1
|
Luo X, McAndrews KM, Kalluri R. Natural and Bioengineered Extracellular Vesicles in Diagnosis, Monitoring and Treatment of Cancer. ACS NANO 2025; 19:5871-5896. [PMID: 39869032 DOI: 10.1021/acsnano.4c11630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics. EVs have the potential to provide a targeted, biocompatible, and efficient delivery platform for the treatment of cancer and other diseases. Natural as well as engineered EVs as nanomedicine have immense potential for disease intervention. Here, we provide an overview of current knowledge of EVs' function in cancer progression, diagnostic and therapeutic applications for EVs in the cancer setting, as well as current EV engineering strategies.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Li M, Liu Y, Liu F, Chen Q, Xu L, Cheng Z, Tan Y, Liu Z. Extracellular Vesicle-Based Antitumor Nanomedicines. Adv Healthc Mater 2025:e2403903. [PMID: 39935134 DOI: 10.1002/adhm.202403903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising bioactive carriers for delivering therapeutic agents, including nucleic acids, proteins, and small-molecule drugs, owing to their excellent physicochemical stability and biocompatibility. However, comprehensive reviews on the various types of EV-based nanomedicines for cancer therapy remain scarce. This review explores the potential of EVs as antitumor nanomedicines. Methods for EV extraction, drug loading, and engineering modifications are systematically examined, and the strengths and limitations of these technical approaches are critically assessed. Additionally, key strategies for developing EV-based antitumor therapies are highlighted. Finally, the opportunities and challenges associated with advancing EVs toward clinical translation are discussed. With the integration of multiple disciplines, robust EV-based therapeutic platforms are expected to be manufactured to provide more personalized and effective solutions for oncology patients.
Collapse
Affiliation(s)
- Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Fei Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
3
|
Wu X, Ma L, Zhang Y, Liu S, Cheng L, You C, Dong Z. Application progress of nanomaterials in the treatment of prostate cancer. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:1-12. [PMID: 39187009 DOI: 10.1016/j.pharma.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Prostate cancer is one of the most common malignant tumors in men, which seriously threatens the survival and quality of life of patients. At present, there are serious limitations in the treatment of prostate cancer, such as drug tolerance, drug resistance and easy recurrence. Sonodynamic therapy and chemodynamic therapy are two emerging tumor treatment methods, which activate specific drugs or sonosensitizers through sound waves or chemicals to produce reactive oxygen species and kill tumor cells. Nanomaterials are a kind of nanoscale materials with many excellent physical properties such as high targeting, drug release regulation and therapeutic monitoring. Sonodynamic therapy and chemodynamic therapy combined with the application of nanomaterials can improve the therapeutic effect of prostate cancer, reduce side effects and enhance tumor immune response. This article reviews the application progress of nanomaterials in the treatment of prostate cancer, especially the mechanism, advantages and challenges of nanomaterials in sonodynamic therapy and chemodynamic therapy, which provides new ideas and prospects for research in this field.
Collapse
Affiliation(s)
- Xuewu Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Longtu Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Yang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Shuai Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Long Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Chengyu You
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Zhilong Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China.
| |
Collapse
|
4
|
Liu C, Gao J, Cheng Y, Zhang S, Fu C. Homologous-adhering/targeting cell membrane- and cell-mediated delivery systems: a cancer-catch-cancer strategy in cancer therapy. Regen Biomater 2024; 12:rbae135. [PMID: 39811105 PMCID: PMC11729729 DOI: 10.1093/rb/rbae135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Low tumor enrichment remains a serious and urgent problem for drug delivery in cancer therapy. Accurate targeting of tumor sites is still a critical aim in cancer therapy. Though there have been a variety of delivery strategies to improve the tumor targeting and enrichment, biological barriers still cause most delivered guests to fail or be excreted before they work. Recently, cell membrane-based systems have attracted a huge amount of attention due to their advantages such as easy access, good biocompatibility and immune escape, which contribute to their biomimetic structures and specific surface proteins. Furthermore, cancer cell membrane-based delivery systems are referred to as homologous-targeting function in which they exhibit significantly high adhesion and internalization to homologous-type tumor sites or cells even though the exact mechanism is not entirely revealed. Here, we summarize the sources and characterizations of cancer cell membrane systems, including reconstructed single or hybrid membrane-based nano-/microcarriers, as well as engineered cancer cells. Additionally, advanced applications of these cancer cell membrane systems in cancer therapy are categorized and summarized according to the components of membranes. The potential factors related to homologous targeting of cancer cell membrane-based systems are also discussed. By discussing the applications, challenges and opportunities, we expect the cancer cell membrane-based homologous-targeting systems to have a far-reaching development in preclinic or clinics.
Collapse
Affiliation(s)
- Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jingjie Gao
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yuying Cheng
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shanshan Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Caiyun Fu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
5
|
Han M, Chen Z, Sun G, Feng Y, Guo Y, Bai S, Yan X. Nano-Fe 3O 4: Enhancing the tolerance of Elymus nutans to Cd stress through regulating programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124711. [PMID: 39128602 DOI: 10.1016/j.envpol.2024.124711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Cadmium (Cd) poses a significant threat to plant growth and the environment. Nano-Fe3O4 is effective in alleviating Cd stress in plants. Elymus nutans Griseb. is an important fodder crop on the Qinghai-Tibetan Plateau (QTP). However, the potential mechanism by which nano-Fe3O4 alleviates Cd stress in E. nutans is not well understood. E. nutans were subjected to single Cd, single nano-Fe3O4, and co-treatment with nano-Fe3O4 and Cd, and the effects on morphology, Cd uptake, antioxidant enzyme activity, reactive oxygen species (ROS) levels and programmed cell death (PCD) were studied to clarify the regulatory mechanism of nano-Fe3O4. The results showed that Cd stress significantly decreased the germination percentage and biomass of E. nutans. The photosynthetic pigment content decreased significantly under Cd stress. Cd stress also caused oxidative stress and lipid peroxidation, accumulation of excessive ROS, resulting in PCD, but the effect of nano-Fe3O4 was different. Seed germination, seedling growth, and physiological processes were analyzed to elucidate the regulatory role of nano-Fe3O4 nanoparticles in promoting photosynthesis, reducing Cd accumulation, scavenging ROS, and regulating PCD, to promote seed germination and seedling growth in E. nutans. This report provides a scientific basis for improving the tolerance of Elymus to Cd stress by using nano-Fe3O4.
Collapse
Affiliation(s)
- Mengli Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxia Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
7
|
Hu C, Chen Q, Wu T, Du X, Dong Y, Peng Z, Xue W, Sunkara V, Cho YK, Dong L. The Role of Extracellular Vesicles in the Treatment of Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311071. [PMID: 38639331 DOI: 10.1002/smll.202311071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Prostate cancer (PCa) has become a public health concern in elderly men due to an ever-increasing number of estimated cases. Unfortunately, the available treatments are unsatisfactory because of a lack of a durable response, especially in advanced disease states. Extracellular vesicles (EVs) are lipid-bilayer encircled nanoscale vesicles that carry numerous biomolecules (e.g., nucleic acids, proteins, and lipids), mediating the transfer of information. The past decade has witnessed a wide range of EV applications in both diagnostics and therapeutics. First, EV-based non-invasive liquid biopsies provide biomarkers in various clinical scenarios to guide treatment; EVs can facilitate the grading and staging of patients for appropriate treatment selection. Second, EVs play a pivotal role in pathophysiological processes via intercellular communication. Targeting key molecules involved in EV-mediated tumor progression (e.g., proliferation, angiogenesis, metastasis, immune escape, and drug resistance) is a potential approach for curbing PCa. Third, EVs are promising drug carriers. Naïve EVs from various sources and engineered EV-based drug delivery systems have paved the way for the development of new treatment modalities. This review discusses the recent advancements in the application of EV therapies and highlights EV-based functional materials as novel interventions for PCa.
