role in the vascularization in tissue engineering and regenerative medicine. In this study, a recombinant cadherin fusion protein consisting of a human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) was developed as a bioartificial matrix for modulating hMSCs. The hVE-cad-Fc matrix significantly enhanced the secretion of angiogenic factors, activated the VE-cadherin-VEGFR2/FAK-AKT/PI3K signaling pathway in hMSCs, and promoted the endothelial differentiation of hMSCs even without extra VEGF. Furthermore, the hVE-cad-Fc matrix was applied for the surface modification of a poly (lactic-co-glycolic acid) (PLGA) porous scaffold, which significantly improved the hemocompatibility and vascularization of the PLGA scaffold in vivo. These results revealed that the hVE-cad-Fc matrix should be a superior bioartificial ECM for remodeling the pro-vascularization extracellular microenvironment by regulating the secretion of hMSCs, and showed great potential for the vascularization in tissue engineering.
Collapse
Affiliation(s)
- Jinghui Xie
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Roy HS, Singh R, Ghosh D. SARS-CoV-2 and tissue damage: current insights and biomaterial-based therapeutic strategies. Biomater Sci 2021; 9:2804-2824. [PMID: 33666206 DOI: 10.1039/d0bm02077j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of SARS-CoV-2 infection on humanity has gained worldwide attention and importance due to the rapid transmission, lack of treatment options and high mortality rate of the virus. While scientists across the world are searching for vaccines/drugs that can control the spread of the virus and/or reduce the risks associated with infection, patients infected with SARS-CoV-2 have been reported to have tissue/organ damage. With most tissues/organs having limited regenerative potential, interventions that prevent further damage or facilitate healing would be helpful. In the past few decades, biomaterials have gained prominence in the field of tissue engineering, in view of their major role in the regenerative process. Here we describe the effect of SARS-CoV-2 on multiple tissues/organs, and provide evidence for the positive role of biomaterials in aiding tissue repair. These findings are further extrapolated to explore their prospects as a therapeutic platform to address the tissue/organ damage that is frequently observed during this viral outbreak. This study suggests that the biomaterial-based approach could be an effective strategy for regenerating tissues/organs damaged by SARS-CoV-2.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Rupali Singh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Deepa Ghosh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| |
Collapse
|
35
|
Ali M, Payne SL. Biomaterial-based cell delivery strategies to promote liver regeneration. Biomater Res 2021; 25:5. [PMID: 33632335 PMCID: PMC7905561 DOI: 10.1186/s40824-021-00206-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic liver disease and cirrhosis is a widespread and untreatable condition that leads to lifelong impairment and eventual death. The scarcity of liver transplantation options requires the development of new strategies to attenuate disease progression and reestablish liver function by promoting regeneration. Biomaterials are becoming an increasingly promising option to both culture and deliver cells to support in vivo viability and long-term function. There is a wide variety of both natural and synthetic biomaterials that are becoming established as delivery vehicles with their own unique advantages and disadvantages for liver regeneration. We review the latest developments in cell transplantation strategies to promote liver regeneration, with a focus on the use of both natural and synthetic biomaterials for cell culture and delivery. We conclude that future work will need to refine the use of these biomaterials and combine them with novel strategies that recapitulate liver organization and function in order to translate this strategy to clinical use.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Samantha L Payne
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
36
|
|
37
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
38
|
Onfroy-Roy L, Hamel D, Foncy J, Malaquin L, Ferrand A. Extracellular Matrix Mechanical Properties and Regulation of the Intestinal Stem Cells: When Mechanics Control Fate. Cells 2020; 9:cells9122629. [PMID: 33297478 PMCID: PMC7762382 DOI: 10.3390/cells9122629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal stem cells (ISC) are crucial players in colon epithelium physiology. The accurate control of their auto-renewal, proliferation and differentiation capacities provides a constant flow of regeneration, maintaining the epithelial intestinal barrier integrity. Under stress conditions, colon epithelium homeostasis in disrupted, evolving towards pathologies such as inflammatory bowel diseases or colorectal cancer. A specific environment, namely the ISC niche constituted by the surrounding mesenchymal stem cells, the factors they secrete and the extracellular matrix (ECM), tightly controls ISC homeostasis. Colon ECM exerts physical constraint on the enclosed stem cells through peculiar topography, stiffness and deformability. However, little is known on the molecular and cellular events involved in ECM regulation of the ISC phenotype and fate. To address this question, combining accurately reproduced colon ECM mechanical parameters to primary ISC cultures such as organoids is an appropriated approach. Here, we review colon ECM physical properties at physiological and pathological states and their bioengineered in vitro reproduction applications to ISC studies.
