1
|
Aliakbarshirazi S, Ghobeira R, Asadian M, Narimisa M, Nikiforov A, De Baere I, Van Paepegem W, De Geyter N, Declercq H, Morent R. Advanced Hollow Cathode Discharge Plasma Treatment of Unique Bilayered Fibrous Nerve Guidance Conduits for Enhanced/Oriented Neurite Outgrowth. Biomacromolecules 2024; 25:1448-1467. [PMID: 38412382 DOI: 10.1021/acs.biomac.3c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.
Collapse
Affiliation(s)
- Sheida Aliakbarshirazi
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Mehrnoush Narimisa
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Ives De Baere
- Mechanics of Materials and Structures (MMS), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark-Zwijnaarde 903, 9052 Zwijnaarde, Belgium
| | - Wim Van Paepegem
- Mechanics of Materials and Structures (MMS), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark-Zwijnaarde 903, 9052 Zwijnaarde, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
3
|
Fink TD, Funnell JL, Gilbert RJ, Zha RH. One-Pot Assembly of Drug-Eluting Silk Coatings with Applications for Nerve Regeneration. ACS Biomater Sci Eng 2024; 10:482-496. [PMID: 38109315 DOI: 10.1021/acsbiomaterials.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Clinical use of polymeric scaffolds for tissue engineering often suffers from their inability to promote strong cellular interactions. Functionalization with biomolecules may improve outcomes; however, current functionalization approaches using covalent chemistry or physical adsorption can lead to loss of biomolecule bioactivity. Here, we demonstrate a novel bottom-up approach for enhancing the bioactivity of poly(l-lactic acid) electrospun scaffolds though interfacial coassembly of protein payloads with silk fibroin into nanothin coatings. In our approach, protein payloads are first added into an aqueous solution with Bombyx mori-derived silk fibroin. Phosphate anions are then added to trigger coassembly of the payload and silk fibroin, as well as noncovalent formation of a payload-silk fibroin coating at poly(l-lactic) acid fiber surfaces. Importantly, the coassembly process results in homogeneous distribution of protein payloads, with the loading quantity depending on payload concentration in solution and coating time. This coassembly process yields greater loading capacity than physical adsorption methods, and the payloads can be released over time in physiologically relevant conditions. We also demonstrate that the coating coassembly process can incorporate nerve growth factor and that coassembled coatings lead to significantly more neurite extension than loading via adsorption in a rat dorsal root ganglia explant culture model.
Collapse
Affiliation(s)
- Tanner D Fink
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
4
|
Rosenbalm TN, Levi NH, Morykwas MJ, Wagner WD. Electrical stimulation via repeated biphasic conducting materials for peripheral nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:61. [PMID: 37964030 PMCID: PMC10645611 DOI: 10.1007/s10856-023-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Improved materials for peripheral nerve repair are needed for the advancement of new surgical techniques in fields spanning from oncology to trauma. In this study, we developed bioresorbable materials capable of producing repeated electric field gradients spaced 600 μm apart to assess the impact on neuronal cell growth, and migration. Electrically conductive, biphasic composites comprised of poly (glycerol) sebacate acrylate (PGSA) alone, and doped with poly (pyrrole) (PPy), were prepared to create alternating segments with high and low electrically conductivity. Conductivity measurements demonstrated that 0.05% PPy added to PSA achieved an optimal value of 1.25 × 10-4 S/cm, for subsequent electrical stimulation. Tensile testing and degradation of PPy doped and undoped PGSA determined that 35-40% acrylation of PGSA matched nerve mechanical properties. Both fibroblast and neuronal cells thrived when cultured upon the composite. Biphasic PGSA/PPy sheets seeded with neuronal cells stimulated for with 3 V, 20 Hz demonstrated a 5x cell increase with 1 day of stimulation and up to a 10x cell increase with 3 days stimulation compared to non-stimulated composites. Tubular conduits composed of repeated high and low conductivity materials suitable for implantation in the rat sciatic nerve model for nerve repair were evaluated in vivo and were superior to silicone conduits. These results suggest that biphasic conducting conduits capable of maintaining mechanical properties without inducing compression injuries while generating repeated electric fields are a promising tool for acceleration of peripheral nerve repair to previously untreatable patients.
Collapse
Affiliation(s)
- Tabitha N Rosenbalm
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| | - Nicole H Levi
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA.
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA.
| | - Michael J Morykwas
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| | - William D Wagner
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| |
Collapse
|
5
|
Sepesy M, Banik T, Scott J, Venturina LAF, Johnson A, Schneider BL, Sibley MM, Duval CE. Chemically Stable Styrenic Electrospun Membranes with Tailorable Surface Chemistry. MEMBRANES 2023; 13:870. [PMID: 37999356 PMCID: PMC10673432 DOI: 10.3390/membranes13110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Membranes with tailorable surface chemistry have applications in a wide range of industries. Synthesizing membranes from poly(chloromethyl styrene) directly incorporates an alkyl halide surface-bound initiator which can be used to install functional groups via SN2 chemistry or graft polymerization techniques. In this work, poly(chloromethyl styrene) membranes were synthesized through electrospinning. After fabrication, membranes were crosslinked with a diamine, and the chemical resistance of the membranes was evaluated by exposure to 10 M nitric acid, ethanol, or tetrahydrofuran for 24 h. The resulting membranes had diameters on the order of 2-5 microns, porosities of >80%, and permeance on the order of 10,000 L/m2/h/bar. Crosslinking the membranes generally increased the chemical stability. The degree of crosslinking was approximated using elemental analysis for nitrogen and ranged from 0.5 to 0.9 N%. The poly(chloromethyl styrene) membrane with the highest degree of crosslinking did not dissolve in THF after 24 h and retained its high permeance after solvent exposure. The presented chemically resistant membranes can serve as a platform technology due to their versatile surface chemistry and can be used in membrane manufacturing techniques that require the membrane to be contacted with organic solvents or monomers. They can also serve as a platform for separations that are performed in strong acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christine E. Duval
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Zhu YD, Ma XY, Li LP, Yang QJ, Jin F, Chen ZN, Wu CP, Shi HB, Feng ZQ, Yin SK, Li CY. Surface Functional Modification by Ti 3 C 2 T x MXene on PLLA Nanofibers for Optimizing Neural Stem Cell Engineering. Adv Healthc Mater 2023; 12:e2300731. [PMID: 37341969 DOI: 10.1002/adhm.202300731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Indexed: 06/22/2023]
Abstract
Optimizing cell substrates by surface modification of neural stem cells (NSCs), for efficient and oriented neurogenesis, represents a promising strategy for treating neurological diseases. However, developing substrates with the advanced surface functionality, conductivity, and biocompatibility required for practical application is still challenging. Here, Ti3 C2 Tx MXene is introduced as a coating nanomaterial for aligned poly(l-lactide) (PLLA) nanofibers (M-ANF) to enhance NSC neurogenesis and simultaneously tailor the cell growth direction. Ti3 C2 Tx MXene treatment provides a superior conductivity substrate with a surface rich in functional groups, hydrophilicity, and roughness, which can provide biochemical and physical cues to support NSC adhesion and proliferation. Moreover, Ti3 C2 Tx MXene coating significantly promotes NSC differentiation into both neurons and astrocytes. Interestingly, Ti3 C2 Tx MXene acts synergistically with the alignment of nanofibers to promote the growth of neurites, indicating enhanced maturation of these neurons. RNA sequencing analysis further reveals the molecular mechanism by which Ti3 C2 Tx MXene modulates the fate of NSCs. Notably, surface modification by Ti3 C2 Tx MXene mitigates the in vivo foreign body response to implanted PLLA nanofibers. This study confirms that Ti3 C2 Tx MXene provides multiple advantages for decorating the aligned PLLA nanofibers to cooperatively improve neural regeneration.
Collapse
Affiliation(s)
- Yi-Dan Zhu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xi-Ying Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lin-Peng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quan-Jun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng-Nong Chen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cui-Ping Wu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hai-Bo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shan-Kai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chun-Yan Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
7
|
Ghobashy MM, F Abd El-Gawad A, A Fayek S, Farahat MA, Ismail MI, Elbarbary AM, I Sharshir A. Gamma irradiation induced surface modification of (PVC/HDPE)/ZnO nanocomposite for enhancing the oil removal and conductivity using COMSOL multiphysics. Sci Rep 2023; 13:7514. [PMID: 37160993 PMCID: PMC10170164 DOI: 10.1038/s41598-023-34583-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
Blend nanocomposite film was prepared by loadings of irradiated ZnO in ratios of (5 wt%) inside the PVC/HDPE matrix using a hot-melt extruder technique. The physical and chemical properties of the irradiated and unirradiated ZnO samples are compared. The Vis-UV spectrum of ZnO shows an absorption peak at a wavelength of 373 nm that was slightly red-shifted to 375 nm for an irradiated sample of ZnO at a dose of 25 kGy due to the defect of crystal structure by the oxygen vacancy during gamma irradiations. This growth of the defect site leads to a decrease in energy gaps from 3.8 to 2.08 eV. AC conductivity of ZnO sample increased after the gamma irradiation process (25 kGy). The (PVC/HDPE)/ZnO nanocomposites were re-irradiated with γ rays at 25 kGy in the presence of four different media (silicon oil, sodium silicate, paraffin wax and water). FTIR and XRD were performed to monitor the changes in chemical composition. The new peak at 1723 cm-1 attributed to C=O groups was observed in irradiated (PVC/HDPE)ZnO samples at only sodium silicate and water media. This process induced new function groups on the surface of the (PVC/HDPE)/ZnO blend sample. This work aims to develop (PVC/HDPE)ZnO for oil/water separation. The highest oil adsorption capability was observed in samples functionalized by C=O groups based on the different tested oils. The results suggest that the surface characterization of the (PVC/HDPE)/ZnO can be modified to enhance the oil adsorption potential. Further, the gamma irradiation dose significantly enhanced the AC conductivity compared to the unirradiated sample. According to COMSOL Multiphysics, the irradiated sample (PVC/HDPE)ZnO in water shows perfect uniform electric field distribution in medium voltage cables (22.000 V).
