1
|
Geng J, Zheng K, Wang P, Su B, Wei Q, Liu X. Focal Adhesion Regulation as a Strategy against Kidney Fibrosis. ACS Chem Biol 2025. [PMID: 39818722 DOI: 10.1021/acschembio.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Chronic kidney fibrosis poses a significant global health challenge with effective therapeutic strategies remaining elusive. While cell-extracellular matrix (ECM) interactions are known to drive fibrosis progression, the specific role of focal adhesions (FAs) in kidney fibrosis is not fully understood. In this study, we investigated the role of FAs in kidney tubular epithelial cell fibrosis by employing precise nanogold patterning to modulate integrin distribution. We demonstrate that increasing ligand spacing disrupts integrin clustering, thereby inhibiting FA formation and attenuating fibrosis. Importantly, enhanced FA activity is associated with kidney fibrosis in both human disease specimens and murine models. Mechanistically, FAs regulate fibrosis through mechanotransduction pathways, and our in vivo experiments show that suppressing mechanotransduction significantly mitigates kidney fibrosis in mice. These findings highlight the potential of targeting FAs as a therapeutic strategy, offering new insights into clinical intervention in kidney fibrosis.
Collapse
Affiliation(s)
- Jiwen Geng
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Kaikai Zheng
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Peng Wang
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Baihai Su
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University, Chengdu 610065, China
| | - Xiaojing Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
2
|
Du J, Chen T, Yu J, Cheng Y. Construction of Nanohydroxyapatite/Poly(sodium lipoate)-Based Bioactive Hydrogels for Cranial Bone Regeneration. Biomacromolecules 2025; 26:705-714. [PMID: 39731559 DOI: 10.1021/acs.biomac.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEGx, x = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEGx hydrogels (LPx, x = 6k or 10k). Furthermore, nanohydroxyapatite (nHA)-LA-PEGx (HLPx, x = 6k) hydrogels were constructed through incorporating nHA. The hydrogels exhibited moderate mechanical strength, facile injectability, self-healability, adhesion, biodegradability, biocompatibility, and promising antioxidation efficiency. We verify the advantage of the HLP6k-3 hydrogel in a rat cranial defect model. Through the regulation of reactive oxygen species (ROS), osteoconduction, and biomineralization capabilities, our system can promote new bone formation. Overall, bioactive hydrogels with multiple functions hold significant promise for repairing bone defects.
Collapse
Affiliation(s)
- Jiaqiang Du
- College of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Tingting Chen
- College of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Jing Yu
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Li B, Gao Y, Luo X, Hu C, Deng M, Chen J, Gao M. Cellulose-mediated mechanical property tuning in small intestinal submucosal matrix to enhance stem cell osteogenic differentiation. Int J Biol Macromol 2025; 295:139575. [PMID: 39788242 DOI: 10.1016/j.ijbiomac.2025.139575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Natural extracellular matrices (ECM) provide a more accurate simulation of the cellular growth environment, making them excellent substrate materials for in vitro cell culture. The porcine small intestinal submucosa (SIS) is one of the most widely used natural ECM that display superior bioactivity. However, decellularization operations often result in fiber breakage and failure to recover mechanical strength in the SIS. In the current study, 2,3-dialdehyde cellulose (DAC) was synthesized and cross-linked with SIS gel to form hydrogels. The introduction of DAC into the SIS matrix resulted in a tunable increase in stiffness, which was instrumental in promoting stem cell adhesion and spreading, crucial factors for osteogenic differentiation. The cytotoxicity assessment confirmed the biocompatibility of the SIS-DAC hydrogels indicating their suitability for prolonged cell culture. Moreover, the degradation rate of the hydrogel could be effectively controlled by adjusting the DAC content, addressing the rapid degradation issue associated with SIS gels. This work confirmed the feasibility of using cellulose derivatives to modulate the mechanical properties of matrix gels and influence cell differentiation which offers a valuable experimental foundation for the development of advanced matrix gels tailored for cell culture and regenerative medicine applications.
Collapse
Affiliation(s)
- Boqi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yufeng Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaohu Luo
- GWDC Kunshan Company, Kunshan 215337, China; Jingkun Chemistry Company, Kunshan 215337, China
| | - Chuanzhi Hu
- GWDC Kunshan Company, Kunshan 215337, China; Jingkun Chemistry Company, Kunshan 215337, China
| | - Mingyu Deng
- GWDC Kunshan Company, Kunshan 215337, China; Jingkun Chemistry Company, Kunshan 215337, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; GWDC Kunshan Company, Kunshan 215337, China; Jingkun Chemistry Company, Kunshan 215337, China.
| |
Collapse
|
4
|
Kim C, Kang N, Min S, Thangam R, Lee S, Hong H, Kim K, Kim SY, Kim D, Rha H, Tag KR, Lee HJ, Singh N, Jeong D, Hwang J, Kim Y, Park S, Lee H, Kim T, Son SW, Park S, Karamikamkar S, Zhu Y, Hassani Najafabadi A, Chu Z, Sun W, Zhao P, Zhang K, Bian L, Song HC, Park SG, Kim JS, Lee SY, Ahn JP, Kim HK, Zhang YS, Kang H. Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation. Nat Commun 2024; 15:10665. [PMID: 39715783 DOI: 10.1038/s41467-024-54557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability. Here we report modularity-based mathematical modeling of extracellular matrix-emulating ligand inter-cluster connectivity using the graph theory. Increasing anisotropy of magnetic nano-blockers proportionately disconnects arginine-glycine-aspartic acid ligand-to-ligand interconnections and decreases the number of ligand inter-cluster edges. This phenomenon deactivates stem cells, which can be partly activated by linearizing the nano-blockers. Remote cyclic elevation of high-anisotropy nano-blockers flexibly generates nano-gaps under the nano-blockers and augments the number of ligand inter-cluster edges. Subsequently, integrin-presenting stem cell infiltration is stimulated, which reversibly intensifies focal adhesion and mechanotransduction-driven differentiation both in vitro and in vivo. Designing and systemically modeling extracellular matrix-mimetic geometries opens avenues for unraveling dynamic cell-material interactions for tissue regeneration.
Collapse
Affiliation(s)
- Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Seong Yeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunji Rha
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Nem Singh
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Daun Jeong
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jangsun Hwang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sangwoo Park
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taeeon Kim
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Sang-Yup Lee
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA.
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea.
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea.
- College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Valeo M, Marie S, Rémy M, Menguy T, Le Coz C, Molinari M, Feuillie C, Granier F, Durrieu MC. Bioactive hydrogels based on lysine dendrigrafts as crosslinkers: tailoring elastic properties to influence hMSC osteogenic differentiation. J Mater Chem B 2024; 12:12508-12522. [PMID: 39576239 DOI: 10.1039/d4tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Dendrigrafts are multivalent macromolecules with less ordered topology and higher branching than dendrimers. Exhibiting a high density of terminal amines, poly-L-lysine dendrigrafts of the fifth generation (DGL G5) allow hydrogel formation with tailorable crosslinking density and surface modification. This work presents DGL G5 as multifunctional crosslinkers in biomimetic PEG hydrogels to favour the osteogenic differentiation of human mesenchymal stem cells (hMSCs). DGL G5 reaction with dicarboxylic-acid PEG chains yielded amide networks of variable stiffness, measured at the macro and surface nanoscale. Oscillatory rheometry and compression afforded consistent values of Young's modulus, increasing from 8 to more than 30 kPa and correlating with DGL G5 concentration. At the surface level, AFM measurements showed the same tendency but higher E values, from approximately 15 to more than 100 kPa, respectively. To promote cell adhesion and differentiation, the hydrogels were functionalised with a GRGDSPC peptide and a biomimetic of the bone morphogenetic protein 2 (BMP-2), ensuring the same grafting concentrations (between 2.15 ± 0.54 and 2.28 ± 0.23 pmols mm-2) but different hydrogel stiffness. 6 h after seeding on functionalised hydrogels in serum-less media, hMSC showed nascent adhesions on the stiffer gels and greater spreading than on glass controls with serum. After two weeks in osteogenic media, hMSC seeded on the stiffer gels showed greater spreading, more polygonal morphologies and increased levels of osteopontin, an osteoblast marker, compared to controls, which peaked on 22 kPa-gels. Together, these results demonstrate that DGL G5-PEG hydrogel bioactivity can influence the adhesion, spreading and early commitment of hMSCs.