Collapse
Affiliation(s)
- Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanhao Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Vijaya Sunkara
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science Ulsan, Ulsan, 44919, Republic of Korea
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
8
|
Li C, Tan X, Deng D, Kong C, Feng L, Wang W, Lin K, Li Y, Lei Q, Liu L, Tao T, Pan R, Li G, Wu S. A Dopamine-Modified Hyaluronic Acid-Based Mucus Carrying Phytoestrogen and Urinary Exosome for Thin Endometrium Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407750. [PMID: 39115352 DOI: 10.1002/adma.202407750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Indexed: 09/28/2024]
Abstract
Thin endometrium (TE) is closely associated with infertility in reproductive medicine. Estrogen therapy gains unsatisfactory outcomes. In this study, an artificial mucus based on dopamine (L-DOPA)-modified hyaluronic acid combining phytoestrogen cajaninstilbene acid and rat urinary exosomes (CUEHD) is constructed for TE treatment using a rat TE model. In the rat TE model, the dominant elastic behavior and adhesive properties of CUEHD guarantee adequate retention, rendering superior synergistic treatment efficacy and favorable biosafety characteristics. CUEHD treatment significantly increases endometrial thickness and promotes receptivity and fertility. Mechanistically, estrogen homeostasis, inflammation inhibition, and endometrial regeneration are achieved through the crosstalk between ER-NLRP3-IL1β and Wnt-β catenin-TGFβ-smad signaling pathways. Moreover, the therapeutic potential of exosomes from human urine and adipose tissue-derived stem cells (ADSCs) and rat ADSCs are also demonstrated, indicating extensive use of the artificial mucus system. Thus, this study illustrates a platform combining phytoestrogen and exosomes with promising implications for TE treatment.
Collapse
Affiliation(s)
- Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Xiyang Tan
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518004, China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Chenfan Kong
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518004, China
| | - Lida Feng
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Weijing Wang
- Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Kaida Lin
- Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yuqing Li
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Qifang Lei
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Lisha Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Tao Tao
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| |
Collapse
|
9
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Wang J, Zhang X, Xing J, Gao L, Lu H. Nanomedicines in diagnosis and treatment of prostate cancers: an updated review. Front Bioeng Biotechnol 2024; 12:1444201. [PMID: 39318666 PMCID: PMC11420853 DOI: 10.3389/fbioe.2024.1444201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PC) is the third most common male cancer in the world, which occurs due to various mutations leading to the loss of chromatin structure. There are multiple treatments for this type of cancer, of which chemotherapy is one of the most important. Sometimes, a combination of different treatments, such as chemotherapy, radiotherapy, and surgery, are used to prevent tumor recurrence. Among other treatments, androgen deprivation therapy (ADT) can be mentioned, which has had promising results. One of the drawbacks of chemotherapy and ADT treatments is that they are not targeted to the tumor tissue. For this reason, their use can cause extensive side effects. Treatments based on nanomaterials, known as nanomedicine, have attracted much attention today. Nanoparticles (NPs) are one of the main branches of nanomedicine, and they can be made of different materials such as polymer, metal, and carbon, each of which has distinct characteristics. In addition to NPs, nanovesicles (NVs) also have therapeutic applications in PC. In treating PC, synthetic NVs (liposomes, micelles, and nanobubbles) or produced from cells (exosomes) can be used. In addition to the role that NPs and NVs have in treating PC, due to being targeted, they can be used to diagnose PC and check the treatment process. Knowing the characteristics of nanomedicine-based treatments can help design new treatments and improve researchers' understanding of tumor biology and its rapid diagnosis. In this study, we will discuss conventional and nanomedicine-based treatments. The results of these studies show that the use of NPs and NVs in combination with conventional treatments has higher efficacy in tumor treatment than the individual use of each of them.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Xuan Zhang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jiazhen Xing
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hua Lu
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| |
Collapse
|
11
|
Qiu J, Jiang Y, Ye N, Jin G, Shi H, Qian D. Leveraging the intratumoral microbiota to treat human cancer: are engineered exosomes an effective strategy? J Transl Med 2024; 22:728. [PMID: 39103887 DOI: 10.1186/s12967-024-05531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer remains a leading cause of global mortality. The tumor microbiota has increasingly been recognized as a key regulator of cancer onset and progression, in addition to shaping tumor responses to immunotherapy. Microbes, including viruses, bacteria, fungi, and other eukaryotic species can impact the internal homeostasis and health of humans. Research focused on the gut microflora and the intratumoral microbiome has revolutionized the current understanding of how tumors grow, progress, and resist therapeutic interventions. Even with this research, however, there remains relatively little that is known with respect to the abundance of microbes and their effects on tumors and the tumor microenvironment. Engineered exosomes are a class of artificial extracellular nanovesicles that can actively transport small molecule drugs and nucleic acids, which have the broad prospects of tumor cell therapy. The present review offers an overview of recent progress and challenges associated with the intratumoral microbiome and engineered exosomes in the context of cancer research. These discussions are used to inform the construction of a novel framework for engineered exosome-mediated targeted drug delivery, taking advantage of intratumoral microbiota diversity as a strategic asset and thereby providing new opportunities to more effectively treat and manage cancer in the clinic.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Nanwei Ye
- Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Gan Jin
- Department of Vascular Hernia Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Hao Shi
- Department of Radiotherapy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, Jiangsu Province, 215500, China
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People ' s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| |
Collapse
|
12
|
Liu S, Shang W, Song J, Li Q, Wang L. Integration of photomagnetic bimodal imaging to monitor an autogenous exosome loaded platform: unveiling strong targeted retention effects for guiding the photothermal and magnetothermal therapy in a mouse prostate cancer model. J Nanobiotechnology 2024; 22:421. [PMID: 39014370 PMCID: PMC11253357 DOI: 10.1186/s12951-024-02704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most prevalent cancer among males, emphasizing the critical need for precise diagnosis and treatment to enhance patient prognosis. Recent studies have extensively utilized urine exosomes from patients with cancer for targeted delivery. This study aimed to employ highly sensitive magnetic particle imaging (MPI) and fluorescence molecular imaging (FMI) to monitor the targeted delivery of an exosome-loaded platform at the tumour site, offering insights into a potential combined photothermal and magnetic thermal therapy regime for PCa. RESULTS MPI and FMI were utilized to monitor the in vivo retention performance of exosomes in a prostate tumour mouse model. The exosome-loaded platform exhibited robust homologous targeting ability during imaging (SPIONs@EXO-Dye:66·48%±3·85%; Dye-SPIONs: 34·57%±7·55%, **P<0·01), as verified by in vitro imaging and in vitro tissue Prussian blue staining. CONCLUSIONS The experimental data underscore the feasibility of using MPI for in vivo PCa imaging. Furthermore, the exosome-loaded platform may contribute to the precise diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Songlu Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Jian Song
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiubai Li
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Liang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
13
|
Lavi Arab F, Hoseinzadeh A, Hafezi F, Sadat Mohammadi F, Zeynali F, Hadad Tehran M, Rostami A. Mesenchymal stem cell-derived exosomes for management of prostate cancer: An updated view. Int Immunopharmacol 2024; 134:112171. [PMID: 38701539 DOI: 10.1016/j.intimp.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Prostate cancer represents the second most prevalent form of cancer found in males, and stands as the fifth primary contributor to cancer-induced mortality on a global scale. Research has shown that transplanted mesenchymal stem cells (MSCs) can migrate by homing to tumor sites in the body. In prostate cancer, researchers have explored the fact that MSC-based therapies (including genetically modified delivery vehicles or vectors) and MSC-derived exosomes are emerging as attractive options to improve the efficacy and safety of traditional cancer therapies. In addition, researchers have reported new insights into the application of extracellular vesicle (EV)-MSC therapy as a novel treatment option that could provide a more effective and targeted approach to prostate cancer treatment. Moreover, the new generation of exosomes, which contain biologically functional molecules as signal transducers between cells, can simultaneously deliver different therapeutic agents and induce an anti-tumor phenotype in immune cells and their recruitment to the tumor site. The results of the current research on the use of MSCs in the treatment of prostate cancer may be helpful to researchers and clinicians working in this field. Nevertheless, it is crucial to emphasize that although dual-role MSCs show promise as a therapeutic modality for managing prostate cancer, further investigation is imperative to comprehensively grasp their safety and effectiveness. Ongoing clinical trials are being conducted to assess the viability of MSCs in the management of prostate cancer. The results of these trials will help determine the viability of this approach. Based on the current literature, engineered MSCs-EV offer great potential for application in targeted tumor therapy.
