1
|
Jin Z, Zhang Y, Hu H, Li Q, Zhang L, Zhao K, Liu W, Li L, Gao C. Closed-loop theranostic microgels for immune microenvironment modulation and microbiota remodeling in ulcerative colitis. Biomaterials 2025; 314:122834. [PMID: 39288617 DOI: 10.1016/j.biomaterials.2024.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by the upregulation of reactive oxygen species (ROS) and dysfunction of gut immune system, and microbiota. The conventional treatments mainly focus on symptom control with medication by overuse of drugs. There is an urgent need to develop a closed-loop strategy that combines in situ monitoring and precise treatment. Herein, we innovatively designed the 'cluster munition structure' theranostic microgels to realize the monitoring and therapy for ulcerative colitis (a subtype of IBD). The superoxide anion specific probe (tetraphenylethylene-coelenterazine, TPC) and ROS-responsive nanogels consisting of postbiotics urolithin A (UA) were loaded into alginate and ion-crosslinked to obtain the theranostic microgels. The theranostic microgels could be delivered to the inflammatory site, where the environment-triggered breakup of the microgels and release of the nanogels were achieved in sequence. The TPC-UA group had optimal results in reducing inflammation, repairing colonic epithelial tissue, and remodeling microbiota, leading to inflammation amelioration and recovery of tight junction between the colonic epithelium, and maintenance of gut microbiota. During the recovery process, the local chemiluminescence intensity, which is proportional to the degree of inflammation, was gradually inhibited. The cluster munition of theranostic microgels displayed promising outcomes in monitoring inflammation and precise therapy, and demonstrated the potential for inflammatory disease management.
Collapse
Affiliation(s)
- Zeyuan Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liwen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Bi S, He C, Zhou Y, Liu R, Chen C, Zhao X, Zhang L, Cen Y, Gu J, Yan B. Versatile conductive hydrogel orchestrating neuro-immune microenvironment for rapid diabetic wound healing through peripheral nerve regeneration. Biomaterials 2025; 314:122841. [PMID: 39293307 DOI: 10.1016/j.biomaterials.2024.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Diabetic wound (DW), notorious for prolonged healing processes due to the unregulated immune response, neuropathy, and persistent infection, poses a significant challenge to clinical management. Current strategies for treating DW primarily focus on alleviating the inflammatory milieu or promoting angiogenesis, while limited attention has been given to modulating the neuro-immune microenvironment. Thus, we present an electrically conductive hydrogel dressing and identify its neurogenesis influence in a nerve injury animal model initially by encouraging the proliferation and migration of Schwann cells. Further, endowed with the synergizing effect of near-infrared responsive release of curcumin and nature-inspired artificial heterogeneous melanin nanoparticles, it can harmonize the immune microenvironment by restoring the macrophage phenotype and scavenging excessive reactive oxygen species. This in-situ formed hydrogel also exhibits mild photothermal therapy antibacterial efficacy. In the infected DW model, this hydrogel effectively supports nerve regeneration and mitigates the immune microenvironment, thereby expediting the healing progress. The versatile hydrogel exhibits significant therapeutic potential for application in DW healing through fine-tuning the neuro-immune microenvironment.
Collapse
Affiliation(s)
- Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China
| | - Yannan Zhou
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Chong Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Li Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
3
|
Tang J, Zhang P, Liu Y, Hou D, Chen Y, Cheng L, Xue Y, Liu J. Revolutionizing pressure ulcer regeneration: Unleashing the potential of extracellular matrix-derived temperature-sensitive injectable antioxidant hydrogel for superior stem cell therapy. Biomaterials 2025; 314:122880. [PMID: 39383777 DOI: 10.1016/j.biomaterials.2024.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Pressure ulcers are a common issue in elderly and medically compromised individuals, posing significant challenges in healthcare. Human umbilical cord mesenchymal stem cells (HUMSCs) offer therapeutic benefits like inflammation modulation and tissue regeneration, yet challenges in cell survival, retention, and implantation rates limit their clinical application. Hydrogels in three-dimensional (3D) stem cell culture mimic the microenvironment, improving cell survival and therapeutic efficacy. A thermosensitive injectable hydrogel (adEHG) combining gallic acid-modified hydroxybutyl chitosan (HBC-GA) with soluble extracellular matrix (adECM) has been developed to address these challenges. The hybrid hydrogel, with favorable physical and chemical properties, shields stem cells from oxidative stress and boosts their therapeutic potential by clearing ROS. The adEHG hydrogel promotes angiogenesis, cell proliferation, and collagen deposition, further enhancing inflammation modulation and wound healing through the sustained release of therapeutic factors and cells. Additionally, the adEHG@HUMSC composite induces macrophage polarization towards an M2 phenotype, which is crucial for wound inflammation inhibition and successful healing. Our research significantly propels the field of stem cell-based therapies for pressure ulcer treatment and underscores the potential of the adEHG hydrogel as a valuable tool in advancing regenerative medicine.
