1
|
Peng X, Li L, Peng Y, Zhou G, An Z. Bioengineering and omics approaches for Type 1 diabetes practical research: advancements and constraints. Ann Med 2025; 57:2322047. [PMID: 39704022 DOI: 10.1080/07853890.2024.2322047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 12/21/2024] Open
Abstract
Insulin dependency arises from autoimmunity that targets the β cells of the pancreas, resulting in Type 1 diabetes (T1D). Despite the fact that T1D patients require insulin for survival, insulin does not provide a cure for this disease or prevent its complications. Despite extensive genetic, molecular, and cellular research on T1D over the years, the translation of this understanding into effective clinical therapies continues to pose a significant obstacle. It is therefore difficult to develop effective clinical treatment strategies without a thorough understanding of disease pathophysiology. Pancreatic tissue bioengineering models of human T1D offer a valuable approach to examining and controlling islet function while tackling various facets of the condition. And in recent years, due to advances in high-throughput omics analysis, the genotypic and molecular profiles of T1D have become finer tuned. The present article will examine recent progress in these areas, along with their utilization and constraints in the realm of T1D.
Collapse
Affiliation(s)
- Xi Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yihua Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guangju Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2025; 21:14-30. [PMID: 39227741 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
3
|
Doherty A, Buchanan I, Roche i Morgó O, Astolfo A, Savvidis S, Gerli MFM, Citro A, Olivo A, Endrizzi M. Hybrid dark-field and attenuation contrast retrieval for laboratory-based X-ray tomography. OPTICA 2024; 11:1603-1613. [PMID: 39735734 PMCID: PMC11674740 DOI: 10.1364/optica.525760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 12/31/2024]
Abstract
X-ray dark-field imaging highlights sample structures through contrast generated by sub-resolution features within the inspected volume. Quantifying dark-field signals generally involves multiple exposures for phase retrieval, separating contributions from scattering, refraction, and attenuation. Here, we introduce an approach for non-interferometric X-ray dark-field imaging that presents a single-parameter representation of the sample. This fuses attenuation and dark-field signals, enabling the reconstruction of a unified three-dimensional volume. Notably, our method can obtain dark-field contrast from a single exposure and employs conventional back projection algorithms for reconstruction. Our approach is based on the assumption of a macroscopically homogeneous material, which we validate through experiments on phantoms and on biological tissue samples. The methodology is implemented on a laboratory-based, rotating anode X-ray tube system without the need for coherent radiation or a high-resolution detector. Utilizing this system with streamlined data acquisition enables expedited scanning while maximizing dose efficiency. These attributes are crucial in time- and dose-sensitive medical imaging applications and unlock the ability of dark-field contrast with high-throughput lab-based tomography. We believe that the proposed approach can be extended across X-ray dark-field imaging implementations beyond tomography, spanning fast radiography, directional dark-field imaging, and compatibility with pulsed X-ray sources.
Collapse
Affiliation(s)
- Adam Doherty
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- X-ray Microscopy and Tomography Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ian Buchanan
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Oriol Roche i Morgó
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- X-ray Microscopy and Tomography Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alberto Astolfo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Mattia F. M. Gerli
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, NW3 2PF, London, UK
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- X-ray Microscopy and Tomography Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
4
|
Sevastianov VI, Ponomareva AS, Baranova NV, Belova AD, Kirsanova LA, Nikolskaya AO, Kuznetsova EG, Chuykova EO, Skaletskiy NN, Skaletskaya GN, Nemets EA, Basok YB, Gautier SV. A Tissue-Engineered Construct Based on a Decellularized Scaffold and the Islets of Langerhans: A Streptozotocin-Induced Diabetic Model. Life (Basel) 2024; 14:1505. [PMID: 39598303 PMCID: PMC11595861 DOI: 10.3390/life14111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Producing a tissue-engineered pancreas based on a tissue-specific scaffold from a decellularized pancreas, imitating the natural pancreatic tissue microenvironment and the islets of Langerhans, is one of the approaches to treating patients with type 1 diabetes mellitus (T1DM). The aim of this work was to investigate the ability of a fine-dispersed tissue-specific scaffold (DP scaffold) from decellularized human pancreas fragments to support the islets' survival and insulin-producing function when injected in a streptozotocin-induced diabetic rat model. The developed decellularization protocol allows us to obtain a scaffold with a low DNA content (33 [26; 38] ng/mg of tissue, p < 0.05) and with the preservation of GAGs (0.92 [0.84; 1.16] µg/mg, p < 0.05) and fibrillar collagen (273.7 [241.2; 303.0] µg/mg, p < 0.05). Rat islets of Langerhans were seeded in the obtained scaffolds. The rats with stable T1DM were treated by intraperitoneal injections of rat islets alone and islets seeded on the DP scaffold. The blood glucose level was determined for 10 weeks with a histological examination of experimental animals' pancreas. A more pronounced decrease in the recipient rats' glycemia was detected after comparing the islets seeded on the DP scaffold with the control injection (by 71.4% and 51.2%, respectively). It has been shown that the DP scaffold facilitates a longer survival and the efficient function of pancreatic islets in vivo and can be used to engineer a pancreas.
Collapse
Affiliation(s)
- Victor I. Sevastianov
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
- The Institute of Biomedical Research and Technology (IBRT), Autonomous Non-Profit Organization, 123557 Moscow, Russia
| | - Anna S. Ponomareva
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Natalia V. Baranova
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Aleksandra D. Belova
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Lyudmila A. Kirsanova
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Alla O. Nikolskaya
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Eugenia G. Kuznetsova
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Elizaveta O. Chuykova
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
- The Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Nikolay N. Skaletskiy
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Galina N. Skaletskaya
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Evgeniy A. Nemets
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Yulia B. Basok
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
| | - Sergey V. Gautier
- The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia; (V.I.S.); (N.V.B.); (A.D.B.); (A.O.N.); (E.G.K.); (N.N.S.); (G.N.S.); (E.A.N.); (Y.B.B.); (S.V.G.)
- The Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
5
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
6
|
Haderer LM, Zhou Y, Tang P, Daneshgar A, Globke B, Krenzien F, Reutzel-Selke A, Weinhart M, Pratschke J, Sauer IM, Hillebrandt KH, Keshi E. Thrombogenicity assessment of perfusable tissue engineered constructs: a systematic review. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39007511 DOI: 10.1089/ten.teb.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vascular surgery faces a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency particularly applies to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs holds great promise as a solution to organ shortage for transplantation. To achieve this, it is imperative to (re-)construct a biocompatible and non-thrombogenic vascular network within these organs. In this systematic review, we identify, classify and discuss basic principles and methods used to perform in vitro/ex vivo dynamic thrombogenicity testing of perfusable tissue engineered organs and tissues. We conducted a pre-registered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines, comprising a systematic data extraction, in-depth analysis and risk of bias assessment of 116 included studies. We identified shaking (n=28), flow loop (n=17), ex vivo (arterio-venous shunt, n=33) and dynamic in vitro models (n=38) as main approaches for thrombogenicity assessment. This comprehensive review unveils a prevalent lack of standardization and serves as a valuable guide in the design of standardized experimental setups.
