1
|
Liu J, Wang M, Tian X, Wu S, Peng H, Zhu Y, Liu Y. New insights into allergic rhinitis treatment: MSC nanovesicles targeting dendritic cells. J Nanobiotechnology 2024; 22:575. [PMID: 39294599 PMCID: PMC11411834 DOI: 10.1186/s12951-024-02748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/02/2024] [Indexed: 09/20/2024] Open
Abstract
Allergic rhinitis (AR) is a condition with limited treatment options. This study investigates the potential use of mesenchymal stem cell (MSC) nanovesicles as a novel therapy for AR. Specifically, the study explores the underlying mechanisms of MSC nanovesicle therapy by targeting dendritic cells (DCs). The researchers fabricated DC-targeted P-D2-EVs nanovesicles and characterized their properties. Transcriptomic sequencing and single-cell sequencing analyses were performed to study the impact of P-D2-EVs on AR mice, identifying core genes involved in the treatment. In vitro cell experiments were conducted to validate the effects of P-D2-EVs on DC metabolism, Th2 differentiation, and ILC2 activation. The results showed that P-D2-EVs efficiently targeted DCs. Transcriptomic sequencing analysis revealed differential expression of 948 genes in nasal tissue DCs of mice treated with P-D2-EVs. Single-cell sequencing further revealed that P-D2-EVs had inhibitory effects on DC activation, Th2 differentiation, and ILC2 activation, with Fut1 identified as the core gene. Validation experiments demonstrated that P-D2-EVs improved IL10 metabolism in DCs by downregulating Fut1 expression, thereby suppressing Th2 differentiation and ILC2 activation. Animal experiments confirmed the inhibitory effects of P-D2-EVs and their ability to ameliorate AR symptoms in mice. The study suggests that P-D2-EVs reshape DC metabolism and suppress Th2 differentiation and ILC2 activation through the inhibition of the Fut1/ICAM1/P38 MAPK signaling pathway, providing a potential therapeutic approach for AR.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Meiqun Wang
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyan Tian
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Shuhong Wu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Haisen Peng
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Yaqiong Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Yuehui Liu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
2
|
Wang M, Schedel M, Gelfand EW. Gene editing in allergic diseases: Identification of novel pathways and impact of deleting allergen genes. J Allergy Clin Immunol 2024; 154:51-58. [PMID: 38555980 PMCID: PMC11227406 DOI: 10.1016/j.jaci.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Gene editing technology has emerged as a powerful tool in all aspects of health research and continues to advance our understanding of critical and essential elements in disease pathophysiology. The clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology has been used with precision to generate gene knockouts, alter genes, and identify genes that cause disease. The full spectrum of allergic/atopic diseases, in part because of shared pathophysiology, is ripe for studies with this technology. In this way, novel culprit genes are being identified and allow for manipulation of triggering allergens to reduce allergenicity and disease. Notwithstanding current limitations on precision and potential off-target effects, newer approaches are rapidly being introduced to more fully understand specific gene functions as well as the consequences of genetic manipulation. In this review, we examine the impact of editing technologies of novel genes relevant to peanut allergy and asthma as well as how gene modification of common allergens may lead to the deletion of allergenic proteins.
Collapse
Affiliation(s)
- Meiqin Wang
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo
| | - Michaela Schedel
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo; Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany; Department of Pulmonary Medicine, University Hospital, Essen, Germany
| | - Erwin W Gelfand
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo.
| |
Collapse
|
3
|
Kumar B, Deshmukh R. A Review on Novel Therapeutic Modalities and Evidence-based Drug Treatments against Allergic Rhinitis. Curr Pharm Des 2024; 30:887-901. [PMID: 38486383 DOI: 10.2174/0113816128295952240306072100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
Allergic rhinitis (AR) is an IgE-mediated atopic disease that occurs due to inhaled antigens in the immediate phase. Misdiagnosis, insufficient treatment, or no treatment at all are frequent problems associated with the widespread condition known as chronic allergic rhinitis. AR symptoms include runny, itchy, stuffy, and sneezing noses. Asthma and nasal polyps, for example, sometimes occur simultaneously in patients. In order for people living with AR to be as comfortable and productive as possible, treatment should center on reducing their symptoms. The online sources and literature, such as Pubmed, ScienceDirect, and Medline, were reviewed to gather information regarding therapeutic modalities of AR and evidence-based treatments for the disease as the objectives of the present study. An increasing number of people are suffering from AR, resulting in a heavy financial and medical burden on healthcare systems around the world. Undertreating AR frequently results in a decline in quality of life. Treatment compliance is a critical challenge in the administration of AR. Innovative therapies are needed for RA to provide patients with symptom alleviation that is less expensive, more effective, and longer duration of action. Evidence-based guidelines are helpful for managing AR illness. Treating AR according to evidence-based standards can help in disease management. AR treatment includes allergen avoidance, drug therapy, immunotherapy, patient education, and follow-up. However, AR treatment with intranasal corticosteroids is more popular. Hence, in this review article, treatment options for AR are discussed in depth. We also discussed the incidence, causes, and new treatments for this clinical condition.
