1
|
Wang L, Zeng H, Li H, Dai J, You S, Jiang H, Wei Q, Dong Z, Liu S, Ren J, Zhu Y, Yang X, He F, Hu L. Recombinant humanized type I collagen remodels decidual immune microenvironment at maternal-fetal interface by modulating Th17/Treg imbalance. Int J Biol Macromol 2024; 276:133994. [PMID: 39032906 DOI: 10.1016/j.ijbiomac.2024.133994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Disruption of the extracellular matrix and dysregulation of the balance between Th17 and regulatory T cells are recognized as risk factors for recurrent spontaneous abortion (RSA). However, the interaction between matrix components and the Th17/Treg axis remains poorly elucidated. The result of this study revealed that the absence of type I collagen in the decidua is linked to Th17/Treg imbalance in RSA. Furthermore, we discovered that biomaterial recombinant humanized type I collagen (rhCOLI) promoted T cell differentiation into Tregs by inhibition the Notch1/Hes1 signaling pathway and enhanced the immunosuppressive function of Tregs, as indicated by increased secretion level of IL-10 and TGF-β. Importantly, this study is the first to demonstrate that rhCOLI can modulate the Th17/Treg imbalance, reduce embryo resorption rates, reshape the immune microenvironment at the maternal-fetal interface, and improve fertility in an RSA mouse model. Collectively, these findings suggest that type I collagen deficiency may contribute to, rather than result from, RSA, and propose a potential intervention for RSA using rhCOLI.
Collapse
Affiliation(s)
- Li Wang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hui Zeng
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hu Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jingcong Dai
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shuang You
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huanhuan Jiang
- Yangzhou Maternal and Child Care Service Centre, Yangzhou 225000, Jiangsu, China
| | - Quan Wei
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhiyong Dong
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shuaibin Liu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ju Ren
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Yang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan 030032, Shanxi, China
| | - Fan He
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing 400010, China; Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing 400010, China.
| | - Lina Hu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing 400010, China; Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing 400010, China.
| |
Collapse
|
2
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
3
|
Qian M, Li S, Xi K, Tang J, Shen X, Liu Y, Guo R, Zhang N, Gu Y, Xu Y, Cui W, Chen L. ECM-engineered electrospun fibers with an immune cascade effect for inhibiting tissue fibrosis. Acta Biomater 2023; 171:308-326. [PMID: 37673231 DOI: 10.1016/j.actbio.2023.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Tissue regeneration/fibrosis after injury is intricately regulated by the immune cascade reaction and extracellular matrix (ECM). Dysregulated cascade signal could jeopardize tissue homeostasis leading to fibrosis. Bioactive scaffolds mimicking natural ECM microstructure and chemistry could regulate the cascade reaction to achieve tissue regeneration. The current study constructed an ECM-engineered micro/nanofibrous scaffold using self-assembled nanofibrous collagen and decorin (DCN)-loaded microfibers to regulate the immune cascade reaction. The ECM-engineered scaffold promoted anti-inflammatory and pro-regenerative effects, M2 polarization of macrophages, by nanofibrous collagen. The ECM-engineered scaffold could release DCN to inhibit inflammation-associated fibrous angiogenesis. Yet, to prevent excessive M2 activity leading to tissue fibrosis, controlled release of DCN was expected to elicit M1 activity and achieve M1/M2 balance in the repair process. Regulated cascade reaction guided favorable crosstalk between macrophages, endothelial cells and fibroblasts by proximity. Additionally, decorin could also antagonize TGF-β1 via TGF-β/Smad3 pathway to suppress fibrotic activity of fibroblasts. Hence, ECM-engineered scaffolds could exert effective regulation of the immune cascade reaction by microstructure and DCN release and achieve the balance between tissue fibrosis and regeneration. STATEMENT OF SIGNIFICANCE: With the incidence of up to 74.6%, failed back surgery syndrome (FBSS) has been a lingering issue in spine surgery, which poses a heavy socio-economic burden to society. Epidural fibrosis is believed to be responsible for the onset of FBSS. Current biomaterial-based strategies treating epidural fibrosis mainly rely on physical barriers and unidirectional suppression of inflammation. Regulation of the immune cascade reaction for inhibiting fibrosis has not been widely studied. Based on the simultaneous regulation of M1/M2 polarization and intercellular crosstalk, the ECM-engineered micro/nanofibrous scaffolds constructed in the current study could exert an immune cascade effect to coordinate tissue regeneration and inhibit fibrosis. This finding makes a significant contribution in the development of a treatment for epidural fibrosis and FBSS.