Collapse
Affiliation(s)
| | - Yijun Zhou
- Charite Universitatsmedizin Berlin, Berlin, Berlin, Germany;
| | - Peter Tang
- Charité - Campus Virchow, General-, Visceral-, and Transplantation Surgery, Berlin, Germany;
| | - Assal Daneshgar
- Charite Universitatsmedizin Berlin, Berlin, Berlin, Germany;
| | - Brigitta Globke
- Charite Universitatsmedizin Berlin, Berlin, Berlin, Germany;
| | - Felix Krenzien
- Charite Universitatsmedizin Berlin, Berlin, Berlin, Germany;
| | - Anja Reutzel-Selke
- Charité - Campus Virchow, General-, Visceral-, and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany, 13353;
| | | | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, General, Visceral, and Transplantation Surgery, Berlin, Germany;
| | - Igor M Sauer
- Charité, General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany, 13353;
| | - Karl Herbert Hillebrandt
- Charité - Campus Virchow, General-, Visceral-, and Transplantation Surgery, Augstenburgerplatz 1, Berlin, Germany, 13353;
| | - Eriselda Keshi
- Charité Universitätsmedizin Berlin, Chirurgische Klinik, Augustenburger Platz 1, Berlin, Germany, 13353;
| |
Collapse
|
7
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
8
|
Bo T, Pascucci E, Capuani S, Campa-Carranza JN, Franco L, Farina M, Secco J, Becchi S, Cavazzana R, Joubert AL, Hernandez N, Chua CYX, Grattoni A. 3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy. Biomed Microdevices 2024; 26:29. [PMID: 38888669 PMCID: PMC11189315 DOI: 10.1007/s10544-024-00713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Subcutaneous delivery of cell therapy is an appealing minimally-invasive strategy for the treatment of various diseases. However, the subdermal site is poorly vascularized making it inadequate for supporting engraftment, viability, and function of exogenous cells. In this study, we developed a 3D bioprinted scaffold composed of alginate/gelatin (Alg/Gel) embedded with mesenchymal stem cells (MSCs) to enhance vascularization and tissue ingrowth in a subcutaneous microenvironment. We identified bio-ink crosslinking conditions that optimally recapitulated the mechanical properties of subcutaneous tissue. We achieved controlled degradation of the Alg/Gel scaffold synchronous with host tissue ingrowth and remodeling. Further, in a rat model, the Alg/Gel scaffold was superior to MSC-embedded Pluronic hydrogel in supporting tissue development and vascularization of a subcutaneous site. While the scaffold alone promoted vascular tissue formation, the inclusion of MSCs in the bio-ink further enhanced angiogenesis. Our findings highlight the use of simple cell-laden degradable bioprinted structures to generate a supportive microenvironment for cell delivery.
Collapse
Affiliation(s)
- Tommaso Bo
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
| | - Elia Pascucci
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
- Department of Applied Science and Technology, Politecnico Di Torino, Turin, Italy
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
| | - Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Letizia Franco
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
- Department of Applied Science and Technology, Politecnico Di Torino, Turin, Italy
| | - Marco Farina
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
| | - Jacopo Secco
- Department of Electronics and Telecommunications, Politecnico Di Torino, Turin, Italy
| | - Sara Becchi
- Department of Electronics and Telecommunications, Politecnico Di Torino, Turin, Italy
| | - Rosanna Cavazzana
- Department of Electronics and Telecommunications, Politecnico Di Torino, Turin, Italy
| | - Ashley L Joubert
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX77030, , R8-111, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
9
|
Raoufinia R, Rahimi HR, Saburi E, Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J Transl Med 2024; 22:435. [PMID: 38720379 PMCID: PMC11077715 DOI: 10.1186/s12967-024-05226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Capuani S, Campa-Carranza JN, Hernandez N, Chua CYX, Grattoni A. Modeling of a Bioengineered Immunomodulating Microenvironment for Cell Therapy. Adv Healthc Mater 2024:e2304003. [PMID: 38215451 PMCID: PMC11239796 DOI: 10.1002/adhm.202304003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Cell delivery and encapsulation platforms are under development for the treatment of Type 1 Diabetes among other diseases. For effective cell engraftment, these platforms require establishing an immune-protected microenvironment as well as adequate vascularization and oxygen supply to meet the metabolic demands of the therapeutic cells. Current platforms rely on 1) immune isolating barriers and indirect vascularization or 2) direct vascularization with local or systemic delivery of immune modulatory molecules. Supported by experimental data, here a broadly applicable predictive computational model capable of recapitulating both encapsulation strategies is developed. The model is employed to comparatively study the oxygen concentration at different levels of vascularization, transplanted cell density, and spatial distribution, as well as with codelivered adjuvant cells. The model is then validated to be predictive of experimental results of oxygen pressure and local and systemic drug biodistribution in a direct vascularization device with local immunosuppressant delivery. The model highlights that dense vascularization can minimize cell hypoxia while allowing for high cell loading density. In contrast, lower levels of vascularization allow for better drug localization reducing systemic dissemination. Overall, it is shown that this model can serve as a valuable tool for the development and optimization of platform technologies for cell encapsulation.
Collapse
Affiliation(s)
- Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- University of Chinese Academy of Science (UCAS), Beijing, China
| | - Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
11
|
Caldara R, Tomajer V, Monti P, Sordi V, Citro A, Chimienti R, Gremizzi C, Catarinella D, Tentori S, Paloschi V, Melzi R, Mercalli A, Nano R, Magistretti P, Partelli S, Piemonti L. Allo Beta Cell transplantation: specific features, unanswered questions, and immunological challenge. Front Immunol 2023; 14:1323439. [PMID: 38077372 PMCID: PMC10701551 DOI: 10.3389/fimmu.2023.1323439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Type 1 diabetes (T1D) presents a persistent medical challenge, demanding innovative strategies for sustained glycemic control and enhanced patient well-being. Beta cells are specialized cells in the pancreas that produce insulin, a hormone that regulates blood sugar levels. When beta cells are damaged or destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell Transplantation has emerged as a promising therapeutic avenue, with the goal of reinstating glucose regulation and insulin production in T1D patients. However, the path to success in this approach is fraught with complex immunological hurdles that demand rigorous exploration and resolution for enduring therapeutic efficacy. This exploration focuses on the distinct immunological characteristics inherent to Allo Beta Cell Transplantation. An understanding of these unique challenges is pivotal for the development of effective therapeutic interventions. The critical role of glucose regulation and insulin in immune activation is emphasized, with an emphasis on the intricate interplay between beta cells and immune cells. The transplantation site, particularly the liver, is examined in depth, highlighting its relevance in the context of complex immunological issues. Scrutiny extends to recipient and donor matching, including the utilization of multiple islet donors, while also considering the potential risk of autoimmune recurrence. Moreover, unanswered questions and persistent gaps in knowledge within the field are identified. These include the absence of robust evidence supporting immunosuppression treatments, the need for reliable methods to assess rejection and treatment protocols, the lack of validated biomarkers for monitoring beta cell loss, and the imperative need for improved beta cell imaging techniques. In addition, attention is drawn to emerging directions and transformative strategies in the field. This encompasses alternative immunosuppressive regimens and calcineurin-free immunoprotocols, as well as a reevaluation of induction therapy and recipient preconditioning methods. Innovative approaches targeting autoimmune recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the potential of stem stealth cells, tissue engineering, and encapsulation to overcome the risk of graft rejection. In summary, this review provides a comprehensive overview of the inherent immunological obstacles associated with Allo Beta Cell Transplantation. It offers valuable insights into emerging strategies and directions that hold great promise for advancing the field and ultimately improving outcomes for individuals living with diabetes.