Collapse
Affiliation(s)
- Michele Valeo
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Murielle Rémy
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Cédric Le Coz
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, ENSMAC, F-33600 Pessac, France
| | - Michael Molinari
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Cécile Feuillie
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | | |
Collapse
|
6
|
Pan X, Nie J, Lei J, Wang P, Zheng K, Wei Q, Liu X. Integrin Subtypes and Lamellipodia Mediate Spatial Sensing of RGD Ligands during Cell Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24882-24891. [PMID: 39546750 DOI: 10.1021/acs.langmuir.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Understanding how the spatial distribution of adhesive ligands regulates cell behavior is crucial for designing biomaterials. This study investigates how precisely controlled ligand spacing affects cell spreading and integrin subtype engagement. Using engineered polyacrylamide hydrogels with gold nanoparticle arrays, we explored the impact of RGD ligand spacings (30 and 150 nm) on human mesenchymal stromal cells. Cells exhibited distinct morphological behaviors: smaller spacings promoted larger spreading areas, while larger spacings resulted in elongated shapes with reduced spreading. Mechanistically, we found that the α5β1 integrin, not the αvβ3 integrin, played a central role in mediating these responses, alongside lamellipodia formation. Our findings provide critical insights into the spatial sensing of ligands, highlighting the influence of ligand spacing on cellular mechanotransduction and integrin-specific responses. This work advances the understanding of cell-material interactions and offers potential strategies for designing biomaterials to guide cell behavior in tissue engineering.
Collapse
Affiliation(s)
- Xiaokai Pan
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Juan Nie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiacheng Lei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Kaikai Zheng
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaojing Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
7
|
Wang Q, Zhou F, Qiu T, Liu Y, Luo W, Wang Z, Li H, Xiao E, Wei Q, Wu Y. Scalable fabrication of porous membrane incorporating human extracellular matrix-like collagen for guided bone regeneration. J Mater Chem B 2024; 12:11142-11155. [PMID: 39373469 DOI: 10.1039/d4tb00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Guided bone regeneration (GBR) is an extensively used technique for the treatment of maxillofacial bone defects and bone mass deficiency in clinical practice. However, to date, studies on membranes for GBR have not achieved the combination of suitable properties and cost-effective membrane production. Herein, we developed a polycaprolactone/human extracellular matrix-like collagen (PCL/hCol) membrane with an asymmetric porous structure via the nonsolvent-induced phase separation (NIPS) method, which is a highly efficient procedure with simple operation, scalable fabrication and low cost. This membrane possessed a porous rough surface, which is conducive to cell attachment and proliferation for guiding osteogenesis, together with a relatively smooth surface with micropores, which allows the passage of nutrients and is unfavorable for the adhesion of cells, thus preventing fibroblast invasion and overall meeting the demands for GBR. Besides, we evaluated the characteristics and biological properties of the membrane and compared them with those of commercially available membranes. Results showed that the PCL/hCol membrane exhibited excellent mechanical properties, degradation characteristics, barrier function, biocompatibility and osteoinductive potential. Furthermore, our in vivo study demonstrated the promotive effect of the PCL/hCol membrane on bone formation in rat calvarial defects. Taken together, our NIPS-prepared PCL/hCol membrane with promising properties and production advantages offers a new perspective for its development and potential use in GBR application.
Collapse
Affiliation(s)
- Qingyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tiecheng Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, China.
| | - Yiling Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, China.
| | - Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - E Xiao
- Hunan Maybio Bio-Pharmaceutical Co., Ltd, Changsha 410000, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, China.
- Hunan Maybio Bio-Pharmaceutical Co., Ltd, Changsha 410000, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Chen Q, Li S, Li K, Zhao W, Zhao C. A Skin Stress Shielding Platform Based on Body Temperature-Induced Shrinking of Hydrogel for Promoting Scar-Less Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306018. [PMID: 39283032 PMCID: PMC11538717 DOI: 10.1002/advs.202306018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Stress concentration surrounding wounds drives fibroblasts into a state of high mechanical tension, leading to the delay of wound healing, exacerbating pathological fibrosis, and even causing tissue dysfunction. Here, an innovative skin stress-shielding hydrogel wound dressing is reported that makes the wound sites shrink as a response to body temperature and then remolds the stress micro-environment of wound sites to reduce the formation of skin scars. Composed of a modified natural temperature-sensitive polymer cross-linked with polyacrylic acid networks, this hydrogel wound dressing has demonstrated a substantial decrease in scar area for full-thickness wounds in rat models. The physical forces exerted by the wound dressing are instrumental in attenuating the activation and transduction of fibroblasts within the wound sites, thereby mitigating the excessive deposition of the extracellular matrix (ECM). Notably, the wound dressing significantly down-regulates the expression of transforming growth factor-β1(TGF-β1) and collagen I, while concurrently exerting a dramatic inhibitory effect on the integrin-focal adhesion kinase (FAK)/phosphorylated-FAK (p-FAK) signaling pathway. Collectively, the fabrication of functional hydrogels with a stress-shielding profile is a new route for achieving scar-less wound healing, thus offering immense potential for improving clinical outcomes and restoring tissue integrity.
Collapse
Affiliation(s)
- Qin Chen
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- West China HospitalSichuan University/West China School of NursingSichuan UniversityChengdu610041China
| | - Siyu Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Ka Li
- West China HospitalSichuan University/West China School of NursingSichuan UniversityChengdu610041China
| | - Weifeng Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Med‐X Center for MaterialsSichuan UniversityChengdu610065China
| | - Changsheng Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Med‐X Center for MaterialsSichuan UniversityChengdu610065China
| |
Collapse
|
9
|
Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404235. [PMID: 38896849 PMCID: PMC11486603 DOI: 10.1002/adma.202404235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Synthetic extracellular matrix (ECM) mimics that can recapitulate the complex biochemical and mechanical nature of native tissues are needed for advanced models of development and disease. Biomedical research has heavily relied on the use of animal-derived biomaterials, which is now impeding their translational potential and convoluting the biological insights gleaned from in vitro tissue models. Natural hydrogels have long served as a convenient and effective cell culture tool, but advances in materials chemistry and fabrication techniques now present promising new avenues for creating xenogenic-free ECM substitutes appropriate for organotypic models and microphysiological systems. However, significant challenges remain in creating synthetic matrices that can approximate the structural sophistication, biochemical complexity, and dynamic functionality of native tissues. This review summarizes key properties of the native ECM, and discusses recent approaches used to systematically decouple and tune these properties in synthetic matrices. The importance of dynamic ECM mechanics, such as viscoelasticity and matrix plasticity, is also discussed, particularly within the context of organoid and engineered tissue matrices. Emerging design strategies to mimic these dynamic mechanical properties are reviewed, such as multi-network hydrogels, supramolecular chemistry, and hydrogels assembled from biological monomers.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Ashley K Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Lin Q, Yang Z, Xu H, Niu Y, Meng Q, Xing D. Advances in Shear Stress Stimulation of Stem Cells: A Review of the Last Three Decades. Biomedicines 2024; 12:1963. [PMID: 39335477 PMCID: PMC11429308 DOI: 10.3390/biomedicines12091963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are widely used in scientific research because of their ability to self-renew and differentiate into a variety of specialized cell types needed for body functions. However, the self-renewal and differentiation of stem cells are regulated by various stimuli, with mechanical stimulation being particularly notable due to its ability to mimic the physical environment in the body. This study systematically collected 2638 research papers published between 1994 and 2024, employing tools such as VOSviewer, CiteSpace, and GraphPad Prism to uncover research hotspots, publication trends, and collaboration networks. The results indicate a yearly increase in global research on the shear stress stimulation of stem cells, with significant contributions from the United States and China in terms of research investment and output. Future research directions include a deeper understanding of the mechanisms underlying mechanical stimulation's effects on stem cell differentiation, the development of new materials and scaffold designs to better replicate the natural cellular environment, and advancements in regenerative medicine. Despite considerable progress, challenges remain in translating basic research findings into clinical applications.
Collapse
Affiliation(s)
- Qiyuan Lin
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Hao Xu
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qingchen Meng
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| |
Collapse
|
11
|
Xue R, Chen Y, Gong Z, Jiang H. Superposition of Substrate Deformation Fields Induced by Molecular Clutches Explains Cell Spatial Sensing of Ligands. ACS NANO 2024. [PMID: 39088555 DOI: 10.1021/acsnano.4c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Cells can sense the physical properties of the extracellular matrices (ECMs), such as stiffness and ligand density, through cell adhesions to actively regulate their behaviors. Recent studies have shown that varying ligand spacing of ECMs can influence adhesion size, cell spreading, and even stem cell differentiation, indicating that cells have the spatial sensing ability of ECM ligands. However, the mechanism of the cells' spatial sensing remains unclear. In this study, we have developed a lattice-spring motor-clutch model by integrating cell membrane deformation, the talin unfolding mechanism, and the lattice spring for substrate ligand distribution to explore how the spatial distribution of integrin ligands and substrate stiffness influence cell spreading and adhesion dynamics. By applying the Gillespie algorithm, we found that large ligand spacing reduces the superposition effect of the substrate's displacement fields generated by pulling force from motor-clutch units, increasing the effective stiffness probed by the force-sensitive receptors; this finding explains a series of previous experiments. Furthermore, using the mean-field theory, we obtain the effective stiffness sensed by bound clutches analytically; our analysis shows that the bound clutch number and ligand spacing are the two key factors that affect the superposition effects of deformation fields and, hence, the effective stiffness. Overall, our study reveals the mechanism of cells' spatial sensing, i.e., ligand spacing changes the effective stiffness sensed by cells due to the superposition effect of deformation fields, which provides a physical clue for designing and developing biological materials that effectively control cell behavior and function.
