1
|
Sun L, Li X, Hao L, Dong Y, Zhou L, Zhao J, Ye W, Jiang R. Microenvironment-Responsive Hydrogel Enclosed with Bioactive Nanoparticle for Synergistic Postoperative Adhesion Prevention. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39446062 DOI: 10.1021/acsami.4c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Postoperative adhesion (PA) is a severe complication of abdominal surgery caused by the inability of clinical physical barriers to cope with diverse pathological factors in the process of PA formation. Herein, we described a multifunctional hydrogel composed of bioactive nanoparticles (BNs) and dual-responsive hydrogel to serve as a combination of physical and pharmacological therapy for preventing PA. Specifically, BNs with pro-inflammatory cell-targeted aggregation were designed by integrating hyaluronic acid onto the polydopamine (PDA)-coated hollow ZrO2 nanoparticles loaded with antimicrobial peptides and platelet lysates that can eliminate bacterial infection and promote tissue repair. PDA can remove the excessive reactive oxygen species (ROS) and thus suppress the oxidative stress damage and accompanying inflammation in the presence of high ROS. The dynamically cross-linked host hydrogel presents injectable yet microenvironment-responsive properties, which enables complete coverage of the uneven tissue and instantly forms a physical barrier to effectively isolate injured tissues and neighboring organs, and synchronously acts as a niche to deliver the BNs in a controlled way. The hydrogel demonstrates a remarkable antiadhesion effect in a rat cecum-abdominal wall adhesion model. Together, this "all-in-one" composite hydrogel strategy capable of a physical barrier capability and pharmacological effects represents a promising clinical solution to prevent PA.
Collapse
Affiliation(s)
- Liwei Sun
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Xinmeng Li
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lingwan Hao
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Yanhong Dong
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lu Zhou
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Wei Ye
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
2
|
Kocgozlu L, Mutschler A, Tallet L, Calligaro C, Knopf-Marques H, Lebaudy E, Mathieu E, Rabineau M, Gribova V, Senger B, Vrana NE, Lavalle P. Cationic homopolypeptides: A versatile tool to design multifunctional antimicrobial nanocoatings. Mater Today Bio 2024; 28:101168. [PMID: 39221202 PMCID: PMC11364137 DOI: 10.1016/j.mtbio.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Postoperative infections are the most common complications faced by surgeons after implant surgery. To address this issue, an emerging and promising approach is to develop antimicrobial coatings using antibiotic substitutes. We investigated the use of polycationic homopolypeptides in a layer-by-layer coating combined with hyaluronic acid (HA) to produce an effective antimicrobial shield. The three peptide-based polycations used to make the coatings, poly(l-arginine) (PAR), poly(l-lysine), and poly(l-ornithine), provided an efficient antibacterial barrier by a contact-killing mechanism against Gram-positive, Gram-negative, and antibiotic-resistant bacteria. Moreover, this activity was higher for homopolypeptides containing 30 amino-acid residues per polycation chain, emphasizing the impact of the polycation chain length and its mobility in the coatings to deploy its contact-killing antimicrobial properties. However, the PAR-containing coating emerged as the best candidate among the three selected polycations, as it promoted cell adhesion and epithelial monolayer formation. It also stimulated nitric oxide production in endothelial cells, thereby facilitating angiogenesis and subsequent tissue regeneration. More interestingly, bacteria did not develop a resistance to PAR and (PAR/HA) also inhibited the proliferation of eukaryotic pathogens, such as yeasts. Furthermore, in vivo investigations on a (PAR/HA)-coated hernia mesh implanted on a rabbit model confirmed that the coating had antibacterial properties without causing chronic inflammation. These impressive synergistic activities highlight the strong potential of PAR/HA coatings as a key tool in combating bacteria, including those resistant to conventional antibiotics and associated to medical devices.
Collapse
Affiliation(s)
- Leyla Kocgozlu
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Angela Mutschler
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Lorène Tallet
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | - Helena Knopf-Marques
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Eric Mathieu
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Morgane Rabineau
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| |
Collapse
|
3
|
Broida SE, Salmons HI, Owen AR, Houdek MT. Outcomes of Abductor Repair Using Mesh Augmentation in Oncologic Proximal Femur Replacement. Curr Oncol 2024; 31:5730-5736. [PMID: 39451729 PMCID: PMC11506674 DOI: 10.3390/curroncol31100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Reconstruction of the abductor mechanism remains a primary challenge with contemporary proximal femoral replacement (PFR) surgery. Previously, techniques such as trochanteric preservation or direct repair to the implant have been described; however, these strategies are limited in their ability to tension the repair and reattach other muscles of the hip girdle. The aim of this study was to evaluate the outcomes of patients undergoing oncologic PFR using a novel technique of mesh augmentation for soft tissue repair. METHODS We reviewed 18 (mean age 64 years; 8 female: 10 male) consecutive patients undergoing PFR with Marlex mesh augmentation between 2018 and 2023 at a single institution. The most common indication was metastatic disease (n = 13). The mean follow-up in the 14 surviving patients was 27 months (range 12-34). RESULTS All patients were ambulatory at final follow-up. There were no post-operative dislocations, infections, or wound issues. At the final follow-up, the mean total MSTS score was 77%. CONCLUSION Mesh augmentation of PFRs allowed for adequate soft tissue tensioning and muscular attachment to the body of the implant. In our series, this technique was durable, with no dislocations and no mesh-related complications. In summary, mesh augmentation of PFRs may be considered during reconstruction for oncologic indications.
Collapse
Affiliation(s)
| | | | | | - Matthew T. Houdek
- Department of Orthopedic, Mayo Clinic, Rochester, MN 55905, USA; (S.E.B.); (H.I.S.); (A.R.O.)
| |
Collapse
|
4
|
He P, Wang D, Zheng R, Wang H, Fu L, Tang G, Shi Z, Wu Y, Yang G. An antibacterial biologic patch based on bacterial cellulose for repair of infected hernias. Carbohydr Polym 2024; 333:121942. [PMID: 38494213 DOI: 10.1016/j.carbpol.2024.121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Infection-associated complications and repair failures and antibiotic resistance have emerged as a formidable challenge in hernia repair surgery. Consequently, the development of antibiotic-free antibacterial patches for hernia repair has become an exigent clinical necessity. Herein, a GBC/Gel/LL37 biological patch (biopatch) with exceptional antibacterial properties is fabricated by grafting 2-Methacryloyloxyethyl trimethylammonium chloride (METAC), a unique quaternary ammonium salt with vinyl, onto bacterial cellulose (GBC), followed by compounding with gelatin (Gel) and LL37. The GBC/Gel/LL37 biopatch exhibits stable swelling capacity, remarkable mechanical properties, flexibility, and favorable biocompatibility. The synergistic effect of METAC and LL37 confers upon the GBC/Gel/LL37 biopatch excellent antibacterial efficacy against Staphylococcus aureus and Escherichia coli, effectively eliminating invading bacteria without the aid of exogenous antibiotics in vivo while significantly reducing local acute inflammation caused by infection. Furthermore, the practical efficacy of the GBC/Gel/LL37 biopatch is evaluated in an infected ventral hernia model, revealing that the GBC/Gel/LL37 biopatch can prevent the formation of visceral adhesions, facilitate the repair of infected ventral hernia, and effectively mitigate chronic inflammation. The prepared antibacterial GBC/Gel/LL37 biopatch is very effective in dealing with the risk of infection in hernia repair surgery and offers potential clinical opportunities for other soft injuries, exhibiting considerable clinical application prospects.
Collapse
Affiliation(s)
- Pengyu He
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dawei Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lina Fu
- College of Medicine, Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Central Hospital, Zhumadian, Henan 463000, China
| | - Guoliang Tang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
5
|
Ding R, Yu L, Peng P, Zhang J, Xu H, Li H, Wu H, Yan L, Li P. Durable and Robust Antibacterial Polypropylene Hernia Mesh for Abdominal Wall Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25686-25697. [PMID: 38739862 DOI: 10.1021/acsami.4c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Polypropylene (PP) mesh is commonly used in repairing abdominal wall hernia (AWH). However, the use of synthetic prosthesis comes with the risk of developing a prosthetic infection, resulting in delayed healing, secondary surgery, and potentially increased mortality. To address these issues, a facile surface functionalization strategy for PP mesh based on phytic acid (PA) and polyhexamethylene guanidine (PHMG) was constructed through a one-step co-deposition process, referred to as the PA/PHMG coating. The development of PA/PHMG coating is mainly attributed to the surface affinity of PA and the electrostatic interactions between PA and PHMG. The PA/PHMG coating could be completed within 4 h under mild conditions. The prepared PA/PHMG coatings on PP mesh surfaces exhibited desirable biocompatibility toward mammalian cells and excellent antibacterial properties against the notorious "superbug" methicillin-resistant Staphylococcus aureus (MRSA) and tetracycline-resistant Escherichia coli (TRE). The PA/PHMG-coated PP meshes showed killing ratios of over 99% against MRSA in an infected abdominal wall hernia repair model. Furthermore, histological and immunohistochemical analysis revealed a significantly attenuated degree of neutrophil infiltration in the PA/PHMG coating group, attributed to the decreased bacterial numbers alleviating the inflammatory response at the implant sites. Meanwhile, the pristine PP and PA/PHMG-coated meshes showed effective tissue repair, with the PA/PHMG coating group exhibiting enhanced angiogenesis compared with pristine PP meshes, suggesting superior tissue restoration. Additionally, PP meshes with the highest PHMG weight ratio (PA/PHMG(3)) exhibited excellent long-term robustness under phosphate-buffered saline (PBS) immersion with a killing ratio against MRSA still exceeding 95% after 60 days of PBS immersion. The present work provides a facile and promising approach for developing antibacterial implants.