Collapse
Affiliation(s)
- Fahimeh Lavi Arab
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Akram Hoseinzadeh
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.; Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Hafezi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Zeynali
- Department of Urology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Hadad Tehran
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amirreza Rostami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
15
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Li Y, Wei C, Yan J, Li F, Chen B, Sun Y, Luo K, He B, Liang Y. The application of nanoparticles based on ferroptosis in cancer therapy. J Mater Chem B 2024; 12:413-435. [PMID: 38112639 DOI: 10.1039/d3tb02308g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
17
|
Amina SJ, Azam T, Dagher F, Guo B. A review on the use of extracellular vesicles for the delivery of drugs and biological therapeutics. Expert Opin Drug Deliv 2024; 21:45-70. [PMID: 38226932 DOI: 10.1080/17425247.2024.2305115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Exosomes, a type of extracellular vesicles, are effective tools for delivering small-molecule drugs and biological therapeutics into cells and tissues. Surface modifications with targeting ligands ensure precise delivery to specific cells, minimizing accumulation in healthy organs and reducing the side effects. This is a rapidly growing area in drug delivery research and this review aims to comprehensively discuss the recent advances in the field. AREA COVERED Recent studies have presented compelling evidence supporting the application of exosomes as efficient delivery vehicles that escape endosome trapping, achieving effective in vivo delivery in animal models. This review provides a systemic discussion on the exosome-based delivery technology, with topics covering exosome purification, surface modification, and targeted delivery of various cargos ranging from siRNAs, miRNAs, and proteins, to small molecule drugs. EXPERT OPINION Exosome-based gene and drug delivery has low toxicity and low immunogenicity. Surface modifications of the exosomes can effectively avoid endosome trapping and increase delivery efficiency. This exciting technology can be applied to improve the treatments for a wide variety of diseases.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Tasmia Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
18
|
Chen H, Pang B, Zhou C, Han M, Gong J, Li Y, Jiang J. Prostate cancer-derived small extracellular vesicle proteins: the hope in diagnosis, prognosis, and therapeutics. J Nanobiotechnology 2023; 21:480. [PMID: 38093355 PMCID: PMC10720096 DOI: 10.1186/s12951-023-02219-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Current diagnostic tools for prostate cancer (PCa) diagnosis and risk stratification are insufficient. The hidden onset and poor efficacy of traditional therapies against metastatic PCa make this disease a heavy burden in global men's health. Prostate cancer-derived extracellular vesicles (PCDEVs) have garnered attention in recent years due to their important role in communications in tumor microenvironment. Recent advancements have demonstrated PCDEVs proteins play an important role in PCa invasion, progression, metastasis, therapeutic resistance, and immune escape. In this review, we briefly discuss the applications of sEV proteins in PCa diagnosis and prognosis in liquid biopsy, focus on the roles of the PCa-derived small EVs (sEVs) proteins in tumor microenvironment associated with cancer progression, and explore the therapeutic potential of sEV proteins applied for future metastatic PCa therapy.
Collapse
Affiliation(s)
- Haotian Chen
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Bairen Pang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Cheng Zhou
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Meng Han
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Jie Gong
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
- School of Clinical Medicine, St. George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Junhui Jiang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Department of Urology, Ningbo First Hospital, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, 315600, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Rhim WK, Kim JY, Lee SY, Cha SG, Park JM, Park HJ, Park CG, Han DK. Recent advances in extracellular vesicle engineering and its applications to regenerative medicine. Biomater Res 2023; 27:130. [PMID: 38082304 PMCID: PMC10712135 DOI: 10.1186/s40824-023-00468-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/02/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that are released from cells and reflect the characteristics of the mother cell. Recently, the EVs have been used in several types of studies across many different fields. In the field of EV research, multiple cell culture and EV isolation techniques have been highlighted in importance. Various strategies, including exclusive component culture media, three-dimensional (3D) cultures, and hypoxic conditions, have been proposed for the cell culture to control function of the EVs. Ultracentrifugation, ultrafiltration, precipitation, and tangential flow filtration (TFF) have been utilized for EV isolation. Although isolated EVs have their own functionalities, several researchers are trying to functionalize EVs by applying various engineering approaches. Gene editing, exogenous, endogenous, and hybridization methods are the four well-known types of EV functionalization strategies. EV engineered through these processes has been applied in the field of regenerative medicine, including kidney diseases, osteoarthritis, rheumatoid arthritis, nervous system-related diseases, and others. In this review, it was focused on engineering approaches for EV functionalization and their applications in regenerative medicine.
Collapse
Affiliation(s)
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
- Department of Biomedical Engineering, 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyeon Jeong Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
20
|
Hu J, Zhu J, Chai J, Zhao Y, Luan J, Wang Y. Application of exosomes as nanocarriers in cancer therapy. J Mater Chem B 2023; 11:10595-10612. [PMID: 37927220 DOI: 10.1039/d3tb01991h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cancer remains the most common lethal disease in the world. Although the treatment choices for cancer are still limited, significant progress has been made over the past few years. By improving targeted drug therapy, drug delivery systems promoted the therapeutic effects of anti-cancer medications. Exosome is a kind of natural nanoscale delivery system with natural substance transport properties, good biocompatibility, and high tumor targeting, which shows great potential in drug carriers, thereby providing novel strategies for cancer therapy. In this review, we present the formation, distribution, and characteristics of exosomes. Besides, extraction and isolation techniques are discussed. We focus on the recent progress and application of exosomes in cancer therapy in four aspects: exosome-mediated gene therapy, chemotherapy, photothermal therapy, and combination therapy. The current challenges and future developments of exosome-mediated cancer therapy are also discussed. Finally, the latest advances in the application of exosomes as drug delivery carriers in cancer therapy are summarized, which provide practical value and guidance for the development of cancer therapy.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
21
|
Huang S, Wang K, Huang D, Su X, Yang R, Shao C, Jiang J, Wu J. Bisphenol AF Induces Prostatic Dorsal Lobe Hyperplasia in Rats through Activation of the NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:16221. [PMID: 38003411 PMCID: PMC10671145 DOI: 10.3390/ijms242216221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bisphenol AF (BPAF) represents a common environmental estrogenic compound renowned for its capacity to induce endocrine disruptions. Notably, BPAF exhibits an enhanced binding affinity to estrogen receptors, which may have more potent estrogenic activity compared with its precursor bisphenol A (BPA). Notwithstanding, the existing studies on BPAF-induced prostate toxicity remain limited, with related toxicological research residing in the preliminary stage. Our previous studies have confirmed the role of BPAF in the induction of ventral prostatic hyperplasia, but its role in the dorsal lobe is not clear. In this study, BPAF (10, 90 μg/kg) and the inhibitor of nuclear transcription factor-κB (NF-κB), pyrrolidinedithiocarbamate (PDTC, 100 mg/kg), were administered intragastrically in rats for four weeks. Through comprehensive anatomical and pathological observations, as well as the assessment of PCNA over-expression, we asserted that BPAF at lower doses may foster dorsal prostatic hyperplasia in rats. The results of IHC and ELISA indicated that BPAF induced hyperplastic responses in the dorsal lobe of the prostate by interfering with a series of biomarkers in NF-κB signaling pathways, containing NF-κB p65, COX-2, TNF-α, and EGFR. These findings confirm the toxic effect of BPAF on prostate health and emphasize the potential corresponding mechanisms.
