1
|
Hou W, Shen L, Zhu Y, Wang X, Du T, Yang F, Zhu Y. Fullerene Derivatives for Tumor Treatment: Mechanisms and Application. Int J Nanomedicine 2024; 19:9771-9797. [PMID: 39345909 PMCID: PMC11430870 DOI: 10.2147/ijn.s476601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Fullerenes hold tremendous potential as alternatives to conventional chemotherapy or radiotherapy for tumor treatment due to their abilities to photodynamically kill tumor cells, destroy the tumor vasculature, inhibit tumor metastasis and activate anti-tumor immune responses, while protecting normal tissue through antioxidative effects. The symmetrical hollow molecular structures of fullerenes with abundant C=C bonds allow versatile chemical modification with diverse functional groups, metal clusters and biomacromolecules to synthesize a wide range of fullerene derivatives with increased water solubility, improved biocompatibility, enhanced photodynamic properties and stronger targeting abilities. This review introduces the anti-tumor mechanisms of fullerenes and summarizes the most recent works on the functionalization of fullerenes and the application of fullerene derivatives in tumor treatment. This review aims to serve as a valuable reference for further development and clinical application of anti-tumor fullerene derivatives.
Collapse
Affiliation(s)
- Wenjia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lan Shen
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yimin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xuanjia Wang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
2
|
Hong C, Liu Y, Shi D, Liu C, Zou S, Guo M, Chen X, Zheng C, Zhao Y, Yang X. Radiofrequency-responsive black phosphorus nanogel crosslinked with cisplatin for precise synergy in multi-modal tumor therapies. J Control Release 2024; 373:853-866. [PMID: 39094632 DOI: 10.1016/j.jconrel.2024.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Radiofrequency-responsive nanoparticles (RFNPs) have drawn increasingly attentions as RF energy absorbing antenna to enhance antitumor efficacy of radiofrequency ablation (RFA). However, it remains a huge challenge for inorganic RFNPs to precisely synergize RFA with other antitumor modes in a clinically acceptable way on bio-safety and bio-compatibility. In this work, RF-responsive black phosphorus (BP) nanogel (BP-Pt@PNA) was successfully fabricated by crosslinking coordination of cisplatin with BP and temperature sensitive polymer PNA. BP-Pt@PNA exhibited strong RF-heating effect and RF-induced pulsatile release of cisplatin. Under RF irradiation, BP-Pt@PNA exhibited cytotoxic enhancement on 4T1 cells. By the synergistic effect of BP and cisplatin, BP-Pt@PNA achieved RF-stimulated systemic immune effect, thus induced enhance suppression on tumor growth and metastasis. Moreover, BP-Pt@PNA realized long-term drug retention in tumor and favorable embolization to tumor-feeding arteries. With high drug loading capacity and favorable bio-safety and bio-degradability, BP-Pt@PNA is expected as an ideal RFNP for precisely synergizing RFA with other antitumor modes in clinical application.
Collapse
Affiliation(s)
- Can Hong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Yiming Liu
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Chao Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Shidong Zou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Xingyu Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Chuansheng Zheng
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China..
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; School of Biomedical Engineering, Hubei University of Science and Technology, Xianning 437100, PR China.; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074 Wuhan, PR China..
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074 Wuhan, PR China..
| |
Collapse
|
3
|
Wang H, Zhao J, Ji S, Liu T, Cheng Z, Huang Z, Zang Y, Chen J, Zhang J, Ding Z. Metallofullerenol alleviates alcoholic liver damage via ROS clearance under static magnetic and electric fields. Free Radic Biol Med 2024; 220:236-248. [PMID: 38704052 DOI: 10.1016/j.freeradbiomed.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.