Collapse
Affiliation(s)
- Rui Ding
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Jiajun Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Haoqi Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Haoyu Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Hanxue Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| |
Collapse
|
6
|
Di Y, Wang L, He W, Liu S, He Y, Liao J, Zhang R, Yin L, Xu Z, Li X. The utilization of chitosan/ Bletilla striata hydrogels to elevate anti-adhesion, anti-inflammatory and pro-angiogenesis properties of polypropylene mesh in abdominal wall repair. Regen Biomater 2024; 11:rbae044. [PMID: 38962115 PMCID: PMC11220408 DOI: 10.1093/rb/rbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 07/05/2024] Open
Abstract
Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde Bletilla striata polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites in vivo, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.
Collapse
Affiliation(s)
- Yuntao Di
- Department of Neurosurgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lu Wang
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, China
| | - Wei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shuyan Liu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yuqi He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Ruihong Zhang
- Department of Neurosurgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
7
|
Szałapata K, Pięt M, Kasela M, Grąz M, Kapral-Piotrowska J, Mordzińska-Rak A, Samorek E, Pieniądz P, Polak J, Osińska-Jaroszuk M, Paduch R, Pawlikowska-Pawlęga B, Malm A, Jarosz-Wilkołazka A. Modified polymeric biomaterials with antimicrobial and immunomodulating properties. Sci Rep 2024; 14:8025. [PMID: 38580807 PMCID: PMC10997598 DOI: 10.1038/s41598-024-58730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.
Collapse
Affiliation(s)
- Katarzyna Szałapata
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
| | - Mateusz Pięt
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Mordzińska-Rak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Elżbieta Samorek
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Pulawy, Poland
| | - Paulina Pieniądz
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka, 19, 20-033, Lublin, Poland.
| |
Collapse
|
8
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
9
|
Kaveti R, Lee JH, Youn JK, Jang TM, Han WB, Yang SM, Shin JW, Ko GJ, Kim DJ, Han S, Kang H, Bandodkar AJ, Kim HY, Hwang SW. Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307391. [PMID: 37770105 DOI: 10.1002/adma.202307391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.
Collapse
Affiliation(s)
- Rajaram Kaveti
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix Co., Ltd., 2091, Gyeongchung-daero, Bubal-eup, Incheon, Gyeonggi-do, 17336, Republic of Korea
| | - Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
10
|
Najm A, Niculescu AG, Gaspar BS, Grumezescu AM, Beuran M. A Review of Abdominal Meshes for Hernia Repair-Current Status and Emerging Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7124. [PMID: 38005054 PMCID: PMC10672379 DOI: 10.3390/ma16227124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Abdominal hernias are common issues in the clinical setting, burdening millions of patients worldwide. Associated with pain, decreased quality of life, and severe potential complications, abdominal wall hernias should be treated as soon as possible. Whether an open repair or laparoscopic surgical approach is tackled, mesh reinforcement is generally required to ensure a durable hernia repair. Over the years, numerous mesh products have been made available on the market and in clinical settings, yet each of the currently used meshes presents certain limitations that reflect on treatment outcomes. Thus, mesh development is still ongoing, and emerging solutions have reached various testing stages. In this regard, this paper aims to establish an up-to-date framework on abdominal meshes, briefly overviewing currently available solutions for hernia repair and discussing in detail the most recent advances in the field. Particularly, there are presented the developments in lightweight materials, meshes with improved attachment, antimicrobial fabrics, composite and hybrid textiles, and performant mesh designs, followed by a systematic review of recently completed clinical trials.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| |
Collapse
|
11
|
Sun X, Chen Q, Guan AA, Yuan S, Li Z. Multifunctional Fluorinated Lubricant-Infused Poly(4-Hydroxybutyrate) (P4HB) Membranes for Full-Thickness Abdominal Wall Defect Repair. Macromol Biosci 2023; 23:e2300146. [PMID: 37243394 DOI: 10.1002/mabi.202300146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Abdominal wall defect caused by surgical trauma, congenital rupture, or tumor resection may result in hernia formation or even death. Tension-free abdominal wall defect repair by using patches is the gold standard to solve such problems. However, adhesions following patch implantation remain one of the most challenging issues in surgical practice. The development of new kinds of barriers is key to addressing peritoneal adhesions and repairing abdominal wall defects. It is already well recognized that ideal barrier materials need to have good resistance to nonspecific protein adsorption, cell adhesion, and bacterial colonization for preventing the initial development of adhesion. Herein, electrospun poly(4-hydroxybutyrate) (P4HB) membranes infused with perfluorocarbon oil are used as physical barriers. The oil-infused P4HB membranes can greatly prevent protein attachment and reduce blood cell adhesion in vitro. It is further shown that the perfluorocarbon oil-infused P4HB membranes can reduce bacterial colonization. The in vivo study reveals that perfluoro(decahydronaphthalene)-infused P4HB membranes can significantly prevent peritoneal adhesions in the classic abdominal wall defects' model and accelerate defect repair, as evidenced by gross examination and histological evaluation. This work provides a safe fluorinated lubricant-impregnated P4HB physical barrier to inhibit the formation of postoperative peritoneal adhesions and efficiently repair soft-tissue defects.
Collapse
Affiliation(s)
- Xiuxia Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qi Chen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Angelique A Guan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
12
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
13
|
Lanzalaco S, Weis C, Traeger KA, Turon P, Alemán C, Armelin E. Mechanical Properties of Smart Polypropylene Meshes: Effects of Mesh Architecture, Plasma Treatment, Thermosensitive Coating, and Sterilization Process. ACS Biomater Sci Eng 2023; 9:3699-3711. [PMID: 37232093 PMCID: PMC10889589 DOI: 10.1021/acsbiomaterials.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures. In this work, the mechanical performance of plasma-treated and hydrogel-grafted meshes preheated at 37 °C has been compared with standard meshes using bursting and the suture pull out tests. Furthermore, the influence of the mesh architecture, the amount of grafted hydrogel, and the sterilization process on such properties have been examined. Results reveal that although the plasma treatment reduces the bursting and suture pull out forces, the thermosensitive hydrogel improves the mechanical resistance of the meshes. Moreover, the mechanical performance of the meshes coated with the PNIPAAm hydrogel is not influenced by ethylene oxide gas sterilization. Micrographs of the broken meshes evidence the role of the hydrogel as reinforcing coating for the PP filaments. Overall, results confirm that the modification of PP medical textiles with a biocompatible thermosensitive hydrogel do not affect, and even improve, the mechanical requirements necessary for the implantation of these prostheses in vivo.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Christine Weis
- Research and Development Centre, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, Barcelona 08191, Spain
| | - Kamelia A Traeger
- Research and Development Centre, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, Barcelona 08191, Spain
| | - Pau Turon
- Research and Development Centre, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, Barcelona 08191, Spain
| | - Carlos Alemán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Elaine Armelin
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| |
Collapse
|
14
|
Abudalu M, Aqawi M, Sionov RV, Friedman M, Gati I, Munz Y, Ohana G, Steinberg D. Polyglactin 910 Meshes Coated with Sustained-Release Cannabigerol Varnish Inhibit Staphylococcus aureus Biofilm Formation and Macrophage Cytokine Secretion: An In Vitro Study. Pharmaceuticals (Basel) 2023; 16:ph16050745. [PMID: 37242528 DOI: 10.3390/ph16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Synthetic surgical meshes are commonly used in abdominal wall reconstruction surgeries to strengthen a weak abdominal wall. Common mesh-related complications include local infection and inflammatory processes. Because cannabigerol (CBG) has both antibacterial and anti-inflammatory properties, we proposed that coating VICRYL (polyglactin 910) mesh with a sustained-release varnish (SRV) containing CBG would prevent these complications. We used an in vitro infection model with Staphylococcus aureus and an in vitro inflammation model of lipopolysaccharide (LPS)-stimulated macrophages. Meshes coated with either SRV-placebo or SRV-CBG were exposed daily to S. aureus in tryptic soy medium (TSB) or macrophage Dulbecco's modified eagle medium (DMEM). Bacterial growth and biofilm formation in the environment and on the meshes were assessed by changes in optical density, bacterial ATP content, metabolic activity, crystal violet staining, spinning disk confocal microscopy (SDCM), and high-resolution scanning electron microscopy (HR-SEM). The anti-inflammatory effect of the culture medium that was exposed daily to the coated meshes was analyzed by measuring the release of the cytokines IL-6 and IL-10 from LPS-stimulated RAW 264.7 macrophages with appropriate ELISA kits. Additionally, a cytotoxicity assay was performed on Vero epithelial cell lines. We observed that compared with SRV-placebo, the segments coated with SRV-CBG inhibited the bacterial growth of S. aureus in the mesh environment for 9 days by 86 ± 4% and prevented biofilm formation and metabolic activity in the surroundings for 9 days, with respective 70 ± 2% and 95 ± 0.2% reductions. The culture medium that was incubated with the SRV-CBG-coated mesh inhibited LPS-induced secretion of IL-6 and IL-10 from the RAW 264.7 macrophages for up to 6 days without affecting macrophage viability. A partial anti-inflammatory effect was also observed with SRV-placebo. The conditioned culture medium was not toxic to Vero epithelial cells, which had an IC50 of 25 µg/mL for CBG. In conclusion, our data indicate a potential role of coating VICRYL mesh with SRV-CBG in preventing infection and inflammation in the initial period after surgery.