Collapse
Affiliation(s)
- Lauriane Onfroy-Roy
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France;
- Correspondence: (L.O.-R.); (A.F.); Tel.: +33-5-62-744-522 (A.F.)
| | - Dimitri Hamel
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France;
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France; (J.F.); (L.M.)
| | - Julie Foncy
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France; (J.F.); (L.M.)
| | - Laurent Malaquin
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France; (J.F.); (L.M.)
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France;
- Correspondence: (L.O.-R.); (A.F.); Tel.: +33-5-62-744-522 (A.F.)
| |
Collapse
|
39
|
Ye S, Boeter JWB, Mihajlovic M, van Steenbeek FG, van Wolferen ME, Oosterhoff LA, Marsee A, Caiazzo M, van der Laan LJW, Penning LC, Vermonden T, Spee B, Schneeberger K. A Chemically Defined Hydrogel for Human Liver Organoid Culture. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000893. [PMID: 34658689 PMCID: PMC7611838 DOI: 10.1002/adfm.202000893] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 05/27/2023]
Abstract
End-stage liver diseases are an increasing health burden, and liver transplantations are currently the only curative treatment option. Due to a lack of donor livers, alternative treatments are urgently needed. Human liver organoids are very promising for regenerative medicine; however, organoids are currently cultured in Matrigel, which is extracted from the extracellular matrix of the Engelbreth-Holm-Swarm mouse sarcoma. Matrigel is poorly defined, suffers from high batch-to-batch variability and is of xenogeneic origin, which limits the clinical application of organoids. Here, a novel hydrogel based on polyisocyanopeptides (PIC) and laminin-111 is described for human liver organoid cultures. PIC is a synthetic polymer that can form a hydrogel with thermosensitive properties, making it easy to handle and very attractive for clinical applications. Organoids in an optimized PIC hydrogel proliferate at rates comparable to those observed with Matrigel; proliferation rates are stiffness-dependent, with lower stiffnesses being optimal for organoid proliferation. Moreover, organoids can be efficiently differentiated toward a hepatocyte-like phenotype with key liver functions. This proliferation and differentiation potential maintain over at least 14 passages. The results indicate that PIC is very promising for human liver organoid culture and has the potential to be used in a variety of clinical applications including cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Shicheng Ye
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Jochem W B Boeter
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Marko Mihajlovic
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Universiteitsweg 99, Utrecht 3584 CG, The Netherlands; Department of Biomedical Engineering Eindhoven University of Technology Postbus 513, Eindhoven 5600 MB, The Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Ary Marsee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Universiteitsweg 99, Utrecht 3584 CG, The Netherlands; Department of Molecular Medicine and Medical Biotechnology University of Naples 'Federico II' Via Pansini 5, Naples 80131, Italy
| | - Luc J W van der Laan
- Department of Surgery Erasmus MC-University Medical Center Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine Utrecht University Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| |
Collapse
|
40
|
Xia T, Zhao R, Feng F, Yang L. The Effect of Matrix Stiffness on Human Hepatocyte Migration and Function-An In Vitro Research. Polymers (Basel) 2020; 12:polym12091903. [PMID: 32846973 PMCID: PMC7564768 DOI: 10.3390/polym12091903] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 01/30/2023] Open
Abstract