Collapse
Affiliation(s)
- Haoyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junqi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shiliang Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215153, China
| | - Tingjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhisheng Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, 210023, China; Changzhou High-Tech Research Institute of Nanjing University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Li L, Fu J, Ye J, Liu L, Sun Z, Wang H, Tan S, Zhen M, Wang C, Bai C. Developing Hypoxia-Sensitive System via Designing Tumor-Targeted Fullerene-Based Photosensitizer for Multimodal Therapy of Deep Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2310875. [PMID: 38450765 DOI: 10.1002/adma.202310875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Photodynamic therapy (PDT) has been approved for clinic. However, powerless efficiency for deep hypoxic tumor therapy remains an enormous challenge for PDT. Herein, a hypoxia-sensitive nanotherapeutic system (FTCD-SRGD) based on fullerene (C70 ) and anoxic activating chemical prodrug tirapazamine (TPZ) is rationally designed for multimodal therapy of deep hypoxic tumors. To enhance the accumulation and achieve specific drug release in tumor, the FTCD-SRGD is modified with cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) peptide and disulfide bonds. With the exacerbated hypoxic microenvironment created by C70 consuming O2 for generating reactive oxygen species (ROS), TPZ is activated to produce toxic radical species to ablate deep tumors, which achieves a synergistic treatment of C70 -mediated PDT and hypoxia-enhanced chemotherapy. Additionally, given this hypoxia-sensitive system-induced immunogenic cell death (ICD) activating anticancer cytotoxic T lymphocyte to result in more susceptible tumor to immunotherapy, FTCD-SRGD plus immune checkpoint inhibitor (anti-PD-L1) fully inhibit deep hypoxic tumors by promoting infiltration of effector T cells in tumors. Collectively, it is the first time to develop a multimodal therapy system with fullerene-based hypoxia-sensitive PS for deep tumors. The powerful multimodal nanotherapeutic system for combining hypoxia-enhanced PDT and immunotherapy to massacre deep hypoxic tumors can provide a paradigm to combat the present bottleneck of tumor therapy.
Collapse
Affiliation(s)
- Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaju Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiahao Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangjie Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Kopcha WP, Biswas R, Sun Y, Chueng STD, Dorn HC, Zhang J. Water-soluble endohedral metallofullerenes: new horizons for biomedical applications. Chem Commun (Camb) 2023; 59:13551-13561. [PMID: 37877250 PMCID: PMC11033704 DOI: 10.1039/d3cc03603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Endohedral metallofullerenes (EMFs) offer a safe avenue to manipulate metals important to biomedical applications such as MRI contrast, X-ray contrast, radiolabeling, radiotherapy, chemotherapy, and the control of inflammation by scavenging reactive oxygen species (ROS). Moreover, functionalizing the double bonds on the surface of EMFs modifies their solubility, supramolecular behaviour, binding, targeting characteristics, and physical properties. While most existing water-soluble derivatives possess a statistical mixture of appended functional groups, progress has been made in creating molecularly-precise derivatives with a defined number of surface functional groups, leading to potentially more nuanced control of their behaviour and properties. Further elucidation of the structure-function relationships of these materials is expected to enhance their utility in biomedical applications and possibly broaden their use in diverse areas of science and technology.
Collapse
Affiliation(s)
- William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | - Rohin Biswas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | - Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | | | - Harry C Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Dr, Blacksburg, VA, 24061, USA.
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
7
|
Wang C, Xu J, Zhang Y, Nie G. Emerging nanotechnological approaches to regulating tumor vasculature for cancer therapy. J Control Release 2023; 362:647-666. [PMID: 37703928 DOI: 10.1016/j.jconrel.2023.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Abnormal angiogenesis stands for one of the most striking manifestations of malignant tumor. The pathologically and structurally abnormal tumor vasculature facilitates a hostile tumor microenvironment, providing an ideal refuge exclusively for cancer cells. The emergence of vascular regulation drugs has introduced a distinctive class of therapeutics capable of influencing nutrition supply and drug delivery efficacy without the need to penetrate a series of physical barriers to reach tumor cells. Nanomedicines have been further developed for more precise regulation of tumor vasculature with the capacity of co-delivering multiple active pharmaceutical ingredients, which overall reduces the systemic toxicity and boosts the therapeutic efficacy of free drugs. Additionally, precise structure design enables the integration of specific functional motifs, such as surface-targeting ligands, droppable shells, degradable framework, or stimuli-responsive components into nanomedicines, which can improve tissue-specific accumulation, enhance tissue penetration, and realize the controlled and stimulus-triggered release of the loaded cargo. This review describes the morphological and functional characteristics of tumor blood vessels and summarizes the pivotal molecular targets commonly used in nanomedicine design, and then highlights the recent cutting-edge advancements utilizing nanotechnologies for precise regulation of tumor vasculature. Finally, the challenges and future directions of this field are discussed.
