1
|
Wu Y, Wang X, Song L, Zhao Z, Xia Y, Tang K, Wang H, Liu J, Wang Z. Tuning macrophage phenotype for enhancing patency rate and tissue regeneration of vascular grafts. Acta Biomater 2025; 198:245-256. [PMID: 40158766 DOI: 10.1016/j.actbio.2025.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Macrophages are primary immune cells that play a crucial role in tissue regeneration during the early stages of biomaterial implantation. They create a microenvironment that facilitates cell infiltration, angiogenesis, and tissue remodeling. In the field of vascular tissue engineering, numerous studies have been conducted to modulate the macrophage phenotype by designing various biomaterials, which in turn enhances the regenerative capacity and long-term patency of vascular grafts. However, the mechanism underlying the different phenotypes of macrophages involved in the tissue regeneration of vascular grafts remains unclear. In this study, vascular grafts loaded with various macrophage phenotypes were developed, and their effects were evaluated both in vivo and in vitro. The RAW 264.7 macrophages (M0) were initially treated with LPS or IL-4/IL-10 and polarized into M1 and M2 phenotypes. Subsequently, M0, M1, and M2 macrophages were seeded onto electrospun PCL scaffolds to obtain macrophage-loaded vascular grafts (PCL-M0, PCL-M1, and PCL-M2). As prepared vascular grafts were implanted into the mouse carotid artery for up to one month. The results indicate that the loading of M2 macrophages effectively enhances the patency rate and neotissue formation of vascular grafts. This is achieved through the development of a well-defined endothelium and smooth muscle layer. RNA sequencing was used to investigate the mechanisms of action of different macrophages on tissue regeneration. The study found that M1 macrophages inhibited tissue regeneration by mediating angiogenesis and chronic inflammation through upregulation of VEGFa, IL-1β, and IL-6 expression. In contrast, M2 macrophages regulate the immune microenvironment by upregulating the expression of IL-4 and TGF-β, thereby promoting tissue regeneration. In conclusion, our study demonstrates how different macrophage phenotypes contribute to the initial inflammatory microenvironment surrounding vascular grafts, thereby modulating the biological process of vascular remodeling. STATEMENT OF SIGNIFICANCE: Regulating the biophysical and biochemical characteristics of biomaterials can induce macrophage polarization and enhance vascular remodeling. In previous work, we fabricated a vascular graft with a macroporous structure that promoted macrophage infiltration and polarization into a pro-regenerative phenotype. To illustrate the mechanism, we established a new mouse model and evaluated the effects of different macrophages on vascular regeneration. The study revealed that tuning macrophage phenotype can impact the initial inflammatory microenvironment by secreting cytokines, which can increase the patency rate and regenerative capacity of vascular grafts. These findings provide essential theoretical support for the development of immunoregulatory scaffolds for vascular and other tissue regeneration.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Tianjin 300387, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhe Zhao
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Kai Tang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing 100037, China
| | - Huiquan Wang
- College of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Gao Y, Yuan X, Gu R, Wang N, Ren H, Song R, Wan Z, Huang J, Yi K, Xiong C, Yuan Z, Zhao Y. Affinity Modifications of Porous Microscaffolds Impact Bone Regeneration by Modulating the Delivery Kinetics of Small Extracellular Vesicles. ACS NANO 2025; 19:17813-17823. [PMID: 40305788 DOI: 10.1021/acsnano.5c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Biomaterials functionalized with small extracellular vesicles (sEVs) hold great regenerative potential, and their therapeutic efficacy hinges on the delivery kinetics of the sEVs. Achieving rapid and stable loading, along with precisely controlled release of sEVs, necessitates affinity modifications of biomaterials. Here, we provide a quantitative description of the interaction between sEVs and various affinity molecules (i.e., polydopamine (PDA), tannic acid (TA), heparin, polyethylenimine (PEI), and calcium phosphate (CaP)) through molecular dynamics simulation. The interaction strengths followed the order of PDA < heparin < TA < CaP < PEI. To tailor the delivery kinetics of stem cells from human exfoliated deciduous teeth (SHED)-derived sEVs with concentration-dependent bioactivities, we employed two representative affinity molecules, namely PDA and CaP, to modify PLGA porous microscaffolds (PLGA MS), resulting in PDA-modified PLGA MS (PDA@MS) and biomineralized PDA-modified PLGA MS (B/PDA@MS). The B/PDA@MS exhibited the highest loading efficiency (>20 μg/mg microscaffolds) and optimized the release profile of sEVs over 21 days. Upon injection into a 5 mm defect in the rat cranial bone, sEV-loaded B/PDA@MS demonstrated the highest level of bone regeneration, with the new bone volume fraction (BV/TV) and bone mineral density (BMD) reaching 64.0% and 604.5 mg/cm3 within 8 weeks, respectively. This work not only presents a biomineralized microscaffold with sustained sEVs release and high osteogenic potential but also offers guidance on the further design and translation of sEV-functionalized biomaterials with broader applications.
Collapse
Affiliation(s)
- Yike Gao
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiaojing Yuan
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ruoheng Gu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Nan Wang
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Huihui Ren
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Rui Song
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Kaikai Yi
- Department of Neuro-Oncology and Neurosurgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Wenzhou Institute, University of Chinese Academy of Sciences; Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Zuoying Yuan
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuming Zhao
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
3
|
Miao J, Yong Y, Zheng Z, Zhang K, Li W, Liu J, Zhou S, Qin J, Sun H, Wang Y, Fu X, Luo X, Chen S, She Z, Cai J, Zhu P. Artesunate Inhibits Neointimal Hyperplasia by Promoting IRF4 Associated Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408992. [PMID: 40126336 PMCID: PMC12097016 DOI: 10.1002/advs.202408992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/20/2025] [Indexed: 03/25/2025]
Abstract
Vascular restenosis is a serious clinical issue initiated and aggravated by macrophage inflammation, with no effective treatments available, in cardiovascular and autoimmune diseases. However, the untapped mechanisms and new targets that can regulate macrophage polarization and vascular restenosis remain elusive. The research identifies interferon regulatory factor 4 (IRF4) expression as crucial in macrophage polarization during arterial restenosis. Myeloid-specific Irf4 deficiency and overexpression experiments showed that IRF4 promoted M2 macrophage polarization, inhibited M1 macrophage transitions, and disrupted the interaction between macrophages and vascular smooth muscle cells to reduce neointimal hyperplasia by directly upregulating krüppel like factor 4 (KLF4) expression. Artesunate, an FDA-approved drug, is screened as a potent activator of IRF4 expression in M2 polarization, and its treatment attenuated arterial restenosis in rodents and non-human primates. The findings reveal a significant protective role of IRF4 in the development of neointimal hyperplasia by regulating macrophage polarization, and artesunate may be proposed as a novel therapy for vascular restenosis.
Collapse
Affiliation(s)
- Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Yule Yong
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Zhaohui Zheng
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Kui Zhang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Wei Li
- Department of CardiologyRenmin HospitalWuhan UniversityWuhan430060China
- Institute of Model AnimalWuhan UniversityWuhan430071China
| | - Jiayi Liu
- Department of CardiologyRenmin HospitalWuhan UniversityWuhan430060China
- Institute of Model AnimalWuhan UniversityWuhan430071China
| | - Siyi Zhou
- Institute of Model AnimalWuhan UniversityWuhan430071China
- School of Basic Medical ScienceWuhan UniversityWuhan430071China
| | - Juan‐juan Qin
- Department of GeriatricsZhongnan HospitalWuhan UniversityWuhan430070China
| | - Haoyang Sun
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Yatao Wang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Xianghui Fu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Xing Luo
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Siyu Chen
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| | - Zhi‐Gang She
- Department of CardiologyRenmin HospitalWuhan UniversityWuhan430060China
- Institute of Model AnimalWuhan UniversityWuhan430071China
| | - Jingjing Cai
- Department of CardiologyThe Third Xiangya HospitalCentral South UniversityChangsha410013China
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
4
|
Teng Y, Zhang X, Song L, Yang J, Li D, Shi Z, Guo X, Wang S, Fan H, Jiang L, Hou S, Ramakrishna S, Lv Q, Shi J. Construction of anti-calcification small-diameter vascular grafts using decellularized extracellular matrix/poly (L-lactide-co-ε-caprolactone) and baicalin-cathepsin S inhibitor. Acta Biomater 2025; 197:184-201. [PMID: 40120837 DOI: 10.1016/j.actbio.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The long-term transplantation of small-diameter vascular grafts (SDVGs) is associated with a risk of calcification, which is a key factor limiting the clinical translation of SDVG. Hence, there is an urgency attached to the development of new SDVGs with anti-calcification properties. Here, we used decellularized extracellular matrix (dECM) and poly (L-lactide-co-ε-caprolactone) (PLCL) as base materials and combined these with baicalin, cathepsin S (Cat S) inhibitor to prepare PBC-SDVGs by electrospinning. Baicalin contains carboxyl and hydroxyl groups that can interact with chemical groups in dECM powder, potentially blocking calcium nucleation sites. Cat S inhibitor prevents elastin degradation and further reduces the risk of calcification. PBC-SDVGs were biocompatible and when implanted in rat abdominal aorta, accelerated endothelialization, enhanced vascular tissue regeneration, inhibited elastin degradation, and promoted macrophage polarization M2 phenotype to regulate inflammation. After 3 months of implantation, the results of Doppler ultrasound, MicroCT, and histological staining revealed a significant reduction in calcification. In summary, the developed anti-calcification SDVGs offer a promising strategy for long-term implantation with significant clinical application potential. STATEMENT OF SIGNIFICANCE: The dECM and PLCL were used as base materials, connected with baicalin, and loaded with Cat S inhibitor to prepare PBC-SDVGs. The baicalin and dECM powder formed hydrogen bonds to crosslink together reducing the calcium deposition. In vitro, the vascular graft downregulated the expression level of osteogenic genes and promoted macrophage polarization toward an anti-inflammatory M2 phenotype, thereby reducing calcification. The PBC-SDVGs implanted in rat abdominal aorta can accelerate endothelialization, enhance vascular tissue regeneration, inhibit elastin degradation, reduce inflammation response and calcification.