Collapse
Affiliation(s)
- Ming Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006 PR China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Kun Xi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006 PR China
| | - Jincheng Tang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006 PR China
| | - Xiaofeng Shen
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 889 Wuzhong West Road, Suzhou, Jiangsu 215006, PR China
| | - Yong Liu
- Department of Orthopaedic Surgery, Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu 215600, PR China
| | - Ran Guo
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Nannan Zhang
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006 PR China.
| | - Yun Xu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006 PR China.
| |
Collapse
|
4
|
Yadav TC, Bachhuka A. Tuning foreign body response with tailor-engineered nanoscale surface modifications: fundamentals to clinical applications. J Mater Chem B 2023; 11:7834-7854. [PMID: 37528807 DOI: 10.1039/d3tb01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Biomaterials are omnipresent in today's healthcare services and are employed in various applications, including implants, sensors, healthcare accessories, and drug delivery systems. Unfavorable host immunological responses frequently jeopardize the efficacy of biomaterials. As a result, surface modification has received much attention in controlling inflammatory responses since it helps camouflage the biomaterial from the host immune system, influencing the foreign body response (FBR) from protein adsorption to fibrous capsule formation. Surfaces with controlled nanotopography and chemistry, among other surface modification methodologies, have effectively altered the immune response to biomaterials. However, the field is still in its early stages, with only a few studies showing a synergistic effect of surface chemistry and nanotopography on inflammatory and wound healing pathways. Therefore, this review will concentrate on the individual and synergistic effects of surface chemistry and nanotopography on FBR modulation and the molecular processes known to modulate these responses. This review will also provide insights into crucial research gaps and advancements in various tactics for modulating FBR, opening new paths for future research. This will further aid in improving our understanding of the immune response to biomaterials, developing advanced surface modification techniques, designing immunomodulatory biomaterials, and translating discoveries into clinical applications.
Collapse
Affiliation(s)
- Tara Chand Yadav
- Department of Bioinformatics, Faculty of Engineering & Technology, Marwadi University, Gujarat, 360003, India
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| |
Collapse
|
5
|
Eroles M, Lopez-Alonso J, Ortega A, Boudier T, Gharzeddine K, Lafont F, Franz CM, Millet A, Valotteau C, Rico F. Coupled mechanical mapping and interference contrast microscopy reveal viscoelastic and adhesion hallmarks of monocyte differentiation into macrophages. NANOSCALE 2023. [PMID: 37378568 DOI: 10.1039/d3nr00757j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Monocytes activated by pro-inflammatory signals adhere to the vascular endothelium and migrate from the bloodstream to the tissue ultimately differentiating into macrophages. Cell mechanics and adhesion play a crucial role in macrophage functions during this inflammatory process. However, how monocytes change their adhesion and mechanical properties upon differentiation into macrophages is still not well understood. In this work, we used various tools to quantify the morphology, adhesion, and viscoelasticity of monocytes and differentiatted macrophages. Combination of atomic force microscopy (AFM) high resolution viscoelastic mapping with interference contrast microscopy (ICM) at the single-cell level revealed viscoelasticity and adhesion hallmarks during monocyte differentiation into macrophages. Quantitative holographic tomography imaging revealed a dramatic increase in cell volume and surface area during monocyte differentiation and the emergence of round and spread macrophage subpopulations. AFM viscoelastic mapping showed important stiffening (increase of the apparent Young's modulus, E0) and solidification (decrease of cell fluidity, β) on differentiated cells that correlated with increased adhesion area. These changes were enhanced in macrophages with a spread phenotype. Remarkably, when adhesion was perturbed, differentiated macrophages remained stiffer and more solid-like than monocytes, suggesting a permanent reorganization of the cytoskeleton. We speculate that the stiffer and more solid-like microvilli and lamellipodia might help macrophages to minimize energy dissipation during mechanosensitive activities. Thus, our results revealed viscoelastic and adhesion hallmarks of monocyte differentiation that may be important for biological function.