Collapse
Affiliation(s)
- Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Penglei Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Dingyu Hou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - You Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Yifang Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, People's Republic of China.
| |
Collapse
|
4
|
Bahadoran Z, Mirmiran P, Hosseinpanah F, Kashfi K, Ghasemi A. Nitric oxide-based treatments improve wound healing associated with diabetes mellitus. Med Gas Res 2025; 15:23-35. [PMID: 39436167 PMCID: PMC11515056 DOI: 10.4103/mgr.medgasres-d-24-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 10/23/2024] Open
Abstract
Non-healing wounds are long-term complications of diabetes mellitus (DM) that increase mortality risk and amputation-related disability and decrease the quality of life. Nitric oxide (NO·)-based treatments (i.e., use of both systemic and topical NO· donors, NO· precursors, and NO· inducers) have received more attention as complementary approaches in treatments of DM wounds. Here, we aimed to highlight the potential benefits of NO·-based treatments on DM wounds through a literature review of experimental and clinical evidence. Various topical NO·-based treatments have been used. In rodents, topical NO·-based therapy facilitates wound healing, manifested as an increased healing rate and a decreased half-closure time. The wound healing effect of NO·-based treatments is attributed to increasing local blood flow, angiogenesis induction, collagen synthesis and deposition, re-epithelization, anti-inflammatory and anti-oxidative properties, and potent broad-spectrum antibacterial effects. The existing literature lacks human clinical evidence on the safety and efficacy of NO·-based treatments for DM wounds. Translating experimental favors of NO·-based treatments of DM wounds into human clinical practice needs conducting clinical trials with well-predefined effect sizes, i.e., wound reduction area, rate of wound healing, and hospital length of stay.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Wu Z, Wu W, Zhang C, Zhang W, Li Y, Ding T, Fang Z, Jing J, He X, Huang F. Enhanced diabetic foot ulcer treatment with a chitosan-based thermosensitive hydrogel loaded self-assembled multi-functional nanoparticles for antibacterial and angiogenic effects. Carbohydr Polym 2025; 347:122740. [PMID: 39486969 DOI: 10.1016/j.carbpol.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Abstract
Inhibiting bacterial growth and promoting angiogenesis are essential for enhancing wound healing in diabetic patients. Excessive oxidative stress at the wound site can also lead to an accumulation of reactive oxygen species. To address these challenges, a smart thermosensitive hydrogel loaded with therapeutic agents was developed. This formulation features self-assembled nanoparticles named CIZ, consisting of chlorogenic acid (CA), indocyanine green (ICG), and zinc ions (Zn2+). These nanoparticles are loaded into a chitosan-β-glycerophosphate hydrogel, named CIZ@G, which enables rapid gel formation under photothermal effects. The hydrogel demonstrates good biocompatibility and effectively releases drugs into diabetic foot ulcers (DFU) wound. Benefiting from the dual actions of CA and zinc ions, the hydrogel exhibits potent antioxidative and anti-inflammatory effects, enhances the expression of vascular endothelial growth factor (VEGF) and Platelet endothelial cell adhesion molecule-1 (CD31), and promotes angiogenesis. Both in vitro and in vivo experiments confirm that CIZ@G can effectively inhibit the growth of Staphylococcus aureus post-laser irradiation and accelerate wound remodeling within 14 days. This approach offers a new strategy for the treatment of diabetic foot ulcers (DFU), potentially transforming patient care in this challenging clinical area.
Collapse
Affiliation(s)
- Zhiwei Wu
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Weiwei Wu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Public Health Clinical Center, Hefei 230022, China
| | - Chi Zhang
- Anhui Public Health Clinical Center, Hefei 230022, China; Department of orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenbiao Zhang
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Li
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Tao Ding
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhennan Fang
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Juehua Jing
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China..
| | - Xiaoyan He
- School of Life Sciences Anhui Medical University, Hefei 230032, China.
| | - Fei Huang
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China..
| |
Collapse
|
6
|
Shen B, Yan Z, Wang Y, Zhu L, Zhao Q, Jiang L. Nanozyme-chitosan-aerogel immobilized enzyme-driven biocatalytic cascade for therapeutic engineering of diabetic wounds. Carbohydr Polym 2025; 347:122690. [PMID: 39486931 DOI: 10.1016/j.carbpol.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Abstract
A novel strategy that has emerged in recent years involves the use of aerogels for anti-inflammatory treatment, which has been extensively studied for its powerful application prospects in wound healing, diabetic complications, and tissue regeneration. However, the therapeutic efficacy of aerogels alone is compromised due to bacterial infections at the wound site. Therefore, it is necessary to incorporate effective antibacterial systems onto the aerogels to enhance their efficacy against bacterial infections. For instance, the design of cascade reactions targeting specific disease biomarkers for diagnostic and therapeutic purposes holds promise for enhancing treatment efficacy and precision. In this study, we successfully achieved the immobilization of glucose oxidase within an aerogel prepared from nanozymes, demonstrating remarkable catalytic activity and high-temperature stability. The cascade catalytic system comprising nanozymes and glucose oxidase was applied to combat Methicillin-resistant Staphylococcus aureus (MASR) bacterial infections, exhibiting effective biofilm removal capabilities. In therapeutic experiments on ulcerated wounds in diabetic mice, the cascade catalytic system demonstrated outstanding efficacy with excellent biocompatibility. The therapeutic effects were primarily manifested in the rapid clearance of biofilms formed by MASR, achieved by locally depleting glucose in the wound area, thereby promoting the healing process of ulcerated wounds.