Collapse
Affiliation(s)
- Bhupendra Kumar
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Rohitas Deshmukh
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
4
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Tanvi Y, Nivitha K, Rajashekara S. CRISPR/Cas-mediated genome editing in mice for the development of drug delivery mechanism. Mol Biol Rep 2023; 50:7729-7743. [PMID: 37438488 DOI: 10.1007/s11033-023-08659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND To manipulate particular locations in the bacterial genome, researchers have recently resorted to a group of unique sequences in bacterial genomes that are responsible for safeguarding bacteria against bacteriophages. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) are two such systems, each of which consists of an RNA component and an enzyme component. METHODS AND RESULTS This review focuses primarily on how CRISPR/Cas9 technology can be used to make models to study human diseases in mice. Creating RNA molecules that direct endonucleases to a specific position in the genome are crucial for achieving a specific genetic modification. CRISPR/Cas9 technology has allowed scientists to edit the genome with greater precision than ever before. Researchers can use knock-in and knock-out methods to model human diseases such as Neurological, cardiovascular disease, and cancer. CONCLUSIONS In terms of developing innovative methods to discover ailments for diseases/disorders, improved CRISPR/Cas9 technology will provide easier access to valuable novel animal models.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Yesudas Tanvi
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Karayi Nivitha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Somashekara Rajashekara
- Centre for Applied Genetics, Department of Studies in Zoology, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka, 560 056, India.
| |
Collapse
|
5
|
Reginald K, Chew FT. Current practices and future trends in cockroach allergen immunotherapy. Mol Immunol 2023; 161:11-24. [PMID: 37480600 DOI: 10.1016/j.molimm.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE OF REVIEW This review evaluates the current modes of allergen-specific immunotherapy for cockroach allergens, in terms of clinical outcomes and explores future trends in the research and development needed for a more targeted cockroach immunotherapy approach with the best efficacy and minimum adverse effects. SUMMARY Cockroach allergy is an important risk factor for allergic rhinitis in the tropics, that disproportionately affects children and young adults and those living in poor socio-economic environments. Immunotherapy would provide long-lasting improvement in quality of life, with reduced medication intake. However, the present treatment regime is long and has a risk of adverse effects. In addition, cockroach does not seem to have an immuno-dominant allergen, that has been traditionally used to treat allergies from other sources. Future trends of cockroach immunotherapy involve precision diagnosis, to correctly identify the offending allergen. Next, precision immunotherapy with standardized allergens, which have been processed in a way that maintains an immunological response without allergic reactions. This approach can be coupled with modern adjuvants and delivery systems that promote a Th1/Treg environment, thereby modulating the immune response away from the allergenic response.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia.
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| |
Collapse
|
6
|
Qureshi A, Connolly JB. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Malar J 2023; 22:234. [PMID: 37580703 PMCID: PMC10426224 DOI: 10.1186/s12936-023-04665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | - John B Connolly
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK.
