1
|
Li J, Arnold J, Sima M, Al Faruque H, Galang J, Hu-Lieskovan S, Kopeček J, Yang J. Combination of multivalent DR5 receptor clustering agonists and histone deacetylase inhibitors for treatment of colon cancer. J Control Release 2024; 376:1014-1024. [PMID: 39489464 DOI: 10.1016/j.jconrel.2024.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Death Receptor 5 (DR5) targeted therapies offer significant promise due to their pivotal role in mediating the extrinsic pathway of apoptosis. Despite DR5 overexpression in various malignancies and the potential of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), clinical applications of anti-DR5 monoclonal antibodies (mAbs) have been hampered by suboptimal outcomes potentially due to lack of receptor clustering. To address the limitation, we developed N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based conjugates integrating multiple copies of DR5-targeting peptide (cyclic WDCLDNRIGRRQCVKL; cDR5) to enhance receptor clustering and apoptosis. Three conjugates with variable number of cDR5 were prepared and denoted as PH-cDR5 (high valence), PM-cDR5 (medium valence) and PL-cDR5 (low valence). Our studies in TRAIL-sensitive and resistant cancer cell lines demonstrated that the HPMA copolymer-peptide conjugates (P-cDR5) significantly improved DR5 receptor clustering and induced apoptosis effectively. In TRAIL-sensitive colon cancer cells (COLO205, HCT-116), P-cDR5 showed efficacy comparable to anti-DR5 mAb Drozitumab (DRO), but P-cDR5 outperformed DRO in TRAIL-resistant cells (HT-29), highlighting the importance of efficient receptor clustering. In COLO205 cells PM-cDR5 exhibited an IC50 of 94 pM, while PH-cDR5 had an even lower IC50 of 15 pM (based on cDR5 equivalent concentration), indicating enhanced potency of the multivalent HPMA copolymer-based system with a flexible polymer backbone in comparison with the IC50 for TRAIL at 0.12 nM. Combining P-cDR5 with valproic acid, a histone deacetylase inhibitor, resulted in further enhancement of apoptosis inducing efficacy, along with destabilizing mitochondrial membranes and increased sensitivity of TRAIL-resistant cells. These findings suggest that attaching multiple cDR5 peptides to a flexible water-soluble polymer carrier not only overcomes the limitations of previous designs but also offers a promising avenue for treating resistant cancers, pointing toward the need for further preclinical exploration and validation of this innovative strategy.
Collapse
Affiliation(s)
- Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jaden Arnold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Monika Sima
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hasan Al Faruque
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob Galang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sophia Hu-Lieskovan
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Kopeček J. Hydrophilic biomaterials: From crosslinked and self-assembled hydrogels to polymer-drug conjugates and drug-free macromolecular therapeutics. J Control Release 2024; 373:1-22. [PMID: 38734315 PMCID: PMC11384549 DOI: 10.1016/j.jconrel.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
This "Magnum Opus" accentuates my lifelong belief that the future of science is in the interdisciplinary approach to hypotheses formulation and problem solving. Inspired by the invention of hydrogels and soft contact lenses by my mentors, my six decades of research have continuously proceeded from the synthesis of biocompatible hydrogels to the development of polymer-drug conjugates, then generation of drug-free macromolecular therapeutics (DFMT) and finally to multi-antigen T cell hybridizers (MATCH). This interdisciplinary journey was inspiring; the lifetime feeling that one is a beginner in some aspects of the research is a driving force that keeps the enthusiasm high. Also, I wanted to illustrate that systematic research in one wide area can be a life-time effort without the need to jump to areas that are temporarily en-vogue. In addition to generating general scientific knowledge, hydrogels from my laboratory have been transferred to the clinic, polymer-drug conjugates to clinical trials, and drug-free macromolecular systems have an excellent potential for personalizing patient therapies. There is a limit to life but no limit to imagination. I anticipate that systematic basic research will contribute to the expansion of our knowledge and create a foundation for the design of new paradigms based on the comprehension of mechanisms of physiological processes. The emerging novel platform technologies in biomaterial-based devices and implants as well as in personalized nanomedicines will ultimately impact clinical practice.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Center for Controlled Chemical Delivery, Department of Molecular Pharmaceutics, Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Li J, Gambles MT, Jones B, Williams JA, Camp NJ, Shami PJ, Yang J, Kopeček J. Human serum albumin-based drug-free macromolecular therapeutics induce apoptosis in chronic lymphocytic leukemia patient cells by crosslinking of CD20 and/or CD38 receptors. Drug Deliv Transl Res 2024; 14:2203-2215. [PMID: 38802679 DOI: 10.1007/s13346-024-01629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
This study explores the efficacy of human serum albumin (HSA)-based Drug-Free Macromolecular Therapeutics (DFMT) in treating Chronic Lymphocytic Leukemia (CLL), a prevalent adult leukemia subtype. DFMT, a novel strategy, employs biomimetic crosslinking of CD20 and CD38 receptors on malignant B cells without the need for low molecular weight drugs. Apoptosis is initiated via a two-step process: i) Recognition of a bispecific engager, Fab' fragment conjugated with morpholino oligonucleotide (Fab'-MORF1), by a cell surface antigen; followed by ii) crosslinking of the MORF1-decorated cells with a multivalent effector, HSA holding multiple copies of complementary MORF2, HSA-(MORF2)x. Herein we evaluated the efficacy of HSA-based DFMT in the treatment of 56 samples isolated from patients diagnosed with CLL. Fab' fragments from Obinutuzumab (OBN) and Isatuximab (ISA) were employed in the synthesis of anti-CD20 (Fab'OBN-MORF1) and anti-CD38 (Fab'ISA-MORF1) bispecific engagers. The efficacy of DFMT was significantly influenced by the expression levels of CD20 and CD38 receptors. Dual-targeting DFMT strategies (CD20 + CD38) were more effective than single-target approaches, particularly in samples with elevated receptor expression. Pretreatment of patient cells with gemcitabine or ricolinostat markedly increased cell surface CD20 and CD38 expression, respectively. Apoptosis was effectively initiated in 62.5% of CD20-targeted samples and in 42.9% of CD38-targeted samples. Our findings demonstrate DFMT's potential in personalized CLL therapy. Further research is needed to validate these outcomes in a larger number of patient samples and to explore DFMT's applicability to other malignancies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- ADP-ribosyl Cyclase 1
- Apoptosis/drug effects
- Antigens, CD20
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Serum Albumin, Human/chemistry
- Immunoglobulin Fab Fragments/administration & dosage
- Immunoglobulin Fab Fragments/pharmacology
- Immunoglobulin Fab Fragments/chemistry
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemistry
- Cross-Linking Reagents/chemistry
- Membrane Glycoproteins
Collapse
Affiliation(s)
- Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, 2030 East 20 South, Biopolymers Research Building, Room 205B, Salt Lake City, UT, 84112-9452, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, 2030 East 20 South, Biopolymers Research Building, Room 205B, Salt Lake City, UT, 84112-9452, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brandt Jones
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Justin A Williams
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Nicola J Camp
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Paul J Shami
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, 2030 East 20 South, Biopolymers Research Building, Room 205B, Salt Lake City, UT, 84112-9452, USA.