Collapse
Affiliation(s)
- Mar Eroles
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | - Javier Lopez-Alonso
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alexandre Ortega
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | | | - Khaldoun Gharzeddine
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, La Tronche, France
- Department of Hepatogastroenterology, Centre Hospitalier Universitaire de Grenoble Alpes, La Tronche, France
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Arnaud Millet
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, La Tronche, France
- Department of Hepatogastroenterology, Centre Hospitalier Universitaire de Grenoble Alpes, La Tronche, France
| | - Claire Valotteau
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | - Felix Rico
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
6
|
Logullo J, Diniz-Lima I, Rocha JDB, Cortê-Real S, Silva-Júnior EBD, Guimarães-de-Oliveira JC, Morrot A, Fonseca LMD, Freire-de-Lima L, Decote-Ricardo D, Freire-de-Lima CG. Increased Trypanosoma cruzi Growth during Infection of Macrophages Cultured on Collagen I Matrix. Life (Basel) 2023; 13:life13041063. [PMID: 37109592 PMCID: PMC10143308 DOI: 10.3390/life13041063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The interactions between cell and cellular matrix confers plasticity to each body tissue, influencing the cellular migratory capacity. Macrophages rely on motility to promote their physiological function. These phagocytes are determinant for the control of invasive infections, and their immunological role largely depends on their ability to migrate and adhere to tissue. Therefore, they interact with the components of the extracellular matrix through their adhesion receptors, conferring morphological modifications that change their shape during migration. Nevertheless, the need to use in vitro cell growth models with the conditioning of three-dimensional synthetic matrices to mimic the dynamics of cell-matrix interaction has been increasingly studied. This becomes more important to effectively understand the changes occurring in phagocyte morphology in the context of infection progression, such as in Chagas disease. This disease is caused by the intracellular pathogen Trypanosoma cruzi, capable of infecting macrophages, determinant cells in the anti-trypanosomatid immunity. In the present study, we sought to understand how an in vitro extracellular matrix model interferes with T. cruzi infection in macrophages. Using different time intervals and parasite ratios, we evaluated the cell morphology and parasite replication rate in the presence of 3D collagen I matrix. Nevertheless, microscopy techniques such as scanning electron microscopy were crucial to trace macrophage-matrix interactions. In the present work, we demonstrated for the first time that the macrophage-matrix interaction favors T. cruzi in vitro replication and the release of anti-inflammatory cytokines during macrophage infection, in addition to drastically altering the morphology of the macrophages and promoting the formation of migratory macrophages.
Collapse
Affiliation(s)
- Jorgete Logullo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Juliana Dutra B Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Suzana Cortê-Real
- Laboratório de Biologia Estrural, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| | - Elias Barbosa da Silva-Júnior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | | | - Alexandre Morrot
- Laboratório de Imunoparasitogia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Leonardo Marques da Fonseca
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
7
|
Vasconcelos DP, Águas AP, Barbosa JN. The inflammasome in biomaterial-driven immunomodulation. J Tissue Eng Regen Med 2022; 16:1109-1120. [PMID: 36327091 PMCID: PMC10092308 DOI: 10.1002/term.3361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Inflammasomes are intracellular structures formed upon the assembly of several proteins that have a considerable size and are very important in innate immune responses being key players in host defense. They are assembled after the perception of pathogens or danger signals. The activation of the inflammasome pathway induces the production of high levels of the pro-inflammatory cytokines Interleukin (IL)-1β and IL-18 through the caspase activation. The procedure for the implantation of a biomaterial causes tissue injury, and the injured cells will secrete danger signals recognized by the inflammasome. There is growing evidence that the inflammasome participates in a number of inflammatory processes, including pathogen clearance, chronic inflammation and tissue repair. Therefore, the control of the inflammasome activity is a promising target in the development of capable approaches to be applied in regenerative medicine. In this review, we revisit current knowledge of the inflammasome in the inflammatory response to biomaterials and point to the yet underexplored potential of the inflammasome in the context of immunomodulation.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal
| | - Artur P Águas