The extracellular matrix (ECM) regulates cellular function through the dynamic biomechanical and biochemical interplay between the resident cells and their microenvironment. Pathologically stiff ECM promotes phenotype changes in hepatocytes during liver fibrosis. To investigate the effect of ECM stiffness on hepatocyte migration and function, we designed an easy fabricated polyvinyl alcohol (PVA) hydrogel in which stiffness can be controlled by changing the concentration of glutaraldehyde. Three stiffnesses of hydrogels corresponding to the health of liver tissue, early stage, and end stage of fibrosis were selected. These were 4.8 kPa (soft), 21 kPa (moderate), and 45 kPa (stiff). For hepatocytes attachment, the hydrogel was coated with fibronectin. To evaluate the optimal concentration of fibronectin, hydrogel was coated with 0.1 mg/mL, 0.01 mg/mL, 0.005 mg/mL, or 0.003 mg/mL fibronectin, and the migratory behavior of single hepatocyte cultured on different concentrations of fibronectin was analyzed. To further explore the effect of substrate stiffness on hepatocyte migration, we used a stiffness controllable commercial 3D collagen gel, which has similar substrate stiffness to that of PVA hydrogel. Our result confirmed the PVA hydrogel biocompatibility with high hepatocytes survival. Fibronectin (0.01 mg/mL) promoted optimal migratory behavior for single hepatocytes. However, for confluent hepatocytes, a stiff substrate promoted hepatocellular migration compared with the soft and moderate groups via enhancing the formation of actin- and tubulin-rich structures. The gene expression analysis and protein expression analysis showed that the stiff substrate altered the phenotype of hepatocytes and induced apoptosis. Hepatocytes in stiff 3D hydrogel showed a higher proportion of cell death and expression of filopodia.
Collapse
Affiliation(s)
| | | | | | - Li Yang
- Correspondence: (T.X.); (L.Y.)
| |
Collapse
|
41
|
Yin Y, Kong D, He K, Xia Q. Regeneration and activation of liver progenitor cells in liver cirrhosis. Genes Dis 2020; 8:623-628. [PMID: 34291133 PMCID: PMC8278536 DOI: 10.1016/j.gendis.2020.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/20/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022] Open
Abstract
Cirrhosis is characterized as the progress of regenerative nodules surrounded by fibrous bands in response to chronic hepatic injury and causes portal hypertension and end-stage hepatic disease. Following liver injury, liver progenitor cells (LPCs) can be activated and differentiate into hepatocytes in order to awaken liver regeneration and reach homeostasis. Recent research has uncovered some new sources of LPCs. Here, we update the mechanisms of LPCs-mediated liver regeneration in cirrhosis by introducing the origin of LPCs and LPCs’ niche with a discussion of the influence of LPC-related cells. This article analyzes the mechanism of regeneration and activation of LPCs in cirrhosis in recent years aiming to provide help for clinical application.
Collapse
Affiliation(s)
- Yanze Yin
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Defu Kong
- Department of Hepatology & Gastroenterology, University Medical Center Groningen, Groningen, 9713, the Netherlands
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
42
|
Fabris L, Cadamuro M, Cagnin S, Strazzabosco M, Gores GJ. Liver Matrix in Benign and Malignant Biliary Tract Disease. Semin Liver Dis 2020; 40:282-297. [PMID: 32162285 DOI: 10.1055/s-0040-1705109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The extracellular matrix is a highly reactive scaffold formed by a wide array of multifunctional molecules, encompassing collagens and noncollagenous glycoproteins, proteoglycans, glycosaminoglycans, and polysaccharides. Besides outlining the tissue borders, the extracellular matrix profoundly regulates the behavior of resident cells by transducing mechanical signals, and by integrating multiple cues derived from the microenvironment. Evidence is mounting that changes in the biostructure of the extracellular matrix are instrumental for biliary repair. Following biliary damage and eventually, malignant transformation, the extracellular matrix undergoes several quantitative and qualitative modifications, which direct interactions among hepatic progenitor cells, reactive ductular cells, activated myofibroblasts and macrophages, to generate the ductular reaction. Herein, we will give an overview of the main molecular factors contributing to extracellular matrix remodeling in cholangiopathies. Then, we will discuss the structural alterations in terms of biochemical composition and physical stiffness featuring the "desmoplastic matrix" of cholangiocarcinoma along with their pro-oncogenic effects.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | | | - Silvia Cagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Michigan