Collapse
Affiliation(s)
- Ruihao Xue
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yonggang Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ze Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuan West Road, Beijing 100190, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
12
|
Qi H, Wang B, Wang M, Xie H, Chen C. A pH/ROS-responsive antioxidative and antimicrobial GelMA hydrogel for on-demand drug delivery and enhanced osteogenic differentiation in vitro. Int J Pharm 2024; 657:124134. [PMID: 38643810 DOI: 10.1016/j.ijpharm.2024.124134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Long-term inflammation, including those induced by bacterial infections, contributes to the superfluous accumulation of reactive oxygen species (ROS), further aggravating this condition, decreasing the local pH, and adversely affecting bone defect healing. Conventional drug delivery scaffold materials struggle to meet the demands of this complex and dynamic microenvironment. In this work, a smart gelatin methacryloyl (GelMA) hydrogel was synthesized for the dual delivery of proanthocyanidin and amikacin based on the unique pH and ROS responsiveness of boronate complexes. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the co-crosslinking of two boronate complexes with GelMA. The addition of the boronate complexes improved the mechanical properties, swelling ratio, degradation kinetics and antioxidative properties of the hydrogel. The hydrogel exhibited pH and ROS responses and a synergistic control over the drug release. Proanthocyanidin was responsively released to protect mouse osteoblast precursor cells from oxidative stress and promote their osteogenic differentiation. The hydrogel responded to pH changes and released sufficient amikacin in a timely manner, thereby exerting an efficient antimicrobial effect. Overall, the hydrogel delivery system exhibited a promising strategy for solving infectious and inflammatory problems in bone defects and promoting early-stage bone healing.
Collapse
Affiliation(s)
- Haowen Qi
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Bingqing Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Mingjuan Wang
- Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Haifeng Xie
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
13
|
Na J, Yang Z, Shi Q, Li C, Liu Y, Song Y, Li X, Zheng L, Fan Y. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact Mater 2024; 35:549-563. [PMID: 38434800 PMCID: PMC10909577 DOI: 10.1016/j.bioactmat.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024] Open
Abstract
The biophysical factors of biomaterials such as their stiffness regulate stem cell differentiation. Energy metabolism has been revealed an essential role in stem cell lineage commitment. However, whether and how extracellular matrix (ECM) stiffness regulates energy metabolism to determine stem cell differentiation is less known. Here, the study reveals that stiff ECM promotes glycolysis, oxidative phosphorylation, and enhances antioxidant defense system during osteogenic differentiation in MSCs. Stiff ECM increases mitochondrial fusion by enhancing mitofusin 1 and 2 expression and inhibiting the dynamin-related protein 1 activity, which contributes to osteogenesis. Yes-associated protein (YAP) impacts glycolysis, glutamine metabolism, mitochondrial dynamics, and mitochondrial biosynthesis to regulate stiffness-mediated osteogenic differentiation. Furthermore, glycolysis in turn regulates YAP activity through the cytoskeletal tension-mediated deformation of nuclei. Overall, our findings suggest that YAP is an important mechanotransducer to integrate ECM mechanical cues and energy metabolic signaling to affect the fate of MSCs. This offers valuable guidance to improve the scaffold design for bone tissue engineering constructs.
Collapse
Affiliation(s)
- Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chiyu Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yaxin Song
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinyang Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
14
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Wu M, Liu H, Li D, Zhu Y, Wu P, Chen Z, Chen F, Chen Y, Deng Z, Cai L. Smart-Responsive Multifunctional Therapeutic System for Improved Regenerative Microenvironment and Accelerated Bone Regeneration via Mild Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304641. [PMID: 37933988 PMCID: PMC10787108 DOI: 10.1002/advs.202304641] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 11/08/2023]
Abstract
The treatment of bone defects remains a substantial clinical challenge due to the lack of spatiotemporal management of the immune microenvironment, revascularization, and osteogenic differentiation. Herein, deferoxamine (DFO)-loaded black phosphorus nanosheets decorated by polydopamine layer are prepared (BPPD) and compounded into gelatin methacrylate/sodium alginate methacrylate (GA) hybrid hydrogel as a smart-responsive therapeutic system (GA/BPPD) for accelerated bone regeneration. The BPPD nanocomposites served as bioactive components and near-infrared (NIR) photothermal agents, which conferred the hydrogel with excellent NIR/pH dual-responsive properties, realizing the stimuli-responsive release of DFO and PO4 3 - during bone regeneration. Under the action of NIR-triggered mild photothermal therapy, the GA/BPPD hydrogel exhibited a positive effect on promoting osteogenesis and angiogenesis, eliminating excessive reactive oxygen species, and inducing macrophage polarization to the M2 phenotype. More significantly, through macrophage M2 polarization-induced osteoimmune microenvironment, this hydrogel platform could also drive functional cytokine secretion for enhanced angiogenesis and osteogenesis. In vivo experiments further demonstrated that the GA/BPPD system could facilitate bone healing by attenuating the local inflammatory response, increasing the secretion of pro-healing factors, stimulating endogenous cell recruitment, and accelerating revascularization. Collectively, the proposed intelligent photothermal hydrogel platform provides a promising strategy to reshape the damaged tissue microenvironment for augmented bone regeneration.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal TumorZhongnan Hospital of Wuhan University168 Donghu Street, Wuchang DistrictWuhanHubei430071P. R. China
| | - Huifan Liu
- Department of AnesthesiologyResearch Centre of Anesthesiology and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiP. R. China
| | - Dan Li
- Department of Neonatology, Xianning Central hospitalSchool of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and TechnologyXianningHubei437100P. R. China
| | - Yufan Zhu
- Department of Spine Surgery and Musculoskeletal TumorZhongnan Hospital of Wuhan University168 Donghu Street, Wuchang DistrictWuhanHubei430071P. R. China
| | - Ping Wu
- Research Units of Clinical Translation of Cell Growth Factors and Diseases ResearchChinese Academy of Medical ScienceZhejiang325000P. R. China
| | - Zhe Chen
- Department of Spine Surgery and Musculoskeletal TumorZhongnan Hospital of Wuhan University168 Donghu Street, Wuchang DistrictWuhanHubei430071P. R. China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medicine Sciences)Wuhan UniversityWuhan430071P. R. China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medicine Sciences)Wuhan UniversityWuhan430071P. R. China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal TumorZhongnan Hospital of Wuhan University168 Donghu Street, Wuchang DistrictWuhanHubei430071P. R. China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal TumorZhongnan Hospital of Wuhan University168 Donghu Street, Wuchang DistrictWuhanHubei430071P. R. China
| |
Collapse
|
16
|
Gong T, Zhang Z, Liu X, Wang Y, Zhou J, Wang S, Liu X, Jin H, Zhao Z. Microstructurally and mechanically tunable acellular hydrogel scaffold using carboxymethyl cellulose for potential osteochondral tissue engineering. Int J Biol Macromol 2023; 253:126658. [PMID: 37660865 DOI: 10.1016/j.ijbiomac.2023.126658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
In tissue engineering, scaffold microstructures and mechanical cues play a significant role in regulating stem cell differentiation, proliferation, and infiltration, offering a promising strategy for osteochondral tissue repair. In this present study, we aimed to develop a facile method to fabricate an acellular hydrogel scaffold (AHS) with tunable mechanical stiffness and microstructures using carboxymethyl cellulose (CMC). The impacts of the degree of crosslinking, crosslinker length, and matrix density on the AHS were investigated using different characterization methods, and the in vitro biocompatible of AHS was also examined. Our CMC-based AHS showed tunable mechanical stiffness ranging from 50 kPa to 300 kPa and adjustable microporous size between 50 μm and 200 μm. In addition, the AHS was also proven biocompatible and did not negatively affect rabbit bone marrow stem cells' dual-linage differentiation into osteoblasts and chondrocytes. In conclusion, our approach may present a promising method in osteochondral tissue engineering.