Collapse
Affiliation(s)
- Chunling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yinlong Zhang
- Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China; School of Nanoscience and Engineering, School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Sino-Danish Center for Education and Research, Sino-Danish College of UCAS, Beijing 100190, China; GBA National Institute for Nanotechnology Innovation, Guangzhou 510530, China.
| |
Collapse
|
8
|
A triple enhanced permeable gold nanoraspberry designed for positive feedback interventional therapy. J Control Release 2022; 345:120-137. [PMID: 35276301 DOI: 10.1016/j.jconrel.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
Due to the unique microenvironment, nanoparticles cannot easily penetrate deeply into tumours, which decreases their therapeutic efficacy. Thus, new strategies should be developed to solve this problem and increase the efficacy of nanomedicine. In this study, gold nanoraspberries (GNRs) were constructed using ultrasmall gold nanospheres (UGNPs) with a matrix metalloproteinase (MMP)-2/9-sensitive peptide as a cross-linking agent. These UGNPs were then modified with trastuzumab (TRA) and mertansine derivatives (DM1) via the AuS bond. TRA targets the human epidermal growth factor receptor-2 (Her-2) which is overexpressed on Her-2+ breast cancer cells. The AuS bond in GNRs-DM1 can be replaced by the free sulfhydryl group of GSH, which could achieve GSH dependent redox responsive release of the drug. In the mouse model of Her-2+ breast cancer, a "positive feedback" triple enhanced penetration platform was construct to treat tumours. Firstly, near-infrared light-triggered photothermal conversion increased vascular permeability, resulting in nanoparticle penetration. Secondly, GNRs disintegrated into UGNPs in response to stimulation with MMPs. GNRs with larger particle sizes reached the tumour site through EPR effect and active targeting. Meanwhile, UGNPs with smaller particle sizes penetrated deeply into the tumour through diffusion. Thirdly, the UGNPs transformed activated cancer-associated fibroblasts to a quiescent state, which reduced intercellular pressure and promoted the penetration of the UGNPs into the interior of the tumour. In turn, an increase in the number of nanoparticles penetrating into the tumour led to a "positive feedback" loop of triple enhanced photothermal effects and further self-amplify the permeability in vivo. Interventional photothermal therapy (IPTT) was used to improve the therapeutic efficacy by reducing the laser power attenuation caused by percutaneous irradiation. The GNRs also showed excellent multimode imaging (computed tomography, photoacoustic imaging and photothermal imaging) capabilities and high anti-tumour efficacy due to efficient tumour targeting and triple enhanced deep penetration into the tumour site. Thus, these MMP-2/redox dual-responsive GNRs are promising carriers of drugs targeting human epidermal growth factor receptor 2+ breast cancer.
Collapse
|
9
|
Functionalized Gadofullerene Ameliorates Impaired Glycolipid Metabolism in Type 2 Diabetic Mice. J Genet Genomics 2021; 49:364-376. [PMID: 34687945 DOI: 10.1016/j.jgg.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese MKR mouse T2DM models. In both mouse models, the diabetic phenotypes including hyperglycemia, impaired glucose tolerance and insulin sensitivity were ameliorated following 2 or 4 weeks of i.p. administration of GF. GF lowered blood glucose levels in a dose-dependent manner. Importantly, the restored blood glucose levels could persist 10 days after withdrawal of GF treatment. The hepatic AKT/GSK3β/FoxO1 pathway is shown to be the main target of GF for re-balancing gluconeogenesis and glycogen synthesis in vivo and in vitro. In addition, GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway. Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.