Collapse
Affiliation(s)
- Sisi Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Kaiyue Wang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Dongyan Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Xin Su
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Rongfu Yang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Congcong Shao
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Juan Jiang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Jianhui Wu
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| |
Collapse
|
22
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
23
|
Lin W, Fang J, Wei S, He G, Liu J, Li X, Peng X, Li D, Yang S, Li X, Yang L, Li H. Extracellular vesicle-cell adhesion molecules in tumours: biofunctions and clinical applications. Cell Commun Signal 2023; 21:246. [PMID: 37735659 PMCID: PMC10512615 DOI: 10.1186/s12964-023-01236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023] Open
Abstract
Cell adhesion molecule (CAM) is an umbrella term for several families of molecules, including the cadherin family, integrin family, selectin family, immunoglobulin superfamily, and some currently unclassified adhesion molecules. Extracellular vesicles (EVs) are important information mediators in cell-to-cell communication. Recent evidence has confirmed that CAMs transported by EVs interact with recipient cells to influence EV distribution in vivo and regulate multiple cellular processes. This review focuses on the loading of CAMs onto EVs, the roles of CAMs in regulating EV distribution, and the known and possible mechanisms of these actions. Moreover, herein, we summarize the impacts of CAMs transported by EVs to the tumour microenvironment (TME) on the malignant behaviour of tumour cells (proliferation, metastasis, immune escape, and so on). In addition, from the standpoint of clinical applications, the significance and challenges of using of EV-CAMs in the diagnosis and therapy of tumours are discussed. Finally, considering recent advances in the understanding of EV-CAMs, we outline significant challenges in this field that require urgent attention to advance research and promote the clinical applications of EV-CAMs. Video Abstract.
Collapse
Affiliation(s)
- Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
24
|
Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J Adv Res 2023; 51:197-217. [PMID: 36368516 PMCID: PMC10491979 DOI: 10.1016/j.jare.2022.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Even with the advancement in the areas of cancer nanotechnology, prostate cancer still poses a major threat to men's health. Nanomaterials and nanomaterial-derived theranostic systems have been explored for diagnosis, imaging, and therapy for different types of cancer still, for prostate cancer they have not delivered at full potential because of the limitations like in vivo biocompatibility, immune responses, precise targetability, and therapeutic outcome associated with the nanostructured system. AIM OF REVIEW Functionalizing nanomaterials with different biomolecules and bioactive agents provides advantages like specificity towards cancerous tumors, improved circulation time, and modulation of the immune response leading to early diagnosis and targeted delivery of cargo at the site of action. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have emphasized the classification and comparison of various nanomaterials based on biofunctionalization strategy and source of biomolecules such that it can be used for possible translation in clinical settings and future developments. This review highlighted the opportunities for embedding highly specific biological targeting moieties (antibody, aptamer, oligonucleotides, biopolymer, peptides, etc.) on nanoparticles which can improve the detection of prostate cancer-associated biomarkers at a very low limit of detection, direct visualization of prostate tumors and lastly for its therapy. Lastly, special emphasis was given to biomimetic nanomaterials which include functionalization with extracellular vesicles, exosomes and viral particles and their application for prostate cancer early detection and drug delivery. The present review paves a new pathway for next-generation biofunctionalized nanomaterials for prostate cancer theranostic application and their possibility in clinical translation.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
25
|
Fang Z, Li S, Yushanjiang F, Feng G, Cui S, Hu S, Jiang X, Liu C. Curcumol alleviates cardiac remodeling via the AKT/NF-κB pathway. Int Immunopharmacol 2023; 122:110527. [PMID: 37392572 DOI: 10.1016/j.intimp.2023.110527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Cardiac remodeling is the final stage of almost all cardiovascular diseases, leading to heart failure and arrhythmias. However, the pathogenesis of cardiac remodeling is not fully understood, and specific treatment schemes are currently unavailable. Curcumol is a bioactive sesquiterpenoid that has anti-inflammatory, anti-apoptotic, and anti-fibrotic properties. This study aimed to investigate the protective effect of curcumol on cardiac remodeling and elucidate its relevant underlying mechanism. Curcumol significantly attenuated cardiac dysfunction, myocardial fibrosis, and hypertrophy in the animal model of isoproterenol (ISO)-induced cardiac remodeling. Curcumol also alleviated cardiac electrical remodeling, thereby reducing the risk of ventricular fibrillation (VF) after heart failure. Inflammation and apoptosis are critical pathological processes involved in cardiac remodeling. Curcumol inhibited the inflammation and apoptosis induced by ISO and TGF-β1 in mouse myocardium and neonatal rat cardiomyocytes (NRCMs). Furthermore, the protective effects of curcumol were found to be mediated through the inhibition of the protein kinase B (AKT)/nuclear factor-kappa B (NF-κB) pathway. The administration of an AKT agonist reversed the anti-fibrotic, anti-inflammatory, and anti-apoptotic effects of curcumol and restored the inhibition of NF-κB nuclear translocation in TGF-β1-induced NRCMs. Our study suggests that curcumol is a potential therapeutic agent for the treatment of cardiac remodeling.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shuang Li
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Gaoke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Chengyin Liu
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
26
|
Jain DP, Dinakar YH, Kumar H, Jain R, Jain V. The multifaceted role of extracellular vesicles in prostate cancer-a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:481-498. [PMID: 37842237 PMCID: PMC10571058 DOI: 10.20517/cdr.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 10/17/2023]
Abstract
Prostate cancer is the second most prominent form of cancer in men and confers the highest mortality after lung cancer. The term "extracellular vesicles" refers to minute endosomal-derived membrane microvesicles and it was demonstrated that extracellular vesicles affect the environment in which tumors originate. Extracellular vesicles' involvement is also established in the development of drug resistance, angiogenesis, stemness, and radioresistance in various cancers including prostate cancer. Extracellular vesicles influence the general environment, processes, and growth of prostate cancer and can be a potential area that offers a significant lead in prostate cancer therapy. In this review, we have elaborated on the multifaceted role of extracellular vesicles in various processes involved in the development of prostate cancer, and their multitude of applications in the diagnosis and treatment of prostate cancer through the encapsulation of various bioactives.