Collapse
Affiliation(s)
- Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amal F Abd El-Gawad
- Faculty of Engineering, Zagazig University, Zagazig, Egypt
- Faculty of Computers and Informatics, University Zagazig, Zagazig, Egypt
| | - S A Fayek
- Solid State and Accelerator Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M A Farahat
- Faculty of Engineering, Zagazig University, Zagazig, Egypt
| | - M I Ismail
- Faculty of Engineering, Zagazig University, Zagazig, Egypt
- Faculty of Engineering, Egypt University of Informatics, Cairo, Egypt
| | - Ahmed M Elbarbary
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - A I Sharshir
- Solid State and Accelerator Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
8
|
Janů L, Dvořáková E, Polášková K, Buchtelová M, Ryšánek P, Chlup Z, Kruml T, Galmiz O, Nečas D, Zajíčková L. Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric. Polymers (Basel) 2023; 15:polym15071686. [PMID: 37050300 PMCID: PMC10097108 DOI: 10.3390/polym15071686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Excellent adhesion of electrospun nanofiber (NF) to textile support is crucial for a broad range of their bioapplications, e.g., wound dressing development. We compared the effect of several low- and atmospheric pressure plasma modifications on the adhesion between two parts of composite—polycaprolactone (PCL) nanofibrous mat (functional part) and polypropylene (PP) spunbond fabric (support). The support fabrics were modified before electrospinning by low-pressure plasma oxygen treatment or amine plasma polymer thin film or treated by atmospheric pressure plasma slit jet (PSJ) in argon or argon/nitrogen. The adhesion was evaluated by tensile test and loop test adapted for thin NF mat measurement and the trends obtained by both tests largely agreed. Although all modifications improved the adhesion significantly (at least twice for PSJ treatments), low-pressure oxygen treatment showed to be the most effective as it strengthened adhesion by a factor of six. The adhesion improvement was ascribed to the synergic effect of high treatment homogeneity with the right ratio of surface functional groups and sufficient wettability. The low-pressure modified fabric also stayed long-term hydrophilic (ten months), even though surfaces usually return to a non-wettable state (hydrophobic recovery). In contrast to XPS, highly surface-sensitive water contact angle measurement proved suitable for monitoring subtle surface changes.
Collapse
Affiliation(s)
- Lucie Janů
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Correspondence: (L.J.); (L.Z.)
| | - Eva Dvořáková
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Kateřina Polášková
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martina Buchtelová
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Petr Ryšánek
- Faculty of Science, J.E. Purkyně University, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| | - Zdeněk Chlup
- Institute of Physics of Materials, The Czech Academy of Sciences, Žižkova 22, 616 00 Brno, Czech Republic
| | - Tomáš Kruml
- Institute of Physics of Materials, The Czech Academy of Sciences, Žižkova 22, 616 00 Brno, Czech Republic
| | - Oleksandr Galmiz
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - David Nečas
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Lenka Zajíčková
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Department of Theoretical and Experimental Electrical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 12, 616 00 Brno, Czech Republic
- Correspondence: (L.J.); (L.Z.)
| |
Collapse
|
9
|
Wang C, Xu P, Li X, Zheng Y, Song Z. Research progress of stimulus-responsive antibacterial materials for bone infection. Front Bioeng Biotechnol 2022; 10:1069932. [PMID: 36636700 PMCID: PMC9831006 DOI: 10.3389/fbioe.2022.1069932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Infection is one of the most serious complications harmful to human health, which brings a huge burden to human health. Bone infection is one of the most common and serious complications of fracture and orthopaedic surgery. Antibacterial treatment is the premise of bone defect healing. Among all the antibacterial strategies, irritant antibacterial materials have unique advantages and the ability of targeted therapy. In this review, we focus on the research progress of irritating materials, the development of antibacterial materials and their advantages and disadvantages potential applications in bone infection.
Collapse
Affiliation(s)
| | | | | | - Yuhao Zheng
- Department of Sports Medicine, Orthopaedic Center, The First Hospital of Jilin University, Changchun, China
| | - Zhiming Song
- Department of Sports Medicine, Orthopaedic Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Effect of thrombin conjugation on hemostatic efficacy of PLGA mesh through reagent free surface modification. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Lin JH, Shiu BC, Hsu PW, Lou CW, Lin JH. PVP/CS/ Phyllanthus emblica Nanofiber Membranes for Dry Facial Masks: Manufacturing Process and Evaluations. Polymers (Basel) 2022; 14:4470. [PMID: 36365465 PMCID: PMC9657772 DOI: 10.3390/polym14214470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2024] Open
Abstract
In the wake of increasing demands on skin health, we propose simple, natural, and safe dry facial masks that restrict melanin synthesis. Phyllanthus emblica (P. emblica) is made into powders via a low-temperature extraction and freeze-drying process to serve as a natural agent. Next, it is added to mixtures containing Polyvinylpyrrolidone (PVP) and Chitosan (CS), after which the blends are electrospun into PVP/CS/P. emblica nanofiber membrane dry facial masks using the electrospinning technique. The dry facial masks are evaluated using the calibration analysis method, extraction rate test, scanning electron microscopy (SEM), release rate test, tyrosinase inhibition assay, biocompatibility test, and anti-inflammatory capacity test. Test results indicate that when the electrospinning mixture contains 29.0% P. emblica, the nanofibers have a diameter of ≤214.27 ± 74.51 nm and a water contact angle of 77.25 ± 2.21. P. emblica is completely released in twenty minutes, and the tyrosinase inhibition rate reaches 99.53 ± 0.45% and the cell activity ≥82.60 ± 1.30%. Moreover, the anti-inflammatory capacity test results suggest that dry facial masks confine inflammatory factors. PVP/CS/P. emblica nanofiber dry facial masks demonstrate excellent tyrosinase inhibition and are hydrophilic, biocompatible, and inflammation-free. The dry facial masks are a suitable material that is worthwhile exploring and applying to the cosmetic field.
Collapse
Affiliation(s)
- Jian-Hong Lin
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan
| | - Bing-Chiuan Shiu
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Po-Wen Hsu
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan
| | - Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| | - Jia-Horng Lin
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
12
|
Electrospun Fibers: Versatile Approaches for Controlled Release Applications. INT J POLYM SCI 2022. [DOI: 10.1155/2022/9116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrospinning has been one of the most attractive methods of fiber fabrication in the last century. A lot of studies have been conducted, especially in tissue engineering and drug delivery using electrospun fibers. Loading many different drugs and bioactive agents on or within these fibers potentiates the efficacy of such systems; however, there are still no commercial products with this technology available in the market. Various methods have been developed to improve the mechanical and physicochemical behavior of structures toward more controllable delivery systems in terms of time, place, or quantity of release. In this study, most frequent methods used for the fabrication of controlled release electrospun fibers have been reviewed. Although there are a lot of achievements in the fabrication of controlled release fibers, there are still many challenges to be solved to reach a qualified, reproducible system applicable in the pharmaceutical industry.
Collapse
|
13
|
Miranda CC, Gomes MR, Moço M, Cabral JMS, Ferreira FC, Sanjuan-Alberte P. A Concise Review on Electrospun Scaffolds for Kidney Tissue Engineering. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100554. [PMID: 36290522 PMCID: PMC9598616 DOI: 10.3390/bioengineering9100554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Chronic kidney disease is one of the deadliest diseases globally and treatment methods are still insufficient, relying mostly on transplantation and dialysis. Engineering of kidney tissues in vitro from induced pluripotent stem cells (iPSCs) could provide a solution to this medical need by restoring the function of damaged kidneys. However, implementation of such approaches is still challenging to achieve due to the complexity of mature kidneys in vivo. Several strategies have been defined to obtain kidney progenitor endothelial and epithelial cells that could form nephrons and proximal tube cells, but these lack tissue maturity and vascularisation to be further implemented. Electrospinning is a technique that has shown promise in the development of physiological microenvironments of several tissues and could be applied in the engineering of kidney tissues. Synthetic polymers such as polycaprolactone, polylactic acid, and poly(vinyl alcohol) have been explored in the manufacturing of fibres that align and promote the proliferation and cell-to-cell interactions of kidney cells. Natural polymers including silk fibroin and decellularised extracellular matrix have also been explored alone and in combination with synthetic polymers promoting the differentiation of podocytes and tubular-specific cells. Despite these attempts, further work is still required to advance the applications of electrospun fibres in kidney tissue engineering and explore this technique in combination with other manufacturing methods such as bioprinting to develop more organised, mature and reproducible kidney organoids.