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, 2030 East 20 South, Biopolymers Research Building, Room 205B, Salt Lake City, UT, 84112-9452, USA.
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Gambles MT, Sborov D, Shami P, Yang J, Kopeček J. Obinutuzumab-Based Drug-Free Macromolecular Therapeutics Synergizes with Topoisomerase Inhibitors. Macromol Biosci 2024; 24:e2300375. [PMID: 37838941 DOI: 10.1002/mabi.202300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Drug-free macromolecular therapeutics (DFMT) utilizes modified monoclonal antibodies (or antibody fragments) to generate antigen-crosslinking-induced apoptosis in target cells. DFMT is a two-component system containing a morpholino oligonucleotide (MORF1) modified antibody (Ab-MORF1) and human serum albumin conjugated with multiple copies of complementary morpholino oligonucleotide (MORF2), (HSA-(MORF2)x ). The two components recognize each other via the Watson-Crick base pairing complementation of their respective MORFs. One HSA-(MORF2)x molecule can hybridize with multiple Ab-MORF1 molecules on the cell surface, thus serving as the therapeutic crosslink-inducing mechanism of action. Herein, various anti-neoplastic agents in combination with the anti-CD20 Obinutuzumab (OBN)-based DFMT system are examined. Three different classes of chemotherapies are examined: DNA alkylating agents; proliferation pathway inhibitors; and DNA replication inhibitors. Chou-Talalay combination index mathematics is utilized to determine which drugs engaged synergistically with OBN-based DFMT. It is determined that OBN-based DFMT synergizes with topoisomerase inhibitors and DNA nucleotide analogs but is antagonistic with proliferation pathway inhibitors. Cell mechanism experiments are performed to analyze points of synergism or antagonism by investigating Ca2+ influx, mitochondrial health, lysosomal stability, and cell cycle arrest. Finally, the synergistic drug combinatorial effects of OBN-based DFMT with etoposide in vivo are demonstrated using a human xenograft non-Hodgkin's lymphoma mouse model.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Douglas Sborov
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Paul Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
5
|
Han X, Song X, Xiao Z, Zhu G, Gao R, Ni B, Li J. Study on the mechanism of MDSC-platelets and their role in the breast cancer microenvironment. Front Cell Dev Biol 2024; 12:1310442. [PMID: 38404689 PMCID: PMC10884319 DOI: 10.3389/fcell.2024.1310442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key immunosuppressive cells in the tumor microenvironment (TME) that play critical roles in promoting tumor growth and metastasis. Tumor-associated platelets (TAPs) help cancer cells evade the immune system and promote metastasis. In this paper, we describe the interaction between MDSCs and TAPs, including their generation, secretion, activation, and recruitment, as well as the effects of MDSCs and platelets on the generation and changes in the immune, metabolic, and angiogenic breast cancer (BC) microenvironments. In addition, we summarize preclinical and clinical studies, traditional Chinese medicine (TCM) therapeutic approaches, and new technologies related to targeting and preventing MDSCs from interacting with TAPs to modulate the BC TME, discuss the potential mechanisms, and provide perspectives for future development. The therapeutic strategies discussed in this review may have implications in promoting the normalization of the BC TME, reducing primary tumor growth and distant lung metastasis, and improving the efficiency of anti-tumor therapy, thereby improving the overall survival (OS) and progression-free survival (PFS) of patients. However, despite the significant advances in understanding these mechanisms and therapeutic strategies, the complexity and heterogeneity of MDSCs and side effects of antiplatelet agents remain challenging. This requires further investigation in future prospective cohort studies.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Hematology-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Song
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Xiao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang Z, Pan Z, Li Q, Huang Q, Shi L, Liu Y. Rational design of ICD-inducing nanoparticles for cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk0716. [PMID: 38324678 PMCID: PMC10849581 DOI: 10.1126/sciadv.adk0716] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Nanoparticle-based cancer immunotherapy has shown promising therapeutic potential in clinical settings. However, current research mainly uses nanoparticles as delivery vehicles but overlooks their potential to directly modulate immune responses. Inspired by the endogenous endoplasmic reticulum (ER) stress caused by unfolded/misfolded proteins, we present a rationally designed immunogenic cell death (ICD) inducer named NanoICD, which is a nanoparticle engineered for ER targeting and retention. By carefully controlling surface composition and properties, we have obtained NanoICD that can effectively accumulate in the ER, induce ER stress, and activate ICD-associated immune responses. In addition, NanoICD is generally applicable to various proteins and enzymes to further enhance the immunomodulatory capacity, exemplified by encapsulating catalase (CAT) to obtain NanoICD/CAT, effectively alleviated immunosuppressive tumor microenvironment and induced robust antitumor immune responses in 4T1-bearing mice. This work demonstrates engineered nanostructures' potential to autonomously regulate biological processes and provides insights into the development of advanced nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Zhanzhan Zhang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Zheng Pan