Collapse
Affiliation(s)
- Yanjiao Teng
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Xiaohai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210000, PR China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210000, PR China
| | - Jianing Yang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Duo Li
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Ziqi Shi
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Xiaoqin Guo
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Haojun Fan
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China
| | - Li Jiang
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin 300021, PR China
| | - Shike Hou
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Qi Lv
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China.
| | - Jie Shi
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, PR China; Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, PR China.
| |
Collapse
|
5
|
Wei X, Wang L, Xing Z, Chen P, He X, Tuo X, Su H, Zhou G, Liu H, Fan Y. Glutamine synthetase accelerates re-endothelialization of vascular grafts by mitigating endothelial cell dysfunction in a rat model. Biomaterials 2025; 314:122877. [PMID: 39378796 DOI: 10.1016/j.biomaterials.2024.122877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Endothelial cell (EC) dysfunction within the aorta has long been recognized as a prominent contributor to the progression of atherosclerosis and the subsequent failure of vascular graft transplantation. However, the direct relationship between EC dysfunction and vascular remodeling remains to be investigated. In this study, we sought to address this knowledge gap by employing a strategy involving the release of glutamine synthetase (GS), which effectively activated endothelial metabolism and mitigates EC dysfunction. To achieve this, we developed GS-loaded small-diameter vascular grafts (GSVG) through the electrospinning technique, utilizing dual-component solutions consisting of photo-crosslinkable hyaluronic acid and polycaprolactone. Through an in vitro model of oxidized low-density lipoprotein-induced injury in human umbilical vein endothelial cells (HUVECs), we provided compelling evidence that the GSVG promoted the restoration of motility, angiogenic sprouting, and proliferation in dysfunctional HUVECs by enhancing cellular metabolism. Furthermore, the sequencing results indicated that these effects were mediated by miR-122-5p-related signaling pathways. Remarkably, the GSVG also exhibited regulatory capabilities in shifting vascular smooth muscle cells towards a contractile phenotype, mitigating inflammatory responses and thereby preventing vascular calcification. Finally, our data demonstrated that GS incorporation significantly enhanced re-endothelialization of vascular grafts in a ferric chloride-injured rat model. Collectively, our results offer insights into the promotion of re-endothelialization in vascular grafts by restoring dysfunctional ECs through the augmentation of cellular metabolism.
Collapse
Affiliation(s)
- Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, 213164, PR China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Xiaoye Tuo
- Department of Reparative and Reconstructive Surgery, 9 Jinyuanzhuang Rd., Peking University Shougang Hospital, PR China
| | - Haoran Su
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| |
Collapse
|
6
|
Li L, Yao Z, Salimian KJ, Kong J, Zaheer A, Parian A, Gearhart SL, Mao HQ, Selaru FM. Extracellular Vesicles Delivered by a Nanofiber-Hydrogel Composite Enhance Healing In Vivo in a Model of Crohn's Disease Perianal Fistula. Adv Healthc Mater 2025; 14:e2402292. [PMID: 39240055 PMCID: PMC11882933 DOI: 10.1002/adhm.202402292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Perianal fistulas represent a common, aggressive, and disabling complication of Crohn's disease (CD). Despite recent drug developments, novel surgical interventions as well as multidisciplinary treatment approaches, the outcome is dismal, with >50% therapy failure rates. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) offer potential therapeutic benefits for treating fistulizing CD, due to the pro-regenerative paracrine signals. However, a significant obstacle to clinical translation of EV-based therapy is the rapid clearance and short half-life of EVs in vivo. Here, an injectable, biodegradable nanofiber-hydrogel composite (NHC) microgel matrix that serves as a carrier to deliver MSC-derived EVs to a rat model of CD perianal fistula (PAF) is reported. It is found that EV-loaded NHC (EV-NHC) yields the best fistula healing when compared to other treatment arms. The MRI assessment reveals that the EV-NHC reduces inflammation at the fistula site and promotes tissue healing. The enhanced therapeutic outcomes are contributed by extended local retention and sustained release of EVs by NHC. In addition, the EV-NHC effectively reduces inflammation at the fistula site and promotes tissue healing and regeneration via macrophage polarization and neo-vascularization. This EV-NHC platform provides an off-the-shelf solution that facilitates its clinical translation.
Collapse
Affiliation(s)
- Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Zhicheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Kevan J. Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Atif Zaheer
- Department of Radiology & Radiological Sciences, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Alyssa Parian
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Susan L. Gearhart
- Division of Colorectal Surgery, Department of Surgery, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| |
Collapse
|
7
|
Su X, Yang J, Xu Z, Wei L, Yang S, Li F, Sun M, Hu Y, He W, Zhao C, Chen L, Yuan Y, Qin L, Hu N. Fibrous scaffolds loaded with BMSC-derived apoptotic vesicles promote wound healing by inducing macrophage polarization. Genes Dis 2025; 12:101388. [PMID: 39759117 PMCID: PMC11697094 DOI: 10.1016/j.gendis.2024.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 01/07/2025] Open
Abstract
Macrophages play a key role in wound healing. Dysfunction of their M0 polarization to M2 leads to disorders of the wound immune microenvironment and chronic inflammation, which affects wound healing. Regulating the polarization of M0 macrophages to M2 macrophages is an effective strategy for treating wound healing. Mesenchymal stem cells (MSCs) deliver endogenous regulatory factors via paracrine extracellular vesicles, which may play a key role in wound healing, and previous studies have shown that apoptotic bodies (ABs) are closely associated with inflammation regression and macrophage polarization. However, the specific regulatory mechanisms involved in ABs remain unknown. In the present study, we designed an MSC-AB (MSC-derived AB)-loaded polycaprolactone (PCL) scaffold, evaluated the macrophage phenotype and skin wound inflammation in vivo and in vitro, and explored the ability of MSC-AB-loaded PCL scaffolds to promote wound healing. Our data suggest that the PCL scaffold regulates the expression of the CCL-1 gene by targeting the delivery of mmu-miR-21a-5p by local sustained-release MSC-ABs, and drives M0 macrophages to program M2 macrophages to regulate inflammation and angiogenesis, thereby synergistically promoting wound healing. This study provides a promising therapeutic strategy and experimental basis for treating various diseases associated with imbalances in proinflammatory and anti-inflammatory immune responses.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Shuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Feilong Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Min Sun
- Department of Knee Joint Sports Injury, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610042, China
| | - Yingkun Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Wenge He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yonghua Yuan
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Cerveró-Varona A, Prencipe G, Peserico A, Canciello A, House AH, Santos HA, Perugini M, Sulcanese L, Takano C, Miki T, Iannetta A, Russo V, Mattioli M, Barboni B. Amniotic epithelial Cell microvesicles uptake inhibits PBMCs and Jurkat cells activation by inducing mitochondria-dependent apoptosis. iScience 2025; 28:111830. [PMID: 39967871 PMCID: PMC11834128 DOI: 10.1016/j.isci.2025.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Amniotic epithelial cells (AECs) exhibit significant immunomodulatory and pro-regenerative properties, largely due to their intrinsic paracrine functions that are currently harnessed through the collection of their secretomes. While there is increasing evidence of the role of bioactive components freely secreted or carried by exosomes, the bioactive cargo of AEC microvesicles (MVs) and their crosstalk with the immune cells remains to be fully explored. We showed that under intrinsic conditions or in response to LPS, AEC-derived MV carries components such as lipid-mediated signaling molecules, ER, and mitochondria. They foster the intra/interspecific mitochondrial transfer into immune cells (PBMCs and Jurkat cells) in vitro and in vivo on the zebrafish larvae model of injury. The internalization of MV cargoes through macropinocytosis induces hyperpolarization of PBMC mitochondrial membranes and triggers MV-mediated apoptosis. This powerful immune suppressive mechanism triggered by AEC-MV cargo delivery paves the way for controlled and targeted cell-free therapeutic approaches.
Collapse
Affiliation(s)
- Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Andrew H. House
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science (HiLIFE), Biocenter 3, Viikinkaari 1, 00790 Helsinki, Finland
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Monia Perugini
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Annamaria Iannetta
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mauro Mattioli
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
9
|
Chang W, Tian B, Qin Q, Li D, Zhang Y, Zhou C, Wu B, Zhang M, Shan H, Ni Y, Dong Q, Wang C, Zhou XZ, Bai J. Receptor Activator of Nuclear Factor Kappa-B-Expressing Mesenchymal Stem Cells-Derived Extracellular Vesicles for Osteoporosis Therapy. ACS NANO 2024; 18:35368-35382. [PMID: 39692894 DOI: 10.1021/acsnano.4c12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The dynamic balance between bone resorption and formation is critical for maintaining healthy bone homeostasis. However, the receptor activator of the nuclear factor B ligand (RANKL) primarily stimulates mature osteoclasts to resorb bone, and its upregulation leads to osteoporosis in patients. Here, we designed RANK-expressing extracellular vesicles (EVs) derived from mesenchymal stem cells to maintain bone homeostasis in mice. This engineered EV (EV@R) effectively neutralizes excess RANKL in bone tissue due to the RANK-RANKL interaction, thereby attenuating osteoclast differentiation. Additionally, we found that miRNA-21a-5p in EV@R contributes to restoring bone metabolic homeostasis. We demonstrate the protective and therapeutic efficacy of EV@R against osteoporosis in the ovariectomy-induced osteoporosis mouse model with a lasting effect and minimal side effects. Our study provides an alternative way to use engineered EVs for bone homeostasis treatment.