Collapse
Affiliation(s)
- Mustafa Abudalu
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Muna Aqawi
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael Friedman
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Irith Gati
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yaron Munz
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Gil Ohana
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Doron Steinberg
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
15
|
Peng T, Shi Q, Chen M, Yu W, Yang T. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field-A Review. J Funct Biomater 2023; 14:jfb14050243. [PMID: 37233353 DOI: 10.3390/jfb14050243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels exhibit excellent moldability, biodegradability, biocompatibility, and extracellular matrix-like properties, which make them widely used in biomedical fields. Because of their unique three-dimensional crosslinked hydrophilic networks, hydrogels can encapsulate various materials, such as small molecules, polymers, and particles; this has become a hot research topic in the antibacterial field. The surface modification of biomaterials by using antibacterial hydrogels as coatings contributes to the biomaterial activity and offers wide prospects for development. A variety of surface chemical strategies have been developed to bind hydrogels to the substrate surface stably. We first introduce the preparation method for antibacterial coatings in this review, which includes surface-initiated graft crosslinking polymerization, anchoring the hydrogel coating to the substrate surface, and the LbL self-assembly technique to coat crosslinked hydrogels. Then, we summarize the applications of hydrogel coating in the biomedical antibacterial field. Hydrogel itself has certain antibacterial properties, but the antibacterial effect is not sufficient. In recent research, in order to optimize its antibacterial performance, the following three antibacterial strategies are mainly adopted: bacterial repellent and inhibition, contact surface killing of bacteria, and release of antibacterial agents. We systematically introduce the antibacterial mechanism of each strategy. The review aims to provide reference for the further development and application of hydrogel coatings.
Collapse
Affiliation(s)
- Tai Peng
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Qi Shi
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Manlong Chen
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
| | - Wenyi Yu
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Tingting Yang
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
16
|
Serbanescu MA, Apple CG, Fernandez-Moure JS. Role of Resident Microbial Communities in Biofilm-Related Implant Infections: Recent Insights and Implications. Surg Infect (Larchmt) 2023; 24:258-264. [PMID: 37010966 PMCID: PMC11074437 DOI: 10.1089/sur.2023.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The use of medical implants continues to grow as the population ages. Biofilm-related implant infection is the leading cause of medical implant failure and remains difficult to diagnose and treat. Recent technologies have enhanced our understanding of the composition and complex functions of microbiota occupying various body site niches. In this review, we leverage data from molecular sequencing technologies to explore how silent changes in microbial communities from various sites can influence the development of biofilm-related infections. Specifically, we address biofilm formation and recent insights of the organisms involved in biofilm-related implant infections; how composition of microbiomes from skin, nasopharyngeal, and nearby tissue can impact biofilm-formation, and infection; the role of the gut microbiome in implant-related biofilm formation; and therapeutic strategies to mitigate implant colonization.
Collapse
Affiliation(s)
- Mara A. Serbanescu
- Department of Anesthesia, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Camille G. Apple
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph S. Fernandez-Moure
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
17
|
Tian XJ, Wang XM, Lei YH, Wang DC, Wei J, Fu ZJ, Li YJ. The role of prophylactic antibiotics in elective inguinal tension-free hernia repair: A systematic review and meta-analysis. Int Wound J 2023; 20:1191-1204. [PMID: 36268547 PMCID: PMC10031234 DOI: 10.1111/iwj.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Whether to use antibiotics to prevent surgical site infection in elective inguinal tension-free hernia repair has been controversial. To systematically evaluate the effect of prophylactic antibiotic application in elective inguinal tension-free hernia repair, we identified all published randomised controlled trials of the effect of prophylactic antibiotic application on elective inguinal tension-free hernia repair were collected by computer retrieval from the China National Knowledge Infrastructure; VIP Database; Wanfang Database; China Biomedical Literature Database; and PubMed, EMBASE and Cochrane Library databases. Meta-analysis was performed by RevMan 5.3 software. The meta-analysis showed that the total incidence of surgical site infections [P = 0.003] and the incidence of superficial surgical site infections [P = 0.004] in the antibiotic group (AG) were lower than those in the non-antibiotic group (NAG). There was no significant difference in the total incidence of postoperative infections [P = 0.06], deep surgical site infections [P = 0.26] and seroma [P = 0.52] between the AG and the NAG. Based on current evidence, the application of prophylactic antibiotics in elective inguinal tension-free hernia repair can prevent the total incidence of surgical site infections and that of superficial surgical site infections but cannot prevent the total incidence of postoperative infection events, incidence of deep surgical site infections and incidence of seroma.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Xian-Min Wang
- Department of Pediatrics, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Yue-Hua Lei
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Deng-Chao Wang
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Jian Wei
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Zhao-Jun Fu
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| | - Yue-Juan Li
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, People's Republic of China
| |
Collapse
|
18
|
Pouroutzidou GK, Papadopoulou L, Lazaridou M, Tsachouridis K, Papoulia C, Patsiaoura D, Tsamesidis I, Chrissafis K, Vourlias G, Paraskevopoulos KM, Anastasiou AD, Bikiaris DN, Kontonasaki E. Composite PLGA–Nanobioceramic Coating on Moxifloxacin-Loaded Akermanite 3D Porous Scaffolds for Bone Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030819. [PMID: 36986685 PMCID: PMC10053907 DOI: 10.3390/pharmaceutics15030819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Silica-based ceramics doped with calcium and magnesium have been proposed as suitable materials for scaffold fabrication. Akermanite (Ca2MgSi2O7) has attracted interest for bone regeneration due to its controllable biodegradation rate, improved mechanical properties, and high apatite-forming ability. Despite the profound advantages, ceramic scaffolds provide weak fracture resistance. The use of synthetic biopolymers such as poly(lactic-co-glycolic acid) (PLGA) as coating materials improves the mechanical performance of ceramic scaffolds and tailors their degradation rate. Moxifloxacin (MOX) is an antibiotic with antimicrobial activity against numerous aerobic and anaerobic bacteria. In this study, silica-based nanoparticles (NPs) enriched with calcium and magnesium, as well as copper and strontium ions that induce angiogenesis and osteogenesis, respectively, were incorporated into the PLGA coating. The aim was to produce composite akermanite/PLGA/NPs/MOX-loaded scaffolds through the foam replica technique combined with the sol–gel method to improve the overall effectiveness towards bone regeneration. The structural and physicochemical characterizations were evaluated. Their mechanical properties, apatite forming ability, degradation, pharmacokinetics, and hemocompatibility were also investigated. The addition of NPs improved the compressive strength, hemocompatibility, and in vitro degradation of the composite scaffolds, resulting in them keeping a 3D porous structure and a more prolonged release profile of MOX that makes them promising for bone regeneration applications.
Collapse
Affiliation(s)
- Georgia K. Pouroutzidou
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.K.P.); (E.K.)
| | - Lambrini Papadopoulou
- School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Lazaridou
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Tsachouridis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Chrysanthi Papoulia
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Patsiaoura
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Tsamesidis
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Vourlias
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos M. Paraskevopoulos
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios D. Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Dimitrios N. Bikiaris
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.K.P.); (E.K.)
| |
Collapse
|
19
|
Birolini C, Faro Junior MP, Terhoch CB, de Miranda JS, Tanaka EY, Utiyama EM. Microbiology of chronic mesh infection. HERNIA : THE JOURNAL OF HERNIAS AND ABDOMINAL WALL SURGERY 2023:10.1007/s10029-023-02747-6. [PMID: 36757611 DOI: 10.1007/s10029-023-02747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/15/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE Mesh infection following hernia repair is one of the most dreaded complications of hernia surgery. Mesh sinus, infected seromas, mesh extrusion, and mesh-related enteric fistulas are common complications associated with synthetic mesh. This study aimed to review the microbiota of mesh infection in 100 patients submitted to mesh explantation. METHODS We reviewed the charts of patients presenting with a history of mesh infection lasting or arising six months or more after mesh placement. All patients who submitted to abdominal wall repair with complete removal of an infected mesh and presenting a positive culture were included. The microbiology analysis was based on positive cultures obtained from the fluids and tissues surrounding the mesh or positive cultures of the mesh. Microorganisms were divided into gram-positive or gram-negative, aerobic or anaerobic, and fungi. RESULTS Pure aerobic gram-positive cultures were encountered in 50% of the patients, followed by a combination of aerobic gram-positive/gram-negative (8%) and pure gram-negative cultures (6%). Anaerobes were recovered from 31% of patients. Fungi were recovered from 6%. Staphylococcus aureus was identified in 64% of cultures, with methicillin-resistant Staphylococcus aureus present in 42% and methicillin-sensitive Staphylococcus aureus in 22%. Among aerobic gram-negative infections, six (17%) were caused by multi-resistant bacteria, including Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii, Klebsiella pneumoniae complex, and Enterobacter cloacae complex. CONCLUSION Staphylococcus aureus plays a significant role in the pathogenesis of synthetic mesh infection. Staphylococcus aureus, isolated in 64% of cultures, accounted for most single bacterial infections and was the prevalent germ in mesh sinus and infected seromas. Gram-negative infection occurred in 35%. Anaerobes occurred in 31%, commonly encountered in polymicrobial infections. Most fungi cultures happened in patients with enteric fistulas.
Collapse
Affiliation(s)
- C Birolini
- General and Trauma Surgery, Abdominal Wall and Hernia Repair Unit, Hospital das Clinicas, Department of Surgery, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, São Paulo, 05403-000, Brazil.