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Qiushi Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yang Liu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
8
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Wang W, Zhang Y, Wang Z, Liu X, Lu S, Hu X. A Native Drug-Free Macromolecular Therapeutic to Trigger Mutual Reinforcing of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction for Cancer Treatment. ACS NANO 2023. [PMID: 37257082 DOI: 10.1021/acsnano.3c03450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Drug-free macromolecular therapeutics are promising alternatives to traditional drugs. Nanomedicines with multiple organelles targeting can potentially increase the efficacy. Herein, a drug-free macromolecular therapeutic was designed to formulate endoplasmic reticulum (ER) and mitochondria dual-targeting nanoparticles (EMT-NPs), which can synergistically elicit ER stress and mitochondrial dysfunction. In vitro experiments indicated that EMT-NPs could effectively enter ER and mitochondria at an approximate ratio of 2 to 3. Subsequently, EMT-NPs could upregulate ER stress-related protein expression (IRE1α, CHOP), boosting calcium ion (Ca2+) efflux and activating the caspase-12 signaling cascade in cancer cells. In addition, EMT-NPs induced direct oxidative stress in mitochondria; some mitochondrial-related apoptotic events such as decreased mitochondrial membrane potential (MMP), upregulation of Bax, cytochrome c release, and caspase-3 activation were also observed for tumor cells upon incubation with EMT-NPs. Furthermore, the leaked Ca2+ from ER could induce mitochondrial Ca2+ overloading to further augment cancer cell apoptosis. In brief, mitochondrial and ER signaling networks collaborated well to promote cancer cell death. Extended photoacoustic and fluorescence imaging served well for the treatment of in vivo patient-derived xenografts cancer model. This drug-free macromolecular strategy with multiple subcellular targeting provides a potential paradigm for cancer theranostics in precision nanomedicine.
Collapse
Affiliation(s)
- Wenhui Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongteng Zhang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Zeshu Wang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Xueping Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Xianglong Hu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
10
|
Zhou R, Xu H, Qu J, Ohulchanskyy TY. Hemoglobin Nanocrystals for Drugs Free, Synergistic Theranostics of Colon Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205165. [PMID: 36508710 DOI: 10.1002/smll.202205165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Indexed: 06/17/2023]
Abstract
The conventional approach in cancer nanomedicine involves advanced drug nanocarriers delivering preloaded therapeutics to targeted tumor sites to maximize drug efficiency. However, both cancer drugs and nanocarriers inevitably produce side effects and systemic toxicity. Herein, hemoglobin nanocrystals (HbC) as drug-free theranostic nanoformulations with the tumor microenvironment (TME) activated diagnostic and therapeutic abilities towards colon tumors are introduced. HbC can release Fe2+ oxidized to Fe3+ in the Fenton reaction with tumor endogenous H2 O2 , concurrently with the generation of cytotoxic hydroxyl radicals (•OH) that allow for chemodynamic therapy (CDT). Furthermore, in situ-produced Fe3+ reacts with colon tumor-abundant H2 S, resulting in the production of Fe1- x S, which provides magnetic resonance imaging (MRI) contrast and allows for NIR light-inducible photothermal therapy (PTT). In vitro and in vivo studies revealed that HbC produced CDT towards 4T1 tumors, and MRI-guided, synergistically enhanced combination of CDT and PTT against H2 S abundant colon tumors (CT26), with negligible toxicity towards normal tissues, enlightening HbC as highly efficient and biocompatible TME activated theranostic nanoplatform specific against colon cancer without any traditional drugs and drug carriers.
Collapse
Affiliation(s)
- Renbin Zhou
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Xu
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
11
|
Koba Y, Nakamoto M, Matsusaki M. Fabrication of a Polymeric Inhibitor of Proximal Metabolic Enzymes in Hypoxia for Synergistic Inhibition of Cancer Cell Proliferation, Survival, and Migration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51790-51797. [PMID: 36375210 DOI: 10.1021/acsami.2c16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since conventional molecular targeted drugs often result in side effects, the development of novel molecular targeted drugs with both high efficacy and selectivity is desired. Simultaneous inhibition of metabolically and spatiotemporally related proteins/enzymes is a promising strategy for improving therapeutic interventions in cancer treatment. Herein, we report a poly-α-l-glutamate-based polymer inhibitor that simultaneously targets proximal transmembrane enzymes under hypoxia, namely, carbonic anhydrase IX (CAIX) and zinc-dependent metalloproteinases. A polymer incorporating two types of inhibitors more effectively inhibited the proliferation and migration of human breast cancer cells than a combination of two polymers functionalized exclusively with either inhibitor. Synergistic inhibition of cancer cells would occur owing to the hetero-multivalent interactions of the polymer with proximate enzymes on the cancer cell membrane. Our results highlight the potential of polymer-based cancer therapeutics.