Collapse
Affiliation(s)
- Wenju Chang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical University), Bengbu, Anhui 233004, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Qin Qin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Dongxiao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenmeng Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bingbing Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingchao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yichao Ni
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
10
|
Wang Z, Zhou M, Li M, Li J, Zhang S, Wang J. Tailored endothelialization enabled by engineered endothelial cell vesicles accelerates remodeling of small-diameter vascular grafts. Bioact Mater 2024; 41:127-136. [PMID: 39131628 PMCID: PMC11314893 DOI: 10.1016/j.bioactmat.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Current gold standard for the replacement of small-diameter blood vessel (ID < 4 mm) is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts (SDVG) on weak endothelialization, intimal hyperplasia and low patency. Herein, we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling. The engineered endothelial cell vesicles were modified with azide groups (ECVs-N3) through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry, and thus fabricating ECVG (ECVs-N3 modified SDVG), which assists inhibition of platelet adhesion and activation, promotion of ECs adhesion and enhancement of anti-inflammation. Furthermore, In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL, and the tailored endothelialization enabled to convert endothelial cells (ECs) into some specific ECs clusters. One of the specific cluster, Endo_C5 cluster, was only detected in ECVG. Consequently, our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells, and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengxue Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
11
|
Yang F, Du X, Zhao Z, Guo G, Wang Y. Impact of Diabetic Condition on the Remodeling of In Situ Tissue-Engineered Heart Valves. ACS Biomater Sci Eng 2024; 10:6569-6580. [PMID: 39324571 DOI: 10.1021/acsbiomaterials.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Most in situ tissue-engineered heart valve (TEHV) evaluation studies are conducted in a healthy physical environment, which cannot accurately reflect the specific characteristics of patients. In this study, we established a diabetic rabbit model and implanted decellularized extracellular matrix (dECM) into the abdominal aorta of rabbits through interventional surgery with a follow-up period of 8 weeks. The results indicated that dECM implants in diabetic rabbits exhibited poorer endothelialization and more severe fibrosis compared to those in healthy animals. Furthermore, mechanistic studies revealed that high glucose induced endothelial cell (EC) apoptosis and impeded their proliferation and migration, accompanied by an increase in reactive oxygen species (ROS) concentration and a decrease in the nitric oxide (NO) level. High glucose also led to elevated ROS levels and an increased expression of inflammatory factors and transforming growth factor β1 (TGF-β1) in macrophages, contributing to fibrosis. These findings suggest that oxidative-stress-mediated mechanisms are likely the primary pathways affecting heart valve repair and regeneration under diabetic conditions. Therefore, future design and evaluation of TEHVs may concern more patient-specific circumstances.
Collapse
Affiliation(s)
- Fan Yang
- Chengdu Medical College, Chengdu 610500, China
| | - Xingzhuang Du
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Wang L, Yu M, Yang Y, Lv Y, Xie H, Chen J, Peng X, Peng Z, Zhou L, Wang Y, Huang Y, Chen F. Porous Photocrosslinkable Hydrogel Functionalized with USC Derived Small Extracellular Vesicles for Corpus Spongiosum Repair. Adv Healthc Mater 2024; 13:e2304387. [PMID: 39036844 DOI: 10.1002/adhm.202304387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Reconstruction of a full-thickness spongy urethra is difficult because a corpus spongiosum (CS) defect cannot be repaired using self-healing or substitution urethroplasty. Small extracellular vesicles (sEVs) secreted by urine-derived stem cells (USC-sEVs) strongly promote vascular regeneration. In this study, it is aimed to explore whether USC-sEVs promote the repair of CS defects. To prolong the in vivo effects of USC-sEVs, a void-forming photoinduced imine crosslinking hydrogel (vHG) is prepared and mixed with the USC-sEV suspension. vHG encapsulated with USC-sEVs (vHG-sEVs) is used to repair a CS defect with length of 1.5 cm and width of 0.8 cm. The results show that vHG-sEVs promote the regeneration and repair of CS defects. Histological analysis reveals abundant sinusoid-like vascular structures in the vHG-sEV group. Photoacoustic microscopy indicates that blood flow and microvascular structure of the defect area in the vHG-sEV group are similar to those in the normal CS group. This study confirms that the in situ-formed vHG-sEV patch appears to be a valid and promising strategy for repairing CS defects.
Collapse
Affiliation(s)
- Lin Wang
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, 200233, China
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingming Yu
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yunlong Yang
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yiqing Lv
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Xie
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiasheng Chen
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xufeng Peng
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwei Peng
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lijun Zhou
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yichen Huang
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, 200233, China
| |
Collapse
|
13
|
Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics (Basel) 2024; 9:377. [PMID: 39056818 PMCID: PMC11274842 DOI: 10.3390/biomimetics9070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| | | | | | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| |
Collapse
|
14
|
Rodríguez-Soto MA, Riveros-Cortés A, Orjuela-Garzón IC, Fernández-Calderón IM, Rodríguez CF, Vargas NS, Ostos C, Camargo CM, Cruz JC, Kim S, D’Amore A, Wagner WR, Briceño JC. Redefining vascular repair: revealing cellular responses on PEUU-gelatin electrospun vascular grafts for endothelialization and immune responses on in vitro models. Front Bioeng Biotechnol 2024; 12:1410863. [PMID: 38903186 PMCID: PMC11188488 DOI: 10.3389/fbioe.2024.1410863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Ostos
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
15
|
Zuo X, Han P, Yuan D, Xiao Y, Huang Y, Li R, Jiang X, Feng L, Li Y, Zhang Y, Zhu P, Wang H, Wang N, Kang YJ. Implantation of Adipose-Derived Mesenchymal Stromal Cells (ADSCs)-Lining Prosthetic Graft Promotes Vascular Regeneration in Monkeys and Pigs. Tissue Eng Regen Med 2024; 21:641-651. [PMID: 38190095 PMCID: PMC11087433 DOI: 10.1007/s13770-023-00615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Current replacement procedures for stenosis or occluded arteries using prosthetic grafts have serious limitations in clinical applications, particularly, endothelialization of the luminal surface is a long-standing unresolved problem. METHOD We produced a cell-based hybrid vascular graft using a bioink engulfing adipose-derived mesenchymal stromal cells (ADSCs) and a 3D bioprinting process lining the ADSCs on the luminal surface of GORE-Tex grafts. The hybrid graft was implanted as an interposition conduit to replace a 3-cm-long segment of the infrarenal abdominal aorta in Rhesus monkeys. RESULTS Complete endothelium layer and smooth muscle layer were fully developed within 21 days post-implantation, along with normalized collagen deposition and crosslinking in the regenerated vasculature in all monkeys. The regenerated blood vessels showed normal functionality for the longest observation of more than 1650 days. The same procedure was also conducted in miniature pigs for the interposition replacement of a 10-cm-long right iliac artery and showed the same long-term effective and safe outcome. CONCLUSION This cell-based vascular graft is ready to undergo clinical trials for human patients.
Collapse
Affiliation(s)
- Xiao Zuo
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Pengfei Han
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Ding Yuan
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
- Division of Vascular Surgery, Department of General Surgery, Sichuan University West China Hospital, Chengdu, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Yushi Huang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Rui Li
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Xia Jiang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Li Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Yijun Li
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Yaya Zhang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Ping Zhu
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Hongge Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Ning Wang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China.
- Sichuan 3D Bioprinting Institute, Chengdu, China.
| |
Collapse
|
16
|
Li D, Fan C, Li X, Zhao L. The role of macrophage polarization in vascular calcification. Biochem Biophys Res Commun 2024; 710:149863. [PMID: 38579535 DOI: 10.1016/j.bbrc.2024.149863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.
Collapse
Affiliation(s)
- Dan Li
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Chu Fan
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Xuepeng Li
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Lin Zhao
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China; Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China.