| | - M P Faro Junior
- General and Trauma Surgery, Abdominal Wall and Hernia Repair Unit, Hospital das Clinicas, Department of Surgery, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, São Paulo, 05403-000, Brazil
| | - C B Terhoch
- General and Trauma Surgery, Abdominal Wall and Hernia Repair Unit, Hospital das Clinicas, Department of Surgery, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, São Paulo, 05403-000, Brazil
| | - J S de Miranda
- General and Trauma Surgery, Abdominal Wall and Hernia Repair Unit, Hospital das Clinicas, Department of Surgery, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, São Paulo, 05403-000, Brazil
| | - E Y Tanaka
- General and Trauma Surgery, Abdominal Wall and Hernia Repair Unit, Hospital das Clinicas, Department of Surgery, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, São Paulo, 05403-000, Brazil
| | - E M Utiyama
- General and Trauma Surgery, Abdominal Wall and Hernia Repair Unit, Hospital das Clinicas, Department of Surgery, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, São Paulo, 05403-000, Brazil
| |
Collapse
|
20
|
Zou Z, Cao J, Zhu Y, Ma Q, Chen J. Treatment of mesh infection after inguinal hernia repair: 3-year experience with 120 patients. Hernia 2022:10.1007/s10029-022-02702-x. [PMID: 36508042 DOI: 10.1007/s10029-022-02702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Mesh infection is a devastating complication of sterile hernia repair surgery. This study was performed to assess the short- and long-term outcomes following treatment for mesh infection after inguinal hernia repair. METHODS This single-center retrospective study included all patients who developed mesh infection after inguinal hernia repair from January 2018 to December 2020. Patient demographics, mesh infection characteristics, microbiology, features of surgery, short- and long-term outcomes, and follow-up data were analyzed. RESULTS In total, 120 patients (8 women, 112 men; mean age, 54.4 years; mean body mass index, 24.8 kg/m2) were treated for mesh infection. The cultures were positive in 88 patients; 62.5% of these were positive for Staphylococcus aureus. Laparoscopic exploration was performed in 108 patients. Seventy patients underwent complete removal of infected mesh, and 50 underwent partial removal. During the short-term follow-up, 11 patients developed a minor wound infection and were treated with dressings and antibiotics, 1 developed a wound infection requiring debridement, 30 developed seromas, and 3 developed hematomas that did not require surgical intervention. During the mean follow-up of 39.1 months, 4 patients developed hernia recurrence, 2 experienced chronic pain, and 23 developed recurrent infection requiring reoperation in the partial mesh removal group (in contrast, only 4 patients in the complete mesh removal group developed recurrent infection, with a statistically significant difference). CONCLUSION The outcome of mesh infection after inguinal hernia repair treated by mesh removal is satisfactory. Systematic individualized treatment by experienced experts based on the patient's previous repair technique, implanted mesh, and physical condition is recommended.
Collapse
|
21
|
In Vitro Cytotoxicity, Colonisation by Fibroblasts and Antimicrobial Properties of Surgical Meshes Coated with Bacterial Cellulose. Int J Mol Sci 2022; 23:ijms23094835. [PMID: 35563224 PMCID: PMC9105287 DOI: 10.3390/ijms23094835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Hernia repairs are the most common abdominal wall elective procedures performed by general surgeons. Hernia-related postoperative infective complications occur with 10% frequency. To counteract the risk of infection emergence, the development of effective, biocompatible and antimicrobial mesh adjuvants is required. Therefore, the aim of our in vitro investigation was to evaluate the suitability of bacterial cellulose (BC) polymer coupled with gentamicin (GM) antibiotic as an absorbent layer of surgical mesh. Our research included the assessment of GM-BC-modified meshes’ cytotoxicity against fibroblasts ATCC CCL-1 and a 60-day duration cell colonisation measurement. The obtained results showed no cytotoxic effect of modified meshes. The quantified fibroblast cells levels resembled a bimodal distribution depending on the time of culturing and the type of mesh applied. The measured GM minimal inhibitory concentration was 0.47 µg/mL. Results obtained in the modified disc-diffusion method showed that GM-BC-modified meshes inhibited bacterial growth more effectively than non-coated meshes. The results of our study indicate that BC-modified hernia meshes, fortified with appropriate antimicrobial, may be applied as effective implants in hernia surgery, preventing risk of infection occurrence and providing a high level of biocompatibility with regard to fibroblast cells.
Collapse
|
22
|
Żywicka B, Struszczyk MH, Paluch D, Kostanek K, Krucińska I, Kowalski K, Kopias K, Rybak Z, Szymonowicz M, Gutowska A, Kubiak P. Design of New Concept of Knitted Hernia Implant. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2671. [PMID: 35408005 PMCID: PMC9000569 DOI: 10.3390/ma15072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
A knitted implant, unilaterally modified with plasma-assisted chemical-vapor deposition (PACVD), and with a nano-layer of fluorine derivative supplementation, for reducing the risk of complications related to adhesions, and the formation of a thick postoperative scar was prepared. The biological evaluation of designed or modified medical devices is the main aspect of preclinical research. If such studies use a medical device with prolonged contact with connective tissue (more than 30 days), biocompatibility studies require a safety assessment in terms of toxicity in vitro and in vivo, allergenicity, irritation, and cancerogenicity, reproductive and developmental toxicity. The ultimate aspect of biological evaluation is biofunctionality, and evaluation of the local tissue response after implantation, resulting in the determination of all aspects of local biocompatibility with the implemented synthetic material. The implantation of PACVD-modified materials in muscle allows us to estimate the local irritation effect on the connective tissue, determining the risk of scar formation, whereas implantation of the above-mentioned knitted fabric into the abdominal wall, assists with evaluating the risk of fistula formation-the main post-surgical complications. The research aimed to evaluate the local reaction of the soft tissues after the implantation of the knitted implants modified with PACVD of the fluoropolymer in the nanostuctural form. The local effect that occurred during the implantation of the designed implants was quantitatively and qualitatively evaluated when PACVD unmodified (reference), and modified medical devices were implanted in the abdominal cavity (intra-abdominal position) for 12 or into the muscles for 56 weeks. The comparative semi-quantitative histological assessment included the severity of inflammatory cells (multinucleated cells, lymphocytes, plasma cells, macrophages, giant cells) and the tissue response (necrosis, neovascularization, fibrosis, and fat infiltration) on a five-point scale. The knitted implants modified by PACVD did not indicate cumulative tissue response when they were implanted in the muscle and intra-abdominally with direct contact with the viscera. They reduced local tissue reaction (score -2.71 after 56 weeks of the implantation) and internal organ adhesion (irritation score -2.01 and adhesion susceptibility -0.3 after 12 weeks of the implantation) compared with the reference (unmodified by PACVD) knitted implant, which had an identical structure and was made of the same source.
Collapse
Affiliation(s)
- Bogusława Żywicka
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Marcin Henryk Struszczyk
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| | - Danuta Paluch
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Krzysztof Kostanek
- Łukasiewicz Research Network—Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland;
| | - Izabella Krucińska
- Department of Material and Commodity Sciences and Textile Metrology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Krzysztof Kowalski
- Department of Knitting Technology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland; (K.K.); (K.K.)
| | - Kazimierz Kopias
- Department of Knitting Technology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland; (K.K.); (K.K.)
| | - Zbigniew Rybak
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Maria Szymonowicz
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Agnieszka Gutowska
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| | - Paweł Kubiak
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| |
Collapse
|
23
|
Romero-Velez G, Lima DL, Pereira X, Farber BA, Friedmann P, Malcher F, Sreeramoju P. Risk Factors for Surgical Site Infection in the Undeserved Population After Ventral Hernia Repair: A 3936 Patient Single-Center Study Using National Surgical Quality Improvement Project. J Laparoendosc Adv Surg Tech A 2022; 32:948-954. [PMID: 35319294 DOI: 10.1089/lap.2021.0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Ventral hernia repair (VHR) is one of the most common surgical procedures performed in the United States. Surgical site infections (SSI) carry significant morbidity for the patient and pose a very challenging problem for the surgeon, associated with up to 6.6% of cases. Thus, surgeons should be well versed in the risk factors implicated in SSI after VHR. Given the high burden of diabetes, obesity, and smoking in our patient population, we sought to study the rate of SSI and the risk factors that led to SSI in our population. Study Design: This is a retrospective study using the American College of Surgeons-National Surgical Quality Improvement Project (ACS-NSQIP) database for the years 2014-2019. We identified patients who underwent VHR at a single institution in the Bronx, New York. The rate of SSI was calculated, and then, risk factors for SSI were identified using logistic regression analysis. Results: A total of 3936 patients underwent VHR. Incisional hernias made up 41% of the cohort, and there were 37.4% laparoscopic repairs. During the 30-day follow-up, SSI was identified in 101 patients (2.6%). Factors associated with SSI include emergent surgery (adjusted odds ratio [aOR] = 2.57), body mass index >35 kg/m2 (aOR = 2.38), insulin-dependent diabetes mellitus (aOR = 2.36), and incisional hernia (aOR = 1.81). In addition, a laparoscopic approach was found to be a protective factor (aOR = 0.43, 95% confidence interval 0.25-0.75). Surprisingly, different from other studies, smoking cigarettes was not associated with SSI in our cohort. Conclusions: The rate of SSI after VHR in our institution is 2.6%, which is within that reported in the literature. Most of the variables associated with SSI are modifiable and are similar to those previously reported. Laparoscopic repairs appear to be protective for its occurrence.
Collapse
Affiliation(s)
| | - Diego L Lima
- Department of Surgery, Montefiore Medical Center, Bronx, New York, USA
| | - Xavier Pereira
- Department of Surgery, Montefiore Medical Center, Bronx, New York, USA
| | - Benjamin A Farber
- Department of Surgery, Montefiore Medical Center, Bronx, New York, USA
| | | | - Flavio Malcher
- Department of Surgery, NYU Langone Health, New York, New York, USA
| | | |
Collapse
|
24
|
Mirel S, Pusta A, Moldovan M, Moldovan S. Antimicrobial Meshes for Hernia Repair: Current Progress and Perspectives. J Clin Med 2022; 11:jcm11030883. [PMID: 35160332 PMCID: PMC8836564 DOI: 10.3390/jcm11030883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the development of biomaterials have given rise to new options for surgery. New-generation medical devices can control chemical breakdown and resorption, prevent post-operative adhesion, and stimulate tissue regeneration. For the fabrication of medical devices, numerous biomaterials can be employed, including non-degradable biomaterials (silicone, polypropylene, expanded polytetrafluoroethylene) or biodegradable polymers, including implants and three-dimensional scaffolds for tissue engineering, which require particular physicochemical and biological properties. Based on the combination of new generation technologies and cell-based therapies, the biocompatible and bioactive properties of some of these medical products can lead to progress in the repair of injured or harmed tissue and in tissue regeneration. An important aspect in the use of these prosthetic devices is the associated infection risk, due to the medical complications and socio-economic impact. This paper provides the latest achievements in the field of antimicrobial surgical meshes for hernia repair and discusses the perspectives in the development of these innovative biomaterials.