Collapse
|
10
|
Lu Z, Jia W, Deng R, Zhou Y, Li X, Yu T, Zhen M, Wang C. Light-assisted gadofullerene nanoparticles disrupt tumor vasculatures for potent melanoma treatment. J Mater Chem B 2021; 8:2508-2518. [PMID: 32124888 DOI: 10.1039/c9tb02752a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The traditional photodynamic therapy (PDT) using a photosensitizer and oxygen under light generates reactive oxygen species (ROS) to kill tumor cells. However, its treatment efficiency is limited by insufficient oxygen in tumor cells. Herein, β-alanine modified gadofullerene nanoparticles (GFNPs) were explored to disrupt tumor vasculatures assisted by light for potent melanoma treatment. As tumor vasculatures are oxygen-rich, the yields of photo-induced singlet oxygen (1O2) by GFNPs are not subjected to the hypoxemia of tumor tissues. Different from the small molecule photosensitizer Chlorin e6 (Ce6), GFNPs realize high-efficiency tumor vascular disruption under light observed by using the mice tumor vascular dorsal skin fold chamber (DSFC) model. The tumor vascular disruption efficiency of GFNPs is size-dependent, and the smallest one (hydration diameter of ca. 126 nm) is more efficient. Mechanistically, the high yields of photo-induced 1O2 by GFNPs can lead to the destruction of the tumor vascular endothelial adherent junction protein-VE cadherin and the decrease of tumor vascular endothelial cells-CD31 proteins, inducing rapid tumor necrosis. In conclusion, our work provides an insight into the design of well-sized nanoparticles to powerfully treat melanoma assisted by light, as well as greatly extending the applications of PDT for robust tumor therapy.
Collapse
Affiliation(s)
- Zhigao Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Ma H, Zhang X, Yang Y, Li S, Huo J, Liu Y, Guan M, Zhen M, Shu C, Li J, Wang C. Cellular Uptake, Organelle Enrichment, and In Vitro Antioxidation of Fullerene Derivatives, Mediated by Surface Charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2740-2748. [PMID: 33586439 DOI: 10.1021/acs.langmuir.0c03483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophilic fullerene derivatives get notable performance in various biological applications, especially in cancer therapy and antioxidation. The biological behaviors of functional fullerenes are much dependent on their surface physicochemical properties. The excellent reactive oxygen species-scavenging capabilities of functional fullerenes promote their outstanding performances in inhibiting pathological symptoms associated with oxidative stress, including neurodegenerative diseases, cardiovascular diseases, acute and chronic kidney disease, and diabetes. Herein, fullerene derivatives with reversed surface charges in aqueous solutions are prepared: cationic C60-EDA and anionic C60-(EDA-EA). Under the driving force of membrane potential (negative inside) in the cell and mitochondria, C60-EDA is much rapidly taken in by cells and transported into mitochondria compared with C60-(EDA-EA) that is enriched in lysosomes. With high cellular uptake and mitochondrial enrichment, C60-EDA exhibits stronger antioxidation capabilities in vitro than C60-(EDA-EA), indicating its better performance in the therapy of oxidation-induced diseases. It is revealed that the cellular uptake rate, subcellular location, and intracellular antioxidation behavior of fullerene derivatives are primarily mediated by their surface charges, providing new strategies for the design of fullerene drugs and their biological applications.
Collapse
Affiliation(s)
- Haijun Ma
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Xiaoyan Zhang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Yang Yang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Shumu Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jiawei Huo
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Yang Liu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Mirong Guan
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Mingming Zhen
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Chunying Shu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jie Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Chunru Wang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| |
Collapse
|
12
|
Huang D, Sun L, Huang L, Chen Y. Nanodrug Delivery Systems Modulate Tumor Vessels to Increase the Enhanced Permeability and Retention Effect. J Pers Med 2021; 11:124. [PMID: 33672813 PMCID: PMC7917988 DOI: 10.3390/jpm11020124] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The use of nanomedicine for antitumor therapy has been extensively investigated for a long time. Enhanced permeability and retention (EPR) effect-mediated drug delivery is currently regarded as an effective way to bring drugs to tumors, especially macromolecular drugs and drug-loaded pharmaceutical nanocarriers. However, a disordered vessel network, and occluded or embolized tumor blood vessels seriously limit the EPR effect. To augment the EPR effect and improve curative effects, in this review, we focused on the perspective of tumor blood vessels, and analyzed the relationship among abnormal angiogenesis, abnormal vascular structure, irregular blood flow, extensive permeability of tumor vessels, and the EPR effect. In this commentary, nanoparticles including liposomes, micelles, and polymers extravasate through the tumor vasculature, which are based on modulating tumor vessels, to increase the EPR effect, thereby increasing their therapeutic effect.
Collapse
Affiliation(s)
- Dong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; (D.H.); (L.S.)