| |
Collapse
|
43
|
Gentile SD, Kourouklis AP, Ryoo H, Underhill GH. Integration of Hydrogel Microparticles With Three-Dimensional Liver Progenitor Cell Spheroids. Front Bioeng Biotechnol 2020; 8:792. [PMID: 32793571 PMCID: PMC7385057 DOI: 10.3389/fbioe.2020.00792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
The study of the liver progenitor cell microenvironment has demonstrated the important roles of both biochemical and biomechanical signals in regulating the progenitor cell functions that underlie liver morphogenesis and regeneration. While controllable two-dimensional in vitro culture systems have provided key insights into the effects of growth factors and extracellular matrix composition and mechanics on liver differentiation, it remains unclear how microenvironmental signals may differentially affect liver progenitor cell responses in a three-dimensional (3D) culture context. In addition, there have only been limited efforts to engineer 3D culture models of liver progenitor cells through the tunable presentation of microenvironmental stimuli. We present an in vitro model of 3D liver progenitor spheroidal cultures with integrated polyethylene glycol hydrogel microparticles for the internal presentation of modular microenvironmental cues and the examination of the combinatorial effects with an exogenous soluble factor. In particular, treatment with the growth factor TGFβ1 directs differentiation of the spheroidal liver progenitor cells toward a biliary phenotype, a behavior which is further enhanced in the presence of hydrogel microparticles. We further demonstrate that surface modification of the hydrogel microparticles with heparin influences the behavior of liver progenitor cells toward biliary differentiation. Taken together, this liver progenitor cell culture system represents an approach for controlling the presentation of microenvironmental cues internalized within 3D spheroidal aggregate cultures. Overall, this strategy could be applied toward the engineering of instructive microenvironments that control stem and progenitor cell differentiation within a 3D context for studies in tissue engineering, drug testing, and cellular metabolism.
Collapse
Affiliation(s)
- Stefan D Gentile
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Andreas P Kourouklis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
44
|
Labour MN, Le Guilcher C, Aid-Launais R, El Samad N, Lanouar S, Simon-Yarza T, Letourneur D. Development of 3D Hepatic Constructs Within Polysaccharide-Based Scaffolds with Tunable Properties. Int J Mol Sci 2020; 21:ijms21103644. [PMID: 32455711 PMCID: PMC7279349 DOI: 10.3390/ijms21103644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Organoids production is a key tool for in vitro studies of physiopathological conditions, drug-induced toxicity assays, and for a potential use in regenerative medicine. Hence, it prompted studies on hepatic organoids and liver regeneration. Numerous attempts to produce hepatic constructs had often limited success due to a lack of viability or functionality. Moreover, most products could not be translated for clinical studies. The aim of this study was to develop functional and viable hepatic constructs using a 3D porous scaffold with an adjustable structure, devoid of any animal component, that could also be used as an in vivo implantable system. We used a combination of pharmaceutical grade pullulan and dextran with different porogen formulations to form crosslinked scaffolds with macroporosity ranging from 30 µm to several hundreds of microns. Polysaccharide scaffolds were easy to prepare and to handle, and allowed confocal observations thanks to their transparency. A simple seeding method allowed a rapid impregnation of the scaffolds with HepG2 cells and a homogeneous cell distribution within the scaffolds. Cells were viable over seven days and form spheroids of various geometries and sizes. Cells in 3D express hepatic markers albumin, HNF4α and CYP3A4, start to polarize and were sensitive to acetaminophen in a concentration-dependant manner. Therefore, this study depicts a proof of concept for organoid production in 3D scaffolds that could be prepared under GMP conditions for reliable drug-induced toxicity studies and for liver tissue engineering.