Collapse
Affiliation(s)
- Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Alexandra Pusta
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Correspondence:
| | - Mihaela Moldovan
- Pediatric Surgery Department, Emergency Clinical Children’s Hospital, 400370 Cluj-Napoca, Romania;
| | - Septimiu Moldovan
- Surgery Department, Prof. Dr. O. Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| |
Collapse
|
25
|
Brennan K, Patel P, Drohan A, Minor S. Biologic mesh infection with Candida albicans after abdominal wall reconstruction with calcium sulphate antibiotic beads: A case report. IDCases 2021; 26:e01351. [PMID: 34877259 PMCID: PMC8633862 DOI: 10.1016/j.idcr.2021.e01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mesh infection after abdominal wall reconstruction is a rare and usually devastating complication. Herein, we describe a unique case of a delayed and non-lethal Candida albicans mesh infection after abdominal wall reconstruction with placement of a biologic graft impregnated with antibiotics. Mesh explantation was not required, and the wound healed by secondary intention. This work suggests that locally delivered antibiotics may change the culprit microbes of skin infections to more unusual species such as Candida spp. Future research is required to study the effect of including antifungal agents in the locally delivered antimicrobials for abdominal wall reconstructions with biological meshes.
Collapse
Affiliation(s)
- Kelly Brennan
- Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pooja Patel
- Department of General Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ashley Drohan
- Department of General Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Samuel Minor
- Department of General Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
26
|
Surgical mesh coatings for infection control and temperature sensing: An in-vitro investigation. OPENNANO 2021. [DOI: 10.1016/j.onano.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
28
|
Luo Y, Wang C. The clinical characteristics and treatment of mesh infection after laparoscopic inguinal hernia repair: Two cases report and literature review. Asian J Surg 2021; 44:1449-1452. [PMID: 34384673 DOI: 10.1016/j.asjsur.2021.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yun Luo
- Department of General Surgery, Beibei Traditional Chinese Medical Hospital, Chongqing, China.
| | - Chongshu Wang
- Department of General Surgery, Nanchong Oriental Hospital, Nanchong, Sichuan Province, China.
| |
Collapse
|
29
|
Xu X, Zhan M, Li X, Chen T, Yang L. In vivo Analysis of the Resistance of the Meshes to Escherichia coli Infection. Front Surg 2021; 8:644227. [PMID: 34250004 PMCID: PMC8264128 DOI: 10.3389/fsurg.2021.644227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
Background: The mesh infection is mostly related to the gram-negative bacteria, such as Escherichia coli (E. coli) for emergency surgery of incarcerated hernia. However, few study investigated the effects of E. coli concentration, mesh materials and antibiotic prophylaxis on mesh infection after hernioplasty. The aim of this study was to evaluate the bacterial resistance to E. coli for three different materials of mesh, and to measure the minimum E. coli concentration for mesh infection with and without antibiotic prophylaxis in a rat model. Methods: Three types of mesh (polytetrafluoroethylene, polypropylene, and biologic meshes) were used in the repair of an acute ventral hernia rat model in the setting of different concentrations of E. coli loads and antibiotics. At the 8th day after surgery, mesh samples were sent for microbiologic and histologic analyses. Results: The positive rates of bacterial culture increased with E. coli concentration. The biologic mesh showed better bacterial resistance compared to polytetrafluoroethylene mesh and polypropylene mesh when the concentration of E. coli ranges from 106 CFU/ml to 108 CFU/ml (P = 0.002 and P = 0.029, respectively). Prophylactical ceftriaxone treatment could not decrease the colonization rate of E. coli at 106 CFU/ml or 108 CFU/ml in each group (P > 0.05). The scores of neovascularization in polypropylene mesh and biologic mesh were similar, which was higher than that of polytetrafluoroethylene mesh (P < 0.05). Compared with other meshes, biologic mesh showed better tolerance to 106 CFU/ml E. coli with respect to inflammation, depth of inflammation, neovascularization, cellular repopulation and foreign body giant cells. Conclusion: The biologic mesh had better E. coli resistance compared to polytetrafluoroethylene mesh and polypropylene mesh when the E. coli concentration is higher than 106 CFU/ml in rats. Antibiotic prophylaxis was useful when the contamination was not particularly severe.
Collapse
Affiliation(s)
- Xinsen Xu
- Department of Biliary-Pancreatic Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Robinson J, Sulzer JK, Motz B, Baker EH, Martinie JB, Vrochides D, Iannitti DA. Long-Term Clinical Outcomes of an Antibiotic-Coated Non-Cross-linked Porcine Acellular Dermal Graft for Abdominal Wall Reconstruction for High-Risk and Contaminated Wounds. Am Surg 2021; 88:1988-1995. [PMID: 34053226 DOI: 10.1177/00031348211023392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abdominal wall reconstruction in high-risk and contaminated cases remains a challenging surgical dilemma. We report long-term clinical outcomes for a rifampin-/minocycline-coated acellular dermal graft (XenMatrix™ AB) in complex abdominal wall reconstruction for patients with a prior open abdomen or contaminated wounds. METHODS Patients undergoing abdominal wall reconstruction at our institution at high risk for surgical site occurrence and reconstructed with XenMatrix™ AB with intent-to-treat between 2014 and 2017 were included. Demographics, operative characteristics, and outcomes were collected. The primary outcome was hernia recurrence. The secondary outcomes included length of stay, surgical site occurrence, readmission, morbidity, and mortality. RESULTS Twenty-two patients underwent abdominal wall reconstruction using XenMatrix™ AB during the study period. Two patients died while inpatient from progression of their comorbid diseases and were excluded. Sixty percent of patients had an open abdomen at the time of repair. All patients were from modified Ventral Hernia Working Group class 2 or 3. There were a total of four 30-day infectious complications including superficial cellulitis/fat necrosis (15%) and one intraperitoneal abscess (5%). No patients required reoperation or graft excision. Median clinical follow-up was 38.2 months with a mean of 35.2 +/- 18.5 months. Two asymptomatic recurrences and one symptomatic recurrence were noted during this period with one planning for elective repair of an eventration. Follow-up was extended by phone interview which identified no additional recurrences at a median of 45.5 and mean of 50.5 +/-12.7 months. CONCLUSION We present long-term outcomes for patients with high-risk and contaminated wounds who underwent abdominal wall reconstruction reinforced with XenMatrix™ AB to achieve early, permanent abdominal closure. Acceptable outcomes were noted.
Collapse
Affiliation(s)
- Jordan Robinson
- Division of Hepatopancreaticobiliary Surgery, Department of Surgery, 22442Atrium Health-Carolinas Medical Center, Charlotte, NC, USA
| | - Jesse K Sulzer
- Division of Hepatopancreaticobiliary Surgery, Department of Surgery, 22442Atrium Health-Carolinas Medical Center, Charlotte, NC, USA
| | - Benjamin Motz
- Division of Hepatopancreaticobiliary Surgery, Department of Surgery, 22442Atrium Health-Carolinas Medical Center, Charlotte, NC, USA
| | - Erin H Baker
- Division of Hepatopancreaticobiliary Surgery, Department of Surgery, 22442Atrium Health-Carolinas Medical Center, Charlotte, NC, USA
| | - John B Martinie
- Division of Hepatopancreaticobiliary Surgery, Department of Surgery, 22442Atrium Health-Carolinas Medical Center, Charlotte, NC, USA
| | - Dionisios Vrochides
- Division of Hepatopancreaticobiliary Surgery, Department of Surgery, 22442Atrium Health-Carolinas Medical Center, Charlotte, NC, USA
| | - David A Iannitti
- Division of Hepatopancreaticobiliary Surgery, Department of Surgery, 22442Atrium Health-Carolinas Medical Center, Charlotte, NC, USA
| |
Collapse
|
31
|
Serrano-Aroca Á, Pous-Serrano S. Prosthetic meshes for hernia repair: State of art, classification, biomaterials, antimicrobial approaches, and fabrication methods. J Biomed Mater Res A 2021; 109:2695-2719. [PMID: 34021705 DOI: 10.1002/jbm.a.37238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Worldwide, hernia repair represents one of the most frequent surgical procedures encompassing a global market valued at several billion dollars. This type of surgery usually requires the implantation of a mesh that needs the appropriate chemical, physical and biological properties for the type of repair. This review thus presents a description of the types of hernias, current hernia repair methods, and the state of the art of prosthetic meshes for hernia repair providing the most important meshes used in clinical practice by surgeons working in this area classified according to their biological or chemical nature, morphology and whether bioabsorbable or not. We emphasise the importance of surgical site infection in herniatology, how to deal with this microbial problem, and we go further into the future research lines on the production of advanced antimicrobial meshes to improve hernia repair and prevent microbial infections, including multidrug-resistant strains. A great deal of progress has been made in this biomedical field in the last decade. However, we are still far from an ideal antimicrobial mesh that can also provide excellent integration to the abdominal wall, mechanical performance, low visceral adhesion and minimal inflammatory or foreign body reactions, among many other problems.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Salvador Pous-Serrano
- Surgical Unit of Abdominal Wall, Department of General and Digestive Surgery, La Fe University Hospital, Valencia, Spain
| |
Collapse
|
32
|
Fernandez-Moure JS, Van Eps JL, Scherba JC, Haddix S, Livingston M, Bryan NS, Cantu C, Valson C, Taraballi F, Kaplan LJ, Olsen R, Tasciotti E. Polyester Mesh Functionalization with Nitric Oxide-Releasing Silica Nanoparticles Reduces Early Methicillin-Resistant Staphylococcus aureus Contamination. Surg Infect (Larchmt) 2021; 22:910-922. [PMID: 33944615 DOI: 10.1089/sur.2020.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Infected hernia mesh is a cause of post-operative morbidity. Nitric oxide (NO) plays a key role in the endogenous immune response to infection. We sought to study the efficacy of a NO-releasing mesh against methicillin-resistant Staphylococcus aureus (MRSA). We hypothesized that a NO-releasing polyester mesh would decrease MRSA colonization and proliferation. Materials and Methods: A composite polyester mesh functionalized with N-diazeniumdiolate silica nanoparticles was synthesized and characterized. N-diazeniumdiolate silica parietex composite (NOSi) was inoculated with 104,106, or 108 colony forming units (CFUs) of MRSA and a dose response was quantified in a soy tryptic broth assay. Utilizing a rat model of contaminated hernia repair, implanted mesh was inoculated with MRSA, recovered, and CFUs were quantified. Clinical metrics of erythema, mesh contracture, and adhesion severity were then characterized. Results: Methicillin-resistant Staphylococcus aureus CFUs demonstrated a dose-dependent response to NOSi in vitro. In vivo, quantified CFUs showed a dose-dependent response to NOSi-PCO. Treated rats had fewer severe adhesions, less erythema, and reduced mesh contracture. Conclusions: We demonstrate the efficacy of a NO-releasing mesh to treat MRSA in vitro and in vivo. Creation of a novel class of antimicrobial prosthetics offers new strategies for reconstructing contaminated abdominal wall defects and other procedures that benefit from deploying synthetic prostheses in contaminated environments.