Collapse
Affiliation(s)
- Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoxu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qianru Zhao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Technology, Nanchang University, Nanchang 330031, China.
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Li H, Liu Z, Zhang P, Zhang D. The recent research progress in the application of the nanozyme-hydrogel composite system for drug delivery. Drug Deliv 2024; 31:2417986. [PMID: 39449633 PMCID: PMC11514404 DOI: 10.1080/10717544.2024.2417986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels, comprising 3D hydrophilic polymer networks, have emerged as promising biomaterial candidates for emulating the structure of biological tissues and delivering drugs through topical administration with good biocompatibility. Nanozymes can catalyze endogenous biomolecules, thereby initiating or inhibiting in vivo biological processes. A nanozyme-hydrogel composite inherits the biological functions of hydrogels and nanozymes, where the nanozyme serves as the catalytic core and the hydrogel forms the structural scaffold. Moreover, the composite can concentrate nanozymes in targeted lesions and catalyze the binding of a specific group of substrates, resulting in pathological microenvironment remodeling and drug-penetrating barrier impairment. The composite also shields nanozymes to prevent burst release during catalytic production and reduce related toxicity. Currently, the application of these composites has been extended to antibacterial, anti-inflammatory, anticancer, and tissue repair applications. In this review, we elucidate the preparation methods for nanozyme-hydrogel composites, provide compelling evidence of their advantages in drug delivery and provide a comprehensive overview of their biological application.
Collapse
Affiliation(s)
- Haichang Li
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhenghong Liu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Pu Zhang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dahong Zhang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
Zheng HQ, Feng HX, Li BX, Hui YF, Lin YH, Su XF, Yan LP, Zhou Z, Lin ZJ, Tang F. A Zr-based metal-organic framework drug release system with long-lasting antibacterial behavior for accelerating wound healing. Dalton Trans 2024. [PMID: 39513398 DOI: 10.1039/d4dt02734e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Although various antibacterial strategies have been developed, antibiotic chemotherapy remains the primary clinical treatment for bacterial infections. To address the limitations associated with the traditional antibiotic therapy, like burst drug release, rapid drug clearance, and the emergence of drug resistance, it is highly desirable to develop drug release systems that can realize controlled and sustained drug release to enhance the therapeutic efficacy. Herein, we present a novel drug release system, CIP@SU-102, which shows superior and long-lasting antibacterial activity. CIP@SU-102 was readily fabricated by the encapsulation of ciprofloxacin (CIP), a cationic broad-spectrum antibiotic, into an anionic Zr-based metal-organic framework SU-102 through ion-exchange. Notably, the loading capacity and efficiency of CIP were impressively high, reaching 33.3% and 66.8%, respectively. In vitro assays demonstrated that CIP@SU-102 has superior and prolonged antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, including the methicillin-resistant Staphylococcus aureus (MRSA). Remarkably, CIP@SU-102 could retain its antibacterial efficacy even after continuous drug release for 20 days. In vivo assays verified that CIP@SU-102 could significantly accelerate infected wound healing because of its sustained drug release properties. Due to the low cost and biocompatibility of SU-102 as well as the affordability of ciprofloxacin, CIP@SU-102 is a very promising antibacterial agent for long-lasting bacterial disinfection and boosting infected wound healing in actual clinical applications. This work highlights the potential of the metal-organic framework-based drug release systems for sustained antimicrobial therapy.
Collapse
Affiliation(s)
- Hui-Qian Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China.
| | - Han-Xiao Feng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China.
| | - Bing-Xin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China.
| | - Yi-Fei Hui
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China.
| | - Yi-Han Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China.
| | - Xian-Feng Su
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China.
| | - Lai-Peng Yan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China.
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
| | - Zijie Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China.
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
| | - Zu-Jin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China.
| | - Faqiang Tang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China.
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
| |
Collapse
|
9
|
Feng S, Peng X, Deng Y, Luo Y, Shi S, Wei X, Pu X, Yu X. Biomimetic Nanozyme-Decorated Smart Hydrogel for Promoting Chronic Refractory Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59862-59879. [PMID: 39441846 DOI: 10.1021/acsami.4c13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Chronic refractory wounds have become a serious threat to human health and are characterized by prolonged inflammation, recurrent bacterial infections, and elevated ROS levels. However, current therapeutic strategies usually target a unilateral healing function and are unable to tackle the complexity and sensitivity of chronic refractory wound healing. This study fabricated a biomimetic nanozyme based on rhein (Cu-rhein NSs), which effectively mimics the activity of superoxide dismutase (SOD) for scavenging various free radicals. Additionally, zinc oxide microspheres (ZnO MSs) were prepared to enhance the antibacterial activity and mechanical properties of the modified hydrogel. Cu-rhein NSs and ZnO MSs were comodified onto an extracellular matrix-mimetic dual-network smart hydrogel constructed from oxidized sodium alginate, gelatin, and borax via dynamic borate and Schiff base bonds. The smart hydrogel presented the good biocompatibility and targeted the unique acidic microenvironment with high oxidative stress of chronic refractory wounds, intelligently releasing bionic nanozymes to effectively eliminate bacteria, reduce inflammatory responses, and scavenge multiple free radicals for reducing ROS. In vivo experiments on the rat model based on diabetic infection showed that the smart hydrogel could effectively eliminate bacteria, promote vascular regeneration and collagen deposition, reduce inflammatory response, and accelerate the healing of diabetic-infected wounds (almost complete healing within 14 days). The advantages of an intelligent, biomimetic tissue regeneration cascade management strategy against diabetic infected wound healing are highlighted.