Collapse
Affiliation(s)
- Tianxing Gong
- School of Electrical Engineering, Shenyang University of Technology, 111 Shenliao West Road, Shenyang 110870, China.
| | - Zhili Zhang
- School of Electrical Engineering, Shenyang University of Technology, 111 Shenliao West Road, Shenyang 110870, China
| | - Xinyu Liu
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Chuangxin Road, Shenyang 110169, China
| | - Yufan Wang
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Chuangxin Road, Shenyang 110169, China
| | - Jingqiu Zhou
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Chuangxin Road, Shenyang 110169, China
| | - Shun Wang
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Chuangxin Road, Shenyang 110169, China
| | - Xinwei Liu
- Department of Orthopedics, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, China.
| | - Hongxu Jin
- Department of Emergency Medicine, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, China
| | - Zhiying Zhao
- Department of Operations and Performance Management, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
17
|
Chen G, Gao X, Chen J, Peng L, Chen S, Tang C, Dai Y, Wei Q, Luo D. Actomyosin Activity and Piezo1 Activity Synergistically Drive Urinary System Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303369. [PMID: 37867255 PMCID: PMC10667826 DOI: 10.1002/advs.202303369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Mechanical cues play a crucial role in activating myofibroblasts from quiescent fibroblasts during fibrosis, and the stiffness of the extracellular matrix is of significant importance in this process. While intracellular force mediated by myosin II and calcium influx regulated by Piezo1 are the primary mechanisms by which cells sense and respond to mechanical forces, their intercellular mechanical interaction remains to be elucidated. Here, hydrogels with tunable substrate are used to systematically investigate the crosstalk of myosin II and Piezo1 in fibroblast to myofibroblast transition (FMT). The findings reveal that the two distinct signaling pathways are integrated to convert mechanical stiffness signals into biochemical signals during bladder-specific FMT. Moreover, it is demonstrated that the crosstalk between myosin II and Piezo1 sensing mechanisms synergistically establishes a sustained feed-forward loop that contributes to chromatin remodeling, induces the expression of downstream target genes, and ultimately exacerbates FMT, in which the intracellular force activates Piezo1 by PI3K/PIP3 pathway-mediated membrane tension and the Piezo1-regulated calcium influx enhances intracellular force by the classical FAK/RhoA/ROCK pathway. Finally, the multifunctional Piezo1 in the complex feedback circuit of FMT drives to further identify that targeting Piezo1 as a therapeutic option for ameliorating bladder fibrosis and dysfunction.
Collapse
Affiliation(s)
- Guo Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xiaoshuai Gao
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Jiawei Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Liao Peng
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Shuang Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Cai Tang
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yi Dai
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Deyi Luo
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
18
|
Wu P, Yanagi K, Yokota K, Hakamada M, Mabuchi M. Unusual effects of a nanoporous gold substrate on cell adhesion and differentiation because of independent multi-branch signaling of focal adhesions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:54. [PMID: 37884819 PMCID: PMC10602965 DOI: 10.1007/s10856-023-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
A variety of cell behaviors, such as cell adhesion, motility, and fate, can be controlled by substrate characteristics such as surface topology and chemistry. In particular, the surface topology of substrates strongly affects cell behaviors, and the topological spacing is a critical factor in inducing cell responses. Various works have demonstrated that cell adhesion was enhanced with decreasing topological spacing although differentiation progressed slowly. However, there are exceptions, and thus, correlations between topological spacing and cell responses are still debated. We show that a nanoporous gold substrate affected cell adhesion while it neither affected osteogenic nor adipogenic differentiation. In addition, the cell adhesion was reduced with decreasing pore size. These do not agree with previous findings. A focal adhesion (FA) is an aggregate of modules comprising specific proteins such as FA kinase, talin, and vinculin. Therefore, it is suggested that because various extracellular signals can be independently branched off from the FA modules, the unusual effects of nanoporous gold substrates are related to the multi-branching of FAs.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan.
| | - Kazuya Yanagi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Kazuki Yokota
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Guo H, Peng X, Dong X, Li J, Cheng C, Wei Q. Promoting Stem Cell Mechanosensing and Osteogenesis by Hybrid Soft Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47880-47892. [PMID: 37788009 DOI: 10.1021/acsami.3c07999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Bone regenerative biomaterials are essential in treating bone defects as they serve as extracellular matrix (ECM) mimics, creating a favorable environment for cell attachment, proliferation, and differentiation. However, the currently used bone regenerative biomaterials mostly exhibit high stiffness, which may lead to difficulties in degradation and thus increase the risk of foreign body ingestion. In this study, we prepared soft fibrous scaffolds modified with Zn-MOF-74 nanoparticles via electrostatic spinning. The soft fibers (only 1 kPa) permit remodeling under cellular adhesive force, optimizing the mechanical cues in the microenvironment to support cell adhesion and mechanosensing. In addition, the incorporation of Zn-MOF-74 nanoparticles enables the stable and sustained release of zinc ions, promoting stem cell mechanotransduction and osteogenic differentiation. Therefore, the hybrid soft fibers facilitate the regeneration of new bone in the rat femoral defect model, which provides a promising approach for regenerative medicine.
Collapse
Affiliation(s)
- Hui Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Xiangyu Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangge Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Son YJ, Keum C, Kim M, Jeong G, Jin S, Hwang HW, Kim H, Lee K, Jeon H, Kim H, Pahk KJ, Jang HW, Sun JY, Han HS, Lee KH, Ok MR, Kim YC, Jeong Y. Selective Cell-Cell Adhesion Regulation via Cyclic Mechanical Deformation Induced by Ultrafast Nanovibrations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37751467 DOI: 10.1021/acsami.3c08941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.
Collapse
Affiliation(s)
- Young Ju Son
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minsoo Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Goeen Jeong
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Hae Won Hwang
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyungwoo Lee
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
21
|
Umer A, Ghouri MD, Muyizere T, Aqib RM, Muhaymin A, Cai R, Chen C. Engineered Nano-Bio Interfaces for Stem Cell Therapy. PRECISION CHEMISTRY 2023; 1:341-356. [PMID: 37654807 PMCID: PMC10466455 DOI: 10.1021/prechem.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Engineered nanomaterials (ENMs) with different topographies provide effective nano-bio interfaces for controlling the differentiation of stem cells. The interaction of stem cells with nanoscale topographies and chemical cues in their microenvironment at the nano-bio interface can guide their fate. The use of nanotopographical cues, in particular nanorods, nanopillars, nanogrooves, nanofibers, and nanopits, as well as biochemical forces mediated factors, including growth factors, cytokines, and extracellular matrix proteins, can significantly impact stem cell differentiation. These factors were seen as very effective in determining the proliferation and spreading of stem cells. The specific outgrowth of stem cells can be decided with size variation of topographic nanomaterial along with variation in matrix stiffness and surface structure like a special arrangement. The precision chemistry enabled controlled design, synthesis, and chemical composition of ENMs can regulate stem cell behaviors. The parameters of size such as aspect ratio, diameter, and pore size of nanotopographic structures are the main factors for specific termination of stem cells. Protein corona nanoparticles (NPs) have shown a powerful facet in stem cell therapy, where combining specific proteins could facilitate a certain stem cell differentiation and cellular proliferation. Nano-bio reactions implicate the interaction between biological entities and nanoparticles, which can be used to tailor the stem cells' culmination. The ion release can also be a parameter to enhance cellular proliferation and to commit the early differentiation of stem cells. Further research is needed to fully understand the mechanisms underlying the interactions between engineered nano-bio interfaces and stem cells and to develop optimized regenerative medicine and tissue engineering designs.
Collapse
Affiliation(s)
- Arsalan Umer
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Muhammad Daniyal Ghouri
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Theoneste Muyizere
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Raja Muhammad Aqib
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Abdul Muhaymin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Rong Cai
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
- GBA
National Institute for Nanotechnology Innovation, Guangdong 5110700, China
| |
Collapse
|
22
|
Young KM, Reinhart-King CA. Cellular mechanosignaling for sensing and transducing matrix rigidity. Curr Opin Cell Biol 2023; 83:102208. [PMID: 37473514 PMCID: PMC10527818 DOI: 10.1016/j.ceb.2023.102208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The mechanisms by which cells sense their mechanical environment and transduce the signal through focal adhesions and signaling pathways to the nucleus is an area of key focus for the field of mechanobiology. In the past two years, there has been expansion of our knowledge of commonly studied pathways, such as YAP/TAZ, FAK/Src, RhoA/ROCK, and Piezo1 signaling, as well as the discovery of new interactions, such as the effect of matrix rigidity of cell mitochondrial function and metabolism, which represent a new and exciting direction for the field as a whole. This review covers the most recent advances in the field of substrate stiffness sensing as well as perspective on future directions.
Collapse
Affiliation(s)
- Katherine M Young
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA
| | - Cynthia A Reinhart-King
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA.
| |
Collapse
|
23
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
24
|
Wu X, Yang K, He S, Zhu F, Kang S, Liu B, Sun C, Pang W, Wang Y. Dual-functional gold nanorods micro pattern guiding cell alignment and cellular microenvironment monitoring. J Colloid Interface Sci 2023; 647:429-437. [PMID: 37269739 DOI: 10.1016/j.jcis.2023.05.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Surface topography has become a powerful tool to control cell behaviors, however, it's still difficult to monitor cellular microenvironment changes during topography-induced cell responses. Here, a dual-functional platform integrating cell alignment with extracellular pH (pHe) measurement is proposed. The platform is fabricated by assembling gold nanorods (AuNRs) into micro pattern via wettability difference interface method, which provides topographical cues and surface-enhanced Raman scattering (SERS) effect for cell alignment and biochemical detection respectively. Results demonstrate that contact guidance and cell morphology changes are achieved by the AuNRs micro pattern, and pHe are also obtained by the changes of SERS spectra during cell alignment, where the pHe near cytoplasm is lower than nucleus, revealing the heterogeneity of extracellular microenvironment. Moreover, a correlation between lower extracellular pH and higher cell migration ability is revealed, and AuNRs micro pattern can differentiate cells with different migration ability, which may be an inheritable character during cell division. Furthermore, mesenchymal stem cells response dramatically to AuNRs micro pattern, showing different morphology and increased pHe level, offering the potential of impacting stem cell differentiation. This approach provides a new idea for the research of cell regulation and response mechanism.