Collapse
Affiliation(s)
- Divya Prakash Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
27
|
Du S, Guan Y, Xie A, Yan Z, Gao S, Li W, Rao L, Chen X, Chen T. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology 2023; 21:231. [PMID: 37475025 PMCID: PMC10360328 DOI: 10.1186/s12951-023-01973-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, natural, cell-derived vesicles that contain the same nucleic acids, proteins, and lipids as their source cells. Thus, they can serve as natural carriers for therapeutic agents and drugs, and have many advantages over conventional nanocarriers, including their low immunogenicity, good biocompatibility, natural blood-brain barrier penetration, and capacity for gene delivery. This review first introduces the classification of EVs and then discusses several currently popular methods for isolating and purifying EVs, EVs-mediated drug delivery, and the functionalization of EVs as carriers. Thereby, it provides new avenues for the development of EVs-based therapeutic strategies in different fields of medicine. Finally, it highlights some challenges and future perspectives with regard to the clinical application of EVs.
Collapse
Affiliation(s)
- Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Zhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Sijia Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China.
| |
Collapse
|
28
|
Yao C, Zhang D, Wang H, Zhang P. Recent Advances in Cell Membrane Coated-Nanoparticles as Drug Delivery Systems for Tackling Urological Diseases. Pharmaceutics 2023; 15:1899. [PMID: 37514085 PMCID: PMC10384516 DOI: 10.3390/pharmaceutics15071899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have revealed the functional roles of cell membrane coated-nanoparticles (CMNPs) in tackling urological diseases, including cancers, inflammation, and acute kidney injury. Cells are a fundamental part of pathology to regulate nearly all urological diseases, and, therefore, naturally derived cell membranes inherit the functional role to enhance the biopharmaceutical performance of their encapsulated nanoparticles on drug delivery. In this review, methods for CMNP synthesis and surface engineering are summarized. The application of different types of CMNPs for tackling urological diseases is updated, including cancer cell membrane, stem cell membrane, immune cell membrane, erythrocytes cell membranes, and extracellular vesicles, and their potential for clinical use is discussed.
Collapse
Affiliation(s)
- Cenchao Yao
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
29
|
Jiang X, Zhao Y, Sun S, Xiang Y, Yan J, Wang J, Pei R. Research development of porphyrin-based metal-organic frameworks: targeting modalities and cancer therapeutic applications. J Mater Chem B 2023. [PMID: 37305964 DOI: 10.1039/d3tb00632h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porphyrins are naturally occurring organic molecules that have attracted widespread attention for their potential in the field of biomedical research. Porphyrin-based metal-organic frameworks (MOFs) that utilize porphyrin molecules as organic ligands have gained attention from researchers due to their excellent results as photosensitizers in tumor photodynamic therapy (PDT). Additionally, MOFs hold significant promise and potential for other tumor therapeutic approaches due to their tunable size and pore size, excellent porosity, and ultra-high specific surface area. Active delivery of nanomaterials via targeted molecules for tumor therapy has demonstrated greater accumulation, lower drug doses, higher therapeutic efficacy, and reduced side effects relative to passive targeting through the enhanced permeation and retention effect (EPR). This paper presents a comprehensive review of the targeting methods employed by porphyrin-based MOFs in tumor targeting therapy over the past few years. It further discusses the applications of porphyrin-based MOFs for targeted cancer therapy through various therapeutic methods. The objective of this paper is to provide a valuable reference and source of ideas for targeted therapy using porphyrin-based MOF materials and to inspire further exploration of their potential in the field of cancer therapy.
Collapse
Affiliation(s)
- Xiang Jiang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ying Xiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jincong Yan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
30
|
Yang D, Tang Y, Zhu B, Pang H, Rong X, Gao Y, Du F, Cheng C, Qiu L, Ma L. Engineering Cell Membrane-Cloaked Catalysts as Multifaceted Artificial Peroxisomes for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206181. [PMID: 37096840 PMCID: PMC10265064 DOI: 10.1002/advs.202206181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Indexed: 05/03/2023]
Abstract
Artificial peroxisomes (APEXs) or peroxisome mimics have caught a lot of attention in nanomedicine and biomaterial science in the last decade, which have great potential in clinically diagnosing and treating diseases. APEXs are typically constructed from a semipermeable membrane that encloses natural enzymes or enzyme-mimetic catalysts to perform peroxisome-/enzyme-mimetic activities. The recent rapid progress regarding their biocatalytic stability, adjustable activity, and surface functionality has significantly promoted APEXs systems in real-life applications. In addition, developing a facile and versatile system that can simulate multiple biocatalytic tasks is advantageous. Here, the recent advances in engineering cell membrane-cloaked catalysts as multifaceted APEXs for diverse biomedical applications are highlighted and commented. First, various catalysts with single or multiple enzyme activities have been introduced as cores of APEXs. Subsequently, the extraction and function of cell membranes that are used as the shell are summarized. After that, the applications of these APEXs are discussed in detail, such as cancer therapy, antioxidant, anti-inflammation, and neuron protection. Finally, the future perspectives and challenges of APEXs are proposed and outlined. This progress review is anticipated to provide new and unique insights into cell membrane-cloaked catalysts and to offer significant new inspiration for designing future artificial organelles.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yuanjiao Tang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Bihui Zhu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Houqing Pang
- Department of UltrasoundWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiao Rong
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yang Gao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fangxue Du
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Li Qiu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Lang Ma
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| |
Collapse
|
31
|
Sun Y, Sun F, Xu W, Qian H. Engineered Extracellular Vesicles as a Targeted Delivery Platform for Precision Therapy. Tissue Eng Regen Med 2023; 20:157-175. [PMID: 36637750 PMCID: PMC10070595 DOI: 10.1007/s13770-022-00503-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 01/14/2023] Open
Abstract
Extracellular vesicles (EVs)-based cell-free strategy has shown therapeutic potential in tissue regeneration. Due to their important roles in intercellular communications and their natural ability to shield cargos from degradation, EVs are also emerged as novel delivery vehicles for various bioactive molecules and drugs. Accumulating studies have revealed that EVs can be modified to enhance their efficacy and specificity for the treatment of many diseases. Engineered EVs are poised as the next generation of targeted delivery platform in the field of precision therapy. In this review, the unique properties of EVs are overviewed in terms of their biogenesis, contents, surface features and biological functions, and the recent advances in the strategies of engineered EVs construction are summarized. Additionally, we also discuss the potential applications of engineered EVs in targeted therapy of cancer and damaged tissues, and evaluate the opportunities and challenges for translating them into clinical practice.
Collapse
Affiliation(s)
- Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
32
|
Mardi N, Salahpour-Anarjan F, Nemati M, Shahsavari Baher N, Rahbarghazi R, Zarebkohan A. Exosomes; multifaceted nanoplatform for targeting brain cancers. Cancer Lett 2023; 557:216077. [PMID: 36731592 DOI: 10.1016/j.canlet.2023.216077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
At the moment, anaplastic changes within the brain are challenging due to the complexity of neural tissue, leading to the inefficiency of therapeutic protocols. The existence of a cellular interface, namely the blood-brain barrier (BBB), restricts the entry of several macromolecules and therapeutic agents into the brain. To date, several nano-based platforms have been used in laboratory settings and in vivo conditions to overcome the barrier properties of BBB. Exosomes (Exos) are one-of-a-kind of extracellular vesicles with specific cargo to modulate cell bioactivities in a paracrine manner. Regarding unique physicochemical properties and easy access to various biofluids, Exos provide a favorable platform for drug delivery and therapeutic purposes. Emerging data have indicated that Exos enable brain penetration of selective cargos such as bioactive factors and chemotherapeutic compounds. Along with these statements, the application of smart delivery approaches can increase delivery efficiency and thus therapeutic outcomes. Here, we highlighted the recent advances in the application of Exos in the context of brain tumors.