Collapse
Affiliation(s)
- Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
10
|
Luo M, Zhao FK, Wang YM, Luo Y. Nanomotors as Therapeutic Agents: Advancing Treatment Strategies for Inflammation-Related Diseases. CHEM REC 2024:e202400162. [PMID: 39499104 DOI: 10.1002/tcr.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Inflammation is a physiological response of the body to harmful stimuli such as pathogens, damaged cells, or irritants, involving a series of cellular and molecular events. It is associated with various diseases including neurodegenerative disorders, cancer, and atherosclerosis, and is a leading cause of global mortality. Key inflammatory factors, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1 (IL-1), Interleukin-6 (IL-6), Monocyte Chemoattractant Protein-1 (MCP-1/CCL2), RANTES (CCL5), and prostaglandins, play central roles in inflammation and disease progression. Traditional treatments such as NSAIDs, steroids, biologic agents, and antioxidants have limitations. Recent advancements in nanomaterials present promising solutions for treating inflammation-related diseases. Unlike nanomaterials that rely on passive targeting and face challenges in precise drug delivery, nanomotors, driven by chemical or optical stimuli, offer a more dynamic approach by actively navigating to inflammation sites, thereby enhancing drug delivery efficiency and therapeutic outcomes. Nanomotors allow for controlled drug release in response to specific environmental changes, such as pH and inflammatory factors, ensuring effective drug concentrations at disease sites. This active targeting capability enables the use of smaller drug doses, which reduces overall drug usage, costs, and potential side effects compared to traditional treatments. By improving precision and efficiency, nanomotors address the limitations of conventional therapies and represent a significant advancement in the treatment of inflammation-related diseases. This review summarizes the latest research on nanomotor-mediated treatment of inflammation-related diseases and discusses the challenges and future directions for optimizing their clinical translation.
Collapse
Affiliation(s)
- Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yong Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| |
Collapse
|
11
|
Liu H, Yang Y, Deng L, Shen Z, Huang Q, Shah NG, Chen W, Zhang Y, Wang X, Yu L, Chen Z. Antibacterial and antioxidative hydrogel dressings based on tannic acid-gelatin/oxidized sodium alginate loaded with zinc oxide nanoparticles for promoting wound healing. Int J Biol Macromol 2024; 279:135177. [PMID: 39214222 DOI: 10.1016/j.ijbiomac.2024.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Wound infection resulting in delayed wound healing and wound deterioration remains a clinical challenge. Recently, multifunctional hydrogel dressing was a promising strategy which has attracted wide attention in preventing wound infection and promoting wound healing. In this study, a hybrid hydrogel made of gelatin (GL), tannic acid (TA), oxidized sodium alginate (OSA), and zinc oxide nanoparticles (ZnO NPs) was prepared mainly by double network cross-linking approach, named tannic acid-gelatin/oxidized sodium alginate/zinc oxide (TA-GL/OSA/ZnO). The composite hydrogels exhibited improved mechanical properties, which provided by TA modified the structure of GL network, Schiff base reaction between GL and OSA, and the strengthening effect of ZnO NPs. Meanwhile, the composite hydrogel showed high antibacterial activity against Staphylococcus aureus (S. aureus) (97.8 % ± 0.9 %) and Escherichia coli (E. coli) (96.6 % ± 1.2 %), attributed to the synergistic effect of TA and ZnO NPs. Furthermore, benefiting from the good antioxidative properties of TA, the sustain-released Zn2+ with the good capability to kill bacteria, and promoting the regeneration of skin epithelial tissues in BALB/c mice constantly, the multifunctional hydrogel had a significant therapeutic effect on wound healing and broad application prospects.
Collapse
Affiliation(s)
- Huaqi Liu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanyuan Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Linglong Deng
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhida Shen
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiaoyu Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Nimra Ghafar Shah
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenjing Chen
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xianxun Wang
- Department of Orthopedics, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430033, China.