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,UMIB - Unit for Multidisciplinary Biomedical Research of ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Judite N Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Franca CM, Balbinot GDS, Cunha D, Saboia VDPA, Ferracane J, Bertassoni LE. In-vitro models of biocompatibility testing for restorative dental materials: From 2D cultures to organs on-a-chip. Acta Biomater 2022; 150:58-66. [PMID: 35933103 PMCID: PMC9814917 DOI: 10.1016/j.actbio.2022.07.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
Dental caries is a biofilm-mediated, diet-modulated, multifactorial and dynamic disease that affects more than 90% of adults in Western countries. The current treatment for decayed tissue is based on using materials to replace the lost enamel or dentin. More than 500 million dental restorations are placed annually worldwide, and materials used for these purposes either directly or indirectly interact with dentin and pulp tissues. The development and understanding of the effects of restorative dental materials are based on different in-vitro and in-vivo tests, which have been evolving with time. In this review, we first discuss the characteristics of the tooth and the dentin-pulp interface that are unique for materials testing. Subsequently, we discuss frequently used in-vitro tests to evaluate the biocompatibility of dental materials commonly used for restorative procedures. Finally, we present our perspective on the future directions for biological research on dental materials using tissue engineering and organs on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Dental caries is still the most prevalent infectious disease globally, requiring more than 500 million restorations to be placed every year. Regrettably, the failure rates of such restorations are still high. Those rates are partially based on the fact that current platforms to test dental materials are somewhat inaccurate in reproducing critical components of the complex oral microenvironment. Thus, there is a collective effort to develop new materials while evolving the platforms to test them. In this context, the present review critically discusses in-vitro models used to evaluate the biocompatibility of restorative dental materials and brings a perspective on future directions for tissue-engineered and organs-on-a-chip platforms for testing new dental materials.
Collapse
Affiliation(s)
- Cristiane Miranda Franca
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Gabriela de Souza Balbinot
- Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diana Cunha
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Jack Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Luiz E Bertassoni
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States; Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, United States.
| |
Collapse
|
9
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
10
|
Song Q, Zhang Y, Zhou M, Xu Y, Zhang Q, Wu L, Liu S, Zhang M, Zhang L, Wu Z, Peng W, Liu X, Zhao C. The Culture Dish Surface Influences the Phenotype and Dissociation Strategy in Distinct Mouse Macrophage Populations. Front Immunol 2022; 13:920232. [PMID: 35874686 PMCID: PMC9299442 DOI: 10.3389/fimmu.2022.920232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
The nature of the culture dish surface and the technique used to detach adherent cells could very likely influence the cell viability and cell membrane protein integrity of harvested macrophages. Several previous studies assessed the detachment efficacies of enzymatic and non-enzymatic methods for harvesting the single cell suspensions of macrophages, but a comprehensive study assessing different dissociation methods and culture conditions for detaching functionally different macrophage populations has not yet been reported. In this study, via the well-established GM-CSF and M-CSF differentiated bone marrow derived macrophage models (GM-BMDMs and M-BMDMs), we compared four commonly used enzymatic (trypsin and accutase) and non-enzymatic (PBS and EDTA) dissociation methods along with necessary mechanical detaching steps (scraping and pipetting) to evaluate the viable cell recovery and cell surface marker integrality of GM-BMDMs and M-BMDMs cultured on standard cell culture dish (TC dish), or on culture dish (noTC dish) that was not conditioned to enhance adherence. The data showed that accutase yielded a better recovery of viable cells comparing with PBS and EDTA, especially for tightly adherent GM-BMDMs on TC dishes, with a relatively higher level of detected cell membrane marker F4/80 than trypsin. An additional gradient centrifugation-based dead cell removal approach could increase the proportion of viable cells for TC cultured GM-BMDMs after accutase dissociation. Furthermore, transcriptome analysis was performed to evaluate the putative influence of culture dishes. At steady state, BMDMs cultured on noTC dishes exhibited more proinflammatory gene expression signatures (e.g. IL6, CXCL2 and ILlβ) and functions (e.g. TNF and IL17 signaling pathways). Similar inflammatory responses were observed upon LPS challenge regardless of culture conditions and differentiation factors. However, in LPS treated samples, the difference of gene expression patterns, signaling pathways and molecular functions between TC and noTC cultured BMDMs were largely dependent on the types of growth factors (M-CSF and GM-CSF). This observation might provide valuable information for in vitro macrophage studies.