Collapse
Affiliation(s)
- Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salahpour-Anarjan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahsavari Baher
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, Qiao B, Wang C. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther 2023; 8:124. [PMID: 36922504 PMCID: PMC10017761 DOI: 10.1038/s41392-023-01382-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Exosome is a subgroup of extracellular vesicles, which has been serving as an efficient therapeutic tool for various diseases. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. After appropriate modification, engineered exosomes are able to deliver antitumor drugs to tumor sites efficiently and precisely with fewer treatment-related adverse effects. However, there still exist many challenges for the clinical translation of engineered exosomes. For instance, what sources and modification strategies could endow exosomes with the most efficient antitumor activity is still poorly understood. Additionally, how to choose appropriately engineered exosomes in different antitumor therapies is another unresolved problem. In this review, we summarized the characteristics of engineered exosomes, especially the spatial and temporal properties. Additionally, we concluded the recent advances in engineered exosomes in the cancer fields, including the sources, isolation technologies, modification strategies, and labeling and imaging methods of engineered exosomes. Furthermore, the applications of engineered exosomes in different antitumor therapies were summarized, such as photodynamic therapy, gene therapy, and immunotherapy. Consequently, the above provides the cancer researchers in this community with the latest ideas on engineered exosome modification and new direction of new drug development, which is prospective to accelerate the clinical translation of engineered exosomes for cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
34
|
Sen S, Xavier J, Kumar N, Ahmad MZ, Ranjan OP. Exosomes as natural nanocarrier-based drug delivery system: recent insights and future perspectives. 3 Biotech 2023; 13:101. [PMID: 36860361 PMCID: PMC9970142 DOI: 10.1007/s13205-023-03521-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Exosomes are nanosized (size ~ 30-150 nm) natural vesicular structures released from cells by physiological processes or pathological circumstances. Exosomes are growing in popularity as a result of their many benefits over conventional nanovehicles, including their ability to escape homing in the liver or metabolic destruction and their lack of undesired accumulation before reaching their intended targets. Various therapeutic molecules, including nucleic acids, have been incorporated into exosomes by different techniques, many of which have shown satisfactory performance in various diseases. Surface-modified exosomes are a potentially effective strategy, and it increases the circulation time and produces the specific drug target vehicle. In this comprehensive review, we describe composition exosomes biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we addressed the challenges and outstanding developments in exosome research and discuss future perspectives. In addition to the current status of exosomes as a therapeutic carrier, the lacuna in the clinical development lifecycles along with the possible strategies to fill the lacuna have been addressed.
Collapse
Affiliation(s)
- Srijita Sen
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101 India
| | - Joyal Xavier
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102 India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102 India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001 Kingdom of Saudi Arabia
| | - Om Prakash Ranjan
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101 India
| |
Collapse
|
35
|
Shao M, Lopes D, Lopes J, Yousefiasl S, Macário-Soares A, Peixoto D, Ferreira-Faria I, Veiga F, Conde J, Huang Y, Chen X, Paiva-Santos AC, Makvandi P. Exosome membrane-coated nanosystems: Exploring biomedical applications in cancer diagnosis and therapy. MATTER 2023; 6:761-799. [DOI: 10.1016/j.matt.2023.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Wu T, Liu Y, Ali NM, Zhang B, Cui X. Effects of Exosomes on Tumor Bioregulation and Diagnosis. ACS OMEGA 2023; 8:5157-5168. [PMID: 36816660 PMCID: PMC9933233 DOI: 10.1021/acsomega.2c06567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Exosomes are lipid bilayer vesicles in biological fluids, which can participate in biological processes by mediating intercellular communication and activating intracellular signaling pathways, especially cancerogenic processes, such as proliferation, metastasis, invasion, and immune regulation of cancer cells. Besides, cancer-derived exosomes are also involved in tumor diagnosis and therapy as biomarkers and nanotransport devices. This article reviews the latest research progress on the biological regulation and disease diagnosis of exosomes in tumors, with the aim of providing new ideas for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Tong Wu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Ying Liu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
- Department
of Oncology, Affiliated Zhongshan Hospital
of Dalian University, Dalian 116011, P.R. China
| | - Nasra Mohamoud Ali
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Bin Zhang
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Xiaonan Cui
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
37
|
Muhammad SA, Jaafaru MS, Rabiu S. A Meta-analysis on the Effectiveness of Extracellular Vesicles as Nanosystems for Targeted Delivery of Anticancer Drugs. Mol Pharm 2023; 20:1168-1188. [PMID: 36594882 DOI: 10.1021/acs.molpharmaceut.2c00878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
While the efficacy of anticancer drugs is hampered by low bioavailability and systemic toxicity, the uncertainty remains whether encapsulation of these drugs into natural nanovesicles such as extracellular vesicles (EVs) could improve controlled drug release and efficacy for targeted tumor therapy. Thus, we performed a meta-analysis for studies reporting the efficacy of EVs as nanosystems to deliver drugs and nucleic acid, protein, and virus (NPV) to tumors using the random-effects model. The electronic search of articles was conducted through Cochrane, PubMed, Scopus, Science Direct, and Clinical Trials Registry from inception up till September 2022. The pooled summary estimate and 95% confidence interval of tumor growth inhibition, survival, and tumor targeting were obtained to assess the efficacy. The search yielded a total of 119 studies that met the inclusion criteria having only 1 clinical study. It was observed that the drug-loaded EV was more efficacious than the free drug in reducing tumor volume and weight with the standardized mean difference (SMD) of -1.99 (95% CI: -2.36, -1.63; p < 0.00001) and -2.12 (95% CI: -2.48, -1.77; p < 0.00001). Similarly, the mean estimate of tumor volume and weight for NPV were the following: SMD: -2.30, 95% CI: -3.03, -1.58; p < 0.00001 and SMD: -2.05, 95% CI: -2.79, -1.30; p < 0.00001. Treatment of tumors with EV-loaded anticancer agents also prolonged survival (HR: 0.15, 95% CI: 0.10, 0.22, p < 0.00001). Furthermore, EVs significantly delivered drugs to tumors as revealed by the higher concentration at the tumor site (SMD: -2.73, 95% CI: -3.77, -1.69; p < 0.00001). This meta-analysis revealed that EV-loaded drugs and NPV performed significantly better in tumor growth inhibition with improved survival than the free anticancer agents, suggesting EVs as safe nanoplatforms for targeted tumor therapy.