Collapse
Affiliation(s)
- Yuki Koba
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
12
|
Tommy Gambles M, Li J, Christopher Radford D, Sborov D, Shami P, Yang J, Kopeček J. Simultaneous crosslinking of CD20 and CD38 receptors by drug-free macromolecular therapeutics enhances B cell apoptosis in vitro and in vivo. J Control Release 2022; 350:584-599. [PMID: 36037975 PMCID: PMC9561060 DOI: 10.1016/j.jconrel.2022.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Drug-Free Macromolecular Therapeutics (DFMT) is a new paradigm in macromolecular therapeutics that induces apoptosis in target cells by crosslinking receptors without the need of low molecular weight drugs. Programmed cell death is initiated via a biomimetic receptor crosslinking strategy using a two-step approach: i) recognition of cell surface antigen by a morpholino oligonucleotide-modified antibody Fab' fragment (Fab'-MORF1), ii) followed by crosslinking with a multivalent effector motif - human serum albumin (HSA) grafted with multiple complementary morpholino oligonucleotides (HSA-(MORF2)x). This approach is effective in vitro, in vivo, and ex vivo on cells from patients diagnosed with various B cell malignancies. We have previously demonstrated DFMT can be applied to crosslink CD20 and CD38 receptors to successfully initiate apoptosis. Herein, we show simultaneous engagement, and subsequent crosslinking of both targets ("heteroreceptor crosslinking"), can further enhance the apoptosis induction capacity of this system. To accomplish this, we incubated Raji (CD20+; CD38+) cells simultaneously with anti-CD20 and anti-CD38 Fab'-MORF1 conjugates, followed by addition of the macromolecular crosslinker, HSA-(MORF2)x to co-cluster the bound receptors. Fab' fragments from Rituximab and Obinutuzumab were employed in the synthesis of anti-CD20 bispecific engagers (Fab'RTX-MORF1 and Fab'OBN-MORF1), whereas Fab' fragments from Daratumumab and Isatuximab (Fab'DARA-MORF1 and Fab'ISA-MORF1) targeted CD38. All heteroreceptor crosslinking DFMT combinations demonstrated potent apoptosis induction and exhibited synergistic effects as determined by Chou-Talalay combination index studies (CI < 1). In vitro fluorescence resonance energy transfer (FRET) experiments confirmed the co-clustering of the two receptors on the cell surface in response to the combination treatment. The source of this synergistic therapeutic effect was further explored by evaluating the effect of combination DFMT on key apoptosis signaling events such as mitochondrial depolarization, caspase activation, lysosomal enlargement, and homotypic cell adhesion. Finally, a xenograft mouse model of CD20+/CD38+ Non Hodgkin lymphoma was employed to demonstrate in vivo the enhanced efficacy of the heteroreceptor-crosslinking DFMT design versus single-target systems.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - D Christopher Radford
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul Shami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Newton HS, Dobrovolskaia MA. Immunophenotyping: Analytical approaches and role in preclinical development of nanomedicines. Adv Drug Deliv Rev 2022; 185:114281. [PMID: 35405297 PMCID: PMC9164149 DOI: 10.1016/j.addr.2022.114281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022]
Abstract
Pharmaceutical products can activate immune cells, suppress their function, or change the immune responses to traditional immunologically active agonists such as those present in microbes. Therefore, the assessment of immunostimulation, immunosuppression, and immunomodulation comprises the backbone of immunotoxicity studies of new drug entities. Depending on physicochemical properties (e.g., size, charge, surface functionalities, hydrophobicity), nanoparticles can be immunostimulatory, immunosuppressive, and immunomodulatory. Various methods and experimental frameworks have been established to support preclinical translational studies of nanotechnology-based drug products. Immunophenotyping after the exposure of cells or preclinical animal models to nanoparticles can provide critical information about the changes in both the numbers of immune cells and their activation status. However, this methodology is underutilized in preclinical studies of engineered nanomaterials. Herein, we review current literature about varieties of instrumentation and methods utilized for immunophenotyping, discuss their advantages and limitations, and propose a roadmap for applying immunophenotyping to support preclinical immunological characterization of nanotechnology-based formulations.
Collapse
Affiliation(s)
- Hannah S Newton
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick MD, USA.
| |
Collapse
|
14
|
Li Z, Han Z, Stenzel MH, Chapman R. A High Throughput Approach for Designing Polymers That Mimic the TRAIL Protein. NANO LETTERS 2022; 22:2660-2666. [PMID: 35312327 DOI: 10.1021/acs.nanolett.1c04469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have leveraged a high throughput approach to design a fully synthetic polymer mimic of the chemotherapeutic protein "TRAIL". Our design enables the synthesis of libraries of star-shaped polymers presenting exactly one receptor binding peptide at the end of each arm with no purification steps. Clear structure-activity relationships in screening for receptor binding and the apoptotic activity on colon cancer lines (COLO205) led us to identify trivalent structures, ∼1.5 nm in hydrodynamic radius as the best mimics. These showed IC50 values ∼2 μM and resulted in the elevated levels of caspase-8 expected from this mechanism of cell death. Our results demonstrate the potential for HTP screening methods to be used in the design of polymers that can mimic a whole range of complex therapeutic proteins.