Collapse
Affiliation(s)
| | - Jeffrey L Van Eps
- Department of Surgery, Section of Colon and Rectal Surgery UT Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Jacob C Scherba
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Seth Haddix
- Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | | | - Chandni Valson
- Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Lewis J Kaplan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Randall Olsen
- Houston Methodist Research Institute, Houston, Texas, USA.,Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | | |
Collapse
|
33
|
Zanatta M, Brancato G, Basile G, Basile F, Donati M. Abdominal wall mesh infection: a diagnostic and therapeutic flowchart proposal. Eur Surg 2021. [DOI: 10.1007/s10353-021-00705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Buell JF, Flaris AN, Raju S, Hauch A, Darden M, Parker GG. Long-Term Outcomes in Complex Abdominal Wall Reconstruction Repaired With Absorbable Biologic Polymer Scaffold (Poly-4-Hydroxybutyrate). ANNALS OF SURGERY OPEN 2021; 2:e032. [PMID: 37638247 PMCID: PMC10455061 DOI: 10.1097/as9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/23/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction After promising early outcomes in the use of absorbable biologic mesh for complex abdominal wall reconstruction, significant criticism has been raised over the longevity of these repairs after its 2-year resorption profile. Methods This is the long-term (5-year) follow-up analysis of our initial experience with the absorbable polymer scaffold poly-4-hydroxybutyrate (P4HB) mesh compared with a consecutive contiguous group treated with porcine cadaveric mesh for complex abdominal wall reconstructions. Our clinical analysis was performed using Stata 14.2 and Excel 16.16.23. Results After a 5-year follow-up period, the P4HB group (n = 31) experienced lower rates of reherniation (12.9% vs 38.1%; P = 0.017) compared with the porcine cadaveric mesh group (n = 42). The median interval in months to recurrent herniation was similar between groups (24.3 vs 20.8; P = 0.700). Multivariate logistic regression analysis on long-term outcomes identified smoking (P = 0.004), African American race (P = 0.004), and the use of cadaveric grafts (P = 0.003) as risks for complication while smoking (P = 0.034) and the use of cadaveric grafts (P = 0.014) were identified as risks for recurrence. The long-term cost analysis showed that P4HB had a $10,595 per case costs savings over porcine cadaveric mesh. Conclusions Our study identified the superior outcomes in clinical performance and a value-based benefit of absorbable biologic P4HB scaffold persisted after the 2-year resorption timeframe. Data analysis also confirmed the use of porcine cadaveric grafts independently contributed to the incidence of complications and recurrences.
Collapse
Affiliation(s)
- Joseph F. Buell
- From the Department of Surgery, Mission Health, HCA North Carolina, MAHEC, University of North Carolina, Asheville, NC
| | | | - Sukreet Raju
- Department of Surgery, Tulane University, New Orleans, LA
| | - Adam Hauch
- Department of Surgery, University of California, San Diego, CA
| | - Michael Darden
- Carey Business School, Johns Hopkins University, Baltimore, MD
| | - Geoff G. Parker
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| |
Collapse
|
35
|
Pérez-Köhler B, Benito-Martínez S, García-Moreno F, Rodríguez M, Pascual G, Bellón JM. Antibacterial polypropylene mesh fixation with a cyanoacrylate adhesive improves its response to infection. Surgery 2021; 170:507-515. [PMID: 33612292 DOI: 10.1016/j.surg.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Antibacterial meshes for hernia repair seek to avoid infection in the patient. As these biomaterials are especially prone to bacteria settling at their sutured borders, this study examines whether the use of a cyanoacrylate tissue adhesive could improve mesh behavior at the fixation zones. METHODS First, antibacterial polypropylene meshes were prepared by soaking in 0.05% chlorhexidine, and the response of n-hexyl cyanoacrylate to contamination with Staphylococcus aureus ATCC25923 was assessed in vitro. Then, in a preclinical model, partial defects (5 x 3 cm) were created in the abdominal wall of 18 New Zealand White rabbits and repaired with mesh to establish the following 3 study groups: (1) mesh without chlorhexidine fixed with cyanoacrylate, (2) antibacterial mesh fixed with sutures, and (3) antibacterial mesh fixed with cyanoacrylate (n = 6 each). The implants were inoculated with 106 CFU/mL of S aureus. At 14 days after surgery, bacterial adhesion to the implant and its integration within host tissue were determined through microbiological, histological and immunohistochemical procedures. RESULTS As observed in vitro, the cyanoacrylate gave rise to a 1.5-cm bacteria-free margin around the prosthetic mesh. In vivo, the tissue adhesive prevented bacterial adhesion to the fixation zones, reducing infection of chlorhexidine-free meshes and optimizing the efficacy of the antibacterial meshes compared with those fixed with sutures. CONCLUSION These findings indicated that cyanoacrylate fixation does not affect mesh integration into the host tissue. Likewise, the antibacterial behavior and tissue response of a chlorhexidine-treated polypropylene mesh is improved when cyanoacrylate is used for its fixation.
Collapse
Affiliation(s)
- Bárbara Pérez-Köhler
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain; Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Selma Benito-Martínez
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - Francisca García-Moreno
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - Marta Rodríguez
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - Gemma Pascual
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain; Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.
| | - Juan Manuel Bellón
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| |
Collapse
|
36
|
Fan X, Yahia L, Sacher E. Antimicrobial Properties of the Ag, Cu Nanoparticle System. BIOLOGY 2021; 10:137. [PMID: 33578705 PMCID: PMC7916421 DOI: 10.3390/biology10020137] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Microbes, including bacteria and fungi, easily form stable biofilms on many surfaces. Such biofilms have high resistance to antibiotics, and cause nosocomial and postoperative infections. The antimicrobial and antiviral behaviors of Ag and Cu nanoparticles (NPs) are well known, and possible mechanisms for their actions, such as released ions, reactive oxygen species (ROS), contact killing, the immunostimulatory effect, and others have been proposed. Ag and Cu NPs, and their derivative NPs, have different antimicrobial capacities and cytotoxicities. Factors, such as size, shape and surface treatment, influence their antimicrobial activities. The biomedical application of antimicrobial Ag and Cu NPs involves coating onto substrates, including textiles, polymers, ceramics, and metals. Because Ag and Cu are immiscible, synthetic AgCu nanoalloys have different microstructures, which impact their antimicrobial effects. When mixed, the combination of Ag and Cu NPs act synergistically, offering substantially enhanced antimicrobial behavior. However, when alloyed in Ag-Cu NPs, the antimicrobial behavior is even more enhanced. The reason for this enhancement is unclear. Here, we discuss these results and the possible behavior mechanisms that underlie them.
Collapse
Affiliation(s)
- Xinzhen Fan
- Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada; (X.F.); (L.Y.)
| | - L’Hocine Yahia
- Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada; (X.F.); (L.Y.)