Collapse
Affiliation(s)
- Suleiman Alhaji Muhammad
- Department of Biochemistry & Molecular Biology, Usmanu Danfodiyo University, 840104 Sokoto, Nigeria
| | - Mohammed Sani Jaafaru
- Medical Analysis Department, Faculty of Applied Science, Tishk International University-Erbil, Kurdistan Region 44001, Iraq
| | - Sulaiman Rabiu
- Department of Biochemistry & Molecular Biology, Usmanu Danfodiyo University, 840104 Sokoto, Nigeria
| |
Collapse
|
38
|
Ahmad A, Rashid S, Chaudhary AA, Alawam AS, Alghonaim MI, Raza SS, Khan R. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. Semin Cancer Biol 2023; 89:38-60. [PMID: 36669712 DOI: 10.1016/j.semcancer.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Cancer as a disease possess quite complicated pathophysiological implications and is among the prominent causes of morbidity and mortality on global scales. Anti-cancer chemotherapy, surgery, and radiation therapy are some of the present-day conventional treatment options. However, these therapeutic paradigms own several retreats, including lack of specificity, non-targeted toxicological implications, inefficient drug delivery to targeted cells, and emergence of cancer resistance, ultimately causing ineffective cancer management. Owing to the advanced and better biophysical characteristic features and potentiality for the tailoring and customizations and in several fashions, nanotechnology can entirely transubstantiate the cancer identification and its managements. Additionally, nanotechnology also renders several answers to present-day mainstream limitations springing-up in anti-cancer therapeutics. Nanocarriers, owing to their outstanding physicochemical features including but not limited to their particle size, surface morphological features viz. shape etc., have been employed in nanomedicinal platforms for targeting various transcription factors leading to worthy pharmacological outcomes. This transcription targeting activates the wide array of cellular and molecular events like antioxidant enzyme-induction, apoptotic cell death, cell-cycle arrest etc. These outcomes are obtained after the activation or inactivation of several transcription factors and cellular pathways. Further, nanoformulations have been precisely calibrated and functionalized with peculiar targeting groups for improving their efficiency to deliver the drug-payload to specified and targeted cancerous cells and tissues. This review undertakes an extensive, across-the-board and all-inclusive approach consisting of various studies encompassing different types of tailored and customized nanoformulations and nanomaterials designed for targeting the transcription factors implicated in the process of carcinogenesis, tumor-maturation, growth and metastasis. Various transcription factors viz. nuclear factor kappa (NF-κB), signal transducer and activators of transcription (STAT), Cmyc and Twist-related protein 1 (TWIST1) along with several types of nanoparticles targeting these transcription factors have been summarized here. A section has also been dedicated to the different types of nanoparticles targeting the hypoxia inducing factors. Efforts have been made to summarize several other transcription factors implicated in various stages of cancer development, growth, progression and invasion, and their targeting with different kinds of nanomedicinal agents.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
39
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
40
|
Xu B, Chen Y, Peng M, Zheng JH, Zuo C. Exploring the potential of exosomes in diagnosis and drug delivery for pancreatic ductal adenocarcinoma. Int J Cancer 2023; 152:110-122. [PMID: 35765844 PMCID: PMC9796664 DOI: 10.1002/ijc.34195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
Pancreatic cancer (PC) is a cancer of the digestive system, and pancreatic ductal adenocarcinoma (PDAC) accounts for approximately 90% of all PC cases. Exosomes derived from PDAC (PDAC-exosomes) promote PDAC development and metastasis. Exosomes are nanoscale vesicles secreted by most cells, which can carry biologically active molecules and mediate communication and cargo transportation among cells. Recent studies have focused on transforming exosomes into good drug delivery systems (DDSs) to improve the clinical treatment of PDAC. This review considers PDAC as the main research object to introduce the role of PDAC-exosomes in PDAC development and metastasis. This review focuses on the following two themes: (a) the great potential of PDAC-exosomes as new diagnostic markers for PDAC, and (b) the transformation of exosomes into potential DDSs.
Collapse
Affiliation(s)
- Biaoming Xu
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| | - Yu Chen
- Institute of Pathogen Biology and Immunology of College of BiologyHunan Provincial Key Laboratory of Medical Virology, Hunan UniversityChangshaChina
| | - Mingjing Peng
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| | - Jin Hai Zheng
- Institute of Pathogen Biology and Immunology of College of BiologyHunan Provincial Key Laboratory of Medical Virology, Hunan UniversityChangshaChina
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| |
Collapse
|
41
|
Wu M, Wang M, Jia H, Wu P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv 2022; 29:2513-2538. [PMID: 35915054 PMCID: PMC9347476 DOI: 10.1080/10717544.2022.2104404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing evidences show that unmodified extracellular vesicles (EVs) derived from various cells can effectively inhibit the malignant progression of different types of tumors by delivering the bioactive molecules. Therefore, EVs are expected to be developed as emerging anticancer drugs. Meanwhile, unmodified EVs as an advanced and promising nanocarrier that is frequently used in targeted delivery therapeutic cargos and personalized reagents for the treatment and diagnosis of cancer. To improve the efficacy of EV-based treatments, researchers are trying to engineering EVs as an emerging nanomedicine translational therapy platform through biological, physical and chemical approaches, which can be broaden and altered to enhance their therapeutic capability. EVs loaded with therapeutic components such as tumor suppressor drugs, siRNAs, proteins, peptides, and conjugates exhibit significantly enhanced anti-tumor effects. Moreover, the design and preparation of tumor-targeted modified EVs greatly enhance the specificity and effectiveness of tumor therapy, and these strategies are expected to become novel ideas for tumor precision medicine. This review will focus on reviewing the latest research progress of functionalized EVs, clarifying the superior biological functions and powerful therapeutic potential of EVs, for researchers to explore new design concepts based on EVs and build next-generation nanomedicine therapeutic platforms.
Collapse
Affiliation(s)
- Manling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Haoyuan Jia
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| |
Collapse
|
42
|
Contributions and therapeutic potential of tumor-derived microRNAs containing exosomes to cancer progression. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Noonin C, Peerapen P, Thongboonkerd V. Contamination of bacterial extracellular vesicles (bEVs) in human urinary extracellular vesicles (uEVs) samples and their effects on uEVs study. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e69. [PMID: 38938597 PMCID: PMC11080850 DOI: 10.1002/jex2.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/29/2024]
Abstract
Bacterial overgrowth is common for improperly stored urine. However, its effects on human urinary extracellular vesicles (uEVs) study had not been previously examined nor documented. This study investigated the presence of bacterial EVs (bEVs) contaminated in uEVs samples and their effects on uEVs study. Nanoscale uEVs were isolated from normal human urine immediately after collection (0-h) or after 25°C-storage with/without preservative (10 mM NaN3) for up to 24-h. Turbidity, bacterial count and total uEVs proteins abnormally increased in the 8-h and 24-h-stored urine without NaN3. NanoLC-ESI-LTQ-Orbitrap MS/MS identified 6-13 bacterial proteins in these contaminated uEVs samples. PCR also detected bacterial DNAs in these contaminated uEVs samples. Besides, uEVs derived from 8-h and 24-h urine without NaN3 induced macrophage activation (CD11b and phagocytosis) and secretion of cytokines (IFN-α, IL-8, and TGF-β) from macrophages and renal cells (HEK-293, HK-2, and MDCK). All of these effects induced by bacterial contamination were partially/completely prevented by NaN3. Interestingly, macrophage activation and cytokine secretion were also induced by bEVs purified from Escherichia coli. This study clearly shows evidence of bEVs contamination and their effects on human uEVs study when the urine samples were inappropriately stored, whereas NaN3 can partially/completely prevent such effects from the contaminated bEVs.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
44
|
Lu H, Xu J, Yang J, Wang Z, Xu P, Hao Q, Luo W, Li S, Li Z, Xue X, Zheng H, Zhou Z, Wu H, Ma X, Li Y. On-demand targeting nanotheranostics with stimuli-responsive releasing property to improve delivery efficiency to cancer. Biomaterials 2022; 290:121852. [DOI: 10.1016/j.biomaterials.2022.121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
|
45
|
Du Y, Wang H, Yang Y, Zhang J, Huang Y, Fan S, Gu C, Shangguan L, Lin X. Extracellular Vesicle Mimetics: Preparation from Top-Down Approaches and Biological Functions. Adv Healthc Mater 2022; 11:e2200142. [PMID: 35899756 DOI: 10.1002/adhm.202200142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) have attracted attention as delivery vehicles due to their structure, composition, and unique properties in regeneration and immunomodulation. However, difficulties during production and isolation processes of EVs limit their large-scale clinical applications. EV mimetics (EVMs), prepared via top-down strategies that improve the yield of nanoparticles while retaining biological properties similar to those of EVs have been used to address these limitations. Herein, the preparation of EVMs is reviewed and their characteristics in terms of structure, composition, targeting ability, cellular uptake mechanism, and immunogenicity, as well as their strengths, limitations, and future clinical application prospects as EV alternatives are summarized.