| |
Collapse
|
7
|
Liu J, Li G, Guo H, Ni C, Gao Y, Cao X, Xia J, Shi X, Guo R. Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12809-12821. [PMID: 36853989 DOI: 10.1021/acsami.2c22584] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has become a promising strategy in treating multiple tumor types, but the therapeutic efficacy is still unsatisfactory due to the temporary and inefficient blocking and the poor immune responsiveness. Herein, we report the development of dual reactive oxygen species (ROS)- and pH-responsive core-shell tecto dendrimers loaded with gold nanoparticles (for short, Au CSTDs) to deliver a plasmid-clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system for the permanent disruption of the programmed death ligand 1 (PD-L1) gene in cancer cells to boost cancer immunotherapy. In our work, Au CSTDs were constructed using lactobionic acid (LA)-modified generation 5 poly(amidoamine) dendrimers entrapped with gold nanoparticles as cores and phenylboronic acid (PBA)-conjugated generation 3 dendrimers as shells via the formation of responsive phenylborate ester bonds between PBA and LA. The plasmid-CRISPR/Cas9 system can be efficiently compacted and specifically taken up by cancer cells overexpressing sialic acids due to the PBA-mediated targeting and be responsively released in cancer cells by the responsive dissociation of the Au CSTDs, leading to the successful endosomal escape and the efficient knockout of the PD-L1 gene. Further in vivo delivery in a mouse melanoma model reveals that the developed Au CSTDs/plasmid-CRISPR/Cas9 complexes can be specifically accumulated at the tumor site for enhanced computed tomography (CT) imaging of tumors, owing to the X-ray attenuation effect of Au, and disrupt the PD-L1 expression in tumor cells, thus promoting the ICB-based antitumor immunity. The designed dual-responsive Au CSTDs may be developed as a versatile tool for genetic engineering of other cell types to achieve different therapeutic effects for expanded space of biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, China
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Mencarelli G, Pieroni B, Murphy KM, Gargaro M. Use of CRISPR/CAS9 Technologies to Study the Role of TLR in Dendritic Cell Subsets. Methods Mol Biol 2023; 2700:77-92. [PMID: 37603175 DOI: 10.1007/978-1-0716-3366-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dendritic cells (DCs) have a significant role in coordinating both innate and adaptive immunity by serving as sentinels that detect invaders and initiate immune responses to eliminate them, as well as presenting antigens to activate adaptive immune responses that are specific to the antigen and the context in which it was detected. The regulation of DC functions is complex and involves intracellular drivers such as transcription factors and signaling pathways, as well as intercellular interactions with adhesion molecules, chemokines, and their receptors in the microenvironment. Toll-like receptors (TLRs) are crucial for DCs to detect pathogen-associated molecular patterns (PAMPs) and initiate downstream signaling pathways that lead to DC maturation and education in bridging with adaptive immunity, including the upregulation of MHC class II expression, induction of CD80, CD86, and CD40, and production of innate cytokines. Understanding the TLR pathways that DCs use to respond to innate immune stimuli and convert them into adaptive responses is important for new therapeutic targets identification.We present a novel platform that offers a fast and affordable CRISPR-Cas9 screening of genes that are involved in dendritic cells' TLR-dependent activation. Using CRISPR/Cas9 screening to target individual TLR genes in different dendritic cell subsets allows the identification of TLR-dependent pathways that regulate dendritic cell activation and cytokine production. This approach offers the efficient targeting of TLR driver genes to modulate the immune response and identify novel immune response regulators, establishing a causal link between these regulators and functional phenotypes based on genotypes.
Collapse
Affiliation(s)
- Giulia Mencarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Benedetta Pieroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
9
|
Núñez R, Rodríguez MJ, Lebrón-Martín C, Martín-Astorga MDC, Palomares F, Ramos-Soriano J, Rojo J, Torres MJ, Cañas JA, Mayorga C. Methylation changes induced by a glycodendropeptide immunotherapy and associated to tolerance in mice. Front Immunol 2022; 13:1094172. [PMID: 36643916 PMCID: PMC9832389 DOI: 10.3389/fimmu.2022.1094172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Allergen-specific immunotherapy (AIT) is applied as treatment to rise tolerance in patients with food allergies. Although AIT is thoroughly used, the underlying epigenetic events related to tolerant induction are still unknown. Thus, we aim to investigate epigenetic changes that could be related to tolerance in dendritic cells (DCs) from anaphylactic mice to lipid transfer proteins, Pru p 3, in the context of a sublingual immunotherapy (SLIT) with a glycodendropeptide (D1ManPrup3) that has demonstrated tolerant or desensitization responses depending on the treatment dose. Methods Changes in DNA methylation in CpG context were determined comparing Sensitized (Antigen-only) animals and two groups receiving SLIT with the D1ManPrup3 nanostructure (D1ManPrup3-SLIT): Tolerant (2nM D1ManPrup3) and Desensitized (5nM D1ManPrup3), against anaphylactic animals. DNA from lymph nodes-DCs were isolated and then, Whole Genome Bisulphite Sequencing was performed to analyze methylation. Results Most differentially methylated regions were found on the area of influence of gene promoters (DMPRs). Compared to the Anaphylactic group, the highest value was found in Desensitized mice (n = 7,713 DMPRs), followed by Tolerant (n = 4,091 DMPRs) and Sensitized (n = 3,931 DMPRs) mice. Moreover, many of these epigenetic changes were found in genes involved in immune and tolerance responses (Il1b, Il12b, Il1a, Ifng, and Tnf) as shown by functional enrichment (DCs regulation, B cell-mediated immunity, and effector mechanisms). Discussion In conclusion, different doses of D1ManPrup3-SLIT induce different DNA methylation changes, which are reflected in the induction of distinct responses, tolerance, or desensitization.