Collapse
Affiliation(s)
- Marie-Noëlle Labour
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
- École Pratique des Hautes Études, Paris Sciences et Lettres (PSL) Research University, 4-14 rue Ferrus, 75014 Paris, France
| | - Camile Le Guilcher
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Rachida Aid-Launais
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM UMS-34, FRIM Université de Paris, X Bichat School of Medicine, F-75018 Paris, France
| | - Nour El Samad
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Soraya Lanouar
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Teresa Simon-Yarza
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Didier Letourneur
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
- Correspondence:
| |
Collapse
|
45
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
46
|
Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver Tissue Engineering as an Emerging Alternative for Liver Disease Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:145-163. [PMID: 31797731 DOI: 10.1089/ten.teb.2019.0233] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic liver diseases affect thousands of lives throughout the world every year. The shortage of liver donors for transplantation has been the main driving force to employ alternative methods such as liver tissue engineering (LTE) in fabricating a three-dimensional transplantable liver tissue or enhancing cell delivery techniques alleviating the need for liver donors. LTE consists of three components, cells, ECM (extracellular matrix), and signaling molecules, which we discuss the first and second. The three most common cell sources used in LTE are human and animal primary hepatocytes, and stem cells for different applications. Two major categories of ECM are used to mimic the microenvironment of these cells, named scaffolds and microbeads. Scaffolds have been made by numerous methods with a wide range of synthetic and natural biomaterials. Cell encapsulation has also been utilized by many polymeric biomaterials. To investigate their functions, many properties have been discussed in the literature, such as biochemical, geometrical, and mechanical properties, in both of these categories. Overall, LTE shows excellent potential in assisting hepatic disorders. However, some challenges exist that prevent the practical use of it clinically, making LTE an ongoing research subject in the scientific society.
Collapse
Affiliation(s)
- Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
47
|
Zhong J, Yang Y, Liao L, Zhang C. Matrix stiffness-regulated cellular functions under different dimensionalities. Biomater Sci 2020; 8:2734-2755. [DOI: 10.1039/c9bm01809c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microenvironments that cells encounter with in vitro.
Collapse
Affiliation(s)
- Jiajun Zhong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yuexiong Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liqiong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Biomaterials Research Center
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
48
|
Funfak A, Bouzhir L, Gontran E, Minier N, Dupuis-Williams P, Gobaa S. Biophysical Control of Bile Duct Epithelial Morphogenesis in Natural and Synthetic Scaffolds. Front Bioeng Biotechnol 2019; 7:417. [PMID: 31921820 PMCID: PMC6923240 DOI: 10.3389/fbioe.2019.00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
The integration of bile duct epithelial cells (cholangiocytes) in artificial liver culture systems is important in order to generate more physiologically relevant liver models. Understanding the role of the cellular microenvironment on differentiation, physiology, and organogenesis of cholangiocytes into functional biliary tubes is essential for the development of new liver therapies, notably in the field of cholangiophaties. In this study, we investigated the role of natural or synthetic scaffolds on cholangiocytes cyst growth, lumen formation and polarization. We demonstrated that cholangiocyte cyst formation efficiency can be similar between natural and synthetic matrices provided that the mechanical properties of the hydrogels are matched. When using synthetic matrices, we also tried to understand the impact of elasticity, matrix metalloprotease-mediated degradation and integrin ligand density on cyst morphogenesis. We demonstrated that hydrogel stiffness regulates cyst formation. We found that controlling integrin ligand density was key in the establishment of large polarized cysts of cholangiocytes. The mechanism of lumen formation was found to rely on cell self-organization and proliferation. The formed cholangiocyte organoids showed a good MDR1 (multi drug resistance protein) transport activity. Our study highlights the advantages of fully synthetic scaffold as a tool to develop bile duct models.