Collapse
Affiliation(s)
- Zihao Li
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Zifei Han
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
15
|
Abstract
The fields of precision imaging and drug delivery have revealed a number of tools to improve target specificity and increase efficacy in diagnosing and treating disease. Biological molecules, such as antibodies, continue to be the primary means of assuring active targeting of various payloads. However, molecular-scale recognition motifs have emerged in recent decades to achieve specificity through the design of interacting chemical motifs. In this regard, an assortment of bioorthogonal covalent conjugations offer possibilities for in situ complexation under physiological conditions. Herein, a related concept is discussed that leverages interactions from noncovalent or supramolecular motifs to facilitate in situ recognition and complex formation in the body. Classic supramolecular motifs based on host-guest complexation offer one such means of facilitating recognition. In addition, synthetic bioinspired motifs based on oligonucleotide hybridization and coiled-coil peptide bundles afford other routes to form complexes in situ. The architectures to include recognition of these various motifs for targeting enable both monovalent and multivalent presentation, seeking high affinity or engineered avidity to facilitate conjugation even under dilute conditions of the body. Accordingly, supramolecular "click chemistry" offers a complementary tool in the growing arsenal targeting improved healthcare efficacy.
Collapse
Affiliation(s)
| | | | - Matthew J. Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| |
Collapse
|
16
|
Gambles MT, Li J, Wang J, Sborov D, Yang J, Kopeček J. Crosslinking of CD38 Receptors Triggers Apoptosis of Malignant B Cells. Molecules 2021; 26:molecules26154658. [PMID: 34361811 PMCID: PMC8348492 DOI: 10.3390/molecules26154658] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023] Open
Abstract
Recently, we designed an inventive paradigm in nanomedicine—drug-free macromolecular therapeutics (DFMT). The ability of DFMT to induce apoptosis is based on biorecognition at cell surface, and crosslinking of receptors without the participation of low molecular weight drugs. The system is composed of two nanoconjugates: a bispecific engager, antibody or Fab’ fragment—morpholino oligonucleotide (MORF1) conjugate; the second nanoconjugate is a multivalent effector, human serum albumin (HSA) decorated with multiple copies of complementary MORF2. Here, we intend to demonstrate that DFMT is a platform that will be effective on other receptors than previously validated CD20. We appraised the impact of daratumumab (DARA)- and isatuximab (ISA)-based DFMT to crosslink CD38 receptors on CD38+ lymphoma (Raji, Daudi) and multiple myeloma cells (RPMI 8226, ANBL-6). The biological properties of DFMTs were determined by flow cytometry, confocal fluorescence microscopy, reactive oxygen species determination, lysosomal enlargement, homotypic cell adhesion, and the hybridization of nanoconjugates. The data revealed that the level of apoptosis induction correlated with CD38 expression, the nanoconjugates meet at the cell surface, mitochondrial signaling pathway is strongly involved, insertion of a flexible spacer in the structure of the macromolecular effector enhances apoptosis, and simultaneous crosslinking of CD38 and CD20 receptors increases apoptosis.
Collapse
Affiliation(s)
- M. Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (J.Y.); (J.K.)
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (J.Y.); (J.K.)
| |
Collapse
|
17
|
Tavares MR, Pechar M, Chytil P, Etrych T. Polymer-Based Drug-Free Therapeutics for Anticancer, Anti-Inflammatory, and Antibacterial Treatment. Macromol Biosci 2021; 21:e2100135. [PMID: 34008348 DOI: 10.1002/mabi.202100135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Indexed: 01/09/2023]
Abstract
This paper summarizes the area of biomedicinal polymers, which serve as nanomedicines even though they do not contain any anticancer or antiinflammatory drugs. These polymer nanomedicines with unique design are in the literature highlighted as a novel class of therapeutics called "drug-free macromolecular therapeutics." Their therapeutic efficacy is based on the tailored multiple presentations of biologically active vectors, i.e., peptides, oligopeptides, or oligosaccharides. Thus, they enable, for example, to directly induce the apoptosis of malignant cells by the crosslinking of surface slowly internalizing receptors, or to deplete the efficacy of tumor-associated proteins. The precise biorecognition of natural binding motifs by multiple vectors on the polymer construct remains the crucial part in the designing of these drug-free nanomedicines. Here, the rationales, designs, synthetic approaches, and therapeutic potential of drug-free macromolecular therapeutics consisting of various active vectors are described in detail. Recent developments and achievements for namely B-cell lymphoma treatment, Gal-3-positive tumors, inflammative liver injury, and bacterial treatment are reviewed and highlighted. Finally, a possible future prospect within this highly exciting new field of nanomedicine research is presented.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Michal Pechar
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| |
Collapse
|
18
|
Li J, Fang Y, Zhang Y, Wang H, Yang Z, Ding D. Supramolecular Self-Assembly-Facilitated Aggregation of Tumor-Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008518. [PMID: 33734518 DOI: 10.1002/adma.202008518] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Indexed: 05/05/2023]
Abstract
Supramolecular self-assembling peptide systems are attracting increasing interest in the field of cancer theranostics. Additionally, transformation of the immunologically cold tumor microenvironment into hot is of great importance for obtaining high antitumor responses for most immunotherapies. However, as far as it is known, there are nearly no studies on self-assembling peptides reported to be able to convert cold to hot tumors. Herein, a self-assembling peptide-based cancer theranostic agent (named DBT-2FFGYSA) is designed and synthesized, which can target tumor-specific transmembrane Eph receptor A2 (EphA2) receptors selectively and make the receptors form large aggregates. Such aggregate formation promotes the cross-phosphorylations among EphA2 receptors, leading to signal transduction of antitumor pathway. As a consequence, DBT-2FFGYSA can not only visualize EphA2 receptors in a fluorescence turn-on manner, but also specifically suppress the EphA2 receptor-overexpressed cancer cell proliferation and tumor growth. What is more, DBT-2FFGYSA also serves as an effective agent to convert immunologically cold tumors to hot by inducing the immunogenic cell death of EphA2 receptor-overexpressed cancer cells and recruiting massive tumor-infiltrating T cells. This study, thus, introduces a new category of agents capable of converting cold to hot tumors by pure supramolecular self-assembly without any aid of known anticancer drugs.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yufan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
19
|
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170:26-43. [PMID: 33378707 DOI: 10.1016/j.addr.2020.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Coiled coils are characterized by an arrangement of two or more α-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self-assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies.