Collapse
Affiliation(s)
- Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Mingming Zhou
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuting Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qianyue Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lihong Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shan Liu
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Minghui Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lei Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihua Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Weixun Peng
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xutao Liu
- Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
3D in vitro M2 macrophage model to mimic modulation of tissue repair. NPJ Regen Med 2021; 6:83. [PMID: 34848722 PMCID: PMC8633361 DOI: 10.1038/s41536-021-00193-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Distinct anti-inflammatory macrophage (M2) subtypes, namely M2a and M2c, are reported to modulate the tissue repair process tightly and chronologically by modulating fibroblast differentiation state and functions. To establish a well-defined three-dimensional (3D) cell culture model to mimic the tissue repair process, we utilized THP-1 human monocytic cells and a 3D collagen matrix as a biomimetic tissue model. THP-1 cells were differentiated into macrophages, and activated using IL-4/IL-13 (MIL-4/IL-13) and IL-10 (MIL-10). Both activated macrophages were characterized by both their cell surface marker expression and cytokine secretion profile. Our cell characterization suggested that MIL-4/IL-13 and MIL-10 demonstrate M2a- and M2c-like subtypes, respectively. To mimic the initial and resolution phases during the tissue repair, both activated macrophages were co-cultured with fibroblasts and myofibroblasts. We showed that MIL-4/IL-13 were able to promote matrix synthesis and remodeling by induction of myofibroblast differentiation via transforming growth factor beta-1 (TGF-β1). On the contrary, MIL-10 demonstrated the ability to resolve the tissue repair process by dedifferentiation of myofibroblast via IL-10 secretion. Overall, our study demonstrated the importance and the exact roles of M2a and M2c-like macrophage subtypes in coordinating tissue repair in a biomimetic model. The established model can be applied for high-throughput platforms for improving tissue healing and anti-fibrotic drugs testing, as well as other biomedical studies.
Collapse
|
12
|
Classical Dichotomy of Macrophages and Alternative Activation Models Proposed with Technological Progress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9910596. [PMID: 34722776 PMCID: PMC8553456 DOI: 10.1155/2021/9910596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/25/2021] [Indexed: 02/05/2023]
Abstract
Macrophages are important immune cells that participate in the regulation of inflammation in implant dentistry, and their activation/polarization state is considered to be the basis for their functions. The classic dichotomy activation model is commonly accepted, however, due to the discovery of macrophage heterogeneity and more functional and iconic exploration at different technologies; some studies have discovered the shortcomings of the dichotomy model and have put forward the concept of alternative activation models through the application of advanced technologies such as cytometry by time-of-flight (CyTOF), single-cell RNA-seq (scRNA-seq), and hyperspectral image (HSI). These alternative models have great potential to help macrophages divide phenotypes and functional genes.
Collapse
|
13
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
14
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
15
|
Clément F, Nougarède A, Combe S, Kermarrec F, Dey AK, Obeid P, Millet A, Navarro FP, Marche PN, Sulpice E, Gidrol X. Therapeutic siRNAs Targeting the JAK/STAT Signalling Pathway in Inflammatory Bowel Diseases. J Crohns Colitis 2021; 16:286-300. [PMID: 34286840 PMCID: PMC8864631 DOI: 10.1093/ecco-jcc/jjab129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases are highly debilitating conditions that require constant monitoring and life-long medication. Current treatments are focused on systemic administration of immunomodulatory drugs, but they have a broad range of undesirable side-effects. RNA interference is a highly specific endogenous mechanism that regulates the expression of the gene at the transcript level, which can be repurposed using exogenous short interfering RNA [siRNA] to repress expression of the target gene. While siRNA therapeutics can offer an alternative to existing therapies, with a high specificity critical for chronically administrated drugs, evidence of their potency compared to chemical kinase inhibitors used in clinics is still lacking in alleviating an adverse inflammatory response. METHODS We provide a framework to select highly specific siRNA, with a focus on two kinases strongly involved in pro-inflammatory diseases, namely JAK1 and JAK3. Using western-blot, real-time quantitative PCR and large-scale analysis, we assessed the specificity profile of these siRNA drugs and compared their efficacy to the most recent and promising kinase inhibitors for Janus kinases [Jakinibs], tofacitinib and filgotinib. RESULTS siRNA drugs can reach higher efficiency and selectivity at lower doses [5 pM vs 1 µM] than Jakinibs. Moreover, JAK silencing lasted up to 11 days, even with 6 h pulse transfection. CONCLUSIONS The siRNA-based drugs developed hold the potential to develop more potent therapeutics for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Flora Clément