| | - Edward Sacher
- Département de Génie Physique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
37
|
Liu W, Xie Y, Zheng Y, He W, Qiao K, Meng H. Regulatory science for hernia mesh: Current status and future perspectives. Bioact Mater 2021; 6:420-432. [PMID: 32995670 PMCID: PMC7490592 DOI: 10.1016/j.bioactmat.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022] Open
Abstract
Regulatory science for medical devices aims to develop new tools, standards and approaches to assess the safety, effectiveness, quality and performance of medical devices. In the field of biomaterials, hernia mesh is a class of implants that have been successfully translated to clinical applications. With a focus on hernia mesh and its regulatory science system, this paper collected and reviewed information on hernia mesh products and biomaterials in both Chinese and American markets. The current development of regulatory science for hernia mesh, including its regulations, standards, guidance documents and classification, and the scientific evaluation of its safety and effectiveness was first reported. Then the research prospect of regulatory science for hernia mesh was discussed. New methods for the preclinical animal study and new tools for the evaluation of the safety and effectiveness of hernia mesh, such as computational modeling, big data platform and evidence-based research, were assessed. By taking the regulatory science of hernia mesh as a case study, this review provided a research basis for developing a regulatory science system of implantable medical devices, furthering the systematic evaluation of the safety and effectiveness of medical devices for better regulatory decision-making. This was the first article reviewing the regulatory science of hernia mesh and biomaterial-based implants. It also proposed and explained the concepts of evidence-based regulatory science and technical review for the first time.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
- Center for Medical Device Evaluation, National Medical Products Administration, Intellectual Property Publishing House Mansion, Qixiang Road, Haidian District, Beijing, China
| | - Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Wei He
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Kun Qiao
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| |
Collapse
|
38
|
Mori H, Naka R, Fujita M, Hara M. Nylon mesh-based 3D scaffolds for the adherent culture of neural stem/progenitor cells. J Biosci Bioeng 2021; 131:442-452. [PMID: 33461887 DOI: 10.1016/j.jbiosc.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
We developed novel scaffolds for the adherent culture of neural stem/progenitor cells on the woven mesh. Nylon mesh (NM) is an inert material for cell adhesion. We prepared polyacrylic acid-grafted nylon mesh (PAA-NM) by graft polymerization method using gamma-irradiation. Matrigel was covalently immobilized to the carboxyl groups in PAA-NM by chemical conjugation using 1-ethyl-3-(3-dimethylamino propyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to prepare the Matrigel-immobilized PAA-grafted nylon mesh (M-PAA-NM). Cell adhesion property of mouse neural stem/progenitor cells (NSPCs) between the NM, PAA-NM, and M-PAA-NM was different from each other. The neurosphere-like clusters of NSPCs were weakly bound to NM and PAA-NM without spreading. The NSPCs were firmly adhered to, spread, and covered the surface of M-PAA-NM. We evaluated the state of differentiation by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immnocytochemistry. A neuronal marker β III tubulin, a glial marker glial fibrillary acidic protein (GFAP) and a mature glial marker S100β were expressed at a low level in the cultured cells while immature NSPCs marker Nestin and Sox2 were slightly lower without significant statistical difference. We concluded that the M-PAA-NM is a good substrate for adherent culture of NSPCs without triggering their cell differentiation, and also provides the maintenance of their growth with fewer passages in comparison with the conventional suspension culture of NSPCs in neurospheres.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ryosuke Naka
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Masanori Fujita
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Masayuki Hara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
39
|
Next-generation surgical meshes for drug delivery and tissue engineering applications: materials, design and emerging manufacturing technologies. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00108-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Surgical meshes have been employed in the management of a variety of pathological conditions including hernia, pelvic floor dysfunctions, periodontal guided bone regeneration, wound healing and more recently for breast plastic surgery after mastectomy. These common pathologies affect a wide portion of the worldwide population; therefore, an effective and enhanced treatment is crucial to ameliorate patients’ living conditions both from medical and aesthetic points of view. At present, non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia, pelvic floor dysfunctions and guided bone regeneration, with polypropylene and poly tetrafluoroethylene being the most common. Biological prostheses, such as surgical grafts, have been employed mainly for breast plastic surgery and wound healing applications. Despite the advantages of mesh implants to the treatment of these conditions, there are still many drawbacks, mainly related to the arising of a huge number of post-operative complications, among which infections are the most common. Developing a mesh that could appropriately integrate with the native tissue, promote its healing and constructive remodelling, is the key aim of ongoing research in the area of surgical mesh implants. To this end, the adoption of new biomaterials including absorbable and natural polymers, the use of drugs and advanced manufacturing technologies, such as 3D printing and electrospinning, are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice. The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes, the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.
Graphic abstract
Collapse
|
40
|
Ashoka AH, Kong SH, Seeliger B, Andreiuk B, Soares RV, Barberio M, Diana M, Klymchenko AS. Near-infrared fluorescent coatings of medical devices for image-guided surgery. Biomaterials 2020; 261:120306. [DOI: 10.1016/j.biomaterials.2020.120306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
|
41
|
Yu S, Ma P. Mechanical properties of warp-knitted hernia repair mesh with various boundary conditions. J Mech Behav Biomed Mater 2020; 114:104192. [PMID: 33160913 DOI: 10.1016/j.jmbbm.2020.104192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
In this paper, two most representative hernia repair meshes were prepared with 0.15 mm polypropylene monofilaments via warp knitting technology, and their mechanical properties were tested in various aspects. Meanwhile, a focused investigation of the boundary conditions between the sutures and the mesh was simulated in several directions innovatively. The results revealed that the hernia repair mesh with different structures has different mechanical properties, and the mechanical properties of standard hernia repair mesh were superior to that of lightweight hernia repair mesh. In order to reduce foreign body sensation and postoperative adverse reactions significantly, the lightweight hernia repair mesh may be preferred. At the same time, the mesh should be placed in the proper direction to comply with the anisotropy of abdominal wall during operation. The area where the hernia mesh is in contact with the sutures was vulnerable to damage. The curved or wrinkled area of the hernia repair mesh increases with the increase of load, which may lead to poor tissue growth, a strong inflammatory response, and even the recurrence of the hernia. Therefore, the hernia repair meshes with different structures may require unique suture techniques. And they also should be further treated prior to implantation. This study provides a theoretical basis for development, utilization and improvement of meshes. Further research will focus on the biomechanical properties of the mesh after implantation in vivo studies.
Collapse
Affiliation(s)
- Shuang Yu
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Pibo Ma
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, 3212000, China.
| |
Collapse
|
42
|
Fernández-Gutiérrez M, Pérez-Köhler B, Benito-Martínez S, García-Moreno F, Pascual G, García-Fernández L, Aguilar MR, Vázquez-Lasa B, Bellón JM. Development of Biocomposite Polymeric Systems Loaded with Antibacterial Nanoparticles for the Coating of Polypropylene Biomaterials. Polymers (Basel) 2020; 12:polym12081829. [PMID: 32824142 PMCID: PMC7465146 DOI: 10.3390/polym12081829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
The development of a biocomposite polymeric system for the antibacterial coating of polypropylene mesh materials for hernia repair is reported. Coatings were constituted by a film of chitosan containing randomly dispersed poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with chlorhexidine or rifampicin. The chlorhexidine-loaded system exhibited a burst release during the first day reaching the release of the loaded drug in three or four days, whereas rifampicin was gradually released for at least 11 days. Both antibacterial coated meshes were highly active against Staphylococcus aureus and Staphylococcus epidermidis (106 CFU/mL), displaying zones of inhibition that lasted for 7 days (chlorhexidine) or 14 days (rifampicin). Apparently, both systems inhibited bacterial growth in the surrounding environment, as well as avoided bacterial adhesion to the mesh surface. These polymeric coatings loaded with biodegradable nanoparticles containing antimicrobials effectively precluded bacterial colonization of the biomaterial. Both biocomposites showed adequate performance and thus could have potential application in the design of antimicrobial coatings for the prophylactic coating of polypropylene materials for hernia repair.
Collapse
Affiliation(s)
- Mar Fernández-Gutiérrez
- Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), 28006 Madrid, Spain; (M.F.-G.); (L.G.-F.); (M.R.A.); (B.V.-L.)
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
| | - Bárbara Pérez-Köhler
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
- Department of Medicine and Medical Specialties, University of Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Correspondence: (B.P.-K.); (G.P.)
| | - Selma Benito-Martínez
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, University of Alcalá, 28805 Madrid, Spain
| | - Francisca García-Moreno
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, University of Alcalá, 28805 Madrid, Spain
| | - Gemma Pascual
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
- Department of Medicine and Medical Specialties, University of Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Correspondence: (B.P.-K.); (G.P.)
| | - Luis García-Fernández
- Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), 28006 Madrid, Spain; (M.F.-G.); (L.G.-F.); (M.R.A.); (B.V.-L.)
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
| | - María Rosa Aguilar
- Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), 28006 Madrid, Spain; (M.F.-G.); (L.G.-F.); (M.R.A.); (B.V.-L.)
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), 28006 Madrid, Spain; (M.F.-G.); (L.G.-F.); (M.R.A.); (B.V.-L.)
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
| | - Juan Manuel Bellón
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (F.G.-M.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, University of Alcalá, 28805 Madrid, Spain
| |
Collapse
|
43
|
Serafim A, Cecoltan S, Olăreț E, Dragusin DM, Vasile E, Popescu V, Manolescu Mastalier BS, Iovu H, Stancu IC. Bioinspired Hydrogel Coating Based on Methacryloyl Gelatin Bioactivates Polypropylene Meshes for Abdominal Wall Repair. Polymers (Basel) 2020; 12:E1677. [PMID: 32731362 PMCID: PMC7464529 DOI: 10.3390/polym12081677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023] Open
Abstract
Considering the potential of hydrogels to mimic the cellular microenvironment, methacryloyl gelatin (GelMA) and methacryloyl mucin (MuMA) were selected and compared as bioinspired coatings for commercially available polypropylene (PP) meshes for ventral hernia repair. Thin, elastic hydrated hydrogel layers were obtained through network-forming photo-polymerization, after immobilization of derivatives on the surface of the PP fibers. Fourier transform infrared spectroscopy (FTIR) proved the successful coating while the surface morphology and homogeneity were investigated by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). The stability of the hydrogel layers was evaluated through biodynamic tests performed on the coated meshes for seven days, followed by inspection of surface morphology through SEM and micro-CT. Taking into account that platelet-rich plasma (PRP) may improve healing due to its high concentration of growth factors, this extract was used as pre-treatment for the hydrogel coating to additionally stimulate cell interactions. The performed advanced characterization proved that GelMA and MuMA coatings can modulate fibroblasts response on PP meshes, either as such or supplemented with PRP extract as a blood-derived bioactivator. GelMA supported the best cellular response. These findings may extend the applicative potential of functionalized gelatin opening a new path on the research and engineering of a new generation of bioactive meshes.
Collapse
Affiliation(s)
- Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.S.); (S.C.); (E.O.); (D.-M.D.); (H.I.)
| | - Sergiu Cecoltan
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.S.); (S.C.); (E.O.); (D.-M.D.); (H.I.)
| | - Elena Olăreț
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.S.); (S.C.); (E.O.); (D.-M.D.); (H.I.)
| | - Diana-Maria Dragusin
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.S.); (S.C.); (E.O.); (D.-M.D.); (H.I.)
| | - Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Valentin Popescu
- Department of General Surgery, Colentina Clinical Hospital, 19–21 Stefan cel Mare, 72202 Bucharest, Romania; (V.P.); (B.S.M.M.)
| | | | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.S.); (S.C.); (E.O.); (D.-M.D.); (H.I.)