Collapse
Affiliation(s)
- Cláudia C. Miranda
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (C.C.M.); (P.S.-A.)
| | - Mariana Ramalho Gomes
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mariana Moço
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (C.C.M.); (P.S.-A.)
| |
Collapse
|
14
|
Sakpal D, Gharat S, Momin M. Recent advancements in polymeric nanofibers for ophthalmic drug delivery and ophthalmic tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213124. [PMID: 36148709 DOI: 10.1016/j.bioadv.2022.213124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanofibers due to their unique properties such as high surface-to-volume ratio, porous structure, mechanical strength, flexibility and their resemblance to the extracellular matrix, have been researched extensively in the field of ocular drug delivery and tissue engineering. Further, different modifications considering the formulation and process parameters have been carried out to alter the drug release profile and its interaction with the surrounding biological environment. Electrospinning is the most commonly used technique for preparing nanofibers with industrial scalability. Advanced techniques such as co-axial electrospinning and combined system such as embedding nanoparticles in nanofiber provide an alternative approach to enhance the performance of the scaffold. Electrospun nanofibers offers a matrix like structure for cell regeneration. Nanofibers have been used for ocular delivery of various drugs like antibiotics, anti-inflammatory and various proteins. In addition, lens-coated medical devices provide new insights into the clinical use of nanofibers. Through fabricating the nanofibers researchers have overcome the issues of low bioavailability and compatibility with ocular tissue. Therefore, nanofibers have great potential in ocular drug delivery and tissue engineering and have the capacity to revolutionize these therapeutic areas in the field of ophthalmology. This review is mainly focused on the recent advances in the preparation of nanofibers and their applications in ocular drug delivery and tissue engineering. The authors have attempted to emphasize the processing challenges and future perspectives along with an overview of the safety and toxicity aspects of nanofibers.
Collapse
Affiliation(s)
- Darshana Sakpal
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India; SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India.
| |
Collapse
|
15
|
Partheniadis I, Stathakis G, Tsalavouti D, Heinämäki J, Nikolakakis I. Essential Oil—Loaded Nanofibers for Pharmaceutical and Biomedical Applications: A Systematic Mini-Review. Pharmaceutics 2022; 14:pharmaceutics14091799. [PMID: 36145548 PMCID: PMC9504405 DOI: 10.3390/pharmaceutics14091799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Essential oils (EOs) have been widely exploited for their biological properties (mainly as antimicrobials) in the food industry. Encapsulation of EOs has opened the way to the utilization of EOs in the pharmaceutical and biomedical fields. Electrospinning (ES) has proved a convenient and versatile method for the encapsulation of EOs into multifunctional nanofibers. Within the last five years (2017–2022), many research articles have been published reporting the use of ES for the fabrication of essential oil—loaded nanofibers (EONFs). The objective of the present mini-review article is to elucidate the potential of EONFs in the pharmaceutical and biomedical fields and to highlight their advantages over traditional polymeric films. An overview of the conventional ES and coaxial ES technologies for the preparation of EONFs is also included. Even though EONFs are promising systems for the delivery of EOs, gaps in the literature can be recognized (e.g., stability studies) emphasizing that more research work is needed in this field to fully unravel the potential of EONFs.
Collapse
Affiliation(s)
- Ioannis Partheniadis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310-997649
| | - Georgios Stathakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Tsalavouti
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Jankauskaite L, Malinauskas M, Aukstikalne L, Dabasinskaite L, Rimkunas A, Mickevicius T, Pockevičius A, Krugly E, Martuzevicius D, Ciuzas D, Baniukaitiene O, Usas A. Functionalized Electrospun Scaffold-Human-Muscle-Derived Stem Cell Construct Promotes In Vivo Neocartilage Formation. Polymers (Basel) 2022; 14:polym14122498. [PMID: 35746068 PMCID: PMC9229929 DOI: 10.3390/polym14122498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, we aimed to improve properties of scaffolds for better cell adherence and cartilage regeneration. Thus, electrospun PCL–scaffolds were functionalized with ozone and loaded with TGF-β3. Together, human-muscle-derived stem cells (hMDSCs) were isolated and assessed for their phenotype and potential to differentiate into specific lineages. Then, hMDSCs were seeded on ozonated (O) and non-ozonated (“naïve” (NO)) scaffolds with or without protein and submitted for in vitro and in vivo experiments. In vitro studies showed that hMDSC and control cells (human chondrocyte) could be tracked for at least 14 days. We observed better proliferation of hMDSCs in O scaffolds compared to NO scaffolds from day 7 to day 28. Protein analysis revealed slightly higher expression of type II collagen (Coll2) on O scaffolds compared to NO on days 21 and 28. We detected more pronounced formation of glycosaminoglycans in the O scaffolds containing TGF-β3 and hMDSC compared to NO and scaffolds without TGF-β3 in in vivo animal experiments. Coll2-positive extracellular matrix was observed within O and NO scaffolds containing TGF-β3 and hMDSC for up to 8 weeks after implantation. These findings suggest that ozone-treated, TGF-β3-loaded scaffold with hMDSC is a promising tool in neocartilage formation.
Collapse
Affiliation(s)
- Lina Jankauskaite
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
- Correspondence:
| | - Mantas Malinauskas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Lauryna Aukstikalne
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Lauryna Dabasinskaite
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Augustinas Rimkunas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Tomas Mickevicius
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| | - Alius Pockevičius
- Pathology Center, Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania;
| | - Edvinas Krugly
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Dainius Martuzevicius
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Darius Ciuzas
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Odeta Baniukaitiene
- Faculty of Chemical Technology, Kaunas University of Technology, LT-44029 Kaunas, Lithuania; (L.D.); (E.K.); (D.M.); (D.C.); (O.B.)
| | - Arvydas Usas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-49264 Kaunas, Lithuania; (M.M.); (L.A.); (A.R.); (T.M.); (A.U.)
| |
Collapse
|
17
|
Gomes MR, Castelo Ferreira F, Sanjuan-Alberte P. Electrospun piezoelectric scaffolds for cardiac tissue engineering. BIOMATERIALS ADVANCES 2022; 137:212808. [PMID: 35929248 DOI: 10.1016/j.bioadv.2022.212808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
The use of smart materials in tissue engineering is becoming increasingly appealing to provide additional functionalities and control over cell fate. The stages of tissue development and regeneration often require various electrical and electromechanical cues supported by the extracellular matrix, which is often neglected in most tissue engineering approaches. Particularly, in cardiac cells, electrical signals modulate cell activity and are responsible for the maintenance of the excitation-contraction coupling. Addition of electroconductive and topographical cues improves the biomimicry of cardiac tissues and plays an important role in driving cells towards the desired phenotype. Current platforms used to apply electrical stimulation to cells in vitro often require large external equipment and wires and electrodes immersed in the culture media, limiting the scalability and applicability of this process. Piezoelectric materials represent a shift in paradigm in materials and methods aimed at providing electrical stimulation to cardiac cells since they can produce and deliver electrical signals to cells and tissues by mechanoelectrical transduction. Despite the ability of piezoelectric materials to mimic the mechanoelectrical transduction of the heart, the use of these materials is limited in cardiac tissue engineering and methods to characterise piezoelectricity are often built in-house, which poses an additional difficulty when comparing results from the literature. In this work, we aim at providing an overview of the main challenges in cardiac tissue engineering and how piezoelectric materials could offer a solution to them. A revision on the existing literature in electrospun piezoelectric materials applied to cardiac tissue engineering is performed for the first time, as electrospinning plays an important role in the manufacturing of scaffolds with enhanced piezoelectricity and extracellular matrix native-like morphology. Finally, an overview of the current techniques used to evaluate piezoelectricity and their limitations is provided.
Collapse
Affiliation(s)
- Mariana Ramalho Gomes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
18
|
Wang X, Shan M, Zhang S, Chen X, Liu W, Chen J, Liu X. Stimuli-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104843. [PMID: 35224893 PMCID: PMC9069201 DOI: 10.1002/advs.202104843] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Infections are regarded as the most severe complication associated with human health, which are urgent to be solved. Stimuli-responsive materials are appealing therapeutic platforms for antibacterial treatments, which provide great potential for accurate theranostics. In this review, the advantages, the response mechanisms, and the key design principles of stimuli-responsive antibacterial materials are highlighted. The biomedical applications, the current challenges, and future directions of stimuli-responsive antibacterial materials are also discussed. First, the categories of stimuli-responsive antibacterial materials are comprehensively itemized based on different sources of stimuli, including external physical environmental stimuli (e.g., temperature, light, electricity, salt, etc.) and bacterial metabolites stimuli (e.g., acid, enzyme, redox, etc.). Second, structural characteristics, design principles, and biomedical applications of the responsive materials are discussed, and the underlying interrelationships are revealed. The molecular structures and design principles are closely related to the sources of stimuli. Finally, the challenging issues of stimuli-responsive materials are proposed. This review will provide scientific guidance to promote the clinical applications of stimuli-responsive antibacterial materials.
Collapse
Affiliation(s)
- Xianghong Wang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Mengyao Shan
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Shike Zhang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xin Chen
- College of Food Science and EngineeringNational Engineering Research Center for Wheat & Corn Further ProcessingHenan University of TechnologyZhengzhou450001China
| | - Wentao Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Jinzhou Chen
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xuying Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
19
|
Zhou X, Saiding Q, Wang X, Wang J, Cui W, Chen X. Regulated Exogenous/Endogenous Inflammation via "Inner-Outer" Medicated Electrospun Fibers for Promoting Tissue Reconstruction. Adv Healthc Mater 2022; 11:e2102534. [PMID: 34989182 DOI: 10.1002/adhm.202102534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Indexed: 12/31/2022]
Abstract
Regenerative medicine aims to provide solutions for structural and functional recovery in conditions where organs suffer from varying degrees of diseases or injuries. However, the exogenous inflammation triggered by implanted biomaterials and endogenous inflammation caused by some disease or tissue destruction has not been solved properly yet. Herein, a functional "inner-outer" medicated core-shell electrospun fibrous membrane is fabricated with RGD surface modification for exogenous inflammation suppression and puerarin loading in the core for long-term endogenous inflammation inhibition through microsol electrospinning technique. The "outer" RGD significantly increases biocompatibility of fibrous membrane through promoting cell viability, adhesion, and proliferation while the "inner" puerarin suppresses inflammatory gene expression via sustained drug release in vitro. Moreover, in a rat abdominal wall hernia model, the functional fibrous membrane successfully reduces exogenous and endogenous inflammation response and promotes wound healing through collagen deposition, smooth muscle formation, and vascularization. In summary, the functional "inner-outer" medicated fibrous membrane holds a great potential for clinical treatment of diseases that needs tissue reconstruction structurally and functionally accompanied by immunoregulation.
Collapse
Affiliation(s)
- Xue Zhou
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternal and Child Health Hospital Shanghai Jiao Tong University School of Medicine 910 Hengshan Road Shanghai 200030 P. R. China
- Department of Gynecology and Obstetrics Shanghai Fourth People's Hospital School of Medicine Tongji University Shanghai 200434 China
| | - Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternal and Child Health Hospital Shanghai Jiao Tong University School of Medicine 910 Hengshan Road Shanghai 200030 P. R. China
| | - Xianjing Wang
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternal and Child Health Hospital Shanghai Jiao Tong University School of Medicine 910 Hengshan Road Shanghai 200030 P. R. China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternal and Child Health Hospital Shanghai Jiao Tong University School of Medicine 910 Hengshan Road Shanghai 200030 P. R. China
| |
Collapse
|
20
|
Yang X, Merenda A, AL-Attabi R, Dumée LF, Zhang X, Thang SH, Pham H, Kong L. Towards next generation high throughput ion exchange membranes for downstream bioprocessing: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Li J, Liu Y, Abdelhakim HE. Drug Delivery Applications of Coaxial Electrospun Nanofibres in Cancer Therapy. Molecules 2022; 27:1803. [PMID: 35335167 PMCID: PMC8952381 DOI: 10.3390/molecules27061803] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most serious health problems and the second leading cause of death worldwide, and with an ageing and growing population, problems related to cancer will continue. In the battle against cancer, many therapies and anticancer drugs have been developed. Chemotherapy and relevant drugs are widely used in clinical practice; however, their applications are always accompanied by severe side effects. In recent years, the drug delivery system has been improved by nanotechnology to reduce the adverse effects of the delivered drugs. Among the different candidates, core-sheath nanofibres prepared by coaxial electrospinning are outstanding due to their unique properties, including their large surface area, high encapsulation efficiency, good mechanical property, multidrug loading capacity, and ability to govern drug release kinetics. Therefore, encapsulating drugs in coaxial electrospun nanofibres is a desirable method for controlled and sustained drug release. This review summarises the drug delivery applications of coaxial electrospun nanofibres with different structures and drugs for various cancer treatments.
Collapse
Affiliation(s)
| | | | - Hend E. Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (Y.L.)
| |
Collapse
|
22
|
Yang X, Hsia T, Merenda A, AL-Attabi R, Dumee LF, Thang SH, Kong L. Constructing novel nanofibrous polyacrylonitrile (PAN)-based anion exchange membrane adsorber for protein separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Cheng Y, Zhang Y, Wu H. Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review. Front Bioeng Biotechnol 2022; 9:807533. [PMID: 35223816 PMCID: PMC8864123 DOI: 10.3389/fbioe.2021.807533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is a complex neurological condition caused by trauma, inflammation, and other diseases, which often leads to permanent changes in strength and sensory function below the injured site. Changes in the microenvironment and secondary injuries continue to pose challenges for nerve repair and recovery after SCI. Recently, there has been progress in the treatment of SCI with the use of scaffolds for neural tissue engineering. Polymeric fibers fabricated by electrospinning have been increasingly used in SCI therapy owing to their biocompatibility, complex porous structure, high porosity, and large specific surface area. Polymer fibers simulate natural extracellular matrix of the nerve fiber and guide axon growth. Moreover, multiple channels of polymer fiber simulate the bundle of nerves. Polymer fibers with porous structure can be used as carriers loaded with drugs, nerve growth factors and cells. As conductive fibers, polymer fibers have electrical stimulation of nerve function. This paper reviews the fabrication, characterization, and application in SCI therapy of polymeric fibers, as well as potential challenges and future perspectives regarding their application.
Collapse
Affiliation(s)
- Yuanpei Cheng
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Han Wu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S. Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:141-159. [PMID: 33375900 DOI: 10.1089/ten.teb.2020.0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone tissue engineering aims to restore and maintain the function of bone by means of biomaterial-based scaffolds. This review specifically focuses on the use of fibers in biomaterials used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. We present a bioinspired rationale behind the use of fibers in bone tissue engineering and provide an overview of the most common fiber fabrication methods, including solution, melt, and microfluidic spinning. Subsequently, we provide a brief overview of the composition of fibers that are used in bone tissue engineering, including fibers composed of (i) natural polymers (e.g., cellulose, collagen, gelatin, alginate, chitosan, and silk, (ii) synthetic polymers (e.g., polylactic acid [PLA], polycaprolactone, polyglycolic acid [PGA], polyethylene glycol, and polymer blends of PLA and PGA), (iii) ceramic fibers (e.g., aluminium oxide, titanium oxide, and zinc oxide), (iv) metallic fibers (e.g., titanium and its alloys, copper and magnesium), and (v) composite fibers. In addition, we review the most relevant fiber modification strategies that are used to enhance the (bio)functionality of these fibers. Finally, we provide an overview of the applicability of fibers in biomaterials for bone tissue engineering, with a specific focus on mechanical, pharmaceutical, and biological properties of fiber-functionalized biomaterials for bone tissue engineering. Impact statement Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. This review provides an overview of the use of fibers in biomaterials for bone tissue engineering, thereby contributing to the design of novel fiber-functionalized bone-substituting biomaterials of improved functionality regarding their mechanical, pharmaceutical, and biological properties.
Collapse
Affiliation(s)
- Daniela Geta Petre
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Kołbuk D, Ciechomska M, Jeznach O, Sajkiewicz P. Effect of crystallinity and related surface properties on gene expression of primary fibroblasts. RSC Adv 2022; 12:4016-4028. [PMID: 35425452 PMCID: PMC8980997 DOI: 10.1039/d1ra07237d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
The biomaterial-cells interface is one of the most fundamental issues in tissue regeneration. Despite many years of scientific work, there is no clear answer to what determines the desired adhesion of cells and the synthesis of ECM proteins. Crystallinity is a characteristic of the structure that influences the surface and bulk properties of semicrystalline polymers used in medicine. The crystallinity of polycaprolactone (PCL) was varied by changing the molecular weight of the polymer and the annealing procedure. Measurements of surface free energy showed differences related to substrate crystallinity. Additionally, the water contact angle was determined to characterise surface wettability which was crucial in the analysis of protein absorption. X-ray photoelectron spectroscopy was used to indicate oxygen bonds amount on the surface. Finally, the impact of the crystallinity, and related properties were demonstrated on dermal fibroblasts' response. Cellular proliferation and expression of selected genes: α-SMA, collagen I, TIMP, integrin were analysed.
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| | - Marzena Ciechomska
- National Institute of Geriatrics, Rheumatology and Rehabilitation Spartańska 1 02-637 Warsaw Poland
| | - Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| |
Collapse
|
27
|
Preparation of carboxymethyl starch/polyvinyl-alcohol electrospun composite nanofibers from a green approach. Int J Biol Macromol 2021; 190:601-606. [PMID: 34508720 DOI: 10.1016/j.ijbiomac.2021.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
A green approach for the preparation of starch-based composite nanofibers using electrospinning was developed. The water-soluble sodium carboxymethyl starch (CMS) with DS 0.31 was prepared. The addition of co-blending polymer polyvinyl-alcohol (PVA) was attempted to improve the CMS solution spinnability, which blends from aqueous solution were prepared at different CMS/PVA weight ratios. The solution parameters including viscosity, surface tension and conductivity were measured and the morphologies of nanofibers were observed by SEM. Smooth, continuous, and defect-free nanofibers were successfully obtained range from the blend of CMS/PVA weight ratios of 10:90 to 80:20. Diameter distribution diagrams suggested that the diameter of the nanofibers reduced with the concentration of CMS increasing. This is the first report that the thin nanofiber (135.29 nm) with bead-free was obtained at the maximal CMS content of 50.0 wt% in the CMS/PVA blend. This study provided a green approach to produce starch-based nano-scale fibers.
Collapse
|
28
|
Schoeller J, Itel F, Wuertz-Kozak K, Fortunato G, Rossi RM. pH-Responsive Electrospun Nanofibers and Their Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1939372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Metal-phenolic network coatings for engineering bioactive interfaces. Colloids Surf B Biointerfaces 2021; 205:111851. [PMID: 34020152 DOI: 10.1016/j.colsurfb.2021.111851] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
The surface modification of biomaterials is crucial for constructing bioactive interfaces capable of interacting with specific biomolecules, controlling cell behavior and regulating biological processes. Because of their excellent biocompatibility, facile preparation, pH-responsiveness and universal adhesion, surface coatings made from metal-phenolic network (MPN) have attracted extensive attention for handling interfacial properties and designing biomaterials in recent years. Different methods and technologies for assembling MPN coatings are summarized and compared in this paper, followed by highlighting the advantages of MPN coatings as bioactive interfaces for controlling biological process at the molecular, cellular, and tissue levels. Current challenges and prospects of MPN coatings for biomedical applications are also discussed.
Collapse
|
30
|
Al-Gunaid TA, Krupa I, Ouederni M, Krishnamoorthy SK, Popelka A. Enhancement of Adhesion Characteristics of Low-Density Polyethylene Using Atmospheric Plasma Initiated-Grafting of Polyethylene Glycol. Polymers (Basel) 2021; 13:1309. [PMID: 33923562 PMCID: PMC8073531 DOI: 10.3390/polym13081309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The low-density polyethylene/aluminum (LDPE/Al) joint in Tetra Pak provides stability and strength to food packaging, ensures protection against outside moisture, and maintains the nutritional values and flavors of food without the need for additives in the food products. However, a poor adhesion of LDPE to Al, due to its non-polar surface, is a limiting factor and extra polymeric interlayers or surface treatment is required. Plasma-assisted grafting of the LDPE surface with different molecular weight compounds of polyethylene glycol (PEG) was used to improve LDPE/Al adhesion. It was found that this surface modification contributed to significantly improve the wettability of the LDPE surface, as was confirmed by contact angle measurements. The chemical composition changes after plasma treatment and modification process were observed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). A surface morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Adhesion characteristics of LDPE/Al adhesive joints were analyzed by the peel tests. The most significant adhesion improvement of the PEG modified LDPE surface was achieved using 10.0 wt.% aqueous (6000 M) PEG solution, while the peel resistance increased by approximately 54 times in comparison with untreated LDPE.
Collapse
Affiliation(s)
- Taghreed Abdulhameed Al-Gunaid
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha, Qatar; (T.A.A.-G.); (I.K.)
- Materials Science and Technology Program, College of Arts and Science, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Igor Krupa
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha, Qatar; (T.A.A.-G.); (I.K.)
| | - Mabrouk Ouederni
- Product Development & Innovation, Qatar Petrochemical Company (QAPCO), P.O. Box 756 Doha, Qatar; (M.O.); (S.K.K.)
| | - Senthil Kumar Krishnamoorthy
- Product Development & Innovation, Qatar Petrochemical Company (QAPCO), P.O. Box 756 Doha, Qatar; (M.O.); (S.K.K.)
| | - Anton Popelka
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha, Qatar; (T.A.A.-G.); (I.K.)
| |
Collapse
|
31
|
Cell membrane-biomimetic coating via click-mediated liposome fusion for mitigating the foreign-body reaction. Biomaterials 2021; 271:120768. [PMID: 33812321 DOI: 10.1016/j.biomaterials.2021.120768] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The foreign-body reaction (FBR) caused by the implantation of synthetic polymer scaffolds seriously affects tissue-biomaterial integration and tissue repair. To address this issue, we developed a cell membrane-biomimetic coating formed by "click"-mediated liposome immobilization and fusion on the surface of electrospun fibers to mitigate the FBR. Utilization of electrospun polystyrene microfibrous scaffold as a model matrix, we deposited azide-incorporated silk fibroin on the surface of the fibers by the layer-by-layer assembly, finally, covalently modified with clickable liposomes via copper-free SPAAC click reaction. Compared with physical adsorption, liposomes click covalently binding can quickly fuse to form lipid film and maintain fluidity, which also improved liposome stability in vitro and in vivo. Molecular dynamics simulation proved that "click" improves the binding rate and strength of liposome to silk substrate. Importantly, histological observation and in vivo fluorescent probes imaging showed that liposome-functionalized electrospun fibers had negligible characteristics of the FBR and were accompanied by many infiltrated host cells and new blood vessels. We believe that the promotion of macrophage polarization toward a pro-regenerative phenotype plays an important role in vascularization. This bioinspired strategy paves the way for utilizing cell membrane biomimetic coating to resist the FBR and promote tissue-scaffold integration.
Collapse
|
32
|
Jiang Z, He H, Liu H, Thayumanavan S. Azide-Terminated RAFT Polymers for Biological Applications. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2020; 12:e85. [PMID: 33207082 PMCID: PMC7685003 DOI: 10.1002/cpch.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a commonly used polymerization methodology to generate synthetic polymers. The products of RAFT polymerization, i.e., RAFT polymers, have been widely employed in several biologically relevant areas, including drug delivery, biomedical imaging, and tissue engineering. In this article, we summarize a synthetic methodology to display an azide group at the chain end of a RAFT polymer, thus presenting a reactive site on the polymer terminus. This platform enables a click reaction between azide-terminated polymers and alkyne-containing molecules, providing a broadly applicable scaffold for chemical and bioconjugation reactions on RAFT polymers. We also highlight applications of these azide-terminated RAFT polymers in fluorophore labeling and for promoting organelle targeting capability. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of the azide derivatives of chain transfer agent and radical initiator Basic Protocol 2: Installation of an azide group on the α-end of RAFT polymers Alternate Protocol: Installation of an azide group on the ω-end of RAFT polymers Basic Protocol 3: Click reaction between azide-terminated RAFT polymers and alkyne derivatives.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States
| | - Huan He
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
- DuPont Electronics & Imaging, Marlborough, MA 01752, United States
| | - Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| |
Collapse
|
33
|
Niemczyk-Soczynska B, Gradys A, Sajkiewicz P. Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering. Polymers (Basel) 2020; 12:E2636. [PMID: 33182617 PMCID: PMC7697875 DOI: 10.3390/polym12112636] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Electrospun polymer nanofibers have received much attention in tissue engineering due to their valuable properties such as biocompatibility, biodegradation ability, appropriate mechanical properties, and, most importantly, fibrous structure, which resembles the morphology of extracellular matrix (ECM) proteins. However, they are usually hydrophobic and suffer from a lack of bioactive molecules, which provide good cell adhesion to the scaffold surface. Post-electrospinning surface functionalization allows overcoming these limitations through polar groups covalent incorporation to the fibers surface, with subsequent functionalization with biologically active molecules or direct deposition of the biomolecule solution. Hydrophilic surface functionalization methods are classified into chemical approaches, including wet chemical functionalization and covalent grafting, a physiochemical approach with the use of a plasma treatment, and a physical approach that might be divided into physical adsorption and layer-by-layer assembly. This review discusses the state-of-the-art of hydrophilic surface functionalization strategies of electrospun nanofibers for tissue engineering applications. We highlighted the major advantages and drawbacks of each method, at the same time, pointing out future perspectives and solutions in the hydrophilic functionalization strategies.
Collapse
Affiliation(s)
- Beata Niemczyk-Soczynska
- Institute of Fundamental Technological Research, Lab. Polymers & Biomaterials, Polish Academy of Sciences Pawinskiego 5b St., 02-106 Warsaw, Poland; (A.G.); (P.S.)
| | | | | |
Collapse
|
34
|
Khalesi H, Lu W, Nishinari K, Fang Y. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Adv Colloid Interface Sci 2020; 285:102278. [PMID: 33010577 DOI: 10.1016/j.cis.2020.102278] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Enhancement on the mechanical properties of hydrogels leads to a wider range of their applications in various fields. Therefore, there has been a great interest recently for developing new strategies to reinforce hydrogels. Moreover, food gels must be edible in terms of both raw materials and production. This paper reviews innovative techniques such as particle/fiber-reinforced hydrogel, double network, dual crosslinking, freeze-thaw cycles, physical conditioning and soaking methods to improve the mechanical properties of hydrogels. Additionally, their fundamental mechanisms, advantages and disadvantages have been discussed. Important biopolymers that have been employed for these strategies and also their potentials in food applications have been summarized. The general mechanism of these strategies is based on increasing the degree of crosslinking between interacting polymers in hydrogels. These links can be formed by adding fillers (oil droplets or fibers in filled gels) or cross-linkers (regarding double network and soaking method) and also by condensation or alignment of the biopolymers (freeze-thaw cycle and physical conditioning) in the gel network. The properties of particle/fiber-reinforced hydrogels extremely depend on the filler, gel matrix and the interaction between them. In freeze-thaw cycles and physical conditioning methods, it is possible to form new links in the gel network without adding any cross-linkers or fillers. It is expected that the utilization of gels will get broader and more varied in food industries by using these strategies.
Collapse
|
35
|
Stastna E, Castkova K, Rahel J. Influence of Hydroxyapatite Nanoparticles and Surface Plasma Treatment on Bioactivity of Polycaprolactone Nanofibers. Polymers (Basel) 2020; 12:polym12091877. [PMID: 32825413 PMCID: PMC7564373 DOI: 10.3390/polym12091877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
Nanofibers are well known as a beneficial type of structure for tissue engineering. As a result of the high acquisition cost of the natural polymers and their environmentally problematic treatment (toxic dissolution agents), artificial polymers seem to be the better choice for medical use. In the present study, polycaprolactone nano-sized fibrous structures were prepared by the electrospinning method. The impact of material morphology (random or parallelly oriented fibers versus continuous layer) and the presence of a fraction of hydroxyapatite nanoparticles on cell proliferation was tested. In addition, the effect of improving the material wettability by a low temperature argon discharge plasma treatment was evaluated, too. We have shown that both hydroxyapatite particles as well as plasma surface treatment are beneficial for the cell proliferation. The significant impact of both influences was evident during the first 48 h of the test: the hydroxyapatite particles in polycaprolactone fibers accelerated the proliferation by 10% compared to the control, and the plasma-treated ones enhanced proliferation by 30%.
Collapse
Affiliation(s)
- Eva Stastna
- CEITEC–Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic;
- Correspondence:
| | - Klara Castkova
- CEITEC–Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic;
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61269 Brno, Czech Republic
| | - Jozef Rahel
- Faculty of Science, Department of Physical Electronics, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| |
Collapse
|
36
|
Ippel BD, Komil MI, Bartels PAA, Söntjens SHM, Boonen RJEA, Smulders MMJ, Dankers PYW. Supramolecular Additive-Initiated Controlled Atom Transfer Radical Polymerization of Zwitterionic Polymers on Ureido-pyrimidinone-Based Biomaterial Surfaces. Macromolecules 2020; 53:4454-4464. [PMID: 32581395 PMCID: PMC7304927 DOI: 10.1021/acs.macromol.0c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/21/2020] [Indexed: 11/28/2022]
Abstract
![]()
Surface-initiated controlled
radical polymerization is a popular technique for the modification
of biomaterials with, for example, antifouling polymers. Here, we
report on the functionalization of a supramolecular biomaterial with
zwitterionic poly(sulfobetaine methacrylate) via atom transfer radical
polymerization from a macroinitiator additive, which is embedded in
the hard phase of the ureido-pyrimidinone-based material. Poly(sulfobetaine
methacrylate) was successfully polymerized from these surfaces, and
the polymerized sulfobetaine content, with corresponding antifouling
properties, depended on both the macroinitiator additive concentration
and polymerization time. Furthermore, the polymerization from the
macroinitiator additive was successfully translated to functional
electrospun scaffolds, showing the potential for this functionalization
strategy in supramolecular material systems.
Collapse
Affiliation(s)
- Bastiaan D Ippel
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Muhabbat I Komil
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Paul A A Bartels
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Roy J E A Boonen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippenweg 4, 6708 WE Wageningen, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
37
|
Černochová P, Blahová L, Medalová J, Nečas D, Michlíček M, Kaushik P, Přibyl J, Bartošíková J, Manakhov A, Bačáková L, Zajíčková L. Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Sci Rep 2020; 10:9357. [PMID: 32518261 PMCID: PMC7283471 DOI: 10.1038/s41598-020-65889-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023] Open
Abstract
Our previously-obtained impressive results of highly increased C2C12 mouse myoblast adhesion to amine plasma polymers (PPs) motivated current detailed studies of cell resistance to trypsinization, cell proliferation, motility, and the rate of attachment carried out for fibroblasts (LF), keratinocytes (HaCaT), rat vascular smooth muscle cells (VSMC), and endothelial cells (HUVEC, HSVEC, and CPAE) on three different amine PPs. We demonstrated the striking difference in the resistance to trypsin treatment between endothelial and non-endothelial cells. The increased resistance observed for the non-endothelial cell types was accompanied by an increased rate of cellular attachment, even though spontaneous migration was comparable to the control, i.e., to the standard cultivation surface. As demonstrated on LF fibroblasts, the resistance to trypsin was similar in serum-supplemented and serum-free media, i.e., medium without cell adhesion-mediating proteins. The increased cell adhesion was also confirmed for LF cells by an independent technique, single-cell force spectroscopy. This method, as well as the cell attachment rate, proved the difference among the plasma polymers with different amounts of amine groups, but other investigated techniques could not reveal the differences in the cell behaviour on different amine PPs. Based on all the results, the increased resistance to trypsinization of C2C12, LF, HaCaT, and VSMC cells on amine PPs can be explained most probably by a non-specific cell adhesion such as electrostatic interaction between the cells and amine groups on the material surface, rather than by the receptor-mediated adhesion through serum-derived proteins adsorbed on the PPs.
Collapse
Affiliation(s)
- P Černochová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - L Blahová
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - J Medalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - D Nečas
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Central European Institute of Technology - CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - M Michlíček
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - P Kaushik
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - J Přibyl
- Core Facility Nanobiotechnology, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - J Bartošíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - A Manakhov
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Research Institute of Clinical and Experimental Lymphology- Branch of the ICG SB RAS, 2 Timakova str., 630060, Novosibirsk, Russian Federation
| | - L Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - L Zajíčková
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic. .,Central European Institute of Technology - CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic. .,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| |
Collapse
|
38
|
Chen S, John JV, McCarthy A, Carlson MA, Li X, Xie J. Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications. APPLIED PHYSICS REVIEWS 2020; 7:021406. [PMID: 32494338 PMCID: PMC7233601 DOI: 10.1063/1.5144808] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 05/24/2023]
Abstract
The ability to transform two-dimensional (2D) structures into three-dimensional (3D) structures leads to a variety of applications in fields such as soft electronics, soft robotics, and other biomedical-related fields. Previous reports have focused on using electrospun nanofibers due to their ability to mimic the extracellular matrix. These studies often lead to poor results due to the dense structures and small poor sizes of 2D nanofiber membranes. Using a unique method of combining innovative gas-foaming and molding technologies, we report the rapid transformation of 2D nanofiber membranes into predesigned 3D scaffolds with biomimetic and oriented porous structure. By adding a surfactant (pluronic F-127) to poly(ε-caprolactone) (PCL) nanofibers, the rate of expansion is dramatically enhanced due to the increase in hydrophilicity and subsequent gas bubble stability. Using this novel method together with molding, 3D objects with cylindrical, hollow cylindrical, cuboid, spherical, and irregular shapes are created. Interestingly, these 3D shapes exhibit anisotropy and consistent pore sizes throughout entire object. Through further treatment with gelatin, the scaffolds become superelastic and shape-recoverable. Additionally, gelatin-coated, cube-shaped scaffolds were further functionalized with polypyrrole coatings and exhibited dynamic electrical conductivity during cyclic compression. Cuboid-shaped scaffolds have been demonstrated to be effective for compressible hemorrhage in a porcine liver injury model. In addition, human neural progenitor cells can be uniformly distributed and differentiated into neurons throughout the cylinder-shaped nanofiber scaffolds, forming ordered 3D neural tissue constructs. Taken together, the approach presented in this study is very promising in the production of pre-molded 3D nanofiber scaffolds for many biomedical applications.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Mark A. Carlson
- Department of Surgery-General Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198 and Department of Surgery, Omaha VA Medical Center, Omaha, Nebraska 68105, USA
| | - Xiaowei Li
- Department of Neurological Sciences and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
39
|
Functional Micro- and Nanofibers Obtained by Nonwoven Post-Modification. Polymers (Basel) 2020; 12:polym12051087. [PMID: 32397603 PMCID: PMC7285086 DOI: 10.3390/polym12051087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Micro- and nanofibers are historically-known materials that are continuously reinvented due to their valuable properties. They display promise for applications in many fields, from tissue engineering to catalysis or sensors. In the first application, micro- and nanofibers are mainly produced from a limited library of biomaterials with properties that need alteration before use. Post-modification is a very effective method for attaining on-demand features and functions of nonwovens. This review summarizes and presents methods of functionalization of nonwovens produced by electrostatic means. The reviewed modifications are grouped into physical methods, chemical modification, and mixed methods.
Collapse
|
40
|
Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. J Control Release 2020; 321:324-347. [DOI: 10.1016/j.jconrel.2020.02.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
|
41
|
Parreño RP, Liu YL, Beltran AB, Carandang MB. Effect of a direct sulfonation reaction on the functional properties of thermally-crosslinked electrospun polybenzoxazine (PBz) nanofibers. RSC Adv 2020; 10:14198-14207. [PMID: 35498459 PMCID: PMC9051891 DOI: 10.1039/d0ra01285h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
Abstract
Electrospun nanofibers of polybenzoxazines (PBzs) were fabricated using an electrospinning process and crosslinked by a sequential thermal treatment. Functionalization by the direct sulfonation process followed after the post-electrospinning modification treatment. The first stage of experiment determined the effects of varying the concentration of sulfuric acid as the sulfonating agent in the sulfonation reaction under ordinary conditions. The second stage examined the mechanism and kinetics of the sulfonation reaction using only concentrated H2SO4 at different reaction time periods of 3 h, 6 h, and 24 h. The mechanism of the sulfonation reaction with PBz nanofibers was proposed with only one sulfonic acid (-SO3H) group attached to each of the repeating units since only first type substitution in the aromatic structure occurs under this condition. The kinetics of the reaction exhibited a logarithmic correlation where the rate of change in the ion exchange capacity (IEC) with the reaction time increased rapidly and then reached a plateau at the reaction time between 18 h and 24 h. Effective sulfonation was confirmed by electron spectroscopy with a characteristic peak associated with the C-S bond owing to the sulfonate group introduced onto the surface of the nanofibers. ATR-FTIR spectroscopy also confirmed these results for varying reaction times. The SEM images showed that sulfonation has no drastic effects on the morphology and microstructure of the nanofibers but a rougher surface was evident due to the wetted fibers with sulfonate groups attached to the surface. EDX spectra exhibited sulfur peaks where the concentration of sulfonate groups present in the nanofibers is directly proportional to the reaction time. From surface wettability studies, it was found that the nanofibers retained the hydrophobicity after sulfonation but the inherent surface property of PBz nanofibers was observed by changing the pH level of water to basic, which switches its surface properties to hydrophilic. The thermal stability of the sulfonated nanofibers showed almost the same behavior compared to non-sulfonated nanofibers except for the 24 h sulfonation case, which has slightly lower onset temperature of degradation.
Collapse
Affiliation(s)
- Ronaldo P Parreño
- Department of Chemical Engineering, De La Salle University 2401 Taft Avenue Manila 1004 Philippines .,Chemicals and Energy Division, Industrial Technology Development Institute (ITDI), Department of Science and Technology (DOST) Taguig 1631 Philippines
| | - Ying-Ling Liu
- Department of Chemical Engineering, National Tsing Hua University Hsinchu 30013 Taiwan
| | - Arnel B Beltran
- Department of Chemical Engineering, De La Salle University 2401 Taft Avenue Manila 1004 Philippines .,Center for Engineering and Sustainable Development Research, De La Salle University 2401 Taft Avenue Manila 1004 Philippines
| | - Maricar B Carandang
- Chemicals and Energy Division, Industrial Technology Development Institute (ITDI), Department of Science and Technology (DOST) Taguig 1631 Philippines
| |
Collapse
|
42
|
Biomimetic SIS-based biocomposites with improved biodegradability, antibacterial activity and angiogenesis for abdominal wall repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110538. [PMID: 32228945 DOI: 10.1016/j.msec.2019.110538] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/19/2022]
|
43
|
Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio 2020; 6:100043. [PMID: 32190832 PMCID: PMC7068131 DOI: 10.1016/j.mtbio.2020.100043] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Unlike other tissue types, the nervous tissue extends to a wide and complex environment that provides a plurality of different biochemical and topological stimuli, which in turn defines the advanced functions of that tissue. As a consequence of such complexity, the traditional transplantation therapeutic methods are quite ineffective; therefore, the restoration of peripheral and central nervous system injuries has been a continuous scientific challenge. Tissue engineering and regenerative medicine in the nervous system have provided new alternative medical approaches. These methods use external biomaterial supports, known as scaffolds, to create platforms for the cells to migrate to the injury site and repair the tissue. The challenge in neural tissue engineering (NTE) remains the fabrication of scaffolds with precisely controlled, tunable topography, biochemical cues, and surface energy, capable of directing and controlling the function of neuronal cells toward the recovery from neurological disorders and injuries. At the same time, it has been shown that NTE provides the potential to model neurological diseases in vitro, mainly via lab-on-a-chip systems, especially in cases for which it is difficult to obtain suitable animal models. As a consequence of the intense research activity in the field, a variety of synthetic approaches and 3D fabrication methods have been developed for the fabrication of NTE scaffolds, including soft lithography and self-assembly, as well as subtractive (top-down) and additive (bottom-up) manufacturing. This article aims at reviewing the existing research effort in the rapidly growing field related to the development of biomaterial scaffolds and lab-on-a-chip systems for NTE applications. Besides presenting recent advances achieved by NTE strategies, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- L. Papadimitriou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - P. Manganas
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - A. Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - E. Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
- Physics Department, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
44
|
Augustine R, Zahid AA, Wang M, Webster TJ, Hasan A. Growth factor releasing core-shell polymeric scaffolds for tissue engineering applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1066-1069. [PMID: 31946078 DOI: 10.1109/embc.2019.8857111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue engineering is the use of a combination of cells, biomaterials and appropriate signals to repair or improve the functions of damaged tissues. Our group is exploiting various approaches to effectively encapsulate multiple growth factors in polymeric scaffolds for tissue engineering and wound healing applications. In this report, some of the exciting results from our most recent and ongoing projects are outlined with a focus on the use of connective tissue growth factor (CTGF). CTGF is a secreted protein with major roles in angiogenesis, chondrogenesis, osteogenesis and tissue repair. CTGF can play a major role in tissue regeneration by enhancing cell proliferation and promoting cell migration. CTGF was incorporated to electrospun polymeric fibers to provide sustained release. Experimental results demonstrated the ability of scaffolds incorporated with CTGF to promote cell proliferation and cell migration. This study shows the application potential of the developed scaffolds in various tissue engineering applications.
Collapse
|
45
|
Saveleva M, Prikhozhdenko E, Gorin D, Skirtach AG, Yashchenok A, Parakhonskiy B. Polycaprolactone-Based, Porous CaCO 3 and Ag Nanoparticle Modified Scaffolds as a SERS Platform With Molecule-Specific Adsorption. Front Chem 2020; 7:888. [PMID: 31998685 PMCID: PMC6967418 DOI: 10.3389/fchem.2019.00888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a high-performance technique allowing detection of extremely low concentrations of analytes. For such applications, fibrous polymeric matrices decorated with plasmonic metal nanostructures can be used as flexible SERS substrates for analysis of analytes in many application. In this study, a three-dimensional SERS substrate consisting of a CaCO3-mineralized electrospun (ES) polycaprolactone (PCL) fibrous matrix decorated with silver (Ag) nanoparticles is developed. Such modification of the fibrous substrate allows achieving a significant increase of the SERS signal amplification. Functionalization of fibers by porous CaCO3 (vaterite) and Ag nanoparticles provides an effective approach of selective adsorption of biomolecules and their precise detection by SERS. This new SERS substrate represents a promising biosensor platform with selectivity to low and high molecular weight molecules.
Collapse
Affiliation(s)
- Mariia Saveleva
- Department of Biotechnology, Ghent University, Ghent, Belgium.,Education and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | | | - Dmitry Gorin
- Skoltech Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Alexey Yashchenok
- Skoltech Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
46
|
Li R, McCarthy A, Zhang YS, Xie J. Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering. ADVANCED BIOSYSTEMS 2019; 3:e1900137. [PMID: 32648683 PMCID: PMC7735424 DOI: 10.1002/adbi.201900137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Indexed: 12/21/2022]
Abstract
Repairing large tissue defects often represents a great challenge in clinics due to issues regarding lack of donors, mismatched sizes, irregular shapes, and immune rejection. 3D printed scaffolds are attractive for growing cells and producing tissue constructs because of the intricate control over pore size, porosity, and geometric shape, but the lack of biomimetic surface nanotopography and limited biomolecule presenting capacity render them less efficacious in regulating cell responses. Herein, a facile method for coating 3D printed scaffolds with electrospun nanofiber segments is reported. The surface morphology of modified 3D scaffolds changes dramatically, displaying a biomimetic nanofibrous structure, while the bulk mechanical property, pore size, and porosity are not significantly compromised. The short nanofibers-decorated 3D printed scaffolds significantly promote adhesion and proliferation of pre-osteoblasts and bone marrow mesenchymal stem cells (BMSCs). Further immobilization of bone morphogenetic protein-2 mimicking peptides to nanofiber segments-decorated 3D printed scaffolds show enhanced mRNA expressions of osteogenic markers Runx2, Alp, OCN, and BSP in BMSCs, indicating the enhancement of BMSCs osteogenic differentiation. Together, the combination of 3D printing and electrospinning is a promising approach to greatly expand the functions of 3D printed scaffolds and enhance the efficacy of 3D printed scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Ruiquan Li
- Department of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| |
Collapse
|
47
|
Augustine R, Zahid AA, Hasan A, Wang M, Webster TJ. CTGF Loaded Electrospun Dual Porous Core-Shell Membrane For Diabetic Wound Healing. Int J Nanomedicine 2019; 14:8573-8588. [PMID: 31802870 PMCID: PMC6827515 DOI: 10.2147/ijn.s224047] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Impairment of wound healing is a major issue in type-2 diabetes that often causes chronic infections, eventually leading to limb and/or organ amputation. Connective tissue growth factor (CTGF) is a signaling molecule with several roles in tissue repair and regeneration including promoting cell adhesion, cell migration, cell proliferation and angiogenesis. Incorporation of CTGF in a biodegradable core-shell fiber to facilitate its sustained release is a novel approach to promote angiogenesis, cell migration and facilitate wound healing. In this paper, we report the development of CTGF encapsulated electrospun dual porous PLA-PVA core-shell fiber based membranes for diabetic wound healing applications. METHODS The membranes were fabricated by a core-shell electrospinning technique. CTGF was entrapped within the PVA core which was coated by a thin layer of PLA. The developed membranes were characterized by techniques such as Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) analysis. In vitro cell culture studies using fibroblasts, keratinocytes and endothelial cells were performed to understand the effect of CTGF loaded membranes on cell proliferation, cell viability and cell migration. A chicken chorioallantoic membrane (CAM) assay was performed to determine the angiogenic potential of the membranes. RESULTS Results showed that the developed membranes were highly porous in morphology with secondary pore formation on the surface of individual fibers. In vitro cell culture studies demonstrated that CTGF loaded core-shell membranes improved cell viability, cell proliferation and cell migration. A sustained release of CTGF from the core-shell fibers was observed for an extended time period. Moreover, the CAM assay showed that core-shell membranes incorporated with CTGF can enhance angiogenesis. CONCLUSION Owing to the excellent cell proliferation, migration and angiogenic potential of CTGF loaded core-shell PLA-PVA fibrous membranes, they can be used as an excellent wound dressing membrane for treating diabetic wounds and other chronic ulcers.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mian Wang
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, Boston, MA02115, USA
| |
Collapse
|
48
|
Dang H, Zhang X, Long Z, Wang S, Li Z, Hu A, Guo S, Zhang H. Ecofriendly Preparation of Cellulose Nanocrystal-Coated Polyimide Fiber: Strategy for Improved Wettability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10890-10899. [PMID: 31373500 DOI: 10.1021/acs.langmuir.9b01736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyimide (PI) fibers pose potential problems in applications. Their low surface activity causes poor interfacial wettability, easy agglomeration in aqueous solutions, and poor dispersibility. Therefore, this work proposes a method of surface modification of alkali-treated PI fibers with cellulose nanocrystals (CNCs) under the combined catalytic action of a Lewis acid and a crosslinker. The dispersion degree of PI fibers in aqueous solution before and after CNC modification and the contact angle of the PI fiber paper are measured. The results show that the wettability of the PI fibers improved. Furthermore, the structure and properties of PI fibers before and after CNC treatment are characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The pore-size distribution of the PI-fiber paper is measured by a porous-material pore-size analyzer. Compared with the original PI fibers, the oxygen content of the fiber surfaces increases after CNC treatment because of the esterification reaction and crosslinking that occur on the surfaces. The increase in the number of oxygen-containing polar groups and the increased surface roughness of the PI fiber improve its wettability. The contact angle of the PI fiber paper in deionized water is reduced by 14.9° and that in ethanol by 4.8°; the fiber dispersion degree is increased by 45%. These results indicate that the fibers have remarkably improved hydrophilicity and dispersion in the aqueous phase. Therefore, the method developed herein is to prepare high-performance organic fibers and corresponding composite materials.
Collapse
Affiliation(s)
- Hongyang Dang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textiles and Clothing , Jiangnan University , Wuxi 214122 , Jiangsu , China
| | - Xin Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textiles and Clothing , Jiangnan University , Wuxi 214122 , Jiangsu , China
| | - Zhu Long
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textiles and Clothing , Jiangnan University , Wuxi 214122 , Jiangsu , China
- Lianyungang Industrial Investment Group Co., Ltd. , Lianyungang 222002 , Jiangsu , China
| | - Shihua Wang
- Lianyungang Industrial Investment Group Co., Ltd. , Lianyungang 222002 , Jiangsu , China
- Lianyungang Fiber New Materials Research Institute Co., Ltd. , Lianyungang 222002 , Jiangsu , China
| | - Zhiqiang Li
- Lianyungang Industrial Investment Group Co., Ltd. , Lianyungang 222002 , Jiangsu , China
- Lianyungang Fiber New Materials Research Institute Co., Ltd. , Lianyungang 222002 , Jiangsu , China
| | - Ailin Hu
- Lianyungang Industrial Investment Group Co., Ltd. , Lianyungang 222002 , Jiangsu , China
| | - Shuai Guo
- Lianyungang Industrial Investment Group Co., Ltd. , Lianyungang 222002 , Jiangsu , China
| | - Hui Zhang
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology , Nanjing Forestry University , Nanjing 210037 , Jiangsu , China
| |
Collapse
|
49
|
Girão AF, Wieringa P, Pinto SC, Marques PAAP, Micera S, van Wezel R, Ahmed M, Truckenmueller R, Moroni L. Ultraviolet Functionalization of Electrospun Scaffolds to Activate Fibrous Runways for Targeting Cell Adhesion. Front Bioeng Biotechnol 2019; 7:159. [PMID: 31297371 PMCID: PMC6607108 DOI: 10.3389/fbioe.2019.00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
A critical challenge in scaffold design for tissue engineering is recapitulating the complex biochemical patterns that regulate cell behavior in vivo. In this work, we report the adaptation of a standard sterilization methodology-UV irradiation-for patterning the surfaces of two complementary polymeric electrospun scaffolds with oxygen cues able to efficiently immobilize biomolecules. Independently of the different polymer chain length of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymers and PEOT/PBT ratio, it was possible to easily functionalize specific regions of the scaffolds by inducing an optimized and spatially controlled adsorption of proteins capable of boosting the adhesion and spreading of cells along the activated fibrous runways. By allowing an efficient design of cell attachment patterns without inducing any noticeable change on cell morphology nor on the integrity of the electrospun fibers, this procedure offers an affordable and resourceful approach to generate complex biochemical patterns that can decisively complement the functionality of the next generation of tissue engineering scaffolds.
Collapse
Affiliation(s)
- André F. Girão
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
- Department of Mechanical Engineering, TEMA, University of Aveiro, Aveiro, Portugal
| | - Paul Wieringa
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Susana C. Pinto
- Department of Mechanical Engineering, TEMA, University of Aveiro, Aveiro, Portugal
| | | | - Silvestro Micera
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics, School of Engineering, École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, Lausanne, Switzerland
| | - Richard van Wezel
- Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Biomedical Signals and Systems, MedTech Center, University of Twente, Enschede, Netherlands
| | - Maqsood Ahmed
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
| | - Roman Truckenmueller
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Lorenzo Moroni
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
50
|
Tandon B, Kamble P, Olsson RT, Blaker JJ, Cartmell SH. Fabrication and Characterisation of Stimuli Responsive Piezoelectric PVDF and Hydroxyapatite-Filled PVDF Fibrous Membranes. Molecules 2019; 24:E1903. [PMID: 31108899 PMCID: PMC6571942 DOI: 10.3390/molecules24101903] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
Poly(vinylidene fluoride) has attracted interest from the biomaterials community owing to its stimuli responsive piezoelectric property and promising results for application in the field of tissue engineering. Here, solution blow spinning and electrospinning were employed to fabricate PVDF fibres and the variation in resultant fibre properties assessed. The proportion of piezoelectric β-phase in the solution blow spun fibres was higher than electrospun fibres. Fibre production rate was circa three times higher for solution blow spinning compared to electrospinning for the conditions explored. However, the solution blow spinning method resulted in higher fibre variability between fabricated batches. Fibrous membranes are capable of generating different cellular response depending on fibre diameter. For this reason, electrospun fibres with micron and sub-micron diameters were fabricated, along with successful inclusion of hydroxyapatite particles to fabricate stimuli responsive bioactive fibres.
Collapse
Affiliation(s)
- Biranche Tandon
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Prashant Kamble
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Richard T Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden.
| | - Jonny J Blaker
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Sarah H Cartmell
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|