Collapse
Affiliation(s)
- Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Kai Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shenghui Kang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bohua Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
25
|
Ganguly K, Dutta SD, Randhawa A, Patel DK, Patil TV, Lim KT. Transcriptomic Changes toward Osteogenic Differentiation of Mesenchymal Stem Cells on 3D-Printed GelMA/CNC Hydrogel under Pulsatile Pressure Environment. Adv Healthc Mater 2023; 12:e2202163. [PMID: 36637340 DOI: 10.1002/adhm.202202163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Indexed: 01/14/2023]
Abstract
Biomimetic soft hydrogels used in bone tissue engineering frequently produce unsatisfactory outcomes. Here, it is investigated how human bone-marrow-derived mesenchymal stem cells (hBMSCs) differentiated into early osteoblasts on remarkably soft 3D hydrogel (70 ± 0.00049 Pa). Specifically, hBMSCs seeded onto cellulose nanocrystals incorporated methacrylate gelatin hydrogels are subjected to pulsatile pressure stimulation (PPS) of 5-20 kPa for 7 days. The PPS stimulates cellular processes such as mechanotransduction, cytoskeletal distribution, prohibition of oxidative stress, calcium homeostasis, osteogenic marker gene expression, and osteo-specific cytokine secretions in hBMSCs on soft substrates. The involvement of Piezo 1 is the main ion channel involved in mechanotransduction. Additionally, RNA-sequencing results reveal differential gene expression concerning osteogenic differentiation, bone mineralization, ion channel activity, and focal adhesion. These findings suggest a practical and highly scalable method for promoting stem cell commitment to osteogenesis on soft matrices for clinical reconstruction.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Biomechagen Co., Ltd., Chuncheon, 24341, Republic of Korea
| |
Collapse
|
26
|
Ma Y, Zhang X, Tang S, Xue L, Wang J, Zhang X. Extended preconditioning on soft matrices directs human mesenchymal stem cell fate via YAP transcriptional activity and chromatin organization. APL Bioeng 2023; 7:016110. [PMID: 36845904 PMCID: PMC9949900 DOI: 10.1063/5.0124424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Dynamic extracellular matrix (ECM) mechanics plays a crucial role in tissue development and disease progression through regulation of stem cell behavior, differentiation, and fate determination. Periodontitis is a typical case characterized by decreased ECM stiffness within diseased periodontal tissues as well as with irreversible loss of osteogenesis capacity of periodontal tissue-derived human periodontal tissue-derived MSCs (hMSCs) even returning back to a physiological mechanical microenvironment. We hypothesized that the hMSCs extendedly residing in the soft ECM of diseased periodontal tissues may memorize the mechanical information and have further effect on ultimate cell fate besides the current mechanical microenvironment. Using a soft priming and subsequent stiff culture system based on collagen-modified polydimethylsiloxane substrates, we were able to discover that extended preconditioning on soft matrices (e.g., 7 days of exposure) led to approximately one-third decrease in cell spreading, two-third decrease in osteogenic markers (e.g., RUNX2 and OPN) of hMSCs, and one-thirteenth decrease in the production of mineralized nodules. The significant loss of osteogenic ability may attribute to the long-term residing of hMSCs in diseased periodontal tissue featured with reduced stiffness. This is associated with the regulation of transcriptional activity through alterations of subcellular localization of yes-associated protein and nuclear feature-mediated chromatin organization. Collectively, we reconstructed phenomena of irreversible loss of hMSC osteogenesis capacity in diseased periodontal tissues in our system and revealed the critical effect of preconditioning duration on soft matrices as well as the potential mechanisms in determining ultimate hMSC fate.
Collapse
Affiliation(s)
- Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xu Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shaoxin Tang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Li Xue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jing Wang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
27
|
Hussien AA, Niederoest B, Bollhalder M, Goedecke N, Snedeker JG. The Stiffness-Sensitive Transcriptome of Human Tendon Stromal Cells. Adv Healthc Mater 2023; 12:e2101216. [PMID: 36509005 PMCID: PMC11468939 DOI: 10.1002/adhm.202101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Extracellular matrix stiffness is a major regulator of cellular states. Stiffness-sensing investigations are typically performed using cells that have acquired "mechanical memory" through prolonged conditioning in rigid environments, e.g., tissue culture plastic (TCP). This potentially masks the full extent of the matrix stiffness-driven mechanosensing programs. Here, a biomaterial composed of 2D mechanovariant silicone substrates with simplified and scalable surface biofunctionalization chemistry is developed to facilitate large-scale cell culture expansion processes. Using RNA sequencing, stiffness-mediated mechano-responses of human tendon-derived stromal cells are broadly mapped. Matrix elasticity (E.) approximating tendon microscale stiffness range (E. ≈ 35 kPa) distinctly favors transcriptional programs related to chromatin remodeling and Hippo signaling; whereas compliant stiffnesses (E. ≈ 2 kPa) are enriched in processes related to cell stemness, synapse assembly, and angiogenesis. While tendon stromal cells undergo dramatic phenotypic drift on conventional TCP, mechanovariant substrates abrogate this activation with tenogenic stiffnesses inducing a transcriptional program that strongly correlates with established tendon tissue-specific expression signature. Computational inference predicts that AKT1 and ERK1/2 are major stiffness-sensing signaling hubs. Together, these findings highlight how matrix biophysical cues may dictate the transcriptional identity of tendon cells, and how matrix mechano-reciprocity regulates diverse sets of previously underappreciated mechanosensitive processes in tendon fibroblasts.
Collapse
Affiliation(s)
- Amro A. Hussien
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Barbara Niederoest
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Maja Bollhalder
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Nils Goedecke
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| | - Jess G. Snedeker
- Institute for BiomechanicsETH ZurichZurich8092Switzerland
- Balgrist University HospitalUniversity of ZurichZurich8008Switzerland
| |
Collapse
|
28
|
Xie W, Wei X, Kang H, Jiang H, Chu Z, Lin Y, Hou Y, Wei Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204594. [PMID: 36658771 PMCID: PMC10037983 DOI: 10.1002/advs.202204594] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic system that constantly offers physical, biological, and chemical signals to embraced cells. Increasing evidence suggests that mechanical signals derived from the dynamic cellular microenvironment are essential controllers of cell behaviors. Conventional cell culture biomaterials, with static mechanical properties such as chemistry, topography, and stiffness, have offered a fundamental understanding of various vital biochemical and biophysical processes, such as cell adhesion, spreading, migration, growth, and differentiation. At present, novel biomaterials that can spatiotemporally impart biophysical cues to manipulate cell fate are emerging. The dynamic properties and adaptive traits of new materials endow them with the ability to adapt to cell requirements and enhance cell functions. In this review, an introductory overview of the key players essential to mechanobiology is provided. A biophysical perspective on the state-of-the-art manipulation techniques and novel materials in designing static and dynamic ECM-mimicking biomaterials is taken. In particular, different static and dynamic mechanical cues in regulating cellular mechanosensing and functions are compared. This review to benefit the development of engineering biomechanical systems regulating cell functions is expected.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Xi Wei
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Hong Jiang
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering (Joint Appointment with School of Biomedical Sciences)The University of Hong KongHong KongChina
| | - Yuan Lin
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Yong Hou
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongChina
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
29
|
Sánchez MF, Tampé R. Ligand-independent receptor clustering modulates transmembrane signaling: a new paradigm. Trends Biochem Sci 2023; 48:156-171. [PMID: 36115755 DOI: 10.1016/j.tibs.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Cell-surface receptors mediate communication between cells and their environment. Lateral membrane organization and dynamic receptor cluster formation are fundamental in signal transduction and cell signaling. However, it is not yet fully understood how receptor clustering modulates a wide variety of physiologically relevant processes. Recent growing evidence indicates that biological responses triggered by membrane receptors can be modulated even in the absence of the natural receptor ligand. We review the most recent findings on how ligand-independent receptor clustering can regulate transmembrane signaling. We discuss the latest technologies to control receptor assembly, such as DNA nanotechnology, optogenetics, and optochemistry, focusing on the biological relevance and unraveling of ligand-independent signaling.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Sun Q, Pei F, Zhang M, Zhang B, Jin Y, Zhao Z, Wei Q. Curved Nanofiber Network Induces Cellular Bridge Formation to Promote Stem Cell Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204479. [PMID: 36382560 PMCID: PMC9875655 DOI: 10.1002/advs.202204479] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Remarkable exertions are directed to reveal and understand topographic cues that induce cell mechanical sensitive responses including lineage determination. Extracellular matrix (ECM) is the sophisticated ensemble of diverse factors offering the complicated cellular microenvironment to regulate cell behaviors. However, the functions of only a few of these factors are revealed; most of them are still poorly understood. Herein, the focus is on understanding the curved structure in ECM network for regulating stem cell mechanotransduction. A curved nanofiber network mimicking the curved structure in ECM is fabricated by an improved electrospinning technology. Compared with the straight fibers, the curved fibers promote cell bridge formation because of the cytoskeleton tension. The actomyosin filaments are condensed near the curved edge of the non-adhesive bridge in the bridging cells, which generates higher myosin-II-based intracellular force. This force drives cell lineage commitment toward osteogenic differentiation. This study enriches and perfects the knowledge of the effects of topographic cues on cell behaviors and guides the development of novel biomaterials.