| |
Collapse
|
17
|
Wang N, Chen J, Hu Q, He Y, Shen P, Yang D, Wang H, Weng D, He Z. Small diameter vascular grafts: progress on electrospinning matrix/stem cell blending approach. Front Bioeng Biotechnol 2024; 12:1385032. [PMID: 38807647 PMCID: PMC11130446 DOI: 10.3389/fbioe.2024.1385032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
The exploration of the next-generation small diameter vascular grafts (SDVGs) will never stop until they possess high biocompatibility and patency comparable to autologous native blood vessels. Integrating biocompatible electrospinning (ES) matrices with highly bioactive stem cells (SCs) provides a rational and promising solution. ES is a simple, fast, flexible and universal technology to prepare extracellular matrix-like fibrous scaffolds in large scale, while SCs are valuable, multifunctional and favorable seed cells with special characteristics for the emerging field of cell therapy and regenerative medicine. Both ES matrices and SCs are advanced resources with medical application prospects, and the combination may share their advantages to drive the overcoming of the long-lasting hurdles in SDVG field. In this review, the advances on SDVGs based on ES matrices and SCs (including pluripotent SCs, multipotent SCs, and unipotent SCs) are sorted out, and current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Jiajing Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Qingqing Hu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Yunfeng He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Pu Shen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Dingkun Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Haoyuan Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Second Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Nair S, Razo-Azamar M, Jayabalan N, Dalgaard LT, Palacios-González B, Sørensen A, Kampmann U, Handberg A, Carrion F, Salomon C. Advances in extracellular vesicles as mediators of cell-to-cell communication in pregnancy. Cytokine Growth Factor Rev 2024; 76:86-98. [PMID: 38233286 DOI: 10.1016/j.cytogfr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Cell-to-cell communication mediated by Extracellular Vesicles (EVs) is a novel and emerging area of research, especially during pregnancy, in which placenta derived EVs can facilitate the feto-maternal communication. EVs comprise a heterogeneous group of vesicle sub-populations with diverse physical and biochemical characteristics and originate by specific biogenesis mechanisms. EVs transfer molecular cargo (including proteins, nucleic acids, and lipids) between cells and are critical mediators of cell communication. There is growing interest among researchers to explore into the molecular cargo of EVs and their functions in a physiological and pathological context. For example, inflammatory mediators such as cytokines are shown to be released in EVs and EVs derived from immune cells play key roles in mediating the immune response as well as immunoregulatory pathways. Pregnancy complications such as gestational diabetes mellitus, preeclampsia, intrauterine growth restriction and preterm birth are associated with altered levels of circulating EVs, with differential EV cargo and bioactivity in target cells. This implicates the intriguing roles of EVs in reprogramming the maternal physiology during pregnancy. Moreover, the capacity of EVs to carry bioactive molecules makes them a promising tool for biomarker development and targeted therapies in pregnancy complications. This review summarizes the physiological and pathological roles played by EVs in pregnancy and pregnancy-related disorders and describes the potential of EVs to be translated into clinical applications in the diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Melissa Razo-Azamar
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Nanthini Jayabalan
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Denmark
| | - Aase Handberg
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
19
|
Xu Z, Geng X, Peng J, Ye L, Tong Z, Li L, Xing Y, Feng Z, Gu Y, Guo L. Poly(ethylene glycol) Hydrogels with the Sustained Release of Hepatocyte Growth Factor for Enhancing Vascular Regeneration. ACS APPLIED BIO MATERIALS 2023; 6:5252-5263. [PMID: 37955977 DOI: 10.1021/acsabm.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The surface modification of biologically active factors on tissue-engineering vascular scaffold fails to fulfill the mechanical property and bioactive compounds' sustained release in vivo and results in the inhibition of tissue regeneration of small-diameter vascular grafts in vascular replacement therapies. In this study, biodegradable poly(ε-caprolactone) (PCL) was applied for scaffold preparation, and poly(ethylene glycol) (PG) hydrogel was used to load heparin and hepatocyte growth factor (HGF). In vitro analysis demonstrated that the PCL scaffold could inhibit the heparin release from the PG hydrogel, and the PG hydrogel could inhibit heparin release during the process of PCL degradation. Finally, it results in sustained release of HGF and heparin from the PCL-PG-HGF scaffold. The mechanical property of this hybrid scaffold improved after being coated with the PG hydrogel. In addition, the PCL-PG-HGF scaffold illustrated no inflammatory lesions, organ damage, or biological toxicity in all primary organs, with rapid organization of the endothelial cell layer, smooth muscle regeneration, and extracellular matrix formation. These results indicated that the PCL-PG-HGF scaffold is biocompatible and provides a microenvironment in which a tissue-engineered vascular graft with anticoagulant properties allows regeneration of vascular tissue (Scheme 1). Such findings confirm the feasibility of creating hydrogel scaffolds coated with bioactive factors to prepare novel vascular grafts.
Collapse
Affiliation(s)
- Zeqin Xu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Xue Geng
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Peng
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Ye
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhu Tong
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Liqiang Li
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Zengguo Feng
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053, China
| |
Collapse
|
20
|
Wang N, Wang H, Weng D, Wang Y, Yu L, Wang F, Zhang T, Liu J, He Z. Nanomaterials for small diameter vascular grafts: overview and outlook. NANOSCALE ADVANCES 2023; 5:6751-6767. [PMID: 38059025 PMCID: PMC10696638 DOI: 10.1039/d3na00666b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
Small-diameter vascular grafts (SDVGs) cannot meet current clinical demands owing to their suboptimal long-term patency rate. Various materials have been employed to address this issue, including nanomaterials (NMs), which have demonstrated exceptional capabilities and promising application potentials. In this review, the utilization of NMs in different forms, including nanoparticles, nanofibers, and nanofilms, in the SDVG field is discussed, and future perspectives for the development of NM-loading SDVGs are highlighted. It is expected that this review will provide helpful information to scholars in the innovative interdiscipline of cardiovascular disease treatment and NM.
Collapse
Affiliation(s)
- Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Haoyuan Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University Zunyi 563006 Guizhou China
- The Second Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Yanyang Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Feng Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University Zunyi 563006 Guizhou China
- The Second Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Zhixu He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
| |
Collapse
|
21
|
Cui Y, Jiang X, Yang M, Yuan Y, Zhou Z, Gao X, Jia G, Cao L, Li D, Zhao Y, Zhang X, Zhao G. SEMA4D/VEGF surface enhances endothelialization by diminished-glycolysis-mediated M2-like macrophage polarization. Mater Today Bio 2023; 23:100832. [PMID: 38024840 PMCID: PMC10630656 DOI: 10.1016/j.mtbio.2023.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death and morbidity worldwide. Inflammatory responses after percutaneous coronary intervention led to neoathrosclerosis and in-stent restenosis and thus increase the risk of adverse clinical outcomes. In this work, a metabolism reshaped surface is engineered, which combines the decreased glycolysis promoting, M2-like macrophage polarization, and rapid endothelialization property. Anionic heparin plays as a linker and mediates cationic SEMA4D and VEGF to graft electronically onto PLL surfaces. The system composed by anticoagulant heparin, immunoregulatory SEMA4D and angiogenic VEGF endows the scaffold with significant inhibition of platelets, fibrinogen and anti-thrombogenic properties, also noteworthy immunometabolism reprogram, anti-inflammation M2-like polarization and finally leading to rapid endothelializaiton performances. Our research indicates that the immunometabolism method can accurately reflect the immune state of modified surfaces. It is envisioned immunometabolism study will open an avenue to the surface engineering of vascular implants for better clinical outcomes.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Maozhu Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yinglin Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiang Gao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lvzhou Cao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Danni Li
- Department of Pharmacy, Longquanyi District of Chengdu Maternity & Child Health Care Hospital, Chengdu, 610072, China
| | - Yanshuang Zhao
- Department of Pharmacy, The People's Hospital of Leshan, Leshan, China
| | - Xin Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
22
|
Harun-Or-Rashid M, Aktar MN, Hossain MS, Sarkar N, Islam MR, Arafat ME, Bhowmik S, Yusa SI. Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers (Basel) 2023; 15:4563. [PMID: 38231996 PMCID: PMC10708661 DOI: 10.3390/polym15234563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. Natural polymers utilized in polymeric drug delivery systems include arginine, chitosan, dextrin, polysaccharides, poly(glycolic acid), poly(lactic acid), and hyaluronic acid. Additionally, poly(2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide), poly(ethylenimine), dendritic polymers, biodegradable polymers, and bioabsorbable polymers as well as biomimetic and bio-related polymeric systems and drug-free macromolecular therapies have been employed in polymeric drug delivery. Different synthetic and natural biomaterials are in the clinical phase to mitigate different diseases. Drug delivery methods using natural and synthetic polymers are becoming increasingly common in the pharmaceutical industry, with biocompatible and bio-related copolymers and dendrimers having helped cure cancer as drug delivery systems. This review discusses all the above components and how, by combining synthetic and biological approaches, micro- and nano-drug delivery systems can result in revolutionary polymeric drug and gene delivery devices.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Most. Nazmin Aktar
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Md. Sabbir Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Easin Arafat
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| |
Collapse
|
23
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
24
|
Ding K, Yu X, Wang D, Wang X, Li Q. Small diameter expanded polytetrafluoroethylene vascular graft with differentiated inner and outer biomacromolecules for collaborative endothelialization, anti-thrombogenicity and anti-inflammation. Colloids Surf B Biointerfaces 2023; 229:113449. [PMID: 37506438 DOI: 10.1016/j.colsurfb.2023.113449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Without differentiated inner and outer biological function, expanded polytetrafluoroethylene (ePTFE) small-diameter (<6 mm) artificial blood vessels would fail in vivo due to foreign body rejection, thrombosis, and hyperplasia. In order to synergistically promote endothelialization, anti-thrombogenicity, and anti-inflammatory function, we modified the inner and outer surface of ePTFE, respectively, by grafting functional biomolecules, such as heparin and epigallocatechin gallate (EGCG), into the inner surface and polyethyleneimine and rapamycin into the outer surface via layer-by-layer self-assembly. Fourier-transform infrared spectroscopy showed the successful incorporation of EGCG, heparin, and rapamycin. The collaborative release profile of heparin and rapamycin lasted for 42 days, respectively. The inner surface promoted human umbilical vein endothelial cells (HUVECs) adhesion and growth and that the outer surface inhibited smooth muscle cells growth and proliferation. The modified ePTFE effectively regulated the differentiation behavior of RAW264.7, inhibited the expression of proinflammatory mediator TNF-α, and up-regulated the expression of anti-inflammatory genes Arg1 and Tgfb-1. The ex vivo circulation results indicated that the occlusions and total thrombus weight of modified ePTFE was much lower than that of the thrombus formed on the ePTFE, presenting good anti-thrombogenic properties. Hence, the straightforward yet efficient synergistic surface functionalization approach presented a potential resolution for the prospective clinical application of small-diameter ePTFE blood vessel grafts.