Collapse
Affiliation(s)
- Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Tomajer
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raniero Chimienti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Gremizzi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Catarinella
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Tentori
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vera Paloschi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffella Melzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Magistretti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Partelli
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
12
|
Johnson CD, Aranda-Espinoza H, Fisher JP. A Case for Material Stiffness as a Design Parameter in Encapsulated Islet Transplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:334-346. [PMID: 36475851 PMCID: PMC10442690 DOI: 10.1089/ten.teb.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes is a disease that plagues over 463 million people globally. Approximately 40 million of these patients have type 1 diabetes mellitus (T1DM), and the global incidence is increasing by up to 5% per year. T1DM is where the body's immune system attacks the pancreas, specifically the pancreatic beta cells, with antibodies to prevent insulin production. Although current treatments such as exogenous insulin injections have been successful, exorbitant insulin costs and meticulous administration present the need for alternative long-term solutions to glucose dysregulation caused by diabetes. Encapsulated islet transplantation (EIT) is a tissue-engineered solution to diabetes. Donor islets are encapsulated in a semipermeable hydrogel, allowing the diffusion of oxygen, glucose, and insulin but preventing leukocyte infiltration and antibody access to the transplanted cells. Although successful in small animal models, EIT is still far from commercial use owing to necessary long-term systemic immunosuppressants and consistent immune rejection. Most published research has focused on tailoring the characteristics of the capsule material to promote clinical viability. However, most studies have been limited in scope to biochemical changes. Current mechanobiology studies on the effect of substrate stiffness on the function of leukocytes, especially macrophages-primary foreign body response (FBR) orchestrators, show promise in tailoring a favorable response to tissue-engineered therapies such as EIT. In this review, we explore strategies to improve the clinical viability of EIT. A brief overview of the immune system, the FBR, and current biochemical approaches will be elucidated throughout this exploration. Furthermore, an argument for using substrate stiffness as a capsule design parameter to increase EIT efficacy and clinical viability will be posed.
Collapse
Affiliation(s)
- Courtney D. Johnson
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
13
|
Ren B, Jiang Z, Murfee WL, Katz AJ, Siemann D, Huang Y. Realizations of vascularized tissues: From in vitro platforms to in vivo grafts. BIOPHYSICS REVIEWS 2023; 4:011308. [PMID: 36938117 PMCID: PMC10015415 DOI: 10.1063/5.0131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
Vascularization is essential for realizing thick and functional tissue constructs that can be utilized for in vitro study platforms and in vivo grafts. The vasculature enables the transport of nutrients, oxygen, and wastes and is also indispensable to organ functional units such as the nephron filtration unit, the blood-air barrier, and the blood-brain barrier. This review aims to discuss the latest progress of organ-like vascularized constructs with specific functionalities and realizations even though they are not yet ready to be used as organ substitutes. First, the human vascular system is briefly introduced and related design considerations for engineering vascularized tissues are discussed. Second, up-to-date creation technologies for vascularized tissues are summarized and classified into the engineering and cellular self-assembly approaches. Third, recent applications ranging from in vitro tissue models, including generic vessel models, tumor models, and different human organ models such as heart, kidneys, liver, lungs, and brain, to prevascularized in vivo grafts for implantation and anastomosis are discussed in detail. The specific design considerations for the aforementioned applications are summarized and future perspectives regarding future clinical applications and commercialization are provided.
Collapse
Affiliation(s)
- Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Zhihua Jiang
- Department of Surgery, University of Florida, Gainesville, Florida 32610, USA
| | - Walter Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Dietmar Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Yong Huang
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Goh SK, Bertera S, Richardson T, Banerjee I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed Mater 2023; 18. [PMID: 36720168 DOI: 10.1088/1748-605x/acb7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Diabetes is an emerging global epidemic that affects more that 285 million people worldwide. Engineering of endocrine pancreas tissue holds great promise for the future of diabetes therapy. Here we demonstrate the feasibility of re-engineering decellularized organ scaffolds using regenerative cell source. We differentiated human pluripotent stem cells (hPSC) toward pancreatic progenitor (PP) lineage and repopulated decellularized organ scaffolds with these hPSC-PP cells. We observed that hPSCs cultured and differentiated as aggregates are more suitable for organ repopulation than isolated single cell suspension. However, recellularization with hPSC-PP aggregates require a more extensive vascular support, which was found to be superior in decellularized liver over the decellularized pancreas scaffolds. Upon continued culture for nine days with chemical induction in the bioreactor, the seeded hPSC-PP aggregates demonstrated extensive and uniform cellular repopulation and viability throughout the thickness of the liver scaffolds. Furthermore, the decellularized liver scaffolds was supportive of the endocrine cell fate of the engrafted cells. Our novel strategy to engineer endocrine pancreas construct is expected to find potential applications in preclinical testing, drug discovery and diabetes therapy.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Thomas Richardson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
15
|
Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat Commun 2023; 14:878. [PMID: 36797282 PMCID: PMC9935529 DOI: 10.1038/s41467-023-36582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Intrahepatic islet transplantation is the standard cell therapy for β cell replacement. However, the shortage of organ donors and an unsatisfactory engraftment limit its application to a selected patients with type 1 diabetes. There is an urgent need to identify alternative strategies based on an unlimited source of insulin producing cells and innovative scaffolds to foster cell interaction and integration to orchestrate physiological endocrine function. We previously proposed the use of decellularized lung as a scaffold for β cell replacement with the final goal of engineering a vascularized endocrine organ. Here, we prototyped this technology with the integration of neonatal porcine islet and healthy subject-derived blood outgrowth endothelial cells to engineer a xenogeneic vascularized endocrine pancreas. We validated ex vivo cell integration and function, its engraftment and performance in a preclinical model of diabetes. Results showed that this technology not only is able to foster neonatal pig islet maturation in vitro, but also to perform in vivo immediately upon transplantation and for over 18 weeks, compared to normal performance within 8 weeks in various state of the art preclinical models. Given the recent progress in donor pig genetic engineering, this technology may enable the assembly of immune-protected functional endocrine organs.
Collapse
|
16
|
Pantoja BTDS, Carvalho RC, Miglino MA, Carreira ACO. The Canine Pancreatic Extracellular Matrix in Diabetes Mellitus and Pancreatitis: Its Essential Role and Therapeutic Perspective. Animals (Basel) 2023; 13:ani13040684. [PMID: 36830471 PMCID: PMC9952199 DOI: 10.3390/ani13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 02/18/2023] Open
Abstract
Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research related to genetic diseases, being considered potential models for the study of human diseases. This review discusses the importance of using the extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using extracellular matrix in new regenerative techniques, such as decellularization and recellularization. Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix components that are involved in triggering diabetes melittus and pancreatitis. The extracellular matrix plays the role of physical support for the cells and allows the regulation of various cellular processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes associated with pancreatic diseases.
Collapse
Affiliation(s)
- Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Rafael Cardoso Carvalho
- Department of Animal Science, Center for Agricultural and Environmental Sciences, Federal University of Maranhao, Chapadinha 65500-000, MA, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-550, SP, Brazil
- Correspondence: or ; Tel.: +55-11-983229615
| |
Collapse
|
17
|
Tissue engineering of decellularized pancreas scaffolds for regenerative medicine in diabetes. Acta Biomater 2023; 157:49-66. [PMID: 36427686 DOI: 10.1016/j.actbio.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus is a global disease requiring long-term treatment and monitoring. At present, pancreas or islet transplantation is the only reliable treatment for achieving stable euglycemia in Type I diabetes patients. However, the shortage of viable pancreata for transplantation limits the use of this therapy for the majority of patients. Organ decellularization and recellularization is emerging as a promising solution to overcome the shortage of viable organs for transplantation by providing a potential alternative source of donor organs. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have been performed, and show promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we provide an overview of the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with an outlook on the remaining work that needs to be done in order to realize the goal of using this technology to create bioengineered pancreata for transplantation in diabetes patients. STATEMENT OF SIGNIFICANCE: Pancreas or islet transplantation is a means of providing insulin-independence in diabetes patients. However, due to the shortage of viable pancreata, whole-organ decellularization and recellularization is emerging as a promising solution to overcome organ shortage for transplantation. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have shown promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we highlight the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with future work that needs to be done in order to realize clinical translation of bioengineered pancreata for transplantation in diabetes patients.