Collapse
Affiliation(s)
- Qian Sun
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Fang Pei
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Man Zhang
- College of Biomedical EngineeringSichuan UniversityChengdu610065P. R. China
| | - Bo Zhang
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Ying Jin
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Zhihe Zhao
- Department of OrthodonticsState Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
31
|
He Y, Gao Y, Ma Q, Zhang X, Zhang Y, Song W. Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration. J Nanobiotechnology 2022; 20:510. [PMID: 36463225 PMCID: PMC9719660 DOI: 10.1186/s12951-022-01721-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotopographical cues of bone implant surface has direct influences on various cell types during the establishment of osseointegration, a prerequisite of implant bear-loading. Given the important roles of monocyte/macrophage lineage cells in bone regeneration and remodeling, the regulation of nanotopographies on macrophages and osteoclasts has arisen considerable attentions recently. However, compared to osteoblastic cells, how nanotopographies regulate macrophages and osteoclasts has not been properly summarized. In this review, the roles and interactions of macrophages, osteoclasts and osteoblasts at different stages of bone healing is firstly presented. Then, the diversity and preparation methods of nanotopographies are summarized. Special attentions are paid to the regulation characterizations of nanotopographies on macrophages polarization and osteoclast differentiation, as well as the focal adhesion-cytoskeleton mediated mechanism. Finally, an outlook is indicated of coordinating nanotopographies, macrophages and osteoclasts to achieve better osseointegration. These comprehensive discussions may not only help to guide the optimization of bone implant surface nanostructures, but also provide an enlightenment to the osteoimmune response to external implant.
Collapse
Affiliation(s)
- Yide He
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Yuanxue Gao
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Qianli Ma
- grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Xige Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Xi’an, 710032 China
| | - Yumei Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Wen Song
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
32
|
Wang L, Hou Y, Zhang T, Wei X, Zhou Y, Lei D, Wei Q, Lin Y, Chu Z. All-Optical Modulation of Single Defects in Nanodiamonds: Revealing Rotational and Translational Motions in Cell Traction Force Fields. NANO LETTERS 2022; 22:7714-7723. [PMID: 35946594 DOI: 10.1021/acs.nanolett.2c02232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Measuring the mechanical interplay between cells and their surrounding microenvironment is vital in cell biology and disease diagnosis. Most current methods can only capture the translational motion of fiduciary markers in the deformed matrix, but their rotational motions are normally ignored. Here, by utilizing single nitrogen-vacancy (NV) centers in nanodiamonds (NDs) as fluorescent markers, we propose a linear polarization modulation (LPM) method to monitor in-plane rotational and translational motions of the substrate caused by cell traction forces. Specifically, precise orientation measurement and localization with background suppression were achieved via optical polarization selective excitation of single NV centers with precisions of ∼0.5°/7.5 s and 2 nm/min, respectively. Additionally, we successfully applied this method to monitor the multidimensional movements of NDs attached to the vicinity of cell focal adhesions. The experimental results agreed well with our theoretical calculations, demonstrating the practicability of the NV-based LPM method in studying mechanobiology and cell-material interactions.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong China
| | - Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong China
- Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong China
| |
Collapse
|
33
|
Ko MJ, Hong H, Choi H, Kang H, Kim D. Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Min Jun Ko
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Hyunsik Hong
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunjun Choi
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
| | - Heemin Kang
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
- College of Medicine Korea University Seoul 02841 Republic of Korea
| | - Dong‐Hyun Kim
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
- Department of Biomedical Engineering McCormick School of Engineering Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago Illinois 60611 USA
| |
Collapse
|
34
|
He J, Shen R, Liu Q, Zheng S, Wang X, Gao J, Wang Q, Huang J, Ding J. RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37436-37446. [PMID: 35943249 DOI: 10.1021/acsami.2c10006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directed migration of cells through cell-surface interactions is a paramount prerequisite in biomaterial-induced tissue regeneration. However, whether and how the nanoscale spatial gradient of adhesion molecules on a material surface can induce directed migration of cells is not sufficiently known. Herein, we employed block copolymer micelle nanolithography to prepare gold nanoarrays with a nanospacing gradient, which were prepared by continuously changing the dipping velocity. Then, a self-assembly monolayer technique was applied to graft arginine-glycine-aspartate (RGD) peptides on the nanodots and poly(ethylene glycol) (PEG) on the glass background. Since RGD can trigger specific cell adhesion via conjugating with integrin (its receptor in the cell membrane) and PEG can resist protein adsorption and nonspecific cell adhesion, a nanopattern with cell-adhesion contrast and a gradient of RGD nanospacing was eventually prepared. In vitro cell behaviors were examined using endothelial cells (ECs) and smooth muscle cells (SMCs) as a demonstration. We found that SMCs exhibited significant orientation and directed migration along the nanospacing gradient, while ECs exhibited only a weak spontaneously anisotropic migration. The gradient response was also dependent upon the RGD nanospacing ranges, namely, the start and end nanospacings under a given distance and gradient. The different responses of these two cell types to the RGD nanospacing gradient provide new insights for designing cell-selective nanomaterials potentially used in cell screening, wound healing, etc.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai 200434, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
35
|
Zhang R, Zhang D, Sun X, Song X, Yan KC, Liang H. Polyvinyl alcohol/gelatin hydrogels regulate cell adhesion and chromatin accessibility. Int J Biol Macromol 2022; 219:672-684. [PMID: 35952815 DOI: 10.1016/j.ijbiomac.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Cell adhesion has a critical influence on various processes such as cancer metastasis and wound healing. Many substrates have been used for studying cell adhesion and its related biological processes, it is still highly desirable to have a simply prepared and low-cost substrate suitable for regulating cell adhesion. In this study, we produced a series of polyvinyl alcohol/gelatin hydrogels with different gelatin concentrations via dry-annealing method. Our data showed that the protein adsorbing capability was enhanced and cell adhesion area and the ratio of non-spherical cells were increased with the increment of gelatin concentration. We also observed that varying cell adhesion conditions induced by polyvinyl alcohol /gelatin hydrogels resulted in expression level changes of genes involved in mechanotransduction from extracellular matrices (ECM) to the nucleus. In particular, we detected a widespread increase in chromatin accessibility under poor cell adhesion condition. This work provides a useful hydrogel system for regulating cell adhesion and opens up new possibilities for the design of biomaterials for cell adhesion study.
Collapse
Affiliation(s)
- Ran Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Xingyue Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Xiaoyuan Song
- MOE Key Laboratory for Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Karen Chang Yan
- Mechanical Engineering and Biomedical Engineering, The College of New Jersey, Ewing, NJ, USA.
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China; School of Civil Engineering, Anhui Jianzhu University, Hefei, China; IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, China.
| |
Collapse
|
36
|
Cho S, Shon MJ, Son B, Eun GS, Yoon TY, Park TH. Tension exerted on cells by magnetic nanoparticles regulates differentiation of human mesenchymal stem cells. BIOMATERIALS ADVANCES 2022; 139:213028. [PMID: 35882121 DOI: 10.1016/j.bioadv.2022.213028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Cells can 'sense' physical cues in the surrounding microenvironment and 'react' by changing their function. Previous studies have focused on regulating the physical properties of the matrix, such as stiffness and topography, thus changing the tension 'felt' by the cell as a result. In this study, by directly applying a quantified magnetic force to the cell, a correlation between differentiation and tension was shown. The magnetic force, quantified by magnetic tweezers, was applied by incorporating magnetotactic bacteria-isolated magnetic nanoparticles (MNPs) in human mesenchymal stem cells. As the applied tension increased, the expression levels of osteogenic differentiation marker genes and proteins were proportionally upregulated. Additionally, the translocation of YAP and RUNX2, deformation of nucleus, and activation of the MAPK signaling pathway were observed in tension-based osteogenic differentiation. Our findings provide a platform for the quantitative control of tension, a key factor in stem cell differentiation, between cells and the matrix using MNPs. Furthermore, these findings improve the understanding of osteogenic differentiation by mechanotransduction.