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France,Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Adrien Nougarède
- Univ. Grenoble Alpes, CEA, Leti, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Stéphanie Combe
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | | | - Arindam K Dey
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Patricia Obeid
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | - Arnaud Millet
- Univ. Grenoble Alpes, Inserm U1209, CNRS UMR5309, Team Mechanobiology, immunity and Cancer, Institute for Advanced Biosciences, La Tronche, France
| | - Fabrice P Navarro
- Univ. Grenoble Alpes, CEA, Leti, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Patrice N Marche
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Eric Sulpice
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | - Xavier Gidrol
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France,Corresponding author: Xavier Gidrol, Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000, Grenoble, France. Tel: +(33)4 38 78 22 36; Fax: +(33)4 38 78 59 17;
| |
Collapse
|
16
|
Sapudom J, Alatoom A, Mohamed WKE, Garcia-Sabaté A, McBain I, Nasser RA, Teo JCM. Dendritic cell immune potency on 2D and in 3D collagen matrices. Biomater Sci 2021; 8:5106-5120. [PMID: 32812979 DOI: 10.1039/d0bm01141j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. Understanding how biophysical properties affect DC behaviors will provide insight into the biology of a DC and its applications. In this work, we studied how cell culture dimensionality (two-dimensional (2D) and three-dimensional (3D)), and matrix density of 3D collagen matrices modulate differentiation and functions of DCs. Besides, we aimed to point out the different conceptual perspectives in modern immunological research, namely tissue-centric and cell-centric perspectives. The tissue-centric perspective intends to reveal how specific microenvironments dictate DC differentiation and in turn modulate DC functionalities, while the cell-centric perspective aims to demonstrate how pre-differentiated DCs behave in specific microenvironments. DC plasticity was characterized in terms of cell surface markers and cytokine secretion profiles. Subsequently, antigen internalization and T cell activation were quantified to demonstrate the cellular functions of immature DCs (iDCs) and mature DCs (mDCs), respectively. In the tissue-centric perspective, we found that expressed surface markers and secreted cytokines of both iDCs and mDCs are generally higher in 2D culture, while they are regulated by matrix density in 3D culture. In contrast, in the cell-centric perspective, we found enhanced expression of cell surface markers as well as distinct cytokine secretion profiles in both iDCs and mDCs. By analyzing cellular functions of cells in the tissue-centric perspective, we found matrix density dependence in antigen uptake by iDCs, as well as on mDC-mediated T cell proliferation in 3D cell culture. On the other hand, in the cell-centric perspective, both iDCs and mDCs appeared to lose their functional potentials to internalization antigen and T cell stimulation. Additionally, mDCs from tissue- and cell-centric perspectives modulated T cell differentiation by their distinct cytokine secretion profiles towards Th1 and Th17, respectively. In sum, our work emphasizes the importance of dimensionality, as well as collagen fibrillar density in the regulation of the immune response of DCs. Besides this, we demonstrated that the conceptual perspective of the experimental design could be an essential key point in research in immune cell-material interactions and biomaterial-based disease models of immunity.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Walaa K E Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Ian McBain
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Rasha A Nasser
- Department of Microbiology Immunology, College of Medicine, United Arab Emirates University, United Arab Emirates
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| |
Collapse
|
17
|
A Universal Model for the Log-Normal Distribution of Elasticity in Polymeric Gels and Its Relevance to Mechanical Signature of Biological Tissues. BIOLOGY 2021; 10:biology10010064. [PMID: 33477413 PMCID: PMC7830536 DOI: 10.3390/biology10010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary Mechanical properties of biological tissues are increasingly recognized as important in biology. Atomic force microscopy (AFM) is one of the main tools used to assess elastic properties of various types of biological samples. It has been noted that elasticity values frequently follow a log-normal distribution. We propose in this communication a physical model explaining this fact, and we propose that distribution-type analysis could increase the information obtained from AFM studies on biological tissues. Abstract The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.