| | - Li Yu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhaoxia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
12
|
Li H, Luo K, Liu W, Yu S, Xue W. Neutrophil-Mimicking Nanozyme with Cascade Catalytic Releasing Nitric Oxide and Signet Oxygen Property for Synergistic Bimodal Therapy of Methicillin-Resistant Staphylococcus Aureus Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403527. [PMID: 39031094 DOI: 10.1002/smll.202403527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Recently, chloroperoxidase (CPO)-mediated enzyme dynamic therapy (EDT) by mimicking the antipathogen function of neutrophils via generating highly active signet oxygen (1O2) has attracted great interest in biomedical applications. However, the therapeutic efficiency of EDT is largely restricted by the low CPO delivery efficiency and insufficient hydrogen peroxide (H2O2) supply. In the present work, a neutrophil-mimicking nanozyme of MGBC with high CPO delivery efficiency, H2O2 self-supply, and enzyme-cascade catalytic properties is designed for high-efficient treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. In the infection microenvironment, MGBC can effectively catalyze glucose to self-supply substantial H2O2, which enables long-lasting 1O2 generation via the CPO-mediated catalytic reaction. At the meantime, MGBC can also catalyze H2O2 to sustainably release NO for gas therapy (GT), which synergistically strengthens the therapeutic effect of EDT. As a result, MGBC displayed effective MRSA-killing and MSRA biofilms-eradicating properties, and high efficiency in treating both MRSA infected full-thickness excision wounds and subcutaneous MRSA infection by exerting the synergistic bimodal EDT/GT therapeutic effects. In-depth mechanism study revealed that the synergistic EDT/GT antibacterial effects of MGBC can attenuate the drug resistance and toxicity of MRSA by significantly downregulating quorum sensing, multidrug efflux, virulence, and biofilm formation-related genes.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Keyan Luo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenkang Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
13
|
Ren G, Wang X, Yang Z, Li X, Ma Y, Zhou L, Yan L, Ma S, Li L, Guo L, Zhang B, Diao H, Wang H, Wang B, Lu L, Zhang C, Liu W. TME-responsive nanoplatform for multimodal imaging-guided synergistic precision therapy of esophageal cancer via inhibiting HIF-1α signal pathway. J Control Release 2024; 376:518-529. [PMID: 39424105 DOI: 10.1016/j.jconrel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Esophageal cancer (EC) is the sixth leading cause of cancer-related deaths, and its treatment poses significant challenges. In recent years, photodynamic, photothermal, and chemodynamic therapies have emerged as alternative strategies for tumor intervention. However, limitations such as poor tumor targeting, insufficient microenvironment responsiveness, and unclear mechanisms hinder their application. In this study, we found that hypoxia-inducible factor 1 alpha (HIF-1α) was highly expressed in clinical EC samples, which contributed to tumor malignancy and metastasis. We developed a carbon dots (CDs)-based tumor microenvironment (TME)-responsive nanoplatform, CDs-MnO2-Au-Cet (CMAC), designed for multimodal imaging-guided precision therapy in EC. Both in vitro and in vivo experiments demonstrated that CMAC effectively targeted and imaged EC cells and tissues. CMAC significantly inhibited tumor growth by inducing apoptosis and reducing lung metastasis. Mechanistically, CMAC administration led to a substantial downregulation of HIF-1α and its downstream targets, GLUT1 and MMP9. In summary, we presented a novel nanoplatform for imaging-guided synergistic therapy in EC, which demonstrated excellent anti-tumor growth and metastasis capabilities, along with favorable biocompatibility. This study laid the groundwork for developing innovative theranostic strategies for EC.
Collapse
Affiliation(s)
- Guodong Ren
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Xuewei Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Zhaobo Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yingyu Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Liang Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lili Yan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, PR China
| | - Sufang Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Lihong Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, PR China
| | - Lixia Guo
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Boye Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China.
| | - Haojiang Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Bin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China.
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Province Brain Degenerative Diseases Precision Diagnosis and Treatment Engineering Research Center, Shanxi Medical University, Jinzhong 030606, PR China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, PR China.
| |
Collapse
|
14
|
Shi G, Lan S, Zhang Q, Wang J, Shu F, Hao Z, Chen T, Zhu M, Chen R, Chen J, Wu Z, Wu B, Zou Z, Li J. Molybdenum nanodots act as antioxidants for photothermal therapy osteoarthritis. Biomaterials 2024; 315:122909. [PMID: 39471714 DOI: 10.1016/j.biomaterials.2024.122909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Osteoarthritis (OA) manifests as the degradation of cartilage and remodeling of subchondral bone. Restoring homeostasis within the joint is imperative for alleviating OA symptoms. Current interventions primarily target singular aspects, such as anti-aging, inflammation inhibition, free radical scavenging, and regeneration of cartilage and subchondral bone. Herein, we developed molybdenum nanodots (MNDs) as bionic photothermal nanomaterials to mimic the antioxidant synthase to concurrently protected cartilage and facilitate subchondral bone regeneration. With near-infrared (NIR) irradiation, MNDs effectively eliminate reactive oxygen and nitrogen species (ROS/RNS) from OA chondrocytes, thereby reversed mitochondrial dysfunction, mitigating chondrocyte senescence, and simultaneously suppresses inflammation, hence preserving the inherent homeostasis between cartilage matrix synthesis and degradation while circumventing safety concerns. RNA sequencing of OA chondrocytes treated with MNDs-NIR revealed the reinstatement of chondrocyte functionality, activation of antioxidant enzymes, anti-aging properties, and regulation of inflammation. NIR irradiation induces thermogenesis and synergistically promotes subchondral bone regeneration via MNDs, as validated through histological assessments and microcomputed tomography (Micro-CT) scans. MNDs-NIR effectively attenuate cellular senescence and inhibit inflammation in vivo, while also remodeling mitochondrial dynamics by upregulating fusion proteins and inhibiting fission proteins, thereby regulating the oxidative stress microenvironment. Additionally, MNDs-NIR exhibited remarkable therapeutic effects in alleviating articular cartilage degeneration in an OA mouse model, evidenced by a 1.67-fold reduction in subchondral bone plate thickness, an 88.57 % decrease in OARSI score, a 5.52-fold reduction in MMP13 expression, and a 6.80-fold increase in Col II expression. This novel disease-modifying approach for OA utilizing MNDs-NIR offers insight and a paradigm for improving mitochondrial dysfunction by regulating the accumulation of mitochondrial ROS and ultimately alleviating cellular senescence. Moreover, the dual-pronged therapeutic approach of MNDs-NIR, which addresses both cartilage erosion and subchondral bone lesions in OA, represents a highly promising strategy for managing OA.