Collapse
|
20
|
Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angew Chem Int Ed Engl 2021; 60:3858-3869. [PMID: 32789971 PMCID: PMC7894159 DOI: 10.1002/anie.202005309] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/08/2020] [Indexed: 12/29/2022]
Abstract
Molecularly imprinted polymers (MIPs) are chemically synthesized affinity materials with tailor-made binding cavities complementary to the template molecules in shape, size, and functionality. Recently, engineering MIP-based nanomedicines to improve cancer therapy has become a rapidly growing field and future research direction. Because of the unique properties and functions of MIPs, MIP-based nanoparticles (nanoMIPs) are not only alternatives to current nanomaterials for cancer therapy, but also hold the potential to fill gaps associated with biological ligand-based nanomedicines, such as immunogenicity, stability, applicability, and economic viability. Here, we survey recent advances in the design and fabrication of nanoMIPs for cancer therapy and highlight their distinct features. In addition, how to use these features to achieve desired performance, including extended circulation, active targeting, controlled drug release and anti-tumor efficacy, is discussed and summarized. We expect that this minireview will inspire more advanced studies in MIP-based nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University163 Xianlin AvenueNanjing210023China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of Ottawa451 Smyth RoadOttawaOntarioK1H 8M5Canada
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University163 Xianlin AvenueNanjing210023China
| |
Collapse
|
21
|
Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2020; 330:1191-1207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The vast majority of nanomedicines (NM) investigated today consists of a macromolecular carrier and a drug payload (conjugated or encapsulated), with a purpose of preferential delivery of the drug to the desired site of action, either through passive accumulation, or by active targeting via ligand-receptor interaction. Several drug delivery systems (DDS) have already been approved for clinical use. However, recent reports are corroborating the notion that NM do not necessarily need to include a drug payload, but can exert biological effects through specific binding/blocking of important target proteins at the site of action. The seminal work of Kopeček et al. on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing biorecognition motifs (peptides or oligonucleotides) for crosslinking cell surface non-internalizing receptors of malignant cells and inducing their apoptosis, without containing any low molecular weight drug, led to the definition of a special group of NM, termed Drug-Free Macromolecular Therapeutics (DFMT). Systems utilizing this approach are typically designed to employ pendant targeting-ligands on the same macromolecule to facilitate multivalent interactions with receptors. The lack of conventional small molecule drugs reduces toxicity and adverse effects at off-target sites. In this review, we describe different types of DFMT that possess biological activity without attached low molecular weight drugs. We classified the relevant research into several groups by their mechanisms of action, and compare the advantages and disadvantages of these different approaches. We show that identification of target sites, specificity of attached targeting ligands, binding affinity and the synthesis of carriers of defined size and ligand spacing are crucial aspects of DFMT development. We further discuss how knowledge in the field of NM accumulated in the past few decades can help in the design of a successful DFMT to speed up the translation into clinical practice.
Collapse
Affiliation(s)
- Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nenad Milošević
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
22
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
23
|
Abstract
Hodgkin lymphoma (HL) is a unique type of hematopoietic cancer that has few tumor cells but a massive infiltration of immune cells. Findings on how the cancerous Hodgkin and Reed-Sternberg (HRS) cells survive and evade immune surveillance have facilitated the development of novel immunotherapies for HL. Trogocytosis is a fast process of intercellular transfer of membrane patches, which can significantly affect immune responses. In this review, we summarize the current knowledge of how trogocytosis contributes to the suppression of immune responses in HL. We focus on the ectopic expression of CD137 on HRS cells, the cause of its expression, and its implication on developing novel therapies for HL. Further, we review data demonstrating that similar mechanisms apply to CD30, PD-L1 and CTLA-4.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
24
|
Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res 2020; 24:12. [PMID: 32537239 PMCID: PMC7285724 DOI: 10.1186/s40824-020-00190-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Polymeric drug delivery systems have been achieved great development in the last two decades. Polymeric drug delivery has defined as a formulation or a device that enables the introduction of a therapeutic substance into the body. Biodegradable and bio-reducible polymers make the magic possible choice for lot of new drug delivery systems. The future prospects of the research for practical applications has required for the development in the field. MAIN BODY Natural polymers such as arginine, chitosan, dextrin, polysaccharides, poly (glycolic acid), poly (lactic acid), and hyaluronic acid have been treated for polymeric drug delivery systems. Synthetic polymers such as poly (2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide)s, poly(ethylenimine)s, dendritic polymers, biodegradable and bio-absorbable polymers have been also discussed for polymeric drug delivery. Targeting polymeric drug delivery, biomimetic and bio-related polymeric systems, and drug-free macromolecular therapeutics have also treated for polymeric drug delivery. In polymeric gene delivery systems, virial vectors and non-virial vectors for gene delivery have briefly analyzed. The systems of non-virial vectors for gene delivery are polyethylenimine derivatives, polyethylenimine copolymers, and polyethylenimine conjugated bio-reducible polymers, and the systems of virial vectors are DNA conjugates and RNA conjugates for gene delivery. CONCLUSION The development of polymeric drug delivery systems that have based on natural and synthetic polymers are rapidly emerging to pharmaceutical fields. The fruitful progresses have made in the application of biocompatible and bio-related copolymers and dendrimers to cancer treatment, including their use as delivery systems for potent anticancer drugs. Combining perspectives from the synthetic and biological fields will provide a new paradigm for the design of polymeric drug and gene delivery systems.