Collapse
Affiliation(s)
- Rafael Núñez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - María J. Rodríguez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Clara Lebrón-Martín
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain
| | - Francisca Palomares
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Javier Ramos-Soriano
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Spanish National Research Council (CSIC)- Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Spanish National Research Council (CSIC)- Universidad de Sevilla, Sevilla, Spain
| | - María J. Torres
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain,Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José Antonio Cañas
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Cristobalina Mayorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain,*Correspondence: Cristobalina Mayorga,
| |
Collapse
|
10
|
Zhang Y, Lan F, Zhang L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022; 77:3309-3319. [PMID: 35892225 DOI: 10.1111/all.15454] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Allergic rhinitis (AR) is a global health problem with increasing prevalence and association with an enormous medical and socioeconomic burden. New recognition of immune cells such as type 2 innate lymphocytes (ILC2s), T helper (Th2) 2 cells, follicular helper T cells, follicular regulatory T cells, regulatory T cells, B cells, dendritic cells, and epithelial cells in AR pathogenesis has been updated in this review paper. An in-depth understanding of the mechanisms underlying AR will aid the identification of biomarkers associated with disease and ultimately provide valuable parameters critical to guide personalized targeted therapy. As the only etiological treatment option for AR, allergen-specific immunotherapy (AIT) has attracted increasing attention, with evidence for effectiveness of AIT recently demonstrated in several randomized controlled trials and long-term real-life studies. The exploration of biologics as therapeutic options has only involved anti-IgE and anti-type 2 inflammatory agents; however, the cost-effectiveness of these agents remains to be elucidated precisely. In the midst of the currently on-going COVID-19 pandemic, a global life-threatening disease, although some studies have indicated that AR is not a risk factor for severity and mortality of COVID-19, this needs to be confirmed in multi-centre, real-life studies of AR patients from different parts of the world.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Activation of Free Fatty Acid Receptor 4 (FFA4) Ameliorates Ovalbumin-Induced Allergic Asthma by Suppressing Activation of Dendritic and Mast Cells in Mice. Int J Mol Sci 2022; 23:ijms23095270. [PMID: 35563671 PMCID: PMC9100770 DOI: 10.3390/ijms23095270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022] Open
Abstract
Epidemiological and clinical studies have suggested that intake of n-3 polyunsaturated fatty acids (PUFA) reduces the incidence of allergic airway diseases and improves pulmonary function in patients with allergic asthma. However, the pharmacological targets of PUFA have not been elucidated upon. We investigated whether free fatty acid receptor 4 (FFA4, also known as GPR120) is a molecular target for beneficial PUFA in asthma therapy. In an ovalbumin (OVA)-induced allergic asthma model, compound A (a selective agonist of FFA4) was administrated before OVA sensitization or OVA challenge in FFA4 wild-type (WT) and knock-out (KO) mice. Compound A treatment of RBL-2H3 cells suppressed mast cell degranulation in vitro in a concentration-dependent manner. Administration of compound A suppressed in vivo allergic characteristics in bronchoalveolar lavage fluid (BALF) and lungs, such as inflammatory cytokine levels and eosinophil accumulation in BALF, inflammation and mucin secretion in the lungs. Compound A-induced suppression was not only observed in mice treated with compound A before OVA challenge, but in mice treated before OVA sensitization as well, implying that compound A acts on mast cells as well as dendritic cells. Furthermore, this suppression by compound A was only observed in FFA4-WT mice and was absent in FFA4-KO mice, implying that compound A action is mediated through FFA4. Activation of FFA4 may be a therapeutic target of PUFA in allergic asthma by suppressing the activation of dendritic cells and mast cells, suggesting that highly potent specific agonists of FFA4 could be a novel therapy for allergic asthma.
Collapse
|