Collapse
|
18
|
Fernando K, Kwang LG, Lim JTC, Fong ELS. Hydrogels to engineer tumor microenvironments in vitro. Biomater Sci 2021; 9:2362-2383. [DOI: 10.1039/d0bm01943g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Illustration of engineered hydrogel to recapitulate aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- Kanishka Fernando
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Leng Gek Kwang
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Joanne Tze Chin Lim
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
- The N.1 Institute for Health
- National University of Singapore
| |
Collapse
|
19
|
Saas P, Chagué C, Maraux M, Cherrier T. Toward the Characterization of Human Pro-Resolving Macrophages? Front Immunol 2020; 11:593300. [PMID: 33281821 PMCID: PMC7691375 DOI: 10.3389/fimmu.2020.593300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Philippe Saas
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | | | | | | |
Collapse
|
20
|
Zhao S, Chen F, Wang D, Han W, Zhang Y, Yin Q. NLRP3 inflammasomes are involved in the progression of postoperative cognitive dysfunction: from mechanism to treatment. Neurosurg Rev 2020; 44:1815-1831. [PMID: 32918635 DOI: 10.1007/s10143-020-01387-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD) involves patient memory and learning decline after surgery. POCD not only presents challenges for postoperative nursing and recovery but may also cause permanent brain damage for patients, including children and the aged, with vulnerable central nervous systems. Its occurrence is mainly influenced by surgical trauma, anesthetics, and the health condition of the patient. There is a lack of imaging and experimental diagnosis; therefore, patients can only be diagnosed by clinical observation, which may underestimate the morbidity, resulting in decreased treatment efficacy. Except for symptomatic support therapy, there is a relative lack of effective drugs specific for the treatment of POCD, because the precise mechanism of POCD remains to be determined. One current hypothesis is that postoperative inflammation promotes the progression of POCD. Accumulating research has indicated that overactivation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contribute to the POCD progression, suggesting that targeting NLRP3 inflammasomes may be an effective therapy to treat POCD. In this review, we summarize recent studies and systematically describe the pathogenesis, treatment progression, and potential treatment options of targeting NLRP3 inflammasomes in POCD patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Fan Chen
- Department of Neurosurgery, University of Medicine Greifswald, Greifswald, Germany
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China.
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
21
|
Bone Regeneration Using Duck's Feet-Derived Collagen Scaffold as an Alternative Collagen Source. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32601934 DOI: 10.1007/978-981-15-3262-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Collagen is an important component that makes 25-35% of our body proteins. Over the past decades, tissue engineers have been designing collagen-based biocompatible materials and studying their applications in different fields. Collagen obtained from cattle and pigs has been mainly used until now, but collagen derived from fish and other livestock has attracted more attention since the outbreak of mad cow disease, and they are also used as a raw material for cosmetics and foods. Due to the zoonotic infection using collagen derived from pigs and cattle, their application in developing biomaterials is limited; hence, the development of new animal-derived collagen is required. In addition, there is a religion (Islam, Hinduism, and Judaism) limited to export raw materials and products derived from cattle and pig. Hence, high-value collagen that is universally accessible in the world market is required. Therefore, in this review, we have dealt with the use of duck's feet-derived collagen (DC) as an emerging alternative to solve this problem and also presenting few original investigated bone regeneration results performed using DC.
Collapse
|
22
|
Yan H, Hjorth M, Winkeljann B, Dobryden I, Lieleg O, Crouzier T. Glyco-Modification of Mucin Hydrogels to Investigate Their Immune Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19324-19336. [PMID: 32301325 PMCID: PMC7304668 DOI: 10.1021/acsami.0c03645] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 05/07/2023]
Abstract
Mucins are multifunctional glycosylated proteins that are increasingly investigated as building blocks of novel biomaterials. An attractive feature is their ability to modulate the immune response, in part by engaging with sialic acid binding receptors on immune cells. Once assembled into hydrogels, bovine submaxillary mucins (Muc gels) were shown to modulate the recruitment and activation of immune cells and avoid fibrous encapsulation in vivo. However, nothing is known about the early immune response to Muc gels. This study characterizes the response of macrophages, important orchestrators of the material-mediated immune response, over the first 7 days in contact with Muc gels. The role of mucin-bound sialic acid sugar residues was investigated by first enzymatically cleaving the sugar and then assembling the mucin variants into covalently cross-linked hydrogels with rheological and surface nanomechanical properties similar to nonmodified Muc gels. Results with THP-1 and human primary peripheral blood monocytes derived macrophages showed that Muc gels transiently activate the expression of both pro-inflammatory and anti-inflammatory cytokines and cell surface markers, for most makers with a maximum on the first day and loss of the effect after 7 days. The activation was sialic acid-dependent for a majority of the markers followed. The pattern of gene expression, protein expression, and functional measurements did not strictly correspond to M1 or M2 macrophage phenotypes. This study highlights the complex early events in macrophage activation in contact with mucin materials and the importance of sialic acid residues in such a response. The enzymatic glyco-modulation of Muc gels appears as a useful tool to help understand the biological functions of specific glycans on mucins which can further inform on their use in various biomedical applications.