Collapse
Affiliation(s)
- Yong Kiel Sung
- Department of Chemistry, College of Science, Dongguk University, Phildong-ro, Seoul, 04620 South Korea
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, BPRB, Room 205, Salt Lake City, UT 84112 USA
| | - Sung Wan Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, BPRB, Room 205, Salt Lake City, UT 84112 USA
| |
Collapse
|
25
|
Castillo RR, Lozano D, Vallet-Regí M. Mesoporous Silica Nanoparticles as Carriers for Therapeutic Biomolecules. Pharmaceutics 2020; 12:E432. [PMID: 32392811 PMCID: PMC7284475 DOI: 10.3390/pharmaceutics12050432] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
The enormous versatility of mesoporous silica nanoparticles permits the creation of a large number of nanotherapeutic systems for the treatment of cancer and many other pathologies. In addition to the controlled release of small drugs, these materials allow a broad number of molecules of a very different nature and sizes. In this review, we focus on biogenic species with therapeutic abilities (proteins, peptides, nucleic acids, and glycans), as well as how nanotechnology, in particular silica-based materials, can help in establishing new and more efficient routes for their administration. Indeed, since the applicability of those combinations of mesoporous silica with bio(macro)molecules goes beyond cancer treatment, we address a classification based on the type of therapeutic action. Likewise, as illustrative content, we highlight the most typical issues and problems found in the preparation of those hybrid nanotherapeutic materials.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| |
Collapse
|
26
|
Wang J, Li Y, Li L, Yang J, Kopeček J. Exploration and Evaluation of Therapeutic Efficacy of Drug-Free Macromolecular Therapeutics in Collagen-Induced Rheumatoid Arthritis Mouse Model. Macromol Biosci 2020; 20:e1900445. [PMID: 32196951 PMCID: PMC7549750 DOI: 10.1002/mabi.201900445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Monoclonal antibodies (mAbs) against B cell antigens are extensively used in the treatment of rheumatoid arthritis (RA). The B cell depletion therapy prevents RA symptoms and/or alleviates existing inflammation. The previously established two-step drug-free macromolecular therapeutics (DFMT) is applied in the treatment of collagen-induced rheumatoid arthritis in a collagen-induced rheumatoid arthritis mouse model. DFMT is a B cell depletion strategy utilizing Fab' fragment of anti-CD20 mAb for biorecognition and receptor crosslinking to induce B cell apoptosis. DFMT is composed from two nanoconjugates: 1) bispecific engager, Fab'-MORF1 (anti-CD20 Fab' fragment conjugated with morpholino oligonucleotide MORF1), and 2) a crosslinking (effector) component P-(MORF2)X (N-(2-hydroxypropyl)methacrylamide copolymer grafted with multiple copies of complementary morpholino oligonucleotide MORF2). The absence of Fc fragment has the potential to avoid development of resistance and infusion-related reactions. DFMT produces B cell depletion, keeps the RA score low for more than 100 days, and shows minimal cartilage and bone erosion and inflammatory cell infiltration. Further improvements will be explored to optimize DFMT strategy in autoimmune disease treatment.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yachao Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
27
|
Huang Y, Zhu L, Ji J, Li Y, Liu T, Lei J. Cleancap-Regulated Aggregation-Induced Emission Strategy for Highly Specific Analysis of Enzyme. Anal Chem 2020; 92:4726-4730. [DOI: 10.1021/acs.analchem.0c00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanyuan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiahao Ji
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
28
|
Takemoto H, Inaba T, Nomoto T, Matsui M, Liu X, Toyoda M, Honda Y, Taniwaki K, Yamada N, Kim J, Tomoda K, Nishiyama N. Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects. Biomaterials 2020; 235:119804. [DOI: 10.1016/j.biomaterials.2020.119804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
|
29
|
Attenuation of neutrophil-mediated liver injury in mice by drug-free E-selectin binding polymer. J Control Release 2019; 319:475-486. [PMID: 31838202 DOI: 10.1016/j.jconrel.2019.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Inflammation with neutrophils infiltration is a prominent feature of alcohol-related liver disease (ARLD) and contributes to the severity of liver injury. Although an array of potential treatments has been studied, the standard treatment regimen is controversial and can induce severe side effects and infection-related complications. E-selectin, a cytokine inducible cell adhesion molecule, mediates the initial interaction of leucocytes with endothelial cells, and facilitates their further adhesion and extravasation into inflamed tissues. Given the important role of E-selectin in leukocytes trafficking, we hypothesized that a synthetic polymer presenting multiple copies of E-selectin binding peptide in a polyvalent manner (P-Esbp) may block the "roads" that facilitate neutrophil infiltration, inhibit the recruitment of neutrophils to the inflamed sites and reduce the extent of liver injury. We now demonstrate in vitro that P-Esbp reduced the recruitment of neutrophils (collected from blood of donors) on activated human umbilical vein endothelial cells (HUVEC) under flow conditions. Pre-treatment of mice with P-Esbp prior to alcohol binge attenuated alcohol-induced serum transaminase (ALT, AST) elevation, reduced pro-inflammatory cytokines (TNFα and IL-1ẞ) and chemokines (MIP-2/CXCL2 and MCP-1/CCL2) in National Institute on Alcohol Abuse and Alcoholism (NIAAA) model. Also, the up-regulation of neutrophil marker Ly6G and the number of MPO positive cells in the injured tissue was significantly reduced by the treatment, indicating diminished neutrophil infiltration. Moreover, as a result of P-Esbp treatment, E-selectin expression in the liver (mRNA and protein level) was downregulated, suggesting a potential to decrease ongoing local inflammatory response. Overall, our findings highlight the anti-inflammatory properties of the "drug-free" P-Esbp and its therapeutic potential to attenuate an excessive inflammation where infiltrating neutrophils can damage tissues and organs.