Collapse
Affiliation(s)
- Yuan Du
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongyi Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Liqing Shangguan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| |
Collapse
|
46
|
Song H, Chen X, Hao Y, Wang J, Xie Q, Wang X. Nanoengineering facilitating the target mission: targeted extracellular vesicles delivery systems design. J Nanobiotechnology 2022; 20:431. [PMID: 36175866 PMCID: PMC9524104 DOI: 10.1186/s12951-022-01638-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Precision medicine has put forward the proposition of "precision targeting" for modern drug delivery systems. Inspired by techniques from biology, pharmaceutical sciences, and nanoengineering, numerous targeted drug delivery systems have been developed in recent decades. But the large-scale applications of these systems are limited due to unsatisfactory targeting efficiency, cytotoxicity, easy removability, and instability. As such, the natural endogenous cargo delivery vehicle-extracellular vesicles (EVs)-have sparked significant interest for its unique inherent targeting properties, biocompatibility, transmembrane ability, and circulatory stability. The membranes of EVs are enriched for receptors or ligands that interact with target cells, which endows them with inherent targeting mission. However, most of the natural therapeutic EVs face the fate of being cleared by macrophages, resulting in off-target. Therefore, the specificity of natural EVs delivery systems urgently needs to be further improved. In this review, we comprehensively summarize the inherent homing mechanisms of EVs and the effects of the donor cell source and administration route on targeting specificity. We then go over nanoengineering techniques that modify EVs for improving specific targeting, such as source cell alteration and modification of EVs surface. We also highlight the auxiliary strategies to enhance specificity by changing the external environment, such as magnetic and photothermal. Furthermore, contemporary issues such as the lack of a gold standard for assessing targeting efficiency are discussed. This review will provide new insights into the development of precision medicine delivery systems.
Collapse
Affiliation(s)
- Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China. .,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
47
|
Wang Z, Yang J, Qin G, Zhao C, Ren J, Qu X. An Intelligent Nanomachine Guided by DNAzyme Logic System for Precise Chemodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202204291. [DOI: 10.1002/anie.202204291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
48
|
Han Z, Peng X, Yang Y, Yi J, Zhao D, Bao Q, Long S, Yu SX, Xu XX, Liu B, Liu YJ, Shen Y, Qiao L. Integrated microfluidic-SERS for exosome biomarker profiling and osteosarcoma diagnosis. Biosens Bioelectron 2022; 217:114709. [PMID: 36115123 DOI: 10.1016/j.bios.2022.114709] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is one of the most frequent primary sarcoma of bone among adolescents. Early diagnosis of osteosarcoma is the key factor to achieve high survival rate of patients. Nevertheless, traditional histological biopsy is highly invasive and associated with the risk of arousing tumor spread. Herein, we develop a method integrating microfluidics and surface-enhanced Raman spectroscopy (SERS) to isolate plasma-derived exosomes and profile multiple exosomal biomarkers for the diagnosis of osteosarcoma. The method showed highly efficient isolation of exosomes directly from human plasma and can profile exosomes based on protein biomarkers, with the detection limit down to 2 exosomes per μL. The whole assay can be performed in 5 h and only consumed 50 μL of plasma for one analysis. With the method, we analyzed the level of three protein biomarkers, i.e., CD63, vimentin (VIM) and epithelial cell adhesion molecule (EpCAM), on plasma-derived exosomes from 20 osteosarcoma patients and 20 heathy controls. Significantly higher levels of CD63, VIM and EpCAM were observed on plasma exosomes from the osteosarcoma patients compared to the healthy controls. Based on the level of the exosomal biomarkers, a classification model was built for the rapid diagnosis of osteosarcoma, with the sensitivity, specificity and accuracy of 100%, 90% and 95%, respectively. The proposed method does not require complex operations nor expensive equipment, and has great promise in clinical diagnosis of cancer as a liquid biopsy technique.
Collapse
Affiliation(s)
- Zhenzhen Han
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China; Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyan Peng
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Yi Yang
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Jia Yi
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Dan Zhao
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Shuping Long
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Sai-Xi Yu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, China
| | - Xin-Xin Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, China
| | - Baohong Liu
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Yan-Jun Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, China
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Liang Qiao
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
49
|
Ahmadi M, Hassanpour M, Rezaie J. Engineered extracellular vesicles: A novel platform for cancer combination therapy and cancer immunotherapy. Life Sci 2022; 308:120935. [PMID: 36075472 DOI: 10.1016/j.lfs.2022.120935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs), phospholipid membrane-bound vesicles, produced by most cells, contribute to cell-cell communication. They transfer several proteins, lipids, and nucleic acids between cells both locally and systemically. Owing to the biocompatibility and immune activity of EVs, therapeutic approaches using these vesicles as drug delivery systems are being developed. Different methods are used to design more effective engineered EVs, which can serve as smart tools in cancer therapy and immunotherapy. Recent progress in the field of targeted-cancer therapy has led to the gradual use of engineered EVs in combinational therapy to combat heterogeneous tumor cells and multifaceted tumor microenvironments. The high plasticity, loading ability, and genetic manipulation capability of engineered EVs have made them the ideal platforms to realize numerous combinations of cancer therapy approaches. From the combination therapy view, engineered EVs can co-deliver chemotherapy with various therapeutic agents to target tumor cells effectively, further taking part in immunotherapy-related cancer combination therapy. However, a greater number of studies were done in pre-clinical platforms and the clinical translation of these studies needs further scrutiny because some challenges are associated with the application of engineered EVs. Given the many therapeutic potentials of engineered EVs, this review discusses their function in various cancer combination therapy and immunotherapy-related cancer combination therapy. In addition, this review describes the opportunities and challenges associated with the clinical application of engineered EVs.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
50
|
Augmented cellular uptake and homologous targeting of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety improvement. Bioact Mater 2022; 15:469-481. [PMID: 35386342 PMCID: PMC8958386 DOI: 10.1016/j.bioactmat.2022.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Posterior capsular opacification (PCO), the most common complication after cataract surgery, is caused by the proliferation, migration and differentiation of residual lens epithelial cells (LECs) on the surface of the intraocular lens (IOL). Although drug-loaded IOLs have been successfully developed, the PCO prevention efficacy is still limited due to the lack of targeting and low bioavailability. In this investigation, an exosome-functionalized drug-loaded IOL was successfully developed for effective PCO prevention utilizing the homologous targeting and high biocompatibility of exosome. The exosomes derived from LECs were collected to load the anti-proliferative drug doxorubicin (Dox) through electroporation and then immobilized on the aminated IOLs surface through electrostatic interaction. In vitro experiments showed that significantly improved cellular uptake of Dox@Exos by LECs was achieved due to the targeting ability of exosome, compared with free Dox, thus resulting in superior anti-proliferation effect. In vivo animal investigations indicated that Dox@Exos-IOLs effectively inhibited the development of PCO and showed excellent intraocular biocompatibility. We believe that this work will provide a targeting strategy for PCO prevention through exosome-functionalized IOL.
Collapse
|