Collapse
Affiliation(s)
- Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min Ju Shon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Boram Son
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Gee Sung Eun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
37
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
38
|
Im S, Choe G, Seok JM, Yeo SJ, Lee JH, Kim WD, Lee JY, Park SA. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Int J Biol Macromol 2022; 205:520-529. [PMID: 35217077 DOI: 10.1016/j.ijbiomac.2022.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 12/16/2022]
Abstract
Bioprinting is an emerging technology for manufacturing cell-laden three-dimensional (3D) scaffolds, which are used to fabricate complex 3D constructs and provide specific microenvironments for supporting cell growth and differentiation. The development of bioinks with appropriate printability and specific bioactivities is crucial for bioprinting and tissue engineering applications, including bone tissue regeneration. Therefore, to produce functional bioinks for osteoblast printing and bone tissue formation, we formulated various nanocomposite hydrogel-based bioinks using natural and biocompatible biomaterials (i.e., alginate, tempo-oxidized cellulose nanofibrils (TOCNF), and polydopamine nanoparticles (PDANPs)). Rheological studies and printability tests revealed that bioinks containing 1.5% alginate and 1.5% TOCNF in the presence or absence of PDANP (0.5%) are suitable for 3D printing. Furthermore, in vitro studies of 3D-printed osteoblast-laden scaffolds indicated that the 0.5% PDANP-incorporated bioink induced significant osteogenesis. Overall, the bioink consisting of alginate, TOCNF, and PDANPs exhibited excellent printability and bioactivity (i.e., osteogenesis).
Collapse
Affiliation(s)
- Seunghyun Im
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea; School of Materials Science and Engineering, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Ji Min Seok
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Seon Ju Yeo
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jun Hee Lee
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Wan Doo Kim
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Su A Park
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea.
| |
Collapse
|
39
|
Integrating Soft Hydrogel with Nanostructures Reinforces Stem Cell Adhesion and Differentiation. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Biophysical cues can regulate stem cell behaviours and have been considered as critical parameters of synthetic biomaterials for tissue engineering. In particular, hydrogels have been utilized as promising biomimetic and biocompatible materials to emulate the microenvironment. Therefore, well-defined mechanical properties of a hydrogel are important to direct desirable phenotypes of cells. Yet, limited research pays attention to engineering soft hydrogel with improved cell adhesive property, which is crucial for stem cell differentiation. Herein, we introduce silica nanoparticles (SiO2 NPs) onto the surface of methacrylated hyaluronic (MeHA) hydrogel to manipulate the presentation of cell adhesive ligands (RGD) clusters, while remaining similar bulk mechanical properties (2.79 ± 0.31 kPa) to that of MeHA hydrogel (3.08 ± 0.68 kPa). RGD peptides are either randomly decorated in the MeHA hydrogel network or on the immobilized SiO2 NPs (forming MeHA–SiO2). Our results showed that human mesenchymal stem cells exhibited a ~1.3-fold increase in the percentage of initial cell attachment, a ~2-fold increase in cell spreading area, and enhanced expressions of early-stage osteogenic markers (RUNX2 and alkaline phosphatase) for cells undergoing osteogenic differentiation with the osteogenic medium on MeHA–SiO2 hydrogel, compared to those cultured on MeHA hydrogel. Importantly, the cells cultivated on MeHA–SiO2 expressed a ~5-fold increase in nuclear localization ratio of the yes-associated protein, which is known to be mechanosensory in stem cells, compared to the cells cultured on MeHA hydrogel, thereby promoting osteogenic differentiation of stem cells. These findings demonstrate the potential use of nanomaterials into a soft polymeric matrix for enhanced cell adhesion and provide valuable guidance for the rational design of biomaterials for implantation.
Collapse
|
40
|
Sun Q, Hou Y, Chu Z, Wei Q. Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioact Mater 2021; 10:397-404. [PMID: 34901555 PMCID: PMC8636665 DOI: 10.1016/j.bioactmat.2021.08.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Cell behaviors and functions show distinct contrast in different mechanical microenvironment. Numerous materials with varied rigidity have been developed to mimic the interactions between cells and their surroundings. However, the conventional static materials cannot fully capture the dynamic alterations at the bio-interface, especially for the molecular motion and the local mechanical changes in nanoscale. As an alternative, flexible materials have great potential to sense and adapt to mechanical changes in such complex microenvironment. The flexible materials could promote the cellular mechanosensing by dynamically adjusting their local mechanics, topography and ligand presentation to adapt to intracellular force generation. This process enables the cells to exhibit comparable or even higher level of mechanotransduction and the downstream 'hard' phenotypes compared to the conventional stiff or rigid ones. Here, we highlight the relevant studies regarding the development of such adaptive materials to mediate cell behaviors across the rigidity limitation on soft substrates. The concept of 'soft overcomes the hard' will guide the future development and application of biological materials.
Collapse
Affiliation(s)
- Qian Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.,Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
41
|
Wu M, Chen F, Wu P, Yang Z, Zhang S, Xiao L, Deng Z, Zhang C, Chen Y, Cai L. Bioinspired Redwood-Like Scaffolds Coordinated by In Situ-Generated Silica-Containing Hybrid Nanocoatings Promote Angiogenesis and Osteogenesis both In Vitro and In Vivo. Adv Healthc Mater 2021; 10:e2101591. [PMID: 34569182 DOI: 10.1002/adhm.202101591] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Inspired by natural redwood and bone, a biomimetic strategy is presented to develop a highly bioactive redwood-like nanocomposite via radial freeze casting of biocompatible hydrogels followed by the in situ coprecipitation of a Si-containing CaP hybrid nanocoating (SCPN). The engineered material displays radially aligned macrochannels and a porous network structure similar to those of natural redwood. In addition to acting as a mechanical reinforcement, introducing SCPNs into the weak redwood-like scaffold yields not only a nanoroughened surface topography, a low swelling ratio, retarded enzymatic degradation, and enhanced protein absorption abilities but also the sustained sequential release of Si and Ca ions, thereby providing essential biophysical and biochemical cues for effective bone regeneration. Benefiting from the redwood-like structures and bioactive SCPNs, the biomimetic materials create a favorable microenvironment for promoting the initial adhesion, spreading, proliferation, and migration of bone marrow-derived mesenchymal stem cells and human umbilical vein endothelial cells. Furthermore, the in vitro and in vivo data showed that the biocompatible redwood-like scaffold with precipitated SCPN can synergistically promote osteogenesis and angiogenesis in their aligned direction. Collectively, this work presents a novel bioinspired redwood-like material with multifunctional properties that provides new insight into bone defect repair.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Sciences Wuhan University Wuhan 430071 China
| | - Ping Wu
- College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Sheng Zhang
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Chong Zhang
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Sciences Wuhan University Wuhan 430071 China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| |
Collapse
|
42
|
He Y, Yu Y, Yang Y, Gu Y, Mao T, Shen Y, Liu Q, Liu R, Ding J. Design and aligner-assisted fast fabrication of a microfluidic platform for quasi-3D cell studies on an elastic polymer. Bioact Mater 2021; 15:288-304. [PMID: 35356817 PMCID: PMC8935092 DOI: 10.1016/j.bioactmat.2021.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 12/30/2022] Open
Abstract
While most studies of mechanical stimulation of cells are focused on two-dimensional (2D) and three-dimensional (3D) systems, it is rare to study the effects of cyclic stretching on cells under a quasi-3D microenvironment as a linkage between 2D and 3D. Herein, we report a new method to prepare an elastic membrane with topographic microstructures and integrate the membrane into a microfluidic chip. The fabrication difficulty lay not only in the preparation of microstructures but also in the alignment and bonding of the patterned membrane to other layers. To resolve the problem, we designed and assembled a fast aligner that is cost-effective and convenient to operate. To enable quasi-3D microenvironment of cells, we fabricated polydimethylsiloxane (PDMS) microwell arrays (formed by micropillars of a few microns in diameter) with the microwell diameters close to the cell sizes. An appropriate plasma treatment was found to afford a coating-free approach to enable cell adhesion on PDMS. We examined three types of cells in 2D, quasi-3D, and 3D microenvironments; the cell adhesion results showed that quasi-3D cells behaved between 2D and 3D cells. We also constructed transgenic human mesenchymal stem cells (hMSCs); under cyclic stretching, the visualizable live hMSCs in microwells were found to orientate differently from in a 3D Matrigel matrix and migrate differently from on a 2D flat plate. This study not only provides valuable tools for microfabrication of a microfluidic device for cell studies, but also inspires further studies of the topological effects of biomaterials on cells. A microfluidic platform for quasi-3D cell studies was presented as a linkage between 2D and 3D cell-material research systems. The fabrication difficulty was overcome by designing an effective aligner that can be easily assembled. Cell behaviors can be enhanced with a proper quasi-3D biomaterial microenvironment. A new transgenic cell line and systematic 3D approaches were developed to visualize and digitalize the quasi-3D cells.