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingna Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; (D.H.); (L.S.)
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Yanzuo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; (D.H.); (L.S.)
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Zhang Y, Zhang Y, Wu J, Liu J, Kang Y, Hu C, Feng X, Liu W, Luo H, Chen A, Chen L, Shao L. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. J Control Release 2021; 330:945-962. [DOI: 10.1016/j.jconrel.2020.10.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
|
14
|
Zhao D, Huang X, Zhang Z, Ding J, Cui Y, Chen X. Engineered nanomedicines for tumor vasculature blockade therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1691. [PMID: 33480163 DOI: 10.1002/wnan.1691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Tumor vasculature blockade therapy (TVBT), including angiogenesis inhibition, vascular disruption, and vascular infarction, provides a promising treatment modality for solid tumors. However, low selectivity, drug resistance, and possible severe side effects have limited the clinical transformation of TVBT. Engineered nanoparticles offer potential solutions, including prolonged circulation time, targeted transportation, and controlled release of TVBT agents. Moreover, engineered nanomedicines provide a promising combination platform of TVBT with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, ultrasound therapy, and gene therapy. In this article, we offer a comprehensive summary of the current progress of engineered nanomedicines for TVBT and also discuss current deficiencies and future directions for TVBT development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xu Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
15
|
Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102319. [PMID: 33068745 DOI: 10.1016/j.nano.2020.102319] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
The goal of this study was to develop a new method based on Oncothermia with concomitant use of the temozolomide (TMZ)-loaded magnetic nanoparticles conjugated with folic acid (TMZ/MNPs-FA) and alternative magnetic field (AMF) and evaluate its efficacy in the treatment of C6 glioma in rats. TMZ/MNPs-FA were prepared and evaluated for their size, surface charge, magnetic saturation, hemolysis and in vitro AMF-triggered release. The glioma rat models were treated with free TMZ, MNPs-FA and TMZ/MNPs-FA in the presence or absence of AMF (43 °C). The results confirmed that a combinatorial therapy consisting of AFM hyperthermia and thermosensitive TMZ/MNPs-FA could significantly suppress tumor growth, increase survival rate and promote apoptosis (P < 0.0001). Therefore, this treatment strategy may be a powerful modality for treatment of cancer, as the thermal and mechanical effects of magnetic nanoparticles exposed to AMF can increase the therapeutic efficacy of conventional chemotherapy.
Collapse
|
16
|
Zhou C, Zhen M, Yu M, Li X, Yu T, Liu J, Jia W, Liu S, Li L, Li J, Sun Z, Zhao Z, Wang X, Zhang X, Wang C, Bai C. Gadofullerene inhibits the degradation of apolipoprotein B100 and boosts triglyceride transport for reversing hepatic steatosis. SCIENCE ADVANCES 2020; 6:6/37/eabc1586. [PMID: 32917715 PMCID: PMC7556997 DOI: 10.1126/sciadv.abc1586] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/29/2020] [Indexed: 05/15/2023]
Abstract
Hepatic steatosis is a widespread metabolic disease characterized by excessive accumulation of triglyceride (TG) in liver. So far, effective approved drugs for hepatic steatosis are still in development, and removing the unnecessary TG from the hepatocytes is an enormous challenge. Here, we explore a promising anti-hepatic steatosis strategy by boosting hepatocellular TG transport using β-alanine-modified gadofullerene (GF-Ala) nanoparticles. We confirm that GF-Ala could reverse hepatic steatosis in oleic acid-induced hepatocytes, fructose-induced mice, and obesity-associated transgenic ob/ob mice. Observably, GF-Ala improves hepatomegaly and hepatic lipid accumulation, reduces lipid peroxidation, and repairs abnormal mitochondria. Of note, we demonstrate that GF-Ala markedly inhibits the posttranslational degradation of apolipoprotein B100 (ApoB100) and boosts hepatocellular TG transport based on their superior antioxidant property. Together, we conclude that GF-Ala could potently ameliorate hepatic TG transport and maintain hepatic metabolic homeostasis without apparent toxicity, being beneficial for treatments of hepatic steatosis and other fatty liver diseases.