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.S.); (S.C.); (E.O.); (D.-M.D.); (H.I.)
| |
Collapse
|
44
|
Liu Z, Zhu X, Tang R. Electrospun Scaffold with Sustained Antibacterial and Tissue-Matched Mechanical Properties for Potential Application as Functional Mesh. Int J Nanomedicine 2020; 15:4991-5004. [PMID: 32764931 PMCID: PMC7368590 DOI: 10.2147/ijn.s248970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Various materials and approaches have been used to reduce the mesh-induced inflammatory response and modify the mesh with tissue-matched mechanical properties, aiming to improve the repair of abdominal wall defects. Materials and Methods In this study, we fabricated a polycaprolactone (PCL)/silk fibroin (SF) mesh integrated with amoxicillin (AMX)-incorporating multiwalled carbon nanotubes (MWCNTs) via electrospinning, grafting and crosslinking, developing a sustainable antibiotic and flexible mesh. AMX was loaded into the hollow tubular MWCNTs by physical adsorption, and a nanofibrous structure was constructed by electrospinning PCL and SF (40:60 w/w). The AMX@MWCNTs were then chemically grafted onto the surfaces of the PCL/SF nanofibers by treating with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) solution for simultaneous crosslinking and coating. The incorporation of AMX into the MWCNTs (AMX@MWCNTs) and the integration of the AMX@MWCNTs with the PCL/SF nanofibers were characterized. Then, the functional mesh was fabricated and fully evaluated in terms of antibacterial activity, mechanical properties and host response. Results Our results demonstrated that the PCL/SF nanofibrous structure was fabricated successfully by electrospinning. After integrating with AMX@MWCNT by grafting and crosslinking, the functional mesh showed undeformed structure, modified surface hydrophilicity and biocompatible interfaces, abdominal wall-matched mechanical properties, and a sustained-release antibiotic profile in E. coli growth inhibition compared to those of PCL/SF mesh in vitro. In a rat model with subcutaneous implantation, the functional mesh incited less mesh-induced inflammatory and foreign body responses than PCL/SF mesh within 14 days. The histological analysis revealed less infiltration of granulocytes and macrophages during this period, resulting in the loosely packed collagen deposition on the functional mesh and prominent collagen incorporation. Discussion Therefore, this designed PCL/SF-AMX@MWCNT nanofibrous mesh, functionalized with antibacterial and tissue-matched mechanical properties, provides a promising alternative for the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Rong L, Yang D, Wang B, Xiao D, Lu M, Mao Z, Xu H, Gu Y, Feng X, Sui X. Durable and Effective Antibacterial Cotton Fabric Collaborated with Polypropylene Tissue Mesh for Abdominal Wall Defect Repair. ACS Biomater Sci Eng 2020; 6:3868-3877. [PMID: 33463345 DOI: 10.1021/acsbiomaterials.0c00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A feasible, efficient antibacterial and anti-infective mesh for clinical abdominal wall defect repair is significant, but challenging due to the complexity of the postoperative wound environment. Herein, a simple strategy was provided to construct woven cotton fabric modified with gentamicin (Gem) via the enamine bonds. The obtained cotton fabric possessed favorable antibacterial properties against E. coli and S. aureus with the bactericidal rate of over 99.99% and could be combined with a commercial polypropylene (PP) mesh to serve as a two-layer composite mesh for abdominal wall defect repair. The antibacterial cotton layer was systematically characterized by FTIR, XPS, SEM, EDS, and mechanical measurements. The C2C12 cells and human fibroblasts were employed to assess the cytocompatibility of the composite mesh in vitro. Furthermore, the rat abdominal wall defect model was used to evaluate the efficacy of antibacterial and anti-infection properties. It was demonstrated that the two-layer composite mesh possessed favorable biocompatibility and satisfactory anti-infection properties involved in abdominal wall defect repair. Therefore, this synergetic two-layer composite mesh would out-perform surgical PP meshes in preventing infectious complications.
Collapse
Affiliation(s)
- Liduo Rong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Dongchao Yang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Dongdong Xiao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, People's Republic of China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| |
Collapse
|
46
|
Pérez-Köhler B, Pascual G, Benito-Martínez S, Bellón JM, Eglin D, Guillaume O. Thermo-Responsive Antimicrobial Hydrogel for the In-Situ Coating of Mesh Materials for Hernia Repair. Polymers (Basel) 2020; 12:polym12061245. [PMID: 32486080 PMCID: PMC7362238 DOI: 10.3390/polym12061245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
The prophylactic coating of prosthetic mesh materials for hernia repair with antimicrobial compounds is commonly performed before implantation of the mesh in the abdominal wall. We propose a novel alternative, which is a rifampicin-loaded thermo-responsive hydrogel formulation, to be applied on the mesh after its implantation. This formulation becomes a gel in-situ once reached body temperature, allowing an optimal coating of the mesh along with the surrounding tissues. In vitro, the hydrogel cytotoxicity was assessed using rabbit fibroblasts and antimicrobial efficacy was determined against Staphylococcus aureus. An in vivo rabbit model of hernia repair was performed; implanted polypropylene meshes (5 × 2 cm) were challenged with S. aureus (106 CFU), for two study groups—unloaded (n = 4) and 0.1 mg/cm2 rifampicin-loaded hydrogel (n = 8). In vitro, antibacterial activity of the hydrogel lasted for 5 days, without sign of cytotoxicity. Fourteen days after implantation, meshes coated with drug-free hydrogel developed a strong infection and resulted in poor tissue integration. Coating meshes with the rifampicin-loaded hydrogel fully prevented implant infection and permitted an optimal tissue integration. Due to its great performance, this, degradable, thermo-responsive antimicrobial hydrogel could potentially be a strong prophylactic armamentarium to be combined with prosthesis in the surgical field.
Collapse
Affiliation(s)
- Bárbara Pérez-Köhler
- Department of Medicine and Medical Specialties, University of Alcalá, 28805 Madrid, Spain; (B.P.-K.); (G.P.)
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Gemma Pascual
- Department of Medicine and Medical Specialties, University of Alcalá, 28805 Madrid, Spain; (B.P.-K.); (G.P.)
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Selma Benito-Martínez
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, University of Alcalá, 28805 Madrid, Spain
| | - Juan Manuel Bellón
- Biomedical Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (S.B.-M.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, University of Alcalá, 28805 Madrid, Spain
| | - David Eglin
- AO Research Institute Davos, Davos 7270, Switzerland;
| | - Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien, 1060 Vienna, Austria
- Correspondence:
| |
Collapse
|
47
|
Usefulness of sonication procedure in mesh infection diagnosis associated with hernia repair. Hernia 2020; 24:845-847. [PMID: 31989327 DOI: 10.1007/s10029-019-02118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND The use of prosthetic meshes is a common practice in hernia repair surgery. However, infection can appear as an important complication where antibiotic selection must be directed by the etiology of the infection. In recent years, sonication has appeared as an important tool for the diagnosis of many biomaterial-associated infections. Here, we evaluated our experience with this methodology for the diagnosis of mesh infection. METHODS We retrospectively reviewed the microbiological records between 2015 and 2019 looking for sonicated meshes in the microbiology laboratory. All samples were processed according to the sonication protocol described by Esteban J et al. (J Clin Microbiol. 2008 Feb; 46 (2): 488-92). RESULTS 26 samples were processed during the study period. 21 of them gave a positive result for culture (11 polymicrobial and 10 monomicrobial ones). Staphylococcus aureus and Candida albicans were the commonest monomicrobial isolates (4 cases each). There were five cases of mixed gut microbiota. The median (interquartile range) UFC count was > 100,000 (50,000- > 100,000) CFU/mL. CONCLUSION Sonication is a useful technique for the diagnosis of mesh infection.
Collapse
|
48
|
Melo SF, Neves SC, Pereira AT, Borges I, Granja PL, Magalhães FD, Gonçalves IC. Incorporation of graphene oxide into poly(ɛ-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110537. [PMID: 32228892 DOI: 10.1016/j.msec.2019.110537] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Implantable medical devices infection and consequent failure is a severe health issue, which can result from bacterial adhesion, growth, and subsequent biofilm formation at the implantation site. Graphene-based materials, namely graphene oxide (GO), have been described as potential antibacterial agents when immobilized and exposed in polymeric matrices. This work focuses on the development of antibacterial and biocompatible 3D fibrous scaffolds incorporating GO. Poly(ε-caprolactone) scaffolds were produced, with and without GO, using wet-spinning combined with additive manufacturing. Scaffolds with different GO loadings were evaluated regarding physical-chemical characterization, namely GO surface exposure, antibacterial properties, and ability to promote human cells adhesion. Antimicrobial properties were evaluated through live/dead assays performed with Gram-positive and Gram-negative bacteria. 2 h and 24 h adhesion assays revealed a time-dependent bactericidal effect in the presence of GO, with death rates of adherent S. epidermidis and E. coli reaching ~80% after 24 h of contact with scaffolds with the highest GO concentration. Human fibroblasts cultured for up to 14 days were able to adhere and spread over the fibers, independently of the presence of GO. Overall, this work demonstrates the potential of GO-containing fibrous scaffolds to be used as biomaterials that hinder bacterial infection, while allowing human cells adhesion.
Collapse
Affiliation(s)
- Sofia F Melo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; FEUP-Faculdade de Engenharia da Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal; LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Portugal
| | - Sara C Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
| | - Andreia T Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Inês Borges
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
| | - Pedro L Granja
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; FEUP-Faculdade de Engenharia da Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Fernão D Magalhães
- LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Portugal
| | - Inês C Gonçalves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; FEUP-Faculdade de Engenharia da Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.
| |
Collapse
|
49
|
Pérez-Köhler B, Linardi F, Pascual G, Bellón JM, Eglin D, Guillaume O. Efficacy of antimicrobial agents delivered to hernia meshes using an adaptable thermo-responsive hyaluronic acid-based coating. Hernia 2019; 24:1201-1210. [DOI: 10.1007/s10029-019-02096-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/17/2019] [Indexed: 12/31/2022]
|
50
|
Jacombs ASW, Karatassas A, Klosterhalfen B, Richter K, Patiniott P, Hensman C. Biofilms and effective porosity of hernia mesh: are they silent assassins? Hernia 2019; 24:197-204. [DOI: 10.1007/s10029-019-02063-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
|