Collapse
Affiliation(s)
- Anette Funfak
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Latifa Bouzhir
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Emilie Gontran
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Nicolas Minier
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France.,Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France.,ESPCI, PSL University, Paris, France
| | - Samy Gobaa
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| |
Collapse
|
49
|
Major LG, Holle AW, Young JL, Hepburn MS, Jeong K, Chin IL, Sanderson RW, Jeong JH, Aman ZM, Kennedy BF, Hwang Y, Han DW, Park HW, Guan KL, Spatz JP, Choi YS. Volume Adaptation Controls Stem Cell Mechanotransduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45520-45530. [PMID: 31714734 DOI: 10.1021/acsami.9b19770] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent studies have found discordant mechanosensitive outcomes when comparing 2D and 3D, highlighting the need for tools to study mechanotransduction in 3D across a wide spectrum of stiffness. A gelatin methacryloyl (GelMA) hydrogel with a continuous stiffness gradient ranging from 5 to 38 kPa was developed to recapitulate physiological stiffness conditions. Adipose-derived stem cells (ASCs) were encapsulated in this hydrogel, and their morphological characteristics and expression of both mechanosensitive proteins (Lamin A, YAP, and MRTFa) and differentiation markers (PPARγ and RUNX2) were analyzed. Low-stiffness regions (∼8 kPa) permitted increased cellular and nuclear volume and enhanced mechanosensitive protein localization in the nucleus. This trend was reversed in high stiffness regions (∼30 kPa), where decreased cellular and nuclear volumes and reduced mechanosensitive protein nuclear localization were observed. Interestingly, cells in soft regions exhibited enhanced osteogenic RUNX2 expression, while those in stiff regions upregulated the adipogenic regulator PPARγ, suggesting that volume, not substrate stiffness, is sufficient to drive 3D stem cell differentiation. Inhibition of myosin II (Blebbistatin) and ROCK (Y-27632), both key drivers of actomyosin contractility, resulted in reduced cell volume, especially in low-stiffness regions, causing a decorrelation between volume expansion and mechanosensitive protein localization. Constitutively active and inactive forms of the canonical downstream mechanotransduction effector TAZ were stably transfected into ASCs. Activated TAZ resulted in higher cellular volume despite increasing stiffness and a consistent, stiffness-independent translocation of YAP and MRTFa into the nucleus. Thus, volume adaptation as a function of 3D matrix stiffness can control stem cell mechanotransduction and differentiation.
Collapse
Affiliation(s)
- Luke G Major
- School of Human Sciences , University of Western Australia , Perth , Western Australia 6009 , Australia
| | - Andrew W Holle
- Department of Cellular Biophysics , Max Planck Institute for Medical Research , 69120 Heidelberg , Germany
- Department of Biophysical Chemistry , University of Heidelberg , D-69117 Heidelberg , Germany
| | - Jennifer L Young
- Department of Cellular Biophysics , Max Planck Institute for Medical Research , 69120 Heidelberg , Germany
- Department of Biophysical Chemistry , University of Heidelberg , D-69117 Heidelberg , Germany
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research , University of Western Australia , Perth , Western Australia 6009 , Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering , University of Western Australia , Perth , Western Australia , 6009 , Australia
| | - Kwanghee Jeong
- Fluid Science and Resources, Department of Chemical Engineering, School of Engineering , University of Western Australia , Perth , Western Australia 6009 , Australia
| | - Ian L Chin
- School of Human Sciences , University of Western Australia , Perth , Western Australia 6009 , Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research , University of Western Australia , Perth , Western Australia 6009 , Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering , University of Western Australia , Perth , Western Australia , 6009 , Australia
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Korea
| | - Zachary M Aman
- Fluid Science and Resources, Department of Chemical Engineering, School of Engineering , University of Western Australia , Perth , Western Australia 6009 , Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research , University of Western Australia , Perth , Western Australia 6009 , Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering , University of Western Australia , Perth , Western Australia , 6009 , Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies , Perth , Western Australia 6009 , Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Korea
| | - Dong-Wook Han
- Department of CognoMechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan 46241 , Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology , Yonsei University , Seoul 03722 , Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Joachim P Spatz
- Department of Cellular Biophysics , Max Planck Institute for Medical Research , 69120 Heidelberg , Germany
- Department of Biophysical Chemistry , University of Heidelberg , D-69117 Heidelberg , Germany
| | - Yu Suk Choi
- School of Human Sciences , University of Western Australia , Perth , Western Australia 6009 , Australia
| |
Collapse
|
50
|
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17:383. [PMID: 31752920 PMCID: PMC6873477 DOI: 10.1186/s12967-019-02137-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeostasis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells and updates current knowledge on liver regenerative medicine.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|