Collapse
Affiliation(s)
- Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilan Yu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingchao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpu Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Li L, Zhen M, Wang H, Sun Z, Jia W, Zhao Z, Zhou C, Liu S, Wang C, Bai C. Functional Gadofullerene Nanoparticles Trigger Robust Cancer Immunotherapy Based on Rebuilding an Immunosuppressive Tumor Microenvironment. NANO LETTERS 2020; 20:4487-4496. [PMID: 32407113 DOI: 10.1021/acs.nanolett.0c01287] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer immunotherapy as a novel cancer therapeutic strategy has shown enormous promise. However, the immunosuppressive tumor microenvironment (ITM) is a primary obstacle. Tumor-associated macrophages (TAMs) as a major component of immune cells in a tumor microenvironment are generally polarized to the M2 phenotype that not only accelerates tumor growth but also influences the infiltration of lymphocytes and leads to immunosuppression. Thus, rebuilding ITM by re-educating TAMs and increasing infiltration of lymphocytes is a promising strategy. Herein, gadofullerene (GF-Ala) nanoparticles are demonstrated to reprogram TAMs to M1-like and increase the infiltration of cytotoxic T lymphocytes (CTLs), achieving effective inhibition of tumor growth. Notably, the modulation of ITM by GF-Ala promotes the anticancer efficacy of anti-PD-L1 immune checkpoint inhibitor, achieving superior synergistic treatment. Additionally, GF-Ala nanoparticles can be mostly excreted from the body and cause no obvious toxicity. Together, this study provides an effective immunomodulation strategy using gadofullerene nanoparticles by rebuilding ITM and synergizing immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpu Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Ma H, Zhao J, Meng H, Hu D, Zhou Y, Zhang X, Wang C, Li J, Yuan J, Wei Y. Carnosine-Modified Fullerene as a Highly Enhanced ROS Scavenger for Mitigating Acute Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16104-16113. [PMID: 32186840 DOI: 10.1021/acsami.0c01669] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fullerenes are known as highly efficient scavengers for reactive oxygen species (ROSs). In this study, a carnosine-modified fullerene derivative (C60-Car) was synthesized via a one-step nucleophilic addition reaction. C60-Car forms nanoparticles (NPs) readily in water at neutral pH and room temperature through self-assembly. The C60-Car NPs were found to possess good water solubility, biocompatibility, and excellent ROSs scavenging capability. The scavenging efficiency of ROSs is as high as 92.49% and significantly better than that of hydroxyfullerene (C60-OH NPs, 70.92%) and l-carnosine. Furthermore, C60-Car NPs showed strong cytoprotective ability against H2O2-induced damage to the normal human fetal hepatocyte cells (L-02) and human epidermal keratinocytes-adult (HEK-a) cells at a lower concentration of 2.5 μM. In contrast, C60-OH NPs showed a minor cytoprotective effect on cells at a high concentration of 10 μM. The excellent properties of such a fullerene derivative, C60-Car, can be attributed largely to the involvement of l-carnosine with biological activity and antioxidant property, which make it better for biomedicine, and it may provide a new strategy for mitigating acute oxidative stress based on fullerene materials.
Collapse
Affiliation(s)
- Haijun Ma
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Organic Optoelectronic and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jiajia Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haibing Meng
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Danning Hu
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Organic Optoelectronic and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyan Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinying Yuan
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Organic Optoelectronic and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Organic Optoelectronic and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
19
|
Li X, Wang C. The potential biomedical platforms based on the functionalized Gd@C
82
nanomaterials. VIEW 2020. [DOI: 10.1002/viw2.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
20
|
Wang T, Wang C. Functional Metallofullerene Materials and Their Applications in Nanomedicine, Magnetics, and Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901522. [PMID: 31131986 DOI: 10.1002/smll.201901522] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Endohedral metallofullerenes exhibit combined properties from carbon cages as well as internal metal moieties and have great potential in a wide range of applications as molecule materials. Along with the breakthrough of mass production of metallofullerenes, their applied research has been greatly developed with more and more new functions and practical applications. For gadolinium metallofullerenes, their water-soluble derivatives have been demonstrated with antitumor activity and unprecedented tumor vascular-targeting therapy. Metallofullerene water-soluble derivatives also can be applied to treat reactive oxygen species (ROS)-induced diseases due to their high antioxidative activity. For magnetic metallofullerenes, the internal electron spin and metal species bring about spin sensitivity, molecular magnets, and spin quantum qubits, which have many promising applications. Metallofullerenes are significant candidates for fabricating useful electronic devices because of their various electronic structures. This Review provides a summary of the metallofullerene studies reported recently, in the fields of tumor inhibition, tumor vascular-targeting therapies, antioxidative activity, spin probes, single-molecule magnets, spin qubits, and electronic devices. This is not an exhaustive summary and there are many other important study results regarding metallofullerenes. All of this research has revealed the irreplaceable role of metallofullerene materials.