Collapse
Affiliation(s)
- Guang Shi
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Shenghui Lan
- Department of Orthopaedics, The Eighth People's Hospital, Jiangsu University, Shanghai, 200235, China
| | - Qi Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Junwu Wang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Feihong Shu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, 550499, China
| | - Zhuowen Hao
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Tianhong Chen
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Mengyue Zhu
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Renxin Chen
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Jiayao Chen
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Zijian Wu
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jingfeng Li
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, China.
| |
Collapse
|
15
|
Wang M, Liu Y, Yang S, Wang X, Duan Q, Liu J, Tan X, Long L, Liu S, Xiao Y, Li Z, Han C, Yi Y, Zhang Y, Wang G, Zang G. Collaboration in Contradiction: Self-Adaptive Synergistic ROS Generation and Scavenge Balancing Strategies Used for the Infected Wounds Treatment. Adv Healthc Mater 2024:e2402579. [PMID: 39431843 DOI: 10.1002/adhm.202402579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/25/2024] [Indexed: 10/22/2024]
Abstract
The rational utilization of ROS is key to treating infected wounds. Exogenous ROS can destroy bacterial structures, quickly kill bacteria, and inhibit secondary infections. However, excess ROS at the wound will cause a secondary inflammatory response. Acute infections exacerbate this damage by increasing endogenous ROS, complicating the maintenance of ROS homeostasis. Therefore, regulating the balance of ROS production and scavenging in wounds has emerged as a promising strategy for wound treatment. Conventional ROS balancing platforms are mostly based on the " all for one" strategy of functional superposition and lack self-adaptability and integration. To subvert this conventional strategy, this study proposes a "one for all" self-adaptive integrated photodynamic therapy (PDT)-antioxidant model to actively regulate the ROS balance. A gelatin-hyaluronic acid hydrogel embedded with Se-modified cerium dioxide nanoparticles (Gel-HA-Se@CeO2 NPs) is designed for treating infected wounds. The Se@CeO2 NPs serve both as nanoenzymes and photosensitizers(PS). As nanoenzymes, they exhibit catalase and superoxide dismutase activities, converting hydrogen peroxide and superoxide anions into oxygen. As a PS, it synergizes with oxygen under NIR irradiation to rapidly produce singlet oxygen. Additionally, Se modification enhances the PDT effects by disrupting bacterial antioxidant systems. In vitro and in vivo experiments revealed that the ROS balance platform polarizes M1-type macrophages to M2-type macrophages, altering the wound microenvironment from proinflammatory to prohealing. RNA sequencing revealed that this hydrogel accelerated the reconstruction of the vascular network of the wound by activating the PI3K/AKT pathway and increasing VEGF secretion.This strategy is believed to be beneficial not only for infected wounds but also for treating other conditions that involve the regulation of reactive oxygen species, such as tumors and bacterial infections.
Collapse
Affiliation(s)
- Mengtian Wang
- The Second Affiliated Hospital of Chongqing Medical University International Medical College of Chongqing Medical University, Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yangkun Liu
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Shuqing Yang
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400030, China
| | - Xuanbing Wang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Qindan Duan
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Jiankai Liu
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Xudong Tan
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Linjing Long
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Siyi Liu
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yawen Xiao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhao Li
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Changhao Han
- Department of Orthopaedics Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, Shanghai, 200233, China
| | - Yaoxing Yi
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yuchan Zhang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Guixue Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guangchao Zang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
- Academic Affairs Office of the Second Affiliated Hospital of Chongqing Medical University Jinfeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
16
|
Su X, Geng X, Zhang Y, Shi Y, Zhao L. Microenvironmental pH modulating oxygen self-boosting microalgal prodrug carboxymethyl chitosan/hyaluronic acid/puerarin hydrogel for accelerating wound healing in diabetic rats. Int J Biol Macromol 2024; 282:136669. [PMID: 39437940 DOI: 10.1016/j.ijbiomac.2024.136669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Chronic diabetic wounds are characterized by a range of detrimental features, including hypoxia, elevated levels of reactive oxygen species, impaired angiogenesis, chronic inflammation, and an increased susceptibility to bacterial infections. We have developed an innovative multifunctional hydrogel system based on carboxymethyl chitosan, which incorporates embedded microalgae PCC7942 along with hyaluronic acid and puerarin, termed PCC7942@carboxymethyl chitosan/hyaluronic acid/puerarin hydrogel. It demonstrated outstanding capabilities in exudate absorption, mechanical flexibility, hemostatic action, and antibacterial efficacy. Furthermore, it effectively modulated the pH of wound microenvironment through the hydrolysis of amide bonds, thereby establishing a favorable low-pH microenvironment. Microalgae in hydrogel covered in the wound exhibited stable and continuous oxygen production within 24 h, with more efficiency in dissolved oxygen penetration through skin. Furthermore, prodrugs such as hyaluronic acid and puerarin from hydrogel displayed the controlled release behavior and facilitated the fast and enhanced accumulation of drugs at wound site, thereby accelerating the process of wound healing via enhanced angiogenesis and anti-inflammation effects. In summary, the healing-promoting effect of PCC7942@carboxymethyl chitosan/hyaluronic acid/puerarin hydrogel in type 1 diabetic rats can be attributed to the synergistic effects of microalgae, hyaluronic acid, and puerarin, which collectively accelerated wound healing rate and improved the quality of wound recovery.