Collapse
Affiliation(s)
- Kangjia Ding
- School of Materials science & Engineering, Zhengzhou University, Zhengzhou 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xueke Yu
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dongfang Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China; School of Mechanics and safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Xiaofeng Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China; School of Mechanics and safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Li
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
25
|
Yang N, Zhao C, Kong L, Zhang B, Han C, Zhang Y, Qian X, Qin W. Absolute Quantification of Dynamic Cellular Uptake of Small Extracellular Vesicles via Lanthanide Element Labeling and ICP-MS. Anal Chem 2023; 95:11934-11942. [PMID: 37527423 DOI: 10.1021/acs.analchem.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Small extracellular vesicles (sEVs) are increasingly reported to play important roles in numerous physiological and pathological processes. Cellular uptake of sEVs is of great significance for functional regulation in recipient cells. Although various sEV quantification, labeling, and tracking methods have been reported, it is still highly challenging to quantify the absolute amount of cellular uptake of sEVs and correlate this information with phenotypic variations in the recipient cell. Therefore, we developed a novel strategy using lanthanide element labeling and inductively coupled plasma-mass spectrometry (ICP-MS) for the absolute and sensitive quantification of sEVs. This strategy utilizes the chelation interaction between Eu3+ and the phosphate groups on the sEV membrane for specific labeling. sEVs internalized by cells can then be quantified by ICP-MS using a previously established linear relationship between the europium content and the particle numbers. High Eu labeling efficiency and stability were demonstrated by various evaluations, and no structural or functional alterations in the sEVs were discovered after Eu labeling. Application of this method revealed that 4020 ± 171 sEV particles/cell were internalized by HeLa cells at 37 °C and 61% uptake inhibition at 4 °C. Further investigation led to the quantitative differential analysis of sEV cellular uptake under the treatment of several chemical endocytosis inhibitors. A 23% strong inhibition indicated that HeLa cells uptake sEVs mainly through the macropinocytosis pathway. This facile labeling and absolute quantification strategy of sEVs with ppb-level high sensitivity is expected to become a potential tool for studying the functions of sEVs in intracellular communication and cargo transportation.
Collapse
Affiliation(s)
- Ningli Yang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chuanping Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Baoying Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chunguang Han
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Yangjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
26
|
Fernández-Pérez J, van Kampen KA, Mota C, Baker M, Moroni L. Flexible, Suturable, and Leak-free Scaffolds for Vascular Tissue Engineering Using Melt Spinning. ACS Biomater Sci Eng 2023; 9:5006-5014. [PMID: 37490420 PMCID: PMC10428091 DOI: 10.1021/acsbiomaterials.3c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Coronary artery disease affects millions worldwide. Bypass surgery remains the gold standard; however, autologous tissue is not always available. Hence, the need for an off-the-shelf graft to treat these patients remains extremely high. Using melt spinning, we describe here the fabrication of tubular scaffolds composed of microfibers aligned in the circumferential orientation mimicking the organized extracellular matrix in the tunica media of arteries. By variation of the translational extruder speed, the angle between fibers ranged from 0 to ∼30°. Scaffolds with the highest angle showed the best performance in a three-point bending test. These constructs could be bent up to 160% strain without kinking or breakage. Furthermore, when liquid was passed through the scaffolds, no leakage was observed. Suturing of native arteries was successful. Mesenchymal stromal cells were seeded on the scaffolds and differentiated into vascular smooth muscle-like cells (vSMCs) by reduction of serum and addition of transforming growth factor beta 1 and ascorbic acid. The scaffolds with a higher angle between fibers showed increased expression of vSMC markers alpha smooth muscle actin, calponin, and smooth muscle protein 22-alpha, whereas a decrease in collagen 1 expression was observed, indicating a positive contractile phenotype. Endothelial cells were seeded on the repopulated scaffolds and formed a tightly packed monolayer on the luminal side. Our study shows a one-step fabrication for ECM-mimicking scaffolds with good handleability, leak-free property, and suturability; the excellent biocompatibility allowed the growth of a bilayered construct. Future work will explore the possibility of using these scaffolds as vascular conduits in in vivo settings.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Kenny A. van Kampen
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Carlos Mota
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Matthew Baker
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| |
Collapse
|
27
|
Banerjee A, Lino M, Jesus C, Ribeiro Q, Abrunhosa A, Ferreira L. Imaging platforms to dissect the in vivo communication, biodistribution and controlled release of extracellular vesicles. J Control Release 2023; 360:549-563. [PMID: 37406818 DOI: 10.1016/j.jconrel.2023.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Extracellular vesicles (EVs) work as communication vehicles, allowing the exchange of bioactive molecules (microRNAs, mRNAs, proteins, etc) between neighbouring and distant cells in the organism. EVs are thus important players in several physiological and pathological processes. Thus, it is critical to understand their role in cellular/organ communication to fully evaluate their biological, diagnosis and therapeutic potential. In addition, recent studies have explored the controlled release of EVs for regenerative medicine applications and thus the evaluation of their release profile is important to correlate with biological activity. Here, we give a brief introduction about EV imaging platforms in terms of their sensitivity, penetration depth, cost, and operational simplicity, followed by a discussion of different EV labelling processes with their advantages and limitations. Next, we cover the relevance of these imaging platforms to dissect the tropism and biological role of endogenous EVs. We also cover the relevance of imaging platforms to monitor the accumulation of exogenous EVs and their potential cellular targets. Finally, we highlight the importance of imaging platforms to investigate the release profile of EVs from different controlled systems.
Collapse
Affiliation(s)
- Arnab Banerjee
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Miguel Lino
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos Jesus
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Quélia Ribeiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Antero Abrunhosa
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health/Coimbra Institute for Biomedical Imaging and Translational research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
28
|
Yan J, Xiao H, Zhou X, Li Y, Zhao S, Zhao X, Liu Y, Liu M, Xue F, Zhang Q, Zhao W, Li L, Su Y, Zeng W. Engineered exosomes reprogram Gli1 + cells in vivo to prevent calcification of vascular grafts and autologous pathological vessels. SCIENCE ADVANCES 2023; 9:eadf7858. [PMID: 37478186 PMCID: PMC10361604 DOI: 10.1126/sciadv.adf7858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Calcification of autologous pathological vessels and tissue engineering blood vessels (TEBVs) is a thorny problem in clinic. However, there is no effective and noninvasive treatment that is available against the calcification of TEBVs and autologous pathological vessels. Gli1+ cells are progenitors of smooth muscle cells (SMCs) and can differentiate into osteoblast-like cells, leading to vascular calcification. Our results showed that the spatiotemporal distribution of Gli1+ cells in TEBVs was positively correlated with the degree of TEBV calcification. An anticalcification approach was designed consisting of exosomes derived from mesenchymal stem cells delivering lncRNA-ANCR to construct the engineered exosome-Ancr/E7-EXO. The results showed that Ancr/E7-EXO effectively targeted Gli1+ cells, promoting rapid SMC reconstruction and markedly inhibiting Gli1+ cell differentiation into osteoblast-like cells. Moreover, Ancr/E7-EXO significantly inhibited vascular calcification caused by chronic kidney disease. Therefore, Ancr/E7-EXO reprogrammed Gli1+ cells to prevent calcification of vascular graft and autologous pathological vessel, providing unique insights for an effective anticalcification.
Collapse
Affiliation(s)
- Juan Yan
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Haoran Xiao
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Xin Zhou
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Yanzhao Li
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Shanlan Zhao
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Xingli Zhao
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Yong Liu
- Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Min Liu
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Qiao Zhang
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Wenyan Zhao
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Lang Li
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Yang Su
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Army Medical University, Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
29
|
Zhu Y, Liao ZF, Mo MH, Xiong XD. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Vasculopathies and Angiogenesis: Therapeutic Applications and Optimization. Biomolecules 2023; 13:1109. [PMID: 37509145 PMCID: PMC10377109 DOI: 10.3390/biom13071109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs), as part of the cellular secretome, have emerged as essential cell-cell communication regulators in multiple physiological and pathological processes. Previous studies have widely reported that mesenchymal stromal cell-derived EVs (MSC-EVs) have potential therapeutic applications in ischemic diseases or regenerative medicine by accelerating angiogenesis. MSC-EVs also exert beneficial effects on other vasculopathies, including atherosclerosis, aneurysm, vascular restenosis, vascular calcification, vascular leakage, pulmonary hypertension, and diabetic retinopathy. Consequently, the potential of MSC-EVs in regulating vascular homeostasis is attracting increasing interest. In addition to native or naked MSC-EVs, modified MSC-EVs and appropriate biomaterials for delivering MSC-EVs can be introduced to this area to further promote their therapeutic applications. Herein, we outline the functional roles of MSC-EVs in different vasculopathies and angiogenesis to elucidate how MSC-EVs contribute to maintaining vascular system homeostasis. We also discuss the current strategies to optimize their therapeutic effects, which depend on the superior bioactivity, high yield, efficient delivery, and controlled release of MSC-EVs to the desired regions, as well as the challenges that need to be overcome to allow their broad clinical translation.