Collapse
|
18
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
19
|
Organoids and Their Research Progress in Plastic and Reconstructive Surgery. Aesthetic Plast Surg 2022; 47:880-891. [PMID: 36401134 DOI: 10.1007/s00266-022-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022]
Abstract
Organoids are 3D structures generated from stem cells. Their functions and physiological characteristics are similar to those of normal organs. They are used in disease mechanism research, new drug development, organ transplantation and other fields. In recent years, the application of 3D materials in plastic surgery for repairing injuries, filling, tissue reconstruction and regeneration has also been investigated. The PubMed/MEDLINE database was queried to search for animal and human studies published through July of 2022 with search terms related to Organoids, Plastic Surgery, Pluripotent Stem Cells, Bioscaffold, Skin Reconstruction, Bone and Cartilage Regeneration. This review presents stem cells, scaffold materials and methods for the construction of organoids for plastic surgery, and it summarizes their research progress in plastic surgery in recent years.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
20
|
Bolla AM, Montefusco L, Pastore I, Lunati ME, Ben Nasr M, Fiorina P. Benefits and Hurdles of Pancreatic β-Cell Replacement. Stem Cells Transl Med 2022; 11:1029-1039. [PMID: 36073717 PMCID: PMC9585952 DOI: 10.1093/stcltm/szac058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin represents a life-saving treatment in patients with type 1 diabetes, and technological advancements have improved glucose control in an increasing number of patients. Despite this, adequate control is often still difficult to achieve and insulin remains a therapy and not a cure for the disease. β-cell replacement strategies can potentially restore pancreas endocrine function and aim to maintain normoglycemia; both pancreas and islet transplantation have greatly progressed over the last decades and, in subjects with extreme glycemic variability and diabetes complications, represent a concrete and effective treatment option. Some issues still limit the adoption of this approach on a larger scale. One is represented by the strict selection criteria for the recipient who can benefit from a transplant and maintain the lifelong immunosuppression necessary to avoid organ rejection. Second, with regard to islet transplantation, up to 40% of islets can be lost during hepatic engraftment. Recent studies showed very preliminarily but promising results to overcome these hurdles: the ability to induce β-cell maturation from stem cells may represent a solution to the organ shortage, and the creation of semi-permeable membranes that envelope or package cells in either micro- or macro- encapsulation strategies, together with engineering cells to be hypo-immunogenic, pave the way for developing strategies without immunosuppression. The aim of this review is to describe the state of the art in β-cell replacement with a focus on its efficacy and clinical benefits, on the actual limitations and still unmet needs, and on the latest findings and future directions.
Collapse
Affiliation(s)
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Sordi V, Monaco L, Piemonti L. Cell Therapy for Type 1 Diabetes: From Islet Transplantation to Stem Cells. Horm Res Paediatr 2022; 96:658-669. [PMID: 36041412 DOI: 10.1159/000526618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
The field of cell therapy of type 1 diabetes is a particularly interesting example in the scenario of regenerative medicine. In fact, β-cell replacement has its roots in the experience of islet transplantation, which began 40 years ago and is currently a rapidly accelerating field, with several ongoing clinical trials using β cells derived from stem cells. Type 1 diabetes is particularly suitable for cell therapy as it is a disease due to the deficiency of only one cell type, the insulin-producing β cell, and this endocrine cell does not need to be positioned inside the pancreas to perform its function. On the other hand, the presence of a double immunological barrier, the allogeneic one and the autoimmune one, makes the protection of β cells from rejection a major challenge. Until today, islet transplantation has taught us a lot, pioneering immunosuppressive therapies, graft encapsulation, tissue engineering, and test of different implant sites and has stimulated a great variety of studies on β-cell function. This review starts from islet transplantation, presenting its current indications and the latest published trials, to arrive at the prospects of stem cell therapy, presenting the latest innovations in the field.
Collapse
Affiliation(s)
- Valeria Sordi
- Diabetes Research Institute, San Raffaele Hospital, Milan, Italy,
| | - Laura Monaco
- Diabetes Research Institute, San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
23
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
24
|
Wang D, Guo Y, Zhu J, Liu F, Xue Y, Huang Y, Zhu B, Wu D, Pan H, Gong T, Lu Y, Yang Y, Wang Z. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater 2022:S1742-7061(22)00375-0. [PMID: 35803504 DOI: 10.1016/j.actbio.2022.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Islet transplantation has poor long-term efficacy because of the lack of extracellular matrix support and neovascularization; this limits its wide application in diabetes research. In this study, we develop a 3D-printed islet organoid by combining a pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA) as specific bioinks. The HAMA/pECM hydrogel was validated in vitro to maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, which helps improve islet function and activity. Further, in vivo experiments confirmed that the 3D-printed islet-encapsulated HAMA/pECM hydrogel increases insulin levels in diabetic mice, maintains blood glucose levels within a normal range for 90 days, and rapidly secretes insulin in response to blood glucose stimulation. In addition, the HAMA/pECM hydrogel can facilitate the attachment and growth of new blood vessels and increase the density of new vessels. Meanwhile, the designed 3D-printed structure was conducive to the formation of vascular networks and it promoted the construction of 3D-printed islet organoids. In conclusion, our experiments optimized the HAMA/pECM bioink composition and 3D-printed structure of islet organoids with promising therapeutic effects compared with the HAMA hydrogel group that can be potentially used in clinical applications to improve the effectiveness and safety of islet transplantation in vivo. STATEMENT OF SIGNIFICANCE: The extraction process of pancreatic islets can easily cause damage to the extracellular matrix and vascular system, resulting in poor islet transplantation efficiency. We developed a new tissue-specific bioink by combining pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA). The islet organoids constructed by 3D printing can mimic the microenvironment of the pancreas and maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, thereby improving islet function and activity. In addition, the 3D-printed structures we designed are favorable for the formation of new blood vessel networks, bringing hope for the long-term efficacy of islet transplantation.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Jiacheng Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Fang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Yan Xue
- Department of Internal Medicine, Nantong Health College of Jiangsu Province, Nantong, 226010, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Biwen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Haopeng Pan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| |
Collapse
|
25
|
Urbanczyk M, Zbinden A, Schenke-Layland K. Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Adv Drug Deliv Rev 2022; 186:114323. [PMID: 35568103 DOI: 10.1016/j.addr.2022.114323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) are a key cellular component of the vascular system as they form the inner lining of the blood vessels. Recent findings highlight that ECs express extensive phenotypic heterogenicity when following the vascular tree from the major vasculature down to the organ capillaries. However, in vitro models, used for drug development and testing, or to study the role of ECs in health and disease, rarely acknowledge this EC heterogenicity. In this review, we highlight the main differences between different EC types, briefly summarize their different characteristics and focus on the use of ECs in in vitro models. We introduce different approaches on how ECs can be utilized in co-culture test systems in the field of brain, pancreas, and liver research to study the role of the endothelium in health and disease. Finally, we discuss potential improvements to current state-of-the-art in vitro models and future directions.
Collapse
|
26
|
Yang J, Dang H, Xu Y. Recent advancement of decellularization extracellular matrix for tissue engineering and biomedical application. Artif Organs 2022; 46:549-567. [PMID: 34855994 DOI: 10.1111/aor.14126] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Decellularized extracellular matrixs (dECMs) derived from organs and tissues have emerged as a promising tool, as they encompass the characteristics of an ideal tissue scaffold: complex composition, vascular networks and unique tissue-specific architecture. Consequently, their use has propagated throughout tissue engineering and regenerative medicine. dECM can be easily obtained from various tissues/organs by appropriate decellularization protocolsand is entitled to provide necessary cues to cells homing. METHODS In this review, we describe the decellularization and sterilization methods that are commonly used in recent research, the effects of these methods upon biologic scaffold material are discussed. Also, we summarize the recent developments of recellularization and vascularization techniques in regeneration medicine. Additionally, dECM preservation methods is mentioned, which provides the basis for the establishment of organ bank. RESULTS Biomedical applications and the status of current research developments relating to dECM biomaterials are outlined, including transplantation in vivo, disease models and drug screening, organoid, 3D bioprinting, tissue reconstruction and rehabilitation and cell transplantation and culture. Finally, critical challenges and future developing technologies are discussed. CONCLUSIONS With the development of tissue engineering and regenerative medicine, dECM will have broader applications in the field of biomedicine in the near future.