Collapse
Affiliation(s)
- Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China
| | - Xinrong Geng
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China
| | - Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
17
|
Wang Y, Guo W, Zhang K, Liu Z, Dai X, Qiao Z, Ding X, Zhao N, Xu FJ. Biomimetic Electrodynamic Metal-Organic Framework Nanosponges for Augmented Treatment of Biofilm Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408442. [PMID: 39422163 DOI: 10.1002/advs.202408442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Electrodynamic therapy (EDT) is a promising alternative approach for antibacterial therapy, as reactive oxygen species (ROS) are produced efficiently in response to an electric field without relying on endogenous H2O2 and O2. However, the inherent toxicity of metallic catalysts and numerous bacterial toxins during the therapeutic process still hinder its development. Herein, biomimetic metal-organic (MOF@EV) nanosponges composed of ginger-derived extracellular vesicles (EVs), and electrodynamic metal-organic frameworks (MOFs) are developed for the eradication of bacterial infections and the absorption of toxins. The prolonged circulation time of MOF@EV in vivo facilitates their accumulation at infection sites. More interestingly, MOF@EV can behave as nanosponges and effectively prevent host cells from binding to bacterial toxins, thereby reducing damage to cells. Subsequently, the MOF@EV nanosponges are discovered to work as electro-sensitizers, which is confirmed through both theoretical calculation and experimental verification. As a result, ROS is continuously produced under the electric field to achieve effective EDT-mediated bacterial eradication. Meanwhile, the treatment process of MOF@EV in vivo is visualized in mice infected with luciferase-expressing Staphylococcus aureus (S. aureus), and excellent biofilm eradication capacity and detoxification efficiency are demonstrated in a subcutaneous abscess model. This work provides a promising strategy for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yanmin Wang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Guo
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| | - Zhiwen Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuangzhuang Qiao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Li Z, Chen L, Yang S, Han J, Zheng Y, Chen Z, Shi X, Yang J. Glucose and pH dual-responsive hydrogels with antibacterial, reactive oxygen species scavenging, and angiogenesis properties for promoting the healing of infected diabetic foot ulcers. Acta Biomater 2024:S1742-7061(24)00612-3. [PMID: 39424021 DOI: 10.1016/j.actbio.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The healing process of diabetic foot ulcers is challenging due to the presence of a complex and severe inflammatory microenvironment, characterized by hyperglycemia, low pH, susceptibility to infection, vascular dysfunction, and over-expression of reactive oxygen species (ROS), which can potentially lead to amputation or even mortality. Herein, a glucose and pH dual-responsive hydrogel was designed and prepared by crosslinking phenylboronic acid-grafted quaternary chitosan (QF, 4 wt%) with dopamine-grafted oxidized hyaluronic acid (OD, 5 wt%) through phenylboronation, schiff-base reaction, and other techniques. The multifunctional QO/@PV@AB7 hydrogel was prepared by incorporating pravastatin-loaded chitosan nanoparticles (CSNPs@PV, 2 mg/mL) and antimicrobial peptide AMP-AB7 loaded silica nanoparticles (SiO2NPs@AB7, 0.5 mg/mL). The results demonstrate that the QO/@PV@AB7 hydrogel exhibits good responsiveness to acidic conditions and high glucose levels, while effectively scavenging various types of ROS. Moreover, it exerted protective effects against oxidative stress on cells, enhanced HUVECs viability, and promoted angiogenesis. Notably, the QO/@PV@AB7 hydrogel displayed potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli. Additionally, in an MRSA-infected rat model of diabetic foot wounds, administration of the QO/@PV@AB7 hydrogel led to increased secretion of pro-angiogenic factors such as vascular endothelial nitric oxide synthase (eNOS), vascular endothelial-generating factor (VEGF), and endothelial cell adhesion molecule (CD31). Furthermore, the hydrogel significantly reduced the levels of inflammatory factors such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), while simultaneously increasing the levels of anti-inflammatory cytokines such as interleukin-10 (IL-10). The findings suggest that multifunctional hydrogels incorporating PV@CSNPs and SiO2NPs@AB7 demonstrate promising potential as a therapeutic approach for the treatment of diabetic foot. STATEMENT OF SIGNIFICANCE: Here, a glucose and pH dual-responsive QO/@PV@AB7 hydrogel with antimicrobial and angiogenesis-promoting properties was developed for the treatment of infected wounds in diabetic feet. Our findings demonstrate that the proposed hydrogel exhibits good responsiveness, effectively scavenges various types of reactive oxygen species (DPPH, O2-, -OH, and ABTS+), provides protection against oxidative stress, enhances HUVECs cell viability, and promotes angiogenesis. Notably, it also demonstrates potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and E. coli. Additionally, in vivo experiments demonstrated that the hydrogel exhibited accelerated wound healing in MRSA-infected diabetic foot ulcers, with a reduction of four days compared to the control group.