Collapse
Affiliation(s)
- Taishan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
21
|
Li X, Zhen M, Zhou C, Deng R, Yu T, Wu Y, Shu C, Wang C, Bai C. Gadofullerene Nanoparticles Reverse Dysfunctions of Pancreas and Improve Hepatic Insulin Resistance for Type 2 Diabetes Mellitus Treatment. ACS NANO 2019; 13:8597-8608. [PMID: 31314991 DOI: 10.1021/acsnano.9b02050] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been one of the most prevalent metabolic disorders. Nonetheless, the commonly used anti-T2DM drugs failed to substant to treat T2DM when anti-T2DM was withdrawn. Here we put forward a superior and sustainable anti-diabetic strategy using intraperitoneal administration of amino-acid-functionalized gadofullerene nanoparticles (GFNPs) in db/db diabetic mice. Highly accumulated in the pancreas and liver, GFNPs could prominently decrease hyperglycemia, along with permanently maintaining normal blood sugar levels in T2DM mice and even stopping administration. Importantly, GFNPs reversed the pancreas islets dysfunctions by reducing oxidative stress and inflammation responses and fundamentally normalized the insulin secretory function of the pancreas islets. Mechanistically, GFNPs improved hepatic insulin resistance by regulating glucose and lipid metabolism through the activation of IRS2/PI3K/AKT signal pathways, resulting in inhibiting gluconeogenesis and increasing glycogenesis in the liver. Additionally, GFNPs relieved hepatic steatosis in the liver, ultimately maintaining systemic glucose and lipid metabolic homeostasis without obvious toxicity. Together, GFNPs reverse the dysfunctions of the pancreas and improve hepatic insulin resistance, providing a promising approach for T2DM treatment.
Collapse
Affiliation(s)
- Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ruijun Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tong Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Disease , Dalian Medical University , Dalian 116044 , China
| | - Chunying Shu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
22
|
Li J, Chen L, Su H, Yan L, Gu Z, Chen Z, Zhang A, Zhao F, Zhao Y. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. NANOSCALE 2019; 11:14528-14539. [PMID: 31364651 DOI: 10.1039/c9nr04129j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, cancer continues to afflict humanity. The direct destruction and killing of tumor cells by surgery, radiation and chemotherapy gives rise to many side effects and compromised efficacy. Encouragingly, the rapid development of nanotechnology offers attractive opportunities to revolutionize the current situation of cancer therapy. Metallofullerenol Gd@C82(OH)22, in contrast to chemotherapeutics that directly kill tumor cells, demonstrates anti-tumor behavior with high efficiency and low toxicity by modulating the tumor microenvironment. Furthermore, Gd@C82(OH)22 has been recently reported to specifically target cancer stem cells. In this review, we give a concise introduction to the development of the fullerene family and then report the anti-tumor activity of Gd@C82(OH)22 based on its unique physicochemical characteristics, followed by a comprehensive summary of the anti-tumor biological mechanisms which target different components of the tumor microenvironment as well as the biodistribution and toxicity of Gd@C82(OH)22. Finally, we describe Gd@C82(OH)22 as a "particulate medicine" to highlight its distinctions from conventional "molecular medicine", with considerable emphasis on the advantages of nanomedicine. The in-depth investigation of Gd@C82(OH)22 undoubtedly provides a constructive reference for the development of other nanomedicines, especially in the fullerene family. The application of nanotechnology in the medical field definitely provides a promising and favorable future for improving the current status of cancer therapy.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu T, Zhen M, Li J, Zhou Y, Ma H, Jia W, Wang C. Anti-apoptosis effect of amino acid modified gadofullerene via a mitochondria mediated pathway. Dalton Trans 2019; 48:7884-7890. [DOI: 10.1039/c9dt00800d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A proposed molecular mechanism of the anti-apoptosis effect of GF-Ala through a mitochondria mediated pathway.