Collapse
Affiliation(s)
- Yingning He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yuqian Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yexin Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Tianjiao Mao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
- Corresponding author.
| |
Collapse
|
43
|
Chen Z, Xiao H, Zhang H, Xin Q, Zhang H, Liu H, Wu M, Zuo L, Luo J, Guo Q, Ding C, Tan H, Li J. Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. J Mater Chem B 2021; 9:8646-8658. [PMID: 34595487 DOI: 10.1039/d1tb00518a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inspired by the intricate extracellular matrix (ECM) of natural cartilage and subchondral bone, a heterogenous bilayer hydrogel scaffold is fabricated. Gelatin methacrylate (GelMA) and acryloyl glucosamine (AGA) serve as the main components in the upper layer, mimicking the chondral ECM. Meanwhile, vinylphosphonic acid (VPA) as a non-collagen protein analogue is incorporated into the bottom layer to induce the in situ biomineralization of calcium phosphate. The two heterogenous layers are effectively sutured together by the inter-diffusion between the upper and bottom layer hydrogels, together with chelation between the calcium ions and alginate added to separate layers. The interfacial bonding between the two different layers was thoroughly investigated via rheological measurements. The incorporation of AGA promotes chondrocytes to produce collagen type II and glycosaminoglycans and upregulates the expression of chondrogenesis-related genes. In addition, the minerals induced by VPA facilitate the osteogenesis of bone marrow mesenchymal stem cells (BMSCs). In vivo evaluation confirms the biocompatibility of the scaffold with minor inflammation and confirms the best repair ability of the bilayer hydrogel. This cell-free, cost-effective and efficient hydrogel shows great potential for osteochondral repair and inspires the design of other tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Zhuoxin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu 610041, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haochen Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haixin Liu
- Department of Orthopedics, People's Hospital of Deyang City, No. 173, Taishan North Road, Deyang 618000, China
| | - Mingzhen Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Med-X Center for Materials, Sichuan University, 610041, China
| |
Collapse
|
44
|
He J, Liu Q, Zheng S, Shen R, Wang X, Gao J, Wang Q, Huang J, Ding J. Enlargement, Reduction, and Even Reversal of Relative Migration Speeds of Endothelial and Smooth Muscle Cells on Biomaterials Simply by Adjusting RGD Nanospacing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42344-42356. [PMID: 34469116 DOI: 10.1021/acsami.1c08559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although many tissue regeneration processes after biomaterial implantation are related to migrations of multiple cell types on material surfaces, available tools to adjust relative migration speeds are very limited. Herein, we put forward a nanomaterial strategy to employ surface modification with arginine-glycine-aspartate (RGD) nanoarrays to tune in vitro cell migration using endothelial cells (ECs) and smooth muscle cells (SMCs) as demonstrated cell types. We found that migrations of both cell types exhibited a nonmonotonic trend with the increase of RGD nanospacing, yet with different peaks-74 nm for SMCs but 95 nm for ECs. The varied sensitivities afford a facile way to regulate the relative migration speeds. Although ECs migrated at a speed similar to SMCs on a non-nano surface, the migration of ECs could be controlled to be significantly faster or slower than SMCs simply by adjusting the RGD nanospacing. This study suggests a potential application of surface modification of biomaterials on a nanoscale level.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Navy Medical Center, The Second Military Medical University, Shanghai 200433, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
45
|
Natural Membrane Differentiates Human Adipose-Derived Mesenchymal Stem Cells to Neurospheres by Mechanotransduction Related to YAP and AMOT Proteins. MEMBRANES 2021; 11:membranes11090687. [PMID: 34564504 PMCID: PMC8469618 DOI: 10.3390/membranes11090687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADMSCs) are promising candidates for regenerative medicine, as they have good cell yield and can differentiate into several cell lines. When induced to the neuronal differentiation, they form neurospheres composed of neural precursors (NPs) that can be an alternative in treating neurodegenerative diseases. This study aimed to characterize NPs from neurospheres obtained after seeding ADMSCs on a natural polyisoprene-based membrane. The ADMSCs were isolated from adipose tissue by enzymatic dissociation, were subjected to trilineage differentiation, and were characterized by flow cytometry for specific ADMSC surface markers. For neuronal differentiation, the cells were seeded on polystyrene flasks coated with the membrane and were characterized by immunocytochemistry and RT-PCR. The results demonstrated that the isolated cells showed characteristics of ADMSCs. At 15 to 25 days, ADMSCs seeded on the natural membrane developed neurospheres. Then, after dissociation, the cells demonstrated characteristic neuronal markers expressed on NPs: nestin, ß-III tubulin, GFAP, NeuN, and the YAP1/AMOT in the cytoplasm. In conclusion, it was demonstrated that this membrane differentiates the ADMSCs to NPs without any induction factors, and suggests that their differentiation mechanisms are related to mechanotransduction regulated by the YAP and AMOT proteins.
Collapse
|
46
|
Zheng S, Liu Q, He J, Wang X, Ye K, Wang X, Yan C, Liu P, Ding J. Critical adhesion areas of cells on micro-nanopatterns. NANO RESEARCH 2021; 15:1623-1635. [PMID: 34405038 PMCID: PMC8359768 DOI: 10.1007/s12274-021-3711-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Cell adhesion to extracellular matrices (ECM) is critical to physiological and pathological processes as well as biomedical and biotechnological applications. It has been known that a cell can adhere on an adhesive microisland only over a critical size. But no publication has concerned critical adhesion areas of cells on microislands with nanoarray decoration. Herein, we fabricated a series of micro-nanopatterns with different microisland sizes and arginine-glycine-aspartate (RGD) nanospacings on a nonfouling poly(ethylene glycol) background. Besides reproducing that nanospacing of RGD, a ligand of its receptor integrin (a membrane protein), significantly influences specific cell adhesion on bioactive nanoarrays, we confirmed that the concept of critical adhesion area originally suggested in studies of cells on micropatterns was justified also on the micro-nanopatterns, yet the latter exhibited more characteristic behaviors of cell adhesion. We found increased critical adhesion areas of human mesenchymal stem cells (hMSCs) on nanoarrayed microislands with increased RGD nanospacings. However, the numbers of nanodots with respect to the critical adhesion areas were not a constant. A unified interpretation was then put forward after combining nonspecific background adhesion and specific cell adhesion. We further carried out the asymptotic analysis of a series of micro-nanopatterned surfaces to obtain the effective RGD nanospacing on unpatterned free surfaces with densely grafted RGD, which could be estimated nonzero but has never been revealed previously without the assistance of the micro-nanopatterning techniques and the corresponding analysis. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary materials and methods (details of fabrication of micro-nanopatterns), and supplementary results (selective adhesion or localization of hMSCs on nanoarrayed microislands with non-fouling background, calculation of critical number of integrin-ligand binding N*, etc.) are available in the online version of this article at 10.1007/s12274-021-3711-6.
Collapse
Affiliation(s)
- Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
- Navy Characteristic Medical Center, the Second Military Medical University, Shanghai, 200433 China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Xuan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Ce Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| | - Peng Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
- College of Bioengineering, Chongqing University, Chongqing, 400044 China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
| |
Collapse
|
47
|
Narasimhan BN, Horrocks MS, Malmström J. Hydrogels with Tunable Physical Cues and Their Emerging Roles in Studies of Cellular Mechanotransduction. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Matthew S. Horrocks
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| |
Collapse
|
48
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
49
|
Yuan W, Wang H, Fang C, Yang Y, Xia X, Yang B, Lin Y, Li G, Bian L. Microscopic local stiffening in a supramolecular hydrogel network expedites stem cell mechanosensing in 3D and bone regeneration. MATERIALS HORIZONS 2021; 8:1722-1734. [PMID: 34846502 DOI: 10.1039/d1mh00244a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic hydrogels cross-linked by weak and reversible physical interactions enhance the 3-dimensional (3D) spreading and mechanosensing abilities of encapsulated cells in a matrix. However, the highly dynamic nature of these physical cross-links also results in low mechanical stiffness in the hydrogel network and high tether compliance of the cell adhesion motifs attached to the network. The resulting low force feedback of the soft hydrogel network impedes the efficient activation of mechanotransduction signalling in the encapsulated cells. Herein, we demonstrate that the chemical incorporation of acryloyl nanoparticle-based cross-linkers creates regionally stiff network structures in the dynamic supramolecular hydrogels without compromising the dynamic properties of the cell-adaptable inter-nanoparticle hydrogel network. The obtained dynamic hydrogels with a heterogeneous hydrogel network topology expedite the development of adhesion structures, 3D spreading, and mechanosensing of the encapsulated stem cells, as evidenced by the upregulated expression of key biomarkers such as vinculin, FAK, and YAP. This enhanced spreading and mechanotransduction promotes the osteogenic differentiation of the encapsulated stem cells. In contrast, doping with physically entrapped nanoparticles or molecular cross-linkers (PEGDA) cannot locally reinforce the dynamic hydrogel network and therefore fails to facilitate cell mechanosensing or differentiation in the 3D hydrogels. We further show that the dynamic hydrogels with a locally stiffened network promote the in situ regeneration of bone defects in an animal model. Our findings provide valuable insights into the design of the supramolecular dynamic hydrogels with biomimetic hierarchical biomechanical structures as the optimized carrier material for stem cell-based therapies.
Collapse
Affiliation(s)
- Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China.
| | | | | | | | | | | | | | | | | |
Collapse
|