Collapse
Affiliation(s)
- Zhendong Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Longhui Chen
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Shasha Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Zelong Chen
- Department of Biomedical Engineering, 900th Hospital of Joint Logistics Support Force, No. 156 West Second Ring Road, Fuzhou 350025, China.
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
19
|
Jin X, Wei C, Li K, Yin P, Wu C, Zhang W. Polyphenol-mediated hyaluronic acid/tannic acid hydrogel with short gelation time and high adhesion strength for accelerating wound healing. Carbohydr Polym 2024; 342:122372. [PMID: 39048222 DOI: 10.1016/j.carbpol.2024.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
Wound healing is a complex process involving a complicated interplay between numerous cell types and vascular systems. Hyaluronic acid (HA)-based hydrogel facilitates wound healing, and is involved in all processes. However, slow gelation speed and weak adhesion strength limit its ability to form a stable physical barrier quickly. Herein, we propose a HA-based composite hydrogel as the wound dressing based on oxidative coupling reaction. Tannic acid and dopamine-coated carbon particles (DCPs) containing abundant phenolic hydroxyl groups are incorporated into the HA-based hydrogel for increasing the number of crosslinking sites of oxidative coupling of the hydrogel and enhancing adhesion through the formation of covalent bonds and hydrogen bonds between hydrogel and wound sites. The composite hydrogel exhibits short gelation time (<6 s) and high adhesion strength (>8.1 kPa), which are superior to the references and commercial products of its kind. The in vitro experiments demonstrate that the hydrogel has low hemolytic reaction, negligible cytotoxicity, and the ability to promote fibroblast proliferation and migration. The in vivo full-thickness skin defect model experiments demonstrate that the hydrogel can accelerate wound healing under mild photothermal stimulation of DCPs by reducing inflammation, relieving tissue hypoxia, and promoting angiogenesis and epithelialization.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chengxiong Wei
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kai Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peinan Yin
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
20
|
Li S, Luo M, Li J, Huang Q, Lei B. Sprayable Nanocomposites Hydrogel for Wound Healing and Skin Regeneration. Adv Healthc Mater 2024:e2402549. [PMID: 39400478 DOI: 10.1002/adhm.202402549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Wound management remains a critical challenge worldwide and imposes a huge financial burden on every nation. Hydrogels are promising for biomedical applications because of their extracellular matrix (ECM) like structure, good biocompatibility and multifunctional bioactivity. However, the poor mechanical properties and inconvenient operation of traditional hydrogels make it difficult to meet the complex and multifaceted needs of clinical practice. In recent years, the multifunctional nanocomposites hydrogel with especially sprayable feature have shown enhanced mechanical properties and facile operation, which enable their huge clinical applications value. A unique and powerful nanocomposite hydrogels (NCH) platform is developed by combining the many advantages of nanomaterials and hydrogels, which can achieve efficient trauma repair. This work reviews important advances on the preparation, functions and applications of sprayable NCH platforms. The challenges and future trends in the field with the aim of providing researchers with clarity on the past, present, and future of the emerging field of sprayable NCH are also proposed in detail.
Collapse
Affiliation(s)
- Sihua Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Meng Luo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710126, China
| | - Juntang Li
- Research Centre of Immunity, Trauma and Environment Medicine, Collaborative Innovation Centre of Medical Equipment, PLA Key Laboratory of Biological Damage Effect and Protection, Luoyang, 471031, China
| | - Qian Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
21
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
22
|
Huang Y, Li J, Yu Z, Li J, Liang K, Deng Y. Elaborated Bio-Heterojunction With Robust Sterilization Effect for Infected Tissue Regeneration via Activating Competent Cell-Like Antibacterial Tactic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414111. [PMID: 39397342 DOI: 10.1002/adma.202414111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT) has been a powerful strategy to combat bacterial infection. However, the compact cell membranes of pathogenic bacteria, especially drug-resistant bacteria, significantly diminish the efficiency of heat conduction and impede the entrance of reactive oxygen species (ROS) into cells, resulting in unsatisfactory sterilization. Enlightened by the membrane feature of competent bacteria, herein a MXene/CaO2 bio-heterojunction (MC bio-HJ) is elaborated to achieve rapid disinfection and promote infected tissue regeneration through activating competent cell-like antibacterial tactics. The bio-HJ first compels pathogenic bacteria to become a competent cell-like stage through the coordination of Ca2+ and membrane phospholipid, and potentiates the membrane permeability. Assisted by near infrared (NIR) irradiation, the heat and ROS generated from PTT and PDT of bio-HJ easily pass through bacterial membrane and drastically perturb bacterial metabolism, leading to rapid disinfection. More importantly, employing two in vivo infected model of mice, it have corroborated that the MC bio-HJs not only effectively accelerate MRSA-infected cutaