1
|
Walter DL, Bian Y, Hu H, Hamid FA, Rostamizadeh K, Vigliaturo JR, DeHority R, Ehrich M, Runyon S, Pravetoni M, Zhang C. The immunological and pharmacokinetic evaluation of Lipid-PLGA hybrid nanoparticle-based oxycodone vaccines. Biomaterials 2025; 313:122758. [PMID: 39182328 PMCID: PMC11402561 DOI: 10.1016/j.biomaterials.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The current opioid epidemic is one of the most profound public health crises facing the United States. Despite that it has been under the spotlight for years, available treatments for opioid use disorder (OUD) and overdose are limited to opioid receptor ligands such as the agonist methadone and the overdose reversing drugs such as naloxone. Vaccines are emerging as an alternative strategy to combat OUD and prevent relapse and overdose. Most vaccine candidates consist of a conjugate structure containing the target opioid attached to an immunogenic carrier protein. However, conjugate vaccines have demonstrated some intrinsic shortfalls, such as fast degradation and poor recognition by immune cells. To overcome these challenges, we proposed a lipid-PLGA hybrid nanoparticle (hNP)-based vaccine against oxycodone (OXY), which is one of the most frequently misused opioid analgesics. The hNP-based OXY vaccine exhibited superior immunogenicity and pharmacokinetic efficacy in comparison to its conjugate vaccine counterpart. Specifically, the hNP-based OXY vaccine formulated with subunit keyhole limpet hemocyanin (sKLH) as the carrier protein and aluminum hydroxide (Alum) as the adjuvant (OXY-sKLH-hNP(Alum)) elicited the most potent OXY-specific antibody response in mice. The induced antibodies efficiently bound with OXY molecules in blood and suppressed their entry into the brain. In a following dose-response study, OXY-sKLH-hNP(Alum) equivalent to 60 μg of sKLH was determined to be the most promising OXY vaccine candidate moving forward. This study provides evidence that hybrid nanoparticle-based vaccines may be superior vaccine candidates than conjugate vaccines and will be beneficial in treating those suffering from OUD.
Collapse
Affiliation(s)
- Debra L Walter
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Yuanzhi Bian
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - He Hu
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Fatima A Hamid
- Departments of Pharmacology and Medicine, Medical School, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Jennifer R Vigliaturo
- Departments of Pharmacology and Medicine, Medical School, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Riley DeHority
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Scott Runyon
- RTI International, Research Triangle Park, NC, 27709, USA.
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Chenming Zhang
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Hu H, Zhang C. Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles. J Biomed Mater Res A 2025; 113:e37807. [PMID: 39420678 DOI: 10.1002/jbm.a.37807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Nanoparticles are increasingly being used in the development of vaccines for disease prevention or treatment. Recent research has demonstrated that conjugating a protein onto the surface of nanoparticles can significantly increase its immunogenicity. Considering various pathogens that threaten human health, multivalent vaccines are often desirable. Up to now, nanoparticle-based vaccines are mostly limited to one protein per nanoparticle. No research has been conducted to explore the possibility of conjugating more than one protein onto the surface of a nanoparticle. Here we developed a specific conjugation strategy to conjugate multiple proteins to the PLGA/lipid hybrid nanoparticle surface. The maleimide-thiol Michael addition, Aizde-DBCO (Dibenzocyclooctyne), and TCO (trans-cycloctene)-Tetrazine click chemistry were employed to conjugate three different proteins, subunit keyhole limpet hemocyanin (sKLH), Ovalbumin (OVA), and cross-reactive material 197 (CRM197), to the surface of PLGA/lipid hybrid nanoparticles (hNPs). The successful results of this study pave the way for developing multivalent vaccines against different pathogens.
Collapse
Affiliation(s)
- He Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Xu Y, Li H, Meng X, Yang J, Xue Y, Teng C, Lv W, Wang Z, Li X, Sun T, Meng S, Zong C. Unfolding Protein-Based Hapten Coupling via Thiol-Maleimide Click Chemistry: Enhanced Immunogenicity in Anti-Nicotine Vaccines Based on a Novel Conjugation Method and MPL/QS-21 Adjuvants. Polymers (Basel) 2024; 16:931. [PMID: 38611189 PMCID: PMC11013800 DOI: 10.3390/polym16070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Vaccines typically work by eliciting an immune response against larger antigens like polysaccharides or proteins. Small molecules like nicotine, on their own, usually cannot elicit a strong immune response. To overcome this, anti-nicotine vaccines often conjugate nicotine molecules to a carrier protein by carbodiimide crosslinking chemistry to make them polymeric and more immunogenic. The reaction is sensitive to conditions such as pH, temperature, and the concentration of reactants. Scaling up the reaction from laboratory to industrial scales while maintaining consistency and yield can be challenging. Despite various approaches, no licensed anti-nicotine vaccine has been approved so far due to the susboptimal antibody titers. Here, we report a novel approach to conjugate maleimide-modified nicotine hapten with a disulfide bond-reduced carrier protein in an organic solvent. It has two advantages compared with other approaches: (1) The protein was unfolded to make the peptide conformation more flexible and expose more conjugation sites; (2) thiol-maleimide "click" chemistry was utilized to conjugate the disulfide bond-reduced protein and maleimide-modified nicotine due to its availability, fast kinetics, and bio-orthogonality. Various nicotine conjugate vaccines were prepared via this strategy, and their immunology effects were investigated by using MPL and QS-21 as adjuvants. The in vivo study in mice showed that the nicotine-BSA conjugate vaccines induced high anti-nicotine IgG antibody titers, compared with vaccines prepared by using traditional condensation methods, indicating the success of the current strategy for further anti-nicotine or other small-molecule vaccine studies. The enhancement was more significant by using MPL and QS-21 than that of traditional aluminum adjuvants.
Collapse
Affiliation(s)
- Ying Xu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Huiting Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
- School of Biotechnology, Jiangnan University, Wuxi 214126, China
| | - Xiongyan Meng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Jing Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Yannan Xue
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Changcai Teng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Wenxin Lv
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Zhen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Xiaodan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Tiantian Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Shuai Meng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| | - Chengli Zong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China (Z.W.)
| |
Collapse
|
4
|
Lu T, Li X, Zheng W, Kuang C, Wu B, Liu X, Xue Y, Shi J, Lu L, Han Y. Vaccines to Treat Substance Use Disorders: Current Status and Future Directions. Pharmaceutics 2024; 16:84. [PMID: 38258095 PMCID: PMC10820210 DOI: 10.3390/pharmaceutics16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there is significant interest in the development of innovative therapeutics to counteract the effects of abused substances. In recent years, vaccines have emerged as a novel and promising strategy to tackle addiction. Anti-drug vaccines are designed to stimulate the immune system to produce antibodies that bind to addictive compounds, such as nicotine, cocaine, morphine, methamphetamine, and heroin. These antibodies effectively neutralize the target molecules, preventing them from reaching the brain and eliciting their rewarding effects. By obstructing the rewarding sensations associated with substance use, vaccines aim to reduce cravings and the motivation to engage in drug use. Although anti-drug vaccines hold significant potential, challenges remain in their development and implementation. The reversibility of vaccination and the potential for combining vaccines with other addiction treatments offer promise for improving addiction outcomes. This review provides an overview of anti-drug vaccines, their mechanisms of action, and their potential impact on treatment for substance use disorders. Furthermore, this review summarizes recent advancements in vaccine development for each specific drug, offering insights for the development of more effective and personalized treatments capable of addressing the distinct challenges posed by various abused substances.
Collapse
Affiliation(s)
- Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Bingyi Wu
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China;
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| |
Collapse
|
5
|
Kasina V, Mownn RJ, Bahal R, Sartor GC. Nanoparticle delivery systems for substance use disorder. Neuropsychopharmacology 2022; 47:1431-1439. [PMID: 35351961 PMCID: PMC8960682 DOI: 10.1038/s41386-022-01311-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 03/13/2022] [Indexed: 12/14/2022]
Abstract
Innovative breakthroughs in nanotechnology are having a substantial impact in healthcare, especially for brain diseases where effective therapeutic delivery systems are desperately needed. Nanoparticle delivery systems offer an unmatched ability of not only conveying a diverse array of diagnostic and therapeutic agents across complex biological barriers, but also possess the ability to transport payloads to targeted cell types over a sustained period. In substance use disorder (SUD), many therapeutic targets have been identified in preclinical studies, yet few of these findings have been translated to effective clinical treatments. The lack of success is, in part, due to the significant challenge of delivering novel therapies to the brain and specific brain cells. In this review, we evaluate the potential approaches and limitations of nanotherapeutic brain delivery systems. We also highlight the examples of promising strategies and future directions of nanocarrier-based treatments for SUD.
Collapse
Affiliation(s)
- Vishal Kasina
- grid.63054.340000 0001 0860 4915Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269 USA
| | - Robert J. Mownn
- grid.63054.340000 0001 0860 4915Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269 USA
| | - Raman Bahal
- grid.63054.340000 0001 0860 4915Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269 USA
| | - Gregory C. Sartor
- grid.63054.340000 0001 0860 4915Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
6
|
Masjedi M, Montahaei T, Sharafi Z, Jalali A. Pulmonary vaccine delivery: An emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Hu Y, Zhao Z, Ehrich M, Zhang C. Formulation of Nanovaccines toward an Extended Immunity against Nicotine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27972-27982. [PMID: 34105952 PMCID: PMC9201939 DOI: 10.1021/acsami.1c07049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nicotine vaccines have been investigated to assist with smoking cessation. Because smoking cessation is a long process, past nicotine vaccines required multiple injections to achieve long-term efficacy. It would be of great significance if extended efficacy can be achieved with fewer injections. Here, we report the assembly of lipid-polylactic acid (PLA) and lipid-poly(lactic-co-glycolic acid) (PLGA) hybrid nanoparticle (NP) based nicotine vaccines. Mice immunized with the lipid-PLGA vaccine produced higher titers of nicotine-specific antibodies than the lipid-PLA vaccine in short-term. However, the lipid-PLA vaccine was found to induce long-lasting antibodies. Three months after the immunization, only mice that received first two injections of the lipid-PLGA vaccine and a third injection of the lipid-PLA vaccine achieved a significantly lower brain nicotine concentration of 65.13 ± 20.59 ng/mg than 115.88 ± 37.62 ng/mg from the negative controls. The results indicate that not only the stability of the vaccines but also the combination of the vaccines impacted the long-term efficacy of the immunization. Lastly, both the body weight and the histopathology study suggest that the vaccines were safe to mice. These findings suggest that long-term immunity against nicotine can be realized by a rational administration of nanovaccines of different levels of stability.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Assessing Neutralized Nicotine Distribution Using Mice Vaccinated with the Mucosal Conjugate Nicotine Vaccine. Vaccines (Basel) 2021; 9:vaccines9020118. [PMID: 33546163 PMCID: PMC7913222 DOI: 10.3390/vaccines9020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Tobacco smoking continues to be a global epidemic and the leading preventable cause of cancer and cardiovascular disease. Nicotine vaccines have been investigated as an alternative to currently available smoking cessation strategies as a means to increase rates of success and long-term abstinence. Recently, we demonstrated that a mucosal nicotine vaccine was able to induce robust mucosal and systemic antibodies when delivered heterologously using intranasal and intramuscular routes. Herein, we investigated the neutralization ability of the anti-nicotine antibodies using both intranasal and intracardiac nicotine challenges. Combining the extraction of lyophilized organ samples with RP-HPLC methods, we were able to recover between 47% and 56% of the nicotine administered from the blood, brain, heart, and lungs up to 10 min after challenge, suggesting that the interaction of the antibodies with nicotine forms a stable complex independently of the route of vaccination or challenge. Although both challenge routes can be used for assessing systemic antibodies, only the intranasal administration of nicotine, which is more physiologically similar to the inhalation of nicotine, permitted the crucial interaction of nicotine with the mucosal antibodies generated using the heterologous vaccination route. Notably, these results were obtained 6 months after the final vaccination, demonstrating stable mucosal and systemic antibody responses.
Collapse
|
9
|
Hu Y, Smith D, Frazier E, Zhao Z, Zhang C. Toll-like Receptor 9 Agonists as Adjuvants for Nanoparticle-Based Nicotine Vaccine. Mol Pharm 2021; 18:1293-1304. [PMID: 33497574 DOI: 10.1021/acs.molpharmaceut.0c01153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nicotine vaccine was considered a promising therapy against smoking addiction. The level of immune response that a nicotine vaccine can induce is pivotal to its efficacy. In this study, Toll-like receptor 9 agonists, namely, CpG ODN 1555 and CpG ODN 1826, were incorporated into a nanoparticle-based nicotine vaccine (NanoNicVac) to enhance its immunogenicity. The results showed that NanoNicVac containing either CpG ODN 1555 or CpG ODN 1826 could be rapidly internalized by dendritic cells. In mice trials, it was found that NanoNicVac with CpG ODN 1555 and CpG ODN 1826 induced 3.3- and 3.2-fold higher anti-nicotine antibody titer than that by the native NanoNicVac after two injections, respectively. Instead of enhancing the immunogenicity of the vaccine, however, mixtures of the two CpG ODNs were observed to exert an immune-suppressing effect on NanoNicVac. Finally, the histopathological examination on major organs of the mice immunized with the NanoNicVacs proved that NanoNicVac with either CpG ODN 1555 or CpG ODN 1826 as adjuvants did not cause detectable toxicity to the mice.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Daniel Smith
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Evan Frazier
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Ukidve A, Cu K, Goetz M, Angsantikul P, Curreri A, Tanner EEL, Lahann J, Mitragotri S. Ionic-Liquid-Based Safe Adjuvants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002990. [PMID: 33058352 DOI: 10.1002/adma.202002990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Adjuvants play a critical role in the design and development of novel vaccines. Despite extensive research, only a handful of vaccine adjuvants have been approved for human use. Currently used adjuvants are mostly composed of components that are non-native to the human body, such as aluminum salt, bacterial lipids, or foreign genomic material. Here, a new ionic-liquid-based adjuvant is explored, synthesized using two metabolites of the body, choline and lactic acid (ChoLa). ChoLa distributes the antigen efficiently upon injection, maintains antigen integrity, enhances immune infiltration at the injection site, and leads to a potent immune response against the antigen. Thus, it can serve as a promising safe adjuvant platform that can help to protect against pandemics and future infectious threats.
Collapse
Affiliation(s)
- Anvay Ukidve
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Katharina Cu
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Morgan Goetz
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Pavimol Angsantikul
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Alexander Curreri
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Eden E L Tanner
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Joerg Lahann
- Department of Chemical Engineering, Materials Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Samir Mitragotri
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Schijns V, Fernández-Tejada A, Barjaktarović Ž, Bouzalas I, Brimnes J, Chernysh S, Gizurarson S, Gursel I, Jakopin Ž, Lawrenz M, Nativi C, Paul S, Pedersen GK, Rosano C, Ruiz-de-Angulo A, Slütter B, Thakur A, Christensen D, Lavelle EC. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev 2020; 296:169-190. [PMID: 32594569 PMCID: PMC7497245 DOI: 10.1111/imr.12889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Therapeutic vaccination offers great promise as an intervention for a diversity of infectious and non-infectious conditions. Given that most chronic health conditions are thought to have an immune component, vaccination can at least in principle be proposed as a therapeutic strategy. Understanding the nature of protective immunity is of vital importance, and the progress made in recent years in defining the nature of pathological and protective immunity for a range of diseases has provided an impetus to devise strategies to promote such responses in a targeted manner. However, in many cases, limited progress has been made in clinical adoption of such approaches. This in part results from a lack of safe and effective vaccine adjuvants that can be used to promote protective immunity and/or reduce deleterious immune responses. Although somewhat simplistic, it is possible to divide therapeutic vaccine approaches into those targeting conditions where antibody responses can mediate protection and those where the principal focus is the promotion of effector and memory cellular immunity or the reduction of damaging cellular immune responses as in the case of autoimmune diseases. Clearly, in all cases of antigen-specific immunotherapy, the identification of protective antigens is a vital first step. There are many challenges to developing therapeutic vaccines beyond those associated with prophylactic diseases including the ongoing immune responses in patients, patient heterogeneity, and diversity in the type and stage of disease. If reproducible biomarkers can be defined, these could allow earlier diagnosis and intervention and likely increase therapeutic vaccine efficacy. Current immunomodulatory approaches related to adoptive cell transfers or passive antibody therapy are showing great promise, but these are outside the scope of this review which will focus on the potential for adjuvanted therapeutic active vaccination strategies.
Collapse
Affiliation(s)
- Virgil Schijns
- Wageningen University, Cell Biology & Immunology and, ERC-The Netherlands, Schaijk, Landerd campus, The Netherlands
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Žarko Barjaktarović
- Agency for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro
| | - Ilias Bouzalas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute, Thessaloniki, Greece
| | | | - Sergey Chernysh
- Laboratory of Insect Biopharmacology and Immunology, Department of Entomology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Lawrenz
- Vaccine Formulation Institute (CH), Geneva, Switzerland
| | - Cristina Nativi
- Department of Chemistry, University of Florence, Florence, Italy
| | | | | | | | - Ane Ruiz-de-Angulo
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain
| | - Bram Slütter
- Div. BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Enhancing the Immune Response of a Nicotine Vaccine with Synthetic Small "Non-Natural" Peptides. Molecules 2020; 25:molecules25061290. [PMID: 32178357 PMCID: PMC7143940 DOI: 10.3390/molecules25061290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] Open
Abstract
The addictive nature of nicotine is likely the most significant reason for the continued prevalence of tobacco smoking despite the widespread reports of its negative health effects. Nicotine vaccines are an alternative to the currently available smoking cessation treatments, which have limited efficacy. However, the nicotine hapten is non-immunogenic, and successful vaccine formulations to treat nicotine addiction require both effective adjuvants and delivery systems. The immunomodulatory properties of short, non-natural peptide sequences not found in human systems and their ability to improve vaccine efficacy continue to be reported. The aim of this study was to determine if small “non-natural peptides,” as part of a conjugate nicotine vaccine, could improve immune responses. Four peptides were synthesized via solid phase methodology, purified, and characterized. Ex vivo plasma stability studies using RP-HPLC confirmed that the peptides were not subject to proteolytic degradation. The peptides were formulated into conjugate nicotine vaccine candidates along with a bacterial derived adjuvant vaccine delivery system and chitosan as a stabilizing compound. Formulations were tested in vitro in a dendritic cell line to determine the combination that would elicit the greatest 1L-1β response using ELISAs. Three of the peptides were able to enhance the cytokine response above that induced by the adjuvant delivery system alone. In vivo vaccination studies in BALB/c mice demonstrated that the best immune response, as measured by nicotine-specific antibody levels, was elicited from the conjugate vaccine structure, which included the peptide, as well as the other components. Isotype analyses highlighted that the peptide was able to shift immune response toward being more humorally dominant. Overall, the results have implications for the use of non-natural peptides as adjuvants not only for the development of a nicotine vaccine but also for use with other addictive substances and conventional vaccination targets as well.
Collapse
|
13
|
Abstract
Mucosal surfaces represent important routes of entry into the human body for the majority of pathogens, and they constitute unique sites for targeted vaccine delivery. Nanoparticle-based drug delivery systems are emerging technologies for delivering and improving the efficacy of mucosal vaccines. Recent studies have provided new insights into formulation and delivery aspects of importance for the design of safe and efficacious mucosal subunit vaccines based on nanoparticles. These include novel nanomaterials, their physicochemical properties and formulation approaches, nanoparticle interaction with immune cells in the mucosa, and mucosal immunization and delivery strategies. Here, we present recent progress in the application of nanoparticle-based approaches for mucosal vaccine delivery and discuss future research challenges and opportunities in the field.
Collapse
|
14
|
Hu Y, Smith D, Zhao Z, Harmon T, Pentel PR, Ehrich M, Zhang C. Alum as an adjuvant for nanoparticle based vaccines: A case study with a hybrid nanoparticle-based nicotine vaccine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 20:102023. [PMID: 31181264 PMCID: PMC6702048 DOI: 10.1016/j.nano.2019.102023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
The treatment efficacy of a nicotine vaccine largely relies on its ability to induce high titers of nicotine-specific antibodies. Due to its strong immune-potentiating effects, aluminum salt (Alum) has been commonly used as an adjuvant in various nicotine vaccine formulations. In this study, we attempted to improve the immunological performance of a hybrid nanoparticle-based nicotine vaccine (NanoNicVac) by co-administering it with Alum. It was found that Alum severely restricted the release of NanoNicVac at the site of injection. Moreover, Alum damaged the hybrid structure of the vaccine. In the animal trial, mice immunized with NanoNicVac alone achieved an anti-nicotine IgG titer of 3.5 ± 0.2 × 104 after three injections. Unexpectedly, Alum with quantities of 125, 250, 500, and 1000 μg did not enhance the immunogenicity of NanoNicVac. In addition, Alum did not improve the ability of the vaccine to reduce the entry of nicotine into the brain.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Daniel Smith
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Theresa Harmon
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Paul R Pentel
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Smith ES, Porterfield JE, Kannan RM. Leveraging the interplay of nanotechnology and neuroscience: Designing new avenues for treating central nervous system disorders. Adv Drug Deliv Rev 2019; 148:181-203. [PMID: 30844410 PMCID: PMC7043366 DOI: 10.1016/j.addr.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to open many novel diagnostic and treatment avenues for disorders of the central nervous system (CNS). In this review, we discuss recent developments in the applications of nanotechnology in CNS therapies, diagnosis and biology. Novel approaches for the diagnosis and treatment of neuroinflammation, brain dysfunction, psychiatric conditions, brain cancer, and nerve injury provide insights into the potential of nanomedicine. We also highlight nanotechnology-enabled neuroscience techniques such as electrophysiology and intracellular sampling to improve our understanding of the brain and its components. With nanotechnology integrally involved in the advancement of basic neuroscience and the development of novel treatments, combined diagnostic and therapeutic applications have begun to emerge. Nanotheranostics for the brain, able to achieve single-cell resolution, will hasten the rate in which we can diagnose, monitor, and treat diseases. Taken together, the recent advances highlighted in this review demonstrate the prospect for significant improvements to clinical diagnosis and treatment of a vast array of neurological diseases. However, it is apparent that a strong dialogue between the nanoscience and neuroscience communities will be critical for the development of successful nanotherapeutics that move to the clinic, benefit patients, and address unmet needs in CNS disorders.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Zhao Z, Hu Y, Harmon T, Pentel P, Ehrich M, Zhang C. Effect of Adjuvant Release Rate on the Immunogenicity of Nanoparticle-Based Vaccines: A Case Study with a Nanoparticle-Based Nicotine Vaccine. Mol Pharm 2019; 16:2766-2775. [PMID: 31075204 DOI: 10.1021/acs.molpharmaceut.9b00279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adjuvants are a critical component for vaccines, especially for a poorly immunogenic antigen, such as nicotine. However, the impact of adjuvant release rate from a vaccine formulation on its immunogenicity has not been well illustrated. In this study, we fabricated a series of hybrid-nanoparticle-based nicotine vaccines to study the impact of adjuvant release rate on their immunological efficacy. It was found that the nanovaccine with a medium or slow adjuvant release rate induced a significantly higher anti-nicotine antibody titer than that with a fast release rate. Furthermore, the medium and slow adjuvant release rates resulted in a significantly lower brain nicotine concentration than the fast release rate after nicotine challenge. All findings suggest that adjuvant release rate affects the immunological efficacy of nanoparticle-based nicotine vaccines, providing a potential strategy to rationally designing vaccine formulations against psychoactive drugs or even other antigens. The hybrid-nanoparticle-based nicotine vaccine with an optimized adjuvant release rate can be a promising next-generation immunotherapeutic candidate against nicotine.
Collapse
Affiliation(s)
| | | | - Theresa Harmon
- Minneapolis Medical Research Foundation , Minneapolis , Minnesota 55404 , United States
| | - Paul Pentel
- Minneapolis Medical Research Foundation , Minneapolis , Minnesota 55404 , United States
| | | | | |
Collapse
|
17
|
Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019; 143:3-21. [PMID: 30639257 DOI: 10.1016/j.addr.2019.01.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Over the years, a plethora of materials - natural and synthetic - have been engineered at a nanoscopic level and explored for drug delivery. Nanocarriers based on such materials could improve the payload's pharmacokinetics and achieve the desired pharmacological response at the target tissue. Despite the development of rationally designed drug nanocarriers, only a handful of such formulations have been successfully translated into the clinic. The physicochemical properties (size, shape, surface chemistry, porosity, elasticity, and many others) of these nanocarriers influence its biological identity, which in presence of biological barriers in vivo, could significantly modulate the therapeutic index of its cargo and alter the desired outcome. Further, complexities associated with developing effective drug nanocarriers have led to conflicting views of its safety, permeation of biological barriers and cellular uptake. Here, in this review, we emphasize the effect of physicochemical properties of nanocarriers on their interactions with the biological milieu. The review will discuss in depth, how modulating the physicochemical properties would influence a drug nanocarrier's behavior in vivo and the mechanisms underlying these effects. The goal of this review is to summarize the design considerations based on these properties and to provide a conceptual template for achieving improved therapeutic efficacy with enhanced patient compliance.
Collapse
|
18
|
Hu Y, Zhao Z, Harmon T, Pentel PR, Ehrich M, Zhang C. Paradox of PEGylation in fabricating hybrid nanoparticle-based nicotine vaccines. Biomaterials 2018; 182:72-81. [PMID: 30107271 PMCID: PMC6203448 DOI: 10.1016/j.biomaterials.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/23/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Polyethylene glycol (PEG) has long been used in nanoparticle-based drug or vaccine delivery platforms. In this study, nano-nicotine vaccines (NanoNicVac) were PEGylated to different degrees to investigate the impact of PEG on the immunological efficacy of the vaccine. Hybrid nanoparticles with various degrees of PEGylation (2.5%-30%) were assembled. It was found that 30% PEGylation resulted in a hybrid nanoparticle of a compromised core-shell structure. A higher concentration of PEG also led to a slower cellular uptake of hybrid nanoparticles by dendritic cells. However, increasing the quantity of the PEG could effectively reduce nanoparticle aggregation during storage and improve the stability of the hybrid nanoparticles. Subsequently, nicotine vaccines were synthesized by conjugating nicotine haptens to the differently PEGylated hybrid nanoparticles. In both in vitro and in vivo studies, it was found that a nicotine vaccine with 20% PEGylation (NanoNicVac 20.0) was significantly more stable than the vaccines with lower PEGylation. In addition, NanoNicVac 20.0 induced a significantly higher anti-nicotine antibody titer of 3.7 ± 0.6 × 104 in mice than the other NanoNicVacs with lower concentrations of PEG. In a subsequent pharmacokinetic study, the lowest brain nicotine concentration of 34 ± 11 ng/g was detected in mice that were immunized with NanoNicVac 20.0. In addition, no apparent adverse events were observed in mice immunized with NanoNicVac. In summary, 20% PEGylation confers NanoNicVac with desirable safety, the highest stability, and the best immunological efficacy in mice.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Theresa Harmon
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA.
| | - Paul R Pentel
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA.
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
19
|
Bolu BS, Sanyal R, Sanyal A. Drug Delivery Systems from Self-Assembly of Dendron-Polymer Conjugates †. Molecules 2018; 23:E1570. [PMID: 29958437 PMCID: PMC6099537 DOI: 10.3390/molecules23071570] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
This review highlights the utilization of dendron-polymer conjugates as building blocks for the fabrication of nanosized drug delivery vehicles. The examples given provide an overview of the evolution of these delivery platforms, from simple micellar containers to smart stimuli- responsive drug delivery systems through their design at the macromolecular level. Variations in chemical composition and connectivity of the dendritic and polymeric segments provide a variety of self-assembled micellar nanostructures that embody desirable attributes of viable drug delivery systems.
Collapse
Affiliation(s)
- Burcu Sumer Bolu
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
20
|
Hybrid nanoparticle-based nicotine nanovaccines: Boosting the immunological efficacy by conjugation of potent carrier proteins. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1655-1665. [PMID: 29719216 DOI: 10.1016/j.nano.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/04/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023]
Abstract
A series of hybrid nanoparticle-based nicotine nanovaccines (NanoNicVac) were engineered in this work by conjugating potent carrier protein candidates (Keyhole limpet hemocyanin (KLH) multimer, KLH subunit, cross-reactive material 197 (CRM197), or tetanus toxoid (TT)) for enhanced immunological efficacy. NanoNicVac with CRM197 or TT were processed by dendritic cells more efficiently than that with KLH multimer or subunit. NanoNicVac carrying CRM197 or TT exhibited a significantly higher immunogenicity against nicotine and a considerably lower immunogenicity against carrier proteins than NanoNicVac carrying KLH multimer or subunit in mice. The in vivo results revealed that NanoNicVac with CRM197 or TT resulted in lower levels of nicotine in the brain of mice after nicotine challenge. All findings suggest that an enhanced immunological efficacy of NanoNicVac can be achieved by using CRM197 or TT instead of KLH or KLH subunit as carrier proteins, making NanoNicVac a promising next-generation immunotherapeutic candidate against nicotine addiction.
Collapse
|
21
|
Zhao Z, Harris B, Hu Y, Harmon T, Pentel PR, Ehrich M, Zhang C. Rational incorporation of molecular adjuvants into a hybrid nanoparticle-based nicotine vaccine for immunotherapy against nicotine addiction. Biomaterials 2017; 155:165-175. [PMID: 29179132 DOI: 10.1016/j.biomaterials.2017.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/25/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022]
Abstract
Current clinically-tested nicotine vaccines have yet shown enhanced smoking cessation efficacy due to their low immunogenicity. Achieving a sufficiently high immunogenicity is a necessity for establishing a clinically-viable nicotine vaccine. This study aims to facilitate the immunogenicity of a hybrid nanoparticle-based nicotine vaccine by rationally incorporating toll-like receptor (TLR)-based adjuvants, including monophosphoryl lipid A (MPLA), Resiquimod (R848), CpG oligodeoxynucleotide 1826 (CpG ODN 1826), and their combinations. The nanoparticle-delivered model adjuvant was found to be taken up more efficiently by dendritic cells than the free counterpart. Nanovaccine particles were transported to endosomal compartments upon cellular internalization. The incorporation of single or dual TLR adjuvants not only considerably increased total anti-nicotine IgG titers but also significantly affected IgG subtype distribution in mice. Particularly, the nanovaccines carrying MPLA+R848 or MPLA+ODN 1826 generated a much higher anti-nicotine antibody titer than those carrying none or one adjuvant. Meanwhile, the anti-nicotine antibody elicited by the nanovaccine adjuvanted with MPLA+R848 had a significantly higher affinity than that elicited by the nanovaccine carrying MPLA+ODN 1826. Moreover, the incorporation of all the selected TLR adjuvants (except MPLA) reduced the brain nicotine levels in mice after nicotine challenge. Particularly, the nanovaccine with MPLA+R848 exhibited the best ability to reduce the level of nicotine entering the brain. Collectively, rational incorporation of TLR adjuvants could enhance the immunological efficacy of the hybrid nanoparticle-based nicotine vaccine, making it a promising next-generation immunotherapeutic candidate for treating nicotine addiction.
Collapse
Affiliation(s)
- Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brian Harris
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Theresa Harmon
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | - Paul R Pentel
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|