Collapse
Affiliation(s)
- Hongji Yan
- Division of Glycoscience,
Department of Chemistry, School of Engineering Sciences in Chemistry,
Biotechnology and Health, KTH, Royal Institute
of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Morgan Hjorth
- Division of Glycoscience,
Department of Chemistry, School of Engineering Sciences in Chemistry,
Biotechnology and Health, KTH, Royal Institute
of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Benjamin Winkeljann
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Illia Dobryden
- Division of Surface and Corrosion Science, Department of Chemistry,
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, 10044 Stockholm, Sweden
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Thomas Crouzier
- Division of Glycoscience,
Department of Chemistry, School of Engineering Sciences in Chemistry,
Biotechnology and Health, KTH, Royal Institute
of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Yang L, Kong J, Qiu Z, Shang T, Chen S, Zhao R, Raucci MG, Yang X, Wu Z. Mineralized collagen-modified PMMA cement enhances bone integration and reduces fibrous encapsulation in the treatment of lumbar degenerative disc disease. Regen Biomater 2020; 7:181-193. [PMID: 32296537 PMCID: PMC7147368 DOI: 10.1093/rb/rbz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
As a minimally invasive surgery, percutaneous cement discoplasty (PCD) is now contemplated to treat lumbar disc degeneration disease in elder population. Here, we investigated whether the osteogenic mineralized collagen (MC) modified polymethylmethacrylate (PMMA) cement could be a suitable material in PCD surgery. Injectability, hydrophilicity and mechanical properties of the MC-modified PMMA (PMMA-MC) was characterized. The introduction of MC did not change the application and setting time of PMMA and was easy to be handled in minimally invasive operation. Hydrophilicity of PMMA-MC was greatly improved and its elastic modulus was tailored to complement mechanical performance of bone under dynamic stress. Then, PCD surgery in a goat model with induced disc degeneration was performed with implantation of PMMA-MC or PMMA. Three months after implantation, micro-computed tomography analysis revealed a 36.4% higher circumferential contact index between PMMA-MC and bone, as compared to PMMA alone. Histological staining confirmed that the surface of PMMA-MC was in direct contact with new bone, while the PMMA was covered by fibrous tissue. The observed gathering of macrophages around the implant was suspected to be the cause of fibrous encapsulation. Therefore, the interactions of PMMA and PMMA-MC with macrophages were investigated in vitro. We discovered that the addition of MC could hinder the proliferation and fusion of the macrophages. Moreover, expressions of fibroblast-stimulating growth factors, insulin-like growth factor, basic fibroblast growth factor and tumor necrosis factor-β were significantly down-regulated in the macrophages cocultured with PMMA-MC. Together, the promoted osteointegration and reduced fibrous tissue formation observed with PMMA-MC material makes it a promising candidate for PCD surgery.
Collapse
Affiliation(s)
- Long Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jianjun Kong
- Department of Orthopaedics, Orthopaedic Hospital of Xingtai, Xingtai 054000, China
- Department of Orthopedic Laboratory, Xingtai Institute of Orthopaedics, Xingtai 054000, China
| | - Zhiye Qiu
- Beijing Allgens Medical Science and Technology Co., Ltd, Beijing 102609, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Tieliang Shang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Rui Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples 80125, Italy
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhanyong Wu
- Department of Orthopaedics, Orthopaedic Hospital of Xingtai, Xingtai 054000, China
- Department of Orthopedic Laboratory, Xingtai Institute of Orthopaedics, Xingtai 054000, China
| |
Collapse
|