Collapse
Affiliation(s)
- Ying Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhao-Fu Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Miao-Hua Mo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
30
|
Sareen N, Srivastava A, Alagarsamy KN, Lionetti V, Dhingra S. Stem cells derived exosomes and biomaterials to modulate autophagy and mend broken hearts. Biochim Biophys Acta Mol Basis Dis 2023:166806. [PMID: 37437748 DOI: 10.1016/j.bbadis.2023.166806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Autophagy maintains cellular homeostasis and plays a crucial role in managing pathological conditions including ischemic myocardial injury leading to heart failure (HF). Despite treatments, no intervention can replace lost cardiomyocytes. Stem cell therapy offers potential for post-myocardial infarction repair but struggles with poor cell retention due to immune rejection. In the search for effective therapies, stem cell-derived extracellular vesicles (EVs), especially exosomes, have emerged as promising tools. These tiny bioactive molecule carriers play vital roles in intercellular communication and tissue engineering. They offer numerous therapeutic benefits including modulating immune responses, promoting tissue repair, and boosting angiogenesis. Additionally, biomaterials provide a conducive 3D microenvironment for cell, exosome, and biomolecule delivery, and enhance heart muscle strength, making it a comprehensive cardiac repair strategy. In this regard, the current review delves into the intricate application of extracellular vesicles (EVs) and biomaterials for managing autophagy in the heart muscle during cardiac injury. Central to our investigation is the exploration of how these elements interact within the context of cardiac repair and regeneration. Additionally, this review also casts light on the formidable challenges that plague this field, such as the issues of safety, efficacy, controlled delivery, and acceptance of these therapeutic strategies for effective clinical translation. Addressing these challenges is crucial for unlocking the full therapeutic potential of EV and biomaterial-based therapies and ensuring their successful translation from bench to bedside.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada; Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada.
| |
Collapse
|
31
|
Yu F, Duan Y, Liu C, Huang H, Xiao X, He Z. Extracellular vesicles in atherosclerosis and vascular calcification: the versatile non-coding RNAs from endothelial cells and vascular smooth muscle cells. Front Med (Lausanne) 2023; 10:1193660. [PMID: 37469665 PMCID: PMC10352799 DOI: 10.3389/fmed.2023.1193660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. Vascular calcification (VC), the deposition of calcium and phosphate within the arterial wall, is an important characteristic of AS natural history. However, medial arterial calcification (MAC) differs from intimal calcification and cannot simply be explained as the consequence of AS. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are directly involved in AS and VC processes. Understanding the communication between ECs and VSMCs is critical in revealing mechanisms underlying AS and VC. Extracellular vesicles (EVs) are found as intercellular messengers in kinds of physiological processes and pathological progression. Non-coding RNAs (ncRNAs) encapsulated in EVs are involved in AS and VC, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The effects of ncRNAs have not been comprehensively understood, especially encapsulated in EVs. Some ncRNAs have demonstrated significant roles in AS and VC, but it remains unclear the functions of the majority ncRNAs detected in EVs. In this review, we summarize ncRNAs encapsulated in EC-EVs and VSMC-EVs, and the signaling pathways that are involved in AS and VC.
Collapse
Affiliation(s)
- Fengyi Yu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chongmei Liu
- Department of Pathology, Yueyang People's Hospital, Yueyang, Hunan, China
| | - Hong Huang
- Hengyang Medical School, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
32
|
Wei Y, Jiang H, Chai C, Liu P, Qian M, Sun N, Gao M, Zu H, Yu Y, Ji G, Zhang Y, Yang S, He J, Cheng J, Tian J, Zhao Q. Endothelium-Mimetic Surface Modification Improves Antithrombogenicity and Enhances Patency of Vascular Grafts in Rats and Pigs. JACC Basic Transl Sci 2023; 8:843-861. [PMID: 37547067 PMCID: PMC10401295 DOI: 10.1016/j.jacbts.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023]
Abstract
We first identified thrombomodulin (TM) and endothelial nitric oxide (NO) synthase as key factors for the antithrombogenic function of the endothelium in human atherosclerotic carotid arteries. Then, recombinant TM and an engineered galactosidase responsible for the conversion of an exogenous NO prodrug were immobilized on the surface of the vascular grafts. Surface modification by TM and NO cooperatively enhanced the antithrombogenicity and patency of vascular grafts. Importantly, we found that the combination of TM and NO also promoted endothelialization, whereas it reduced adverse intimal hyperplasia, which is critical for the maintenance of vascular homeostasis, as confirmed in rat and pig models.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Huan Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Chai
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Pei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia (Ministry of Education), Harbin, China
| | - Man Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Honglin Zu
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yongquan Yu
- Department of Radiology, Weihai Central Hospital, Weihai, China
| | - Guangbo Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yating Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia (Ministry of Education), Harbin, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
33
|
Zheng D, Ruan H, Chen W, Zhang Y, Cui W, Chen H, Shen H. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact Mater 2023; 25:500-526. [PMID: 37056271 PMCID: PMC10087114 DOI: 10.1016/j.bioactmat.2022.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-scale vesicles derived by cell secretion with unique advantages such as promoting cell proliferation, anti-inflammation, promoting blood vessels and regulating cell differentiation, which benefit their wide applications in regenerative medicine. However, the in vivo therapeutic effect of EVs still greatly restricted by several obstacles, including the off-targetability, rapid blood clearance, and undesired release. To address these issues, biomedical engineering techniques are vastly explored. This review summarizes different strategies to enhance EV functions from the perspective of drug loading, modification, and combination of biomaterials, and emphatically introduces the latest developments of functionalized EV-loaded biomaterials in different diseases, including cardio-vascular system diseases, osteochondral disorders, wound healing, nerve injuries. Challenges and future directions of EVs are also discussed.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| |
Collapse
|
34
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
35
|
Zhang C, Cha R, Wang C, Chen X, Li Z, Xie Q, Jia L, Sun Y, Hu Z, Zhang L, Zhou F, Zhang Y, Jiang X. Red blood cell membrane-functionalized Nanofibrous tubes for small-diameter vascular grafts. Biomaterials 2023; 297:122124. [PMID: 37087981 DOI: 10.1016/j.biomaterials.2023.122124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The off-the-shelf small-diameter vascular grafts (SDVGs) have inferior clinical efficacy. Red blood cell membrane (Rm) has easy availability and multiple bioactive components (such as phospholipids, proteins, and glycoproteins), which can improve the clinic's availability and patency of SDVGs. Here we developed a facile approach to preparing an Rm-functionalized poly-ε-caprolactone/poly-d-lysine (Rm@PCL/PDL) tube by co-incubation and single-step rolling. The integrity, stability, and bioactivity of Rm on Rm@PCL/PDL were evaluated. The revascularization of Rm@PCL/PDL tubes was studied by implantation in the carotid artery of rabbits. Rm@PCL/PDL can be quickly prepared and showed excellent bioactivity with good hemocompatibility and great anti-inflammatory. Rm@PCL/PDL tubes as the substitute for the carotid artery of rabbits had good patency and quick remodeling within 21 days. Rm, as a "self" biomaterial with high biosafety, provides a new and facile approach to developing personalized or universal SDVGs for the clinic, which is of great significance in cardiovascular regenerative medicine and organ chip.
Collapse
Affiliation(s)
- Chunliang Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, PR China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, PR China.
| | - Chunyuan Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Xingming Chen
- PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang Beili, Chaoyang District, Beijing, 100101, PR China
| | - Zulan Li
- PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang Beili, Chaoyang District, Beijing, 100101, PR China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, No. 49 Huayuan Road North, Haidian District, Beijing, 100191, PR China
| | - Liujun Jia
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Yang Sun
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Zhan Hu
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Lin Zhang
- Department of Adult Cardiac Surgery, Faculty of Cardiovascular Disease, The Sixth Medical Center of the General Hospital of the People's Liberation Army of China, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Yan Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China.
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
36
|
Brown TK, Alharbi S, Ho KJ, Jiang B. Prosthetic vascular grafts engineered to combat calcification: Progress and future directions. Biotechnol Bioeng 2023; 120:953-969. [PMID: 36544433 PMCID: PMC10023339 DOI: 10.1002/bit.28316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Calcification in prosthetic vascular conduits is a major challenge in cardiac and vascular surgery that compromises the long-term performance of these devices. Significant research efforts have been made to understand the etiology of calcification in the cardiovascular system and to combat calcification in various cardiovascular devices. Novel biomaterial design and tissue engineering strategies have shown promise in preventing or delaying calcification in prosthetic vascular grafts. In this review, we highlight recent advancements in the development of acellular prosthetic vascular grafts with preclinical success in attenuating calcification through advanced biomaterial design. We also discuss the mechanisms of action involved in the designs that will contribute to the further understanding of cardiovascular calcification. Lastly, recent insights into the etiology of vascular calcification will guide the design of future prosthetic vascular grafts with greater potential for translational success.
Collapse
Affiliation(s)
- Taylor K. Brown
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
| | - Sara Alharbi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Karen J. Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bin Jiang
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
37
|
Su H, Liu W, Li X, Li G, Guo S, Liu C, Yang T, Ou C, Liu J, Li Y, Wei C, Huang Q, Xu T, Duan C. Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomater Sci 2023; 11:3197-3213. [PMID: 36928127 DOI: 10.1039/d2bm01338j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rapid endothelialization is extremely essential for the success of small-diameter tissue-engineered vascular graft (TEVG) (<6 mm) transplantation. However, severe inflammation in situ often causes cellular energy decline of endothelial cells. The cellular energy supply involved in vascular graft therapy remains unclear, and whether promoting energy supply would be helpful in the regeneration of vascular grafts needs to be established. In our work, we generated an AMPK activator (5-aminoimidazole-4-carboxamide ribonucleotide, AICAR) immobilized vascular graft. AICAR-modified vascular grafts were successfully generated by the co-electrospinning technique. In vitro results indicated that AICAR could upregulate energy supply in endothelial cells and reprogram macrophages (MΦ) to assume an anti-inflammatory phenotype. Furthermore, endothelial cells (ECs) co-cultured with AICAR achieved higher survival rates, better migration, and angiogenic capacity than the controls. Concurrently, a rabbit carotid artery transplantation model was used to investigate AICAR-modified vascular grafts at different time points. The results showed that AICAR-modified vascular grafts had higher patency rates (92.9% and 85.7% at 6 and 12 weeks, respectively) than those of the untreated group (11.1% and 0%). In conclusion, AICAR strengthened the cellular energy state and attenuated the adverse effects of inflammation. AICAR-modified vascular grafts achieved better vascular remodeling. This study provides a new perspective on promoting the regeneration of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Hengxian Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guangxu Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chang Liu
- Department of Orthopedic Surgery, The Lingnan Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chubin Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jiahui Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuanzhi Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chengcong Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Qing Huang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering and Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. .,East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
38
|
Li G, Yang T, Liu Y, Su H, Liu W, Fang D, Jin L, Jin F, Xu T, Duan C. The proteins derived from platelet-rich plasma improve the endothelialization and vascularization of small diameter vascular grafts. Int J Biol Macromol 2023; 225:574-587. [PMID: 36395946 DOI: 10.1016/j.ijbiomac.2022.11.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Vascular transplantation has become an ideal substitute for heart and peripheral vascular bypass therapy and tissue-engineered vascular grafts (TEVGs) present an attractive potential solution for vascular surgery. However, small diameter (Ф < 6 mm) vascular do not have ideal TEVGs for clinical use. Platelet-rich plasma (PRP), a key source of bioactive molecules, has been confirmed to promote tissue repair and regeneration. In this study, we prepared PRP-loaded TEVGs (PRP-TEVGs) by electrospinning, investigated the characterization of TEVGs, and verified the effect of PRP-TEVGs in vivo and in vitro experiments. The results suggested that PRP-TEVGs had good biocompatibility, released growth factors stably, promoted cell proliferation and migration significantly, up-regulated the expression of endothelial NO synthase (eNOS) in functional vascular endothelial cells (VECs), and maintained the stability of the endothelial structure. In vivo experiments suggest that PRP can promote rapid endothelialization and reconstruction of TEVGs. Overall, this finding indicated that PRP could promote the rapid vascular endothelialization of small-diameter TEVGs by improving contractile vascular smooth muscle cells (VSMCs) regeneration, and maintaining the integrity and functionality of VECs.