Collapse
|
30
|
Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Recent Progress in the Development of Poly(lactic- co-glycolic acid)-Based Nanostructures for Cancer Imaging and Therapy. Pharmaceutics 2019; 11:pharmaceutics11060280. [PMID: 31197096 PMCID: PMC6630460 DOI: 10.3390/pharmaceutics11060280] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diverse nanosystems for use in cancer imaging and therapy have been designed and their clinical applications have been assessed. Among a variety of materials available to fabricate nanosystems, poly(lactic-co-glycolic acid) (PLGA) has been widely used due to its biocompatibility and biodegradability. In order to provide tumor-targeting and diagnostic properties, PLGA or PLGA nanoparticles (NPs) can be modified with other functional materials. Hydrophobic or hydrophilic therapeutic cargos can be placed in the internal space or adsorbed onto the surface of PLGA NPs. Protocols for the fabrication of PLGA-based NPs for cancer imaging and therapy are already well established. Moreover, the biocompatibility and biodegradability of PLGA may elevate its feasibility for clinical application in injection formulations. Size-controlled NP’s properties and ligand–receptor interactions may provide passive and active tumor-targeting abilities, respectively, after intravenous administration. Additionally, the introduction of several imaging modalities to PLGA-based NPs can enable drug delivery guided by in vivo imaging. Versatile platform technology of PLGA-based NPs can be applied to the delivery of small chemicals, peptides, proteins, and nucleic acids for use in cancer therapy. This review describes recent findings and insights into the development of tumor-targeted PLGA-based NPs for use of cancer imaging and therapy.
Collapse
|
32
|
Wang J, Li L, Yang J, Clair PM, Glenn MJ, Stephens DM, Radford DC, Kosak KM, Deininger MW, Shami PJ, Kopeček J. Drug-free macromolecular therapeutics induce apoptosis in cells isolated from patients with B cell malignancies with enhanced apoptosis induction by pretreatment with gemcitabine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:217-225. [PMID: 30639670 DOI: 10.1016/j.nano.2018.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022]
Abstract
Drug-free macromolecular therapeutics (DFMT) is a new paradigm for the treatment of B cell malignancies. Apoptosis is initiated by the biorecognition of complementary oligonucleotide motifs at the cell surface resulting in crosslinking of CD20 receptors. DMFT is composed from two nanoconjugates: 1) bispecific engager, Fab'-MORF1 (anti-CD20 Fab' fragment conjugated with morpholino oligonucleotide), and 2) a crosslinking (effector) component P-(MORF2)X (N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer grafted with multiple copies of complementary morpholino oligonucleotide). We evaluated this concept in 44 samples isolated from patients diagnosed with various subtypes of B cell malignancies. Apoptosis was observed in 65.9% of the samples tested. Pretreatment of cells with gemcitabine (GEM) or polymer-gemcitabine conjugate (2P-GEM) enhanced CD20 expression levels thus increasing apoptosis induced by DFMT. These positive results demonstrated that DFMT has remarkable therapeutic potential in various subtypes of B cell malignancies.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Phillip M Clair
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Martha J Glenn
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Deborah M Stephens
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Ken M Kosak
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
33
|
Li L, Yang J, Wang J, Kopeček J. Drug-free macromolecular therapeutics exhibit amplified apoptosis in G2/M phase arrested cells. J Drug Target 2018; 27:566-572. [PMID: 30198798 DOI: 10.1080/1061186x.2018.1521414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-free macromolecular therapeutics (DFMT) have been recently developed to treat non-Hodgkin lymphoma (NHL). It is a consecutive delivery of two nanoconjugates: (1) bispecific engager that pretargets surface CD20, and (2) multivalent effector polymer that hybridises with CD20-bound engagers. Without the need of low molecular weight drug, the hybridisation of morpholino oligonucleotide containing DFMT at NHL cell surface triggers CD20 crosslinking and subsequent apoptosis. We have previously determined various factors that affect the efficacy of DFMT regarding the synthetic structures. Here, we show that DFMT-mediated apoptosis is also influenced by the state of cells. Compared with other cell cycle states, cells arrested at G2/M phase exhibit enhanced CD20 expression, and have more sustainable CD20 binding by DFMT, resulting in a higher degree of DFMT-mediated CD20 crosslinking. Moreover, the anti-apoptotic Bcl-2 protein was phosphorylated in G2/M phase, thereby increasing the cell susceptibility to DFMT. As a result, DFMT mediated augmented apoptosis in G2/M phase cells. When DFMT was combined with a polymer-docetaxel conjugate that triggered G2/M blockage, a combinatorial apoptotic effect was achieved to induce programmed cell death. Our findings suggest the co-delivery of DFMT and G2/M inhibiting drug combinations may present a therapeutic advantage in NHL treatment.
Collapse
Affiliation(s)
- Lian Li
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jiyuan Yang
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jiawei Wang
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA
| | - Jindřich Kopeček
- a Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery , University of Utah , Salt Lake City , UT , USA.,b Department of Biomedical Engineering , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|