Collapse
Affiliation(s)
- Jiamin Yang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hangyu Dang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Hou N, Lv D, Xu X, Lu Y, Li J, Ma R, Tang Y, Zheng Y. Development of a decellularized hypopharynx with vascular pedicle scaffold for use in reconstructing hypopharynx. Artif Organs 2022; 46:1268-1280. [PMID: 35191556 DOI: 10.1111/aor.14214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hypopharynx reconstruction after hypopharyngectomy is still a great challenge. Perfusion decellularization is for extracellular matrix (ECM) scaffolding and had been used in organ reconstruction. Our study aimed to prepare an acellular, natural, three-dimensional biological hypopharynx with vascular pedicle scaffold as the substitute materials to reconstruct hypopharynx. RESULT Scanning electron microscope and histology staining showed that the decellularized hypopharynx with vascular pedicle scaffold retained intact native anatomical ECM structure. Myoblasts were observed on the recellularized scaffolds with bone marrow mesenchymal stem cells induced by 5-azacytidine implanted in the rabbit greater omentum by immunohistochemical analysis. CONCLUSION The decellularized hypopharynx with vascular pedicle scaffold prepared by detergent perfusion in our study has a potential to be an alternative material to pharynx reconstruction.
Collapse
Affiliation(s)
- Nan Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Die Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China.,Department of Otorhinolaryngology Head and Neck Surgery, Renshou People Hospital, Chengdu City, China
| | - Xiaoli Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Yanqing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Jingzhi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Ruina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an City, China
| | - Ying Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Yun Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu City, China
| |
Collapse
|
28
|
Quizon MJ, García AJ. Engineering β Cell Replacement Therapies for Type 1 Diabetes: Biomaterial Advances and Considerations for Macroscale Constructs. ANNUAL REVIEW OF PATHOLOGY 2022; 17:485-513. [PMID: 34813353 DOI: 10.1146/annurev-pathol-042320-094846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While significant progress has been made in treatments for type 1 diabetes (T1D) based on exogenous insulin, transplantation of insulin-producing cells (islets or stem cell-derived β cells) remains a promising curative strategy. The current paradigm for T1D cell therapy is clinical islet transplantation (CIT)-the infusion of islets into the liver-although this therapeutic modality comes with its own limitations that deteriorate islet health. Biomaterials can be leveraged to actively address the limitations of CIT, including undesired host inflammatory and immune responses, lack of vascularization, hypoxia, and the absence of native islet extracellular matrix cues. Moreover, in efforts toward a clinically translatable T1D cell therapy, much research now focuses on developing biomaterial platforms at the macroscale, at which implanted platforms can be easily retrieved and monitored. In this review, we discuss how biomaterials have recently been harnessed for macroscale T1D β cell replacement therapies.
Collapse
Affiliation(s)
- Michelle J Quizon
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
| |
Collapse
|
29
|
Kemter E, Citro A, Wolf-van Buerck L, Qiu Y, Böttcher A, Policardi M, Pellegrini S, Valla L, Alunni-Fabbroni M, Kobolák J, Kessler B, Kurome M, Zakhartchenko V, Dinnyes A, Cyran CC, Lickert H, Piemonti L, Seissler J, Wolf E. Transgenic pigs expressing near infrared fluorescent protein-A novel tool for noninvasive imaging of islet xenotransplants. Xenotransplantation 2021; 29:e12719. [PMID: 34935207 DOI: 10.1111/xen.12719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Islet xenotransplantation is a promising concept for beta-cell replacement therapy. Reporter genes for noninvasive monitoring of islet engraftment, graft mass changes, long-term survival, and graft failure support the optimization of transplantation strategies. Near-infrared fluorescent protein (iRFP) is ideal for fluorescence imaging (FI) in tissue, but also for multispectral optoacoustic tomography (MSOT) with an even higher imaging depth. Therefore, we generated reporter pigs ubiquitously expressing iRFP. METHODS CAG-iRPF720 transgenic reporter pigs were generated by somatic cell nuclear transfer from FACS-selected stable transfected donor cells. Neonatal pig islets (NPIs) were transplanted into streptozotocin-diabetic immunodeficient NOD-scid IL2Rgnull (NSG) mice. FI and MSOT were performed to visualize different numbers of NPIs and to evaluate associations between signal intensity and glycemia. MSOT was also tested in a large animal model. RESULTS CAG-iRFP transgenic NPIs were functionally equivalent with wild-type NPIs. Four weeks after transplantation under the kidney capsule, FI revealed a twofold higher signal for 4000-NPI compared to 1000-NPI grafts. Ten weeks after transplantation, the fluorescence intensity of the 4000-NPI graft was inversely correlated with glycemia. After intramuscular transplantation into diabetic NSG mice, MSOT revealed clear dose-dependent signals for grafts of 750, 1500, and 3000 NPIs. Dose-dependent MSOT signals were also revealed in a pig model, with stronger signals after subcutaneous (depth ∼6 mm) than after submuscular (depth ∼15 mm) placement of the NPIs. CONCLUSIONS Islets from CAG-iRFP transgenic pigs are fully functional and accessible to long-term monitoring by state-of-the-art imaging modalities. The novel reporter pigs will support the development and preclinical testing of novel matrices and engraftment strategies for porcine xeno-islets.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lelia Wolf-van Buerck
- Diabetes Center, Medical Clinic and Policlinic IV, University Hospital, LMU Munich, Munich, Germany
| | - Yi Qiu
- iThera Medical, Munich, Germany
| | - Anika Böttcher
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Policardi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Libera Valla
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.,MWM Biomodels GmbH, Tiefenbach, Germany
| | | | | | - Barbara Kessler
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | | | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Jochen Seissler
- Diabetes Center, Medical Clinic and Policlinic IV, University Hospital, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
30
|
Fathi I, Imura T, Inagaki A, Nakamura Y, Nabawi A, Goto M. Decellularized Whole-Organ Pre-vascularization: A Novel Approach for Organogenesis. Front Bioeng Biotechnol 2021; 9:756755. [PMID: 34746108 PMCID: PMC8567193 DOI: 10.3389/fbioe.2021.756755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Introduction: Whole-organ decellularization is an attractive approach for three-dimensional (3D) organ engineering. However, progress with this approach is hindered by intra-vascular blood coagulation that occurs after in vivo implantation of the re-cellularized scaffold, resulting in a short-term graft survival. In this study, we explored an alternative approach for 3D organ engineering through an axial pre-vascularization approach and examined its suitability for pancreatic islet transplantation. Methods: Whole livers from male Lewis rats were decellularized through sequential arterial perfusion of detergents. The decellularized liver scaffold was implanted into Lewis rats, and an arteriovenous bundle was passed through the scaffold. At the time of implantation, fresh bone marrow preparation (BM; n = 3), adipose-derived stem cells (ADSCs; n = 4), or HBSS (n = 4) was injected into the scaffold through the portal vein. After 5 weeks, around 2,600 islet equivalents (IEQs) were injected through the portal vein of the scaffold. The recipient rats were rendered diabetic by the injection of 65 mg/kg STZ intravenously 1 week before islet transplantation and were followed up after transplantation by measuring the blood glucose and body weight for 30 days. Intravenous glucose tolerance test was performed in the cured animals, and samples were collected for immunohistochemical (IHC) analyses. Micro-computed tomography (CT) images were obtained from one rat in each group for representation. Results: Two rats in the BM group and one in the ADSC group showed normalization of blood glucose levels, while one rat from each group showed partial correction of blood glucose levels. In contrast, no rats were cured in the HBSS group. Micro-CT showed evidence of sprouting from the arteriovenous bundle inside the scaffold. IHC analyses showed insulin-positive cells in all three groups. The number of von-Willebrand factor-positive cells in the islet region was higher in the BM and ADSC groups than in the HBSS group. The number of 5-bromo-2'-deoxyuridine-positive cells was significantly lower in the BM group than in the other two groups. Conclusions: Despite the limited numbers, the study showed the promising potential of the pre-vascularized whole-organ scaffold as a novel approach for islet transplantation. Both BM- and ADSCs-seeded scaffolds were superior to the acellular scaffold.
Collapse
Affiliation(s)
- Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
- Department of Surgery, University of Alexandria, Alexandria, Egypt
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ayman Nabawi
- Department of Surgery, University of Alexandria, Alexandria, Egypt
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
- Department of Surgery, Tohoku University, Sendai, Japan
| |
Collapse
|
31
|
Bolla AM, Usuelli V, Ben Nasr M, Frigerio S, Loretelli C, D'Addio F, Fiorina P. Next-gen therapeutics to spare and expand beta-cell mass. Curr Opin Pharmacol 2021; 61:77-82. [PMID: 34649215 DOI: 10.1016/j.coph.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
The most effective and physiological way to treat hyperglycemia is to restore beta-cell function and to rescue production of endogenous insulin. Increasing evidence suggests that both type 1 and type 2 diabetes are characterized by a significant defect in beta-cell mass, leading to the manifestation of the disease. Novel alternative approaches are needed to spare and expand beta-cell mass in patients with diabetes. This review sets out to describe the latest findings on how to restore the beta-cell mass and function in both forms of diabetes to modulate their progression.
Collapse
Affiliation(s)
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sofia Frigerio
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy; International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Wu S, Wang L, Fang Y, Huang H, You X, Wu J. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv Healthc Mater 2021; 10:e2100965. [PMID: 34480420 DOI: 10.1002/adhm.202100965] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease caused by the destruction of pancreatic β-cells in response to autoimmune reactions. Shapiro et al. conducted novel islet transplantation with a glucocorticoid-free immunosuppressive agent in 2000 and achieved great success; since then, islet transplantation has been increasingly regarded as a promising strategy for the curative treatment of T1DM. However, many unavoidable challenges, such as a lack of donors, poor revascularization, blood-mediated inflammatory reactions, hypoxia, and side effects caused by immunosuppression have severely hindered the widespread application of islet transplantation in clinics. Biomaterial-based encapsulation and delivery strategies are proposed for overcoming these obstacles, and have demonstrated remarkable improvements in islet transplantation outcomes. Herein, the major problems faced by islet transplantation are summarized and updated biomaterial-based strategies for islet transplantation, including islet encapsulation across different scales, delivery of stem cell-derived beta cells, co-delivery of islets with accessory cells and immunomodulatory molecules are highlighted.
Collapse
Affiliation(s)
- Siying Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hai Huang
- Department of Urology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 P. R. China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
33
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Krentz NAJ, Shea LD, Huising MO, Shaw JAM. Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes Endocrinol 2021; 9:708-724. [PMID: 34480875 PMCID: PMC10881068 DOI: 10.1016/s2213-8587(21)00170-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes is characterised by autoimmune-mediated destruction of pancreatic β-cell mass. With the advent of insulin therapy a century ago, type 1 diabetes changed from a progressive, fatal disease to one that requires lifelong complex self-management. Replacing the lost β-cell mass through transplantation has proven successful, but limited donor supply and need for lifelong immunosuppression restricts widespread use. In this Review, we highlight incremental advances over the past 20 years and remaining challenges in regenerative medicine approaches to restoring β-cell mass and function in type 1 diabetes. We begin by summarising the role of endocrine islets in glucose homoeostasis and how this is altered in disease. We then discuss the potential regenerative capacity of the remaining islet cells and the utility of stem cell-derived β-like cells to restore β-cell function. We conclude with tissue engineering approaches that might improve the engraftment, function, and survival of β-cell replacement therapies.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lonnie D Shea
- Departments of Biomedical Engineering, Chemical Engineering, and Surgery, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
35
|
Engineering a 3D Vascularized Adipose Tissue Construct Using a Decellularized Lung Matrix. Biomimetics (Basel) 2021; 6:biomimetics6030052. [PMID: 34562876 PMCID: PMC8482279 DOI: 10.3390/biomimetics6030052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Critically sized defects in subcutaneous white adipose tissue result in extensive disfigurement and dysfunction and remain a reconstructive challenge for surgeons; as larger defect sizes are correlated with higher rates of complications and failure due to insufficient vascularization following implantation. Our study demonstrates, for the first time, a method to engineer perfusable, pre-vascularized, high-density adipose grafts that combine patient-derived adipose cells with a decellularized lung matrix (DLM). The lung is one of the most vascularized organs with high flow, low resistance, and a large blood-alveolar interface separated by a thin basement membrane. For our work, the large volume capacity within the alveolar compartment was repurposed for high-density adipose cell filling, while the acellular vascular bed provided efficient graft perfusion throughout. Both adipocytes and hASCs were successfully delivered and remained in the alveolar space even after weeks of culture. While adipose-derived cells maintained their morphology and functionality in both static and perfusion DLM cultures, perfusion culture offered enhanced outcomes over static culture. Furthermore, we demonstrate that endothelial cells seamlessly integrate into the acellular vascular tree of the DLM with adipocytes. These results support that the DLM is a unique platform for creating vascularized adipose tissue grafts for large defect filling.
Collapse
|
36
|
Hashemi J, Barati G, Bibak B. Decellularized Matrix Bioscaffolds: Implementation of Native Microenvironment in Pancreatic Tissue Engineering. Pancreas 2021; 50:942-951. [PMID: 34643609 DOI: 10.1097/mpa.0000000000001868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT Type 1 diabetes is an autoimmune disease, and its incidence is usually estimated in the range of 5% to 10%. Currently, the administration of exogenous insulin is the standard of care therapy. However, this therapy is not effective in some patients who may develop some chronic complications. Islet transplantation into the liver is another therapy with promising outcomes; however, the long-term efficacy of this therapeutic option is limited to a small number of patients. Because native extracellular matrix (ECM) components provide a suitable microenvironment for islet functions, engineering a 3-dimensional construct that recapitulates the native pancreatic environment could address these obstacles. Many attempts have been conducted to mimic an in vivo microenvironment to increase the survival of islets or islet-like clusters. With the advent of decellularization technology, it is possible to use a native ECM in organ engineering. Pancreatic decellularized bioscaffold provides proper cell-cell and cell-ECM interactions and retains growth factors that are critical in the determination of cell fate within a native organ. This review summarizes the current knowledge of decellularized matrix technology and addresses its possible limitations before use in the clinic.
Collapse
Affiliation(s)
- Javad Hashemi
- From the Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd
| | | | | |
Collapse
|
37
|
Strategies for Vascularizing Pancreatic Islets and Stem Cell–Derived Islet Organoids. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Nakayama-Iwatsuki K, Yanagisawa K, Tanaka D, Hirabayashi M, Negishi J, Hochi S. Acellular matrix derived from rat liver improves the functionality of rat pancreatic islets before or after vitrification. Cryobiology 2021; 100:90-95. [PMID: 33757759 DOI: 10.1016/j.cryobiol.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Cryopreservation of pancreatic islets can overcome the severe shortage of islet donors in clinical islet transplantation, but the impaired quality of post-warm islets need improvement. This present study was conducted to investigate whether the pre- or post-treatment of rat islets with liver decellularized matrix (LDM) for vitrification can improve the viability (FDA/PI double staining) and the functionality (glucose-stimulated insulin secretion [GSIS] assay). Rat LDM was prepared by high-hydrostatic pressure, lyophilization, and re-suspension in saline. Co-culturing of isolated islets with 0 (control), 30, 60, or 90 μg/ml LDM for 24 h resulted in the comparable viability among the 4 groups (98.7-99.6%) and the higher insulin secretion potential in 30 and 60 μg/ml LDM treatment groups than the control group (stimulation index [SI]: 12.1 and 12.7, respectively, vs. 6.5 in the control group, P < 0.05). When the islets co-cultured with 60 μg/ml LDM were vitrified-warmed on a nylon mesh cryodevice, the viability and the GSIS of the post-warm islets were not improved. Post-treatment of vitrified-warmed islets with 60 μg/ml LDM during the recovery culture for 12 h resulted in the comparable clearance of degenerating cell debris from the post-warm islets, while their insulin secretion potential was improved (SI: 5.0 vs. 3.5 in the control group, P < 0.05). These findings indicate that the components in LDM can enhance the insulin secretion potential of rat islets suffering damage by enzymatic stress during the islet isolation process or by cryoinjuries during the vitrification-warming process.
Collapse
Affiliation(s)
- Kenyu Nakayama-Iwatsuki
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Kotaro Yanagisawa
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Dan Tanaka
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Masumi Hirabayashi
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi, 444-8787, Japan
| | - Jun Negishi
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Shinichi Hochi
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
40
|
Abstract
Abstract
Purpose of Review
β cell replacement via whole pancreas or islet transplantation has greatly evolved for the cure of type 1 diabetes. Both these strategies are however still affected by several limitations. Pancreas bioengineering holds the potential to overcome these hurdles aiming to repair and regenerate β cell compartment. In this review, we detail the state-of-the-art and recent progress in the bioengineering field applied to diabetes research.
Recent Findings
The primary target of pancreatic bioengineering is to manufacture a construct supporting insulin activity in vivo. Scaffold-base technique, 3D bioprinting, macro-devices, insulin-secreting organoids, and pancreas-on-chip represent the most promising technologies for pancreatic bioengineering.
Summary
There are several factors affecting the clinical application of these technologies, and studies reported so far are encouraging but need to be optimized. Nevertheless pancreas bioengineering is evolving very quickly and its combination with stem cell research developments can only accelerate this trend.
Collapse
|
41
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Pancreas transplant versus islet transplant versus insulin pump therapy: in which patients and when? Curr Opin Organ Transplant 2021; 26:176-183. [PMID: 33650999 DOI: 10.1097/mot.0000000000000857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The aim of the present review is to gather recent reports on the use of pancreas and islet transplantation and conventional insulin therapy for treating patients experiencing diabetes and its related complications. The present review directs attention to the current status, challenges and perspectives of these therapies and sheds light on potential future cellular therapies. RECENT FINDINGS The risks and benefits of diabetes treatment modalities continue to evolve, altering the risk versus benefit calculation for patients. As continuous subcutaneous insulin infusion and monitoring technologies demonstrate increasing effectiveness in achieving better diabetes control and reducing hypoglycemia frequency, so are pancreas and islet transplantation improving and becoming more effective and safer. Both beta-cell replacement therapies, however, are limited by a dependence on immunosuppression and a shortage of cadaver donors, restricting more widespread and safer deployment. Based on the effectiveness of clinical beta-cell replacement for lengthening lifespan and improving quality of life, scientists are aggressively investigating alternative cell sources, transplant platforms, and means of preventing immunological damage of transplanted cells to overcome these principle limitations. SUMMARY Essential goals of diabetes therapy are euglycemia, avoidance of hypoglycemia, and prevention or stabilization of end-organ damage. With these goals in mind, all therapeutic options should be considered.
Collapse
|
43
|
Han EX, Wang J, Kural M, Jiang B, Leiby KL, Chowdhury N, Tellides G, Kibbey RG, Lawson JH, Niklason LE. Development of a Bioartificial Vascular Pancreas. J Tissue Eng 2021; 12:20417314211027714. [PMID: 34262686 PMCID: PMC8243137 DOI: 10.1177/20417314211027714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO2 of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes.
Collapse
Affiliation(s)
- Edward X Han
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Juan Wang
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Mehmet Kural
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Department of Vascular Surgery, The
First Hospital of China Medical University, Shenyang, China
| | - Katherine L Leiby
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Nazar Chowdhury
- Molecular, Cellular, and Developmental
Biology, Yale University, New Haven, CT, USA
| | - George Tellides
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare
System, West Haven, CT, USA
| | - Richard G Kibbey
- Department of Internal Medicine
(Endocrinology), Yale University, New Haven, CT, USA
- Department of Cellular & Molecular
Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey H Lawson
- Department of Surgery, Duke
University, Durham, NC, USA
- Humacyte Inc., Durham, NC, USA
| | - Laura E Niklason
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
- Humacyte Inc., Durham, NC, USA
| |
Collapse
|
44
|
Lee J, Park D, Seo Y, Chung JJ, Jung Y, Kim SH. Organ-Level Functional 3D Tissue Constructs with Complex Compartments and their Preclinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002096. [PMID: 33103834 DOI: 10.1002/adma.202002096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Indexed: 06/11/2023]
Abstract
There is an increasing interest in organ-level 3D tissue constructs, owing to their mirroring of in vivo-like features. This has resulted in a wide range of preclinical applications to obtain cell- or tissue-specific responses. Additionally, the development and improvement of sophisticated technologies, such as organoid generation, microfluidics, hydrogel engineering, and 3D printing, have enhanced 3D tissue constructs to become more elaborate. In particular, recent studies have focused on including complex compartments, i.e., vascular and innervation structured 3D tissue constructs, which mimic the nature of the human body in that all tissues/organs are interconnected and physiological phenomena are mediated through vascular and neural systems. Here, the strategies are categorized according to the number of dimensions (0D, 1D, 2D, and 3D) of the starting materials for scaling up, and novel approaches to introduce increased complexity in 3D tissue constructs are highlighted. Recent advances in preclinical applications are also investigated to gain insight into the future direction of 3D tissue construct research. Overcoming the challenges in improving organ-level functional 3D tissue constructs both in vitro and in vivo will ultimately become a life-saving tool in the biomedical field.
Collapse
Affiliation(s)
- Jaeseo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Yoojin Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Justin J Chung
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
45
|
Engineering an endothelialized, endocrine Neo-Pancreas: Evaluation of islet functionality in an ex vivo model. Acta Biomater 2020; 117:213-225. [PMID: 32949822 DOI: 10.1016/j.actbio.2020.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Islet-based recellularization of decellularized, repurposed rat livers may form a transplantable Neo-Pancreas. The aim of this study is the establishment of the necessary protocols, the evaluation of the organ structure and the analysis of the islet functionality ex vivo. After perfusion-based decellularization of rat livers, matrices were repopulated with endothelial cells and mesenchymal stromal cells, incubated for 8 days in a perfusion chamber, and finally repopulated on day 9 with intact rodent islets. Integrity and quality of re-endothelialization was assessed by histology and FITC-dextran perfusion assay. Functionality of the islets of Langerhans was determined on day 10 and day 12 via glucose stimulated insulin secretion. Blood gas analysis variables confirmed the stability of the perfusion cultivation. Histological staining showed that cells formed a monolayer inside the intact vascular structure. These findings were confirmed by electron microscopy. Islets infused via the bile duct could histologically be found in the parenchymal space. Adequate insulin secretion after glucose stimulation after 1-day and 3-day cultivation verified islet viability and functionality after the repopulation process. We provide the first proof-of-concept for the functionality of islets of Langerhans engrafted in a decellularized rat liver. Furthermore, a re-endothelialization step was implemented to provide implantability. This technique can serve as a bioengineered platform to generate implantable and functional endocrine Neo-Pancreases.
Collapse
|
46
|
Goh SK, Halfter W, Richardson T, Bertera S, Vaidya V, Candiello J, Bradford M, Banerjee I. Organ-specific ECM arrays for investigating Cell-ECM interactions during stem cell differentiation. Biofabrication 2020; 13. [PMID: 33045682 DOI: 10.1088/1758-5090/abc05f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
Abstract
Pluripotent stem cells are promising source of cells for tissue engineering, regenerative medicine and drug discovery applications. The process of stem cell differentiation is regulated by multi-parametric cues from the surrounding microenvironment, one of the critical one being cell interaction with extracellular matrix (ECM). The ECM is a complex tissue-specific structure which are important physiological regulators of stem cell function and fate. Recapitulating this native ECM microenvironment niche is best facilitated by decellularized tissue/ organ derived ECM, which can faithfully reproduce the physiological environment with high fidelity to in vivo condition and promote tissue-specific cellular development and maturation. Recognizing the need for organ specific ECM in a 3D culture environment in driving phenotypic differentiation and maturation of hPSCs, we fabricated an ECM array platform using native-mimicry ECM from decellularized organs (namely pancreas, liver and heart), which allows cell-ECM interactions in both 2D and 3D configuration. The ECM array was integrated with rapid quantitative imaging for a systematic investigation of matrix protein profiles and sensitive measurement of cell-ECM interaction during hPSC differentiation. We tested our platform by elucidating the role of the three different organ-specific ECM in supporting induced pancreatic differentiation of hPSCs. While the focus of this report is on pancreatic differentiation, the developed platform is versatile to be applied to characterize any lineage specific differentiation.
Collapse
Affiliation(s)
- Saik Kia Goh
- University of Pittsburgh, Pittsburgh, 15261, UNITED STATES
| | - Willi Halfter
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Thomas Richardson
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Suzanne Bertera
- Allegheny Health Network, Pittsburgh, Pennsylvania, UNITED STATES
| | - Vimal Vaidya
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Joe Candiello
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Mahalia Bradford
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Ipsita Banerjee
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, UNITED STATES
| |
Collapse
|
47
|
Wassmer CH, Lebreton F, Bellofatto K, Bosco D, Berney T, Berishvili E. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int 2020; 33:1577-1588. [PMID: 32852858 PMCID: PMC7756715 DOI: 10.1111/tri.13721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a major health issue of increasing prevalence. ß‐cell replacement, by pancreas or islet transplantation, is the only long‐term curative option for patients with insulin‐dependent diabetes. Despite good functional results, pancreas transplantation remains a major surgery with potentially severe complications. Islet transplantation is a minimally invasive alternative that can widen the indications in view of its lower morbidity. However, the islet isolation procedure disrupts their vasculature and connection to the surrounding extracellular matrix, exposing them to ischemia and anoikis. Implanted islets are also the target of innate and adaptive immune attacks, thus preventing robust engraftment and prolonged full function. Generation of organoids, defined as functional 3D structures assembled with cell types from different sources, is a strategy increasingly used in regenerative medicine for tissue replacement or repair, in a variety of inflammatory or degenerative disorders. Applied to ß‐cell replacement, it offers the possibility to control the size and composition of islet‐like structures (pseudo‐islets), and to include cells with anti‐inflammatory or immunomodulatory properties. In this review, we will present approaches to generate islet cell organoids and discuss how these strategies can be applied to the generation of a bioartificial pancreas for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
48
|
Zhu W, Nie X, Tao Q, Yao H, Wang DA. Interactions at engineered graft-tissue interfaces: A review. APL Bioeng 2020; 4:031502. [PMID: 32844138 PMCID: PMC7443169 DOI: 10.1063/5.0014519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions at the graft-tissue interfaces are critical for the results of engraftments post-implantation. To improve the success rate of the implantations, as well as the quality of the patients' life, understanding the possible reactions between artificial materials and the host tissues is helpful in designing new generations of material-based grafts aiming at inducing specific responses from surrounding tissues for their own reparation and regeneration. To help researchers understand the complicated interactions that occur after implantations and to promote the development of better-designed grafts with improved biocompatibility and patient responses, in this review, the topics will be discussed from the basic reactions that occur chronologically at the graft-tissue interfaces after implantations to the existing and potential applications of the mechanisms of such reactions in designing of grafts. It offers a chance to bring up-to-date advances in the field and new strategies of controlling the graft-tissue interfaces.
Collapse
Affiliation(s)
- Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Xiaolei Nie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Dong-An Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
49
|
Abstract
Organ constructs are organ-like structures grown in vitro or in vivo that harbor the components, architecture, and function of in vivo organs, in part or in toto. The convergence of stem cell biology, bioengineering, and gene editing tools have substantially broadened our ability to generate various types of organ constructs for regenerative medicine as well as to address pressing biomedical questions. In this Review, we highlight prevailing approaches for generating organ constructs, from organoids to chimeric organ engineering. We also discuss design principles of different approaches, their utility and limitations, and propose strategies to resolve existing hurdles.
Collapse
Affiliation(s)
- Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Zhang L, Miao H, Wang D, Qiu H, Zhu Y, Yao X, Guo Y, Wang Z. Pancreatic extracellular matrix and platelet-rich plasma constructing injectable hydrogel for pancreas tissue engineering. Artif Organs 2020; 44:e532-e551. [PMID: 32671848 DOI: 10.1111/aor.13775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
The development of pancreatic extracellular matrices enriched with insulin-secreting β-cells is a promising tissue engineering approach to treat type 1 diabetes. However, its long-term therapeutic efficacy is restricted by the defensive mechanism of host immune response and the lack of developed vascularization as appropriate after transplantation. Platelet-rich plasma (PRP), as an autologous platelet concentrate, contains a large number of active factors that are essential for the cell viability, vascularization, and immune regulation. In this study, we have incorporated pancreatic extracellular matrix (PEM) with PRP to develop a three-dimensional (3D) injectable PEM-PRP hydrogel to coculture and transplant rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVECs). Results from this study demonstrated that PEM-PRP hydrogel mimicked the biochemical compositions of native extracellular matrices, and possessed the enhanced elastic modulus and resistance to enzymatic degradation that enabled biomaterials to maintain its volume and slowly degrade. Additionally, PEM-PRP hydrogel could release growth factors in a sustained manner. In vitro, PEM-PRP hydrogel significantly promoted the viability, insulin-secreting function, and insulin gene expression of gel encapsulated INS-1 cells. Moreover, HUVECs encapsulated in PEM-PRP hydrogel were found to constitute many lumen-like structures and exhibited high expression of proangiogenic genes. In vivo transplantation of PEM-PRP hydrogel encapsulated with INS-1 cells and HUVECs improved the viability of INS-1 cells, promoted vascularization, inhibited the host inflammatory response, and reversed hyperglycemia of diabetic rats. Our study suggests that the PEM-PRP hydrogel offers excellent biocompatibility and proangiogenic property, and may serve as an effective biomaterial platform to maintain the long-term survival and function of insulin-secreting β cells.
Collapse
Affiliation(s)
- Liang Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Department of General Surgery, Tengzhou Central People's Hospital, Tengzhou, P.R. China
| | - Haiyan Miao
- Department of General Surgery, The Sixth People's Hospital, Nantong, P.R. China
| | - Dongzhi Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Hongquan Qiu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Yi Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Xihao Yao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Yibing Guo
- Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|