Collapse
Affiliation(s)
- Guangxu Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hengxian Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dazhao Fang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Xu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China; East China Institute of Digital Medical Engineering, Shangrao 334000, China.
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
39
|
Tian T, Qiao S, Tannous BA. Nanotechnology-Inspired Extracellular Vesicles Theranostics for Diagnosis and Therapy of Central Nervous System Diseases. ACS APPLIED MATERIALS & INTERFACES 2023; 15:182-199. [PMID: 35929960 DOI: 10.1021/acsami.2c07981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shuya Qiao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
40
|
Yang GH, Kang D, An S, Ryu JY, Lee K, Kim JS, Song MY, Kim YS, Kwon SM, Jung WK, Jeong W, Jeon H. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res 2022; 26:73. [PMID: 36471437 PMCID: PMC9720982 DOI: 10.1186/s40824-022-00321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/13/2022] [Indexed: 12/11/2022] Open
Abstract
Until recent, there are no ideal small diameter vascular grafts available on the market. Most of the commercialized vascular grafts are used for medium to large-sized blood vessels. As a solution, vascular tissue engineering has been introduced and shown promising outcomes. Despite these optimistic results, there are limitations to commercialization. This review will cover the need for extrusion-based 3D cell-printing technique capable of mimicking the natural structure of the blood vessel. First, we will highlight the physiological structure of the blood vessel as well as the requirements for an ideal vascular graft. Then, the essential factors of 3D cell-printing including bioink, and cell-printing system will be discussed. Afterwards, we will mention their applications in the fabrication of tissue engineered vascular grafts. Finally, conclusions and future perspectives will be discussed.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - SangHyun An
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jeong Yeop Ryu
- grid.258803.40000 0001 0661 1556Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok‑ro, Jung‑gu, Daegu, 41944 South Korea
| | - KyoungHo Lee
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jun Sik Kim
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Moon-Yong Song
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Young-Sik Kim
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Sang-Mo Kwon
- grid.262229.f0000 0001 0719 8572Department of Physiology, School of Medicine, Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan, 626-870 South Korea
| | - Won-Kyo Jung
- grid.412576.30000 0001 0719 8994Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, 48513 South Korea
| | - Woonhyeok Jeong
- grid.412091.f0000 0001 0669 3109Department of Plastic and Reconstructive Surgery, Dongsan Medical Center, Keimyung University College of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 South Korea
| | - Hojun Jeon
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| |
Collapse
|
41
|
Hao Y, Zhang W, Qin J, Tan L, Luo Y, Chen H. Biological Cardiac Patch Based on Extracellular Vesicles and Extracellular Matrix for Regulating Injury-Related Microenvironment and Promoting Cardiac Tissue Recovery. ACS APPLIED BIO MATERIALS 2022; 5:5218-5230. [PMID: 36265007 DOI: 10.1021/acsabm.2c00659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiac patches are widely investigated to repair or regenerate diseased and aging cardiac tissues. While numerous studies looked into engineering the biochemical/biomechanical/cellular microenvironment and components in the heart tissue, the changes induced by cardiac patches and how they should be controlled to promote cardiac tissue repair/regeneration remains an important yet untapped direction, especially immunological responses. In this study, we designed and fabricated a bilaminated cardiac patch based on extracellular matrix (ECM) materials loaded with the extracellular vesicles (EVs) derived from mesenchymal stromal cells. The function of the biological material to modulate the injury-related microenvironment in a cardiac infarction model in mice was investigated. The study showed that the treatment of EV-ECM patches to the infarcted area increased the level of immunomodulatory major histocompatibility complex class IIlo macrophages in the early stage of myocardial injury to mitigate excessive inflammatory responses due to injury. The intensity of the acquired proinflammatory immune response in systemic immune organs was reduced. Further analyses indicated that the EV-ECM patches exhibited proangiogenic functions and decreased the infarct size with improved cardiac recovery in mice. The study provided insights into shaping the injury-related microenvironment through the incorporation of extracellular vesicles into cardiac patches, and the EV-ECM material is a promising design paradigm to improve the function of cardiac patches to treat myocardial injuries and diseases.
Collapse
Affiliation(s)
- Yaoyao Hao
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.,College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Wei Zhang
- Guangzhou Keyue Biotech Co., Ltd., 6 Xin-Rui Road, Luogang District, Guangzhou 510535, China
| | - Jiahang Qin
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.,College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Lindan Tan
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.,College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China.,College of Future Technology, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
42
|
Pan Z, Sun W, Chen Y, Tang H, Lin W, Chen J, Chen C. Extracellular Vesicles in Tissue Engineering: Biology and Engineered Strategy. Adv Healthc Mater 2022; 11:e2201384. [PMID: 36053562 DOI: 10.1002/adhm.202201384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). Moreover, these nanosized extracellular particles (30-140 nm) can be incorporated into biomaterials according to different principles to facilitate signal delivery in various regenerative processes directly or indirectly. Bioactive biomaterials as the carrier will extend the retention time and realize the controlled release of EVs, which further enhance their therapeutic efficiency in tissue regeneration. Herein, the basic biological characteristics of EVs are first introduced, and then their outstanding performance in exerting direct impacts on target cells in tissue regeneration as well as indirect effects on promoting angiogenesis and regulating the immune environment, due to specific functional components of EVs (nucleic acid, protein, lipid, etc.), is emphasized. Furthermore, different design ideas for suitable EV-loaded biomaterials are also demonstrated. In the end, this review also highlights the engineered strategies, which aim at solving the problems related to natural EVs such as highly heterogeneous functions, inadequate tissue targeting capabilities, insufficient yield and scalability, etc., thus promoting the therapeutic pertinence and clinical potential of EV-based approaches in TE.
Collapse
Affiliation(s)
- Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| |
Collapse
|
43
|
Chen A, Tian H, Yang N, Zhang Z, Yang GY, Cui W, Tang Y. Towards extracellular vesicle delivery systems for tissue regeneration: material design at the molecular level. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:323-356. [PMID: 39697358 PMCID: PMC11648451 DOI: 10.20517/evcna.2022.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/20/2024]
Abstract
The discovery and development of extracellular vesicles in tissue engineering have shown great potential for tissue regenerative therapies. However, their vesicle nature requires dosage-dependent administration and efficient interactions with recipient cells. Researchers have resorted to biomaterials for localized and sustained delivery of extracellular vesicles to the targeted cells, but not much emphasis has been paid on the design of the materials, which deeply impacts their molecular interactions with the loaded extracellular vesicles and subsequent delivery. Therefore, we present in this review a comprehensive survey of extracellular vesicle delivery systems from the viewpoint of material design at the molecular level. We start with general requirements of the materials and delve into different properties of delivery systems as a result of different designs, from material selections to processing strategies. Based on these differences, we analyzed the performance of extracellular vesicle delivery and tissue regeneration in representative studies. In light of the current missing links within the relationship of material structures, physicochemical properties and delivery performances, we provide perspectives on the interactions of materials and extracellular vesicles and the possible extension of materials. This review aims to be a strategic enlightenment for the future design of extracellular vesicle delivery systems to facilitate their translation from basic science to clinical applications.
Collapse
Affiliation(s)
- Ao Chen
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hengli Tian
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
44
|
Ramasubramanian L, Du S, Gidda S, Bahatyrevich N, Hao D, Kumar P, Wang A. Bioengineering Extracellular Vesicles for the Treatment of Cardiovascular Diseases. Adv Biol (Weinh) 2022; 6:e2200087. [PMID: 35778828 PMCID: PMC9588622 DOI: 10.1002/adbi.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Indexed: 01/28/2023]
Abstract
Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide. Despite recent advances in diagnosis and interventions, there is still a crucial need for new multifaceted therapeutics that can address the complicated pathophysiological mechanisms driving CVD. Extracellular vesicles (EVs) are nanovesicles that are secreted by all types of cells to transport molecular cargo and regulate intracellular communication. EVs represent a growing field of nanotheranostics that can be leveraged as diagnostic biomarkers for the early detection of CVD and as targeted drug delivery vesicles to promote cardiovascular repair and recovery. Though a promising tool for CVD therapy, the clinical application of EVs is limited by the inherent challenges in EV isolation, standardization, and delivery. Hence, this review will present the therapeutic potential of EVs and introduce bioengineering strategies that augment their natural functions in CVD.