Collapse
Affiliation(s)
- Tong Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yue Zhou
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Haijun Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
24
|
Tee JK, Ng LY, Koh HY, Leong DT, Ho HK. Titanium Dioxide Nanoparticles Enhance Leakiness and Drug Permeability in Primary Human Hepatic Sinusoidal Endothelial Cells. Int J Mol Sci 2018; 20:E35. [PMID: 30577655 PMCID: PMC6337147 DOI: 10.3390/ijms20010035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) represent the permeable interface that segregates the blood compartment from the hepatic cells, regulating hepatic vascular tone and portal pressure amidst changes in the blood flow. In the presence of pathological conditions, phenotypic changes in LSECs contribute to the progression of chronic liver diseases, including the loss of endothelial permeability. Therefore, modulating LSECs offers a possible way to restore sinusoidal permeability and thereby improve hepatic recovery. Herein, we showed that titanium dioxide nanoparticles (TiO₂ NPs) could induce transient leakiness in primary human hepatic sinusoidal endothelial cells (HHSECs). Interestingly, HHSECs exposed to these NPs exhibited reduced protein kinase B (Akt) phosphorylation, an important protein kinase which regulates cell attachment. Using a 3D co-culture system, we demonstrated that TiO₂ NPs diminished the attachment of HHSECs onto normal human hepatic cell LO2. To further illustrate the significance of leakiness in liver sinusoids, we showed that NP-induced leakiness promoted Sunitinib transport across the HHSEC layer, resulting in increased drug uptake and efficacy. Hence, TiO₂ NPs have the potential to modulate endothelial permeability within the specialized sinusoidal endothelium, especially during events of fibrosis and occlusion. This study highlighted the possible use of inorganic NPs as a novel strategy to promote drug delivery targeting the diseased liver.
Collapse
Affiliation(s)
- Jie Kai Tee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore.
| | - Li Yang Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Hannah Yun Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - David Tai Leong
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
25
|
Yang Y, Meng Y, Ye J, Xia X, Wang H, Li L, Dong W, Jin D, Liu Y. Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle. J Control Release 2018; 287:103-120. [PMID: 30144476 DOI: 10.1016/j.jconrel.2018.08.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
Co-delivery of chemotherapy drugs and VEGF siRNA (siVEGF) to control tumor growth has been a research hotspot for improving cancer treatment. Current systems co-deliver siVEGF and chemo drugs into tumor cells simultaneously. Although effective, these systems do not flow to the abnormal blood vessels around tumor cells (vascular niche, PVN), which play an important role in the metastasis and deterioration of the tumor. Thus, we custom-synthesized triblock copolymer poly(ε-caprolactone)-polyethyleneglycol-poly(L-histidine) (PCL-PEG-PHIS) with previously synthesized folate-PEG-PHIS to construct a targeted multifunctional polymer micelle (PTX/siVEGF-CPPs/TMPM) to sequentially deliver siVEGF-CPPs (disulfide bond-linked siVEGF and cell-penetrating peptides) and paclitaxel (PTX). The sequential delivery vesicles showed the anticipated three-layered TEM structure and dual-convertible (surface charge- and particle size-reversible) features in the tumor environment (pH 6.5), which guaranteed the sequential release of siVEGF-CPPs and PTX in the tumor extracellular environment and tumor cells, respectively. To mimic the in vivo tumor environment, a double cell model was employed by co-culturing HUVECs and MCF-7 cells. Improved cell endocytosis efficiency, VEGF gene silence efficacy, and in vitro anti-proliferation activity were achieved. An in vivo study on MCF-7 tumor-bearing female nude mice also indicated that sequential delivery vesicles could lead to significant induction of tumor cell apoptosis, loss of VEGF expression, and destruction of tumor blood vessels (PVN and neovascularization). These sequential delivery vesicles show potential as an effective co-delivery platform for siVEGF and chemo drugs to improve cancer therapy efficacy.
Collapse
Affiliation(s)
- Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yingying Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wujun Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Dujia Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|