Collapse
Affiliation(s)
- Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Shixian Du
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Siraj Gidda
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Priyadarsini Kumar
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| |
Collapse
|
45
|
Zou D, Yang P, Liu J, Dai F, Xiao Y, Zhao A, Huang N. Exosome-Loaded Pro-efferocytic Vascular Stent with Lp-PLA 2-Triggered Release for Preventing In-Stent Restenosis. ACS NANO 2022; 16:14925-14941. [PMID: 36066255 DOI: 10.1021/acsnano.2c05847] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The efferocytosis defect is regarded as a pivotal event of atherosclerosis. The failure to clear apoptotic cells in atherosclerotic plaques under vascular stents causes a failure to resolve the inflammation underneath. However, efferocytosis repair is still confined to nonstenting therapeutics. Here, we identified a pro-efferocytotic agent and accordingly developed a bioresponsive pro-efferocytotic vascular stent aimed for poststenting healing. Exosomes derived from mesenchymal stem cells were found to be able to regulate efferocytosis via SLC2a1, STAT3/RAC1, and CD300a pathways and modulate foam cell formation processes through a CD36-mediated pathway. Pro-efferocytotic exosomes were encapsulated into liposome-based multivesicular chambers and grafted onto vascular stents. The multivesicular vesicles were able to release exosomes under the Lp-PLA2 environment. Compared to bare metal stents, exosome-stents in the presence of Lp-PLA2 enhanced the ratio of apoptotic cell clearance and reduced the neointimal thickness in the mal-efferocytotic rat model. Overall, we identified a pro-efferocytic agent─exosomes that are able to regulate target cells via multiple signaling pathways and are good candidates to serve complex pathological environments, and this bioresponsive pro-efferocytotic vascular stent is an attractive approach for prevention of poststenting complications.
Collapse
Affiliation(s)
- Dan Zou
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Jianan Liu
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Fanfan Dai
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yangyang Xiao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Ansha Zhao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
46
|
Min Lim K, Kim S, Yeom J, Choi Y, Lee Y, An J, Gil M, Abdal Dayem A, Kim K, Kang GH, Kim A, Hong K, Kim K, Cho SG. Advanced 3D dynamic culture system with transforming growth factor-β3 enhances production of potent extracellular vesicles with modified protein cargoes via upregulation of TGF-β signaling. J Adv Res 2022; 47:57-74. [PMID: 36130685 PMCID: PMC10173176 DOI: 10.1016/j.jare.2022.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/29/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) release extracellular vesicles (MSC-EVs) containing various cargoes. Although MSC-EVs show significant therapeutic effects, the low production of EVs in MSCs hinders MSC-EV-mediated therapeutic development. OBJECTIVES Here, we developed an advanced three-dimensional (a3D) dynamic culture technique with exogenous transforming growth factor beta-3 (TGF-β3) treatment (T-a3D) to produce potent MSC-EVs. METHODS Our system enabled preparation of a highly concentrated EV-containing medium for efficient EV isolation and purification with higher yield and efficacy. RESULTS MSC spheroids in T-a3D system (T-a3D spheroids) showed high expression of CD9 and TGF-β3, which was dependent on TGF-β signaling. Treatment with EVs produced under T-a3D conditions (T-a3D-EVs) led to significantly improved migration of dermal fibroblasts and wound closure in an excisional wound model. The relative total efficacy (relative yield of single-batch EVs (10-11-fold) × relative regeneration effect of EVs (2-3-fold)) of T-a3D-EVs was approximately up to 33-fold higher than that of 2D-EVs. Importantly the quantitative proteomic analyses of the T-a3D spheroids and T-a3D-EVs supported the improved EV production as well as the therapeutic potency of T-a3D-EVs. CONCLUSION TGF-β signalling differentially regulated by fluid shear stress produced in our system and exogenous TGF-β3 addition was confirmed to play an important role in the enhanced production of EVs with modified protein cargoes. We suggest that the T-a3D system leads to the efficient production of MSC-EVs with high potential in therapies and clinical development.
Collapse
Affiliation(s)
- Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Sehee Kim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Republic of Korea.
| | - Yujin Choi
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Yoonjoo Lee
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Jongyub An
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea.
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Republic of Korea; Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul 05505, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
47
|
Gui Y, Qin K, Zhang Y, Bian X, Wang Z, Han D, Peng Y, Yan H, Gao Z. Quercetin improves rapid endothelialization and inflammatory microenvironment in electrospun vascular grafts. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac9266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Abstract
There is a great need for small diameter vascular grafts among patients with cardiovascular diseases annually. However, continuous foreign body reactions and fibrosis capsules brought by biomaterials are both prone to poor vascular tissue regeneration. To address this problem, we fabricated a polycaprolactone (PCL) vascular graft incorporated with quercetin (PCL/QCT graft) in this study. In vitro cell assay showed that quercetin reduced the expressions of pro-inflammatory genes of macrophages while increased the expressions of anti-inflammatory genes. Furthermore, in vivo implantation was performed in a rat abdominal aorta replacement model. Upon implantation, the grafts exhibited sustained quercetin release and effectively enhanced the regeneration of vascular tissue. The results revealed that quercetin improved endothelial layer formation along the lumen of the vascular grafts at 4 weeks. Furthermore, the thickness of vascular smooth muscle layers significantly increased in PCL/QCT group compared with PCL group. More importantly, the presence of quercetin stimulated the infiltration of a large amount of M2 phenotype macrophages into the grafts. Collectively, the above data reinforced our hypothesis that the incorporation of quercetin may be in favor of modulating the inflammatory microenvironment and improving vascular tissue regeneration and remodeling in vascular grafts.
Collapse
|
48
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:2851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
49
|
Hao D, Lu L, Song H, Duan Y, Chen J, Carney R, Li JJ, Zhou P, Nolta J, Lam KS, Leach JK, Farmer DL, Panitch A, Wang A. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics 2022; 12:6021-6037. [PMID: 35966577 PMCID: PMC9373818 DOI: 10.7150/thno.70448] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/24/2022] [Indexed: 01/26/2023] Open
Abstract
Although stem cell-derived extracellular vesicles (EVs) have remarkable therapeutic potential for various diseases, the therapeutic efficacy of EVs is limited due to their degradation and rapid diffusion after administration, hindering their translational applications. Here, we developed a new generation of collagen-binding EVs, by chemically conjugating a collagen-binding peptide SILY to EVs (SILY-EVs), which were designed to bind to collagen in the extracellular matrix (ECM) and form an EV-ECM complex to improve EVs' in situ retention and therapeutic efficacy after transplantation. Methods: SILY was conjugated to the surface of mesenchymal stem/stromal cell (MSC)-derived EVs by using click chemistry to construct SILY-EVs. Nanoparticle tracking analysis (NTA), ExoView analysis, cryogenic electron microscopy (cryo-EM) and western-blot analysis were used to characterize the SILY-EVs. Fluorescence imaging (FLI), MTS assay, ELISA and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to evaluate the collagen binding and biological functions of SILY-EVs in vitro. In a mouse hind limb ischemia model, the in vivo imaging system (IVIS), laser doppler perfusion imaging (LDPI), micro-CT, FLI and RT-qPCR were used to determine the SILY-EV retention, inflammatory response, blood perfusion, gene expression, and tissue regeneration. Results:In vitro, the SILY conjugation significantly enhanced EV adhesion to the collagen surface and did not alter the EVs' biological functions. In the mouse hind limb ischemia model, SILY-EVs presented longer in situ retention, suppressed inflammatory responses, and significantly augmented muscle regeneration and vascularization, compared to the unmodified EVs. Conclusion: With the broad distribution of collagen in various tissues and organs, SILY-EVs hold promise to improve the therapeutic efficacy of EV-mediated treatment in a wide range of diseases and disorders. Moreover, SILY-EVs possess the potential to functionalize collagen-based biomaterials and deliver therapeutic agents for regenerative medicine applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Lu Lu
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Hengyue Song
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Yixin Duan
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Jianing Chen
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Randy Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Ping Zhou
- Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Jan Nolta
- Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Diana L Farmer
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Alyssa Panitch
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
50
|
Guo B, Shan SK, Xu F, Lin X, Li FXZ, Wang Y, Xu QS, Zheng MH, Lei LM, Li CC, Zhou ZA, Ullah MHE, Wu F, Liao XB, Yuan LQ. Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification. J Nanobiotechnology 2022; 20:334. [PMID: 35842695 PMCID: PMC9287893 DOI: 10.1186/s12951-022-01529-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
The pathogenesis of vascular calcification in diabetic patients remains elusive. As an effective information transmitter, small extracellular vesicles (sEVs) carry abundant microRNAs (miRNAs) that regulate the physiological and pathological states of recipient cells. In the present study, significant up-regulation of miR-126-5p was observed in sEVs isolated from human umbilical vein endothelial cells (HUVECs) stimulated with advanced glycation end-products (A-EC/sEVs). Intriguingly, these sEVs suppressed the osteogenic differentiation of vascular smooth muscle cells (VSMCs) by targeting BMPR1B, which encodes the receptor for BMP, thereby blocking the smad1/5/9 signalling pathway. In addition, knocking down miR-126-5p in HUVECs significantly diminished the anti-calcification effect of A-EC/sEVs in a mouse model of type 2 diabetes. Overall, miR-126-5p is highly enriched in sEVs derived from AGEs stimulated HUVECs and can target BMPR1B to negatively regulate the trans-differentiation of VSMCs both in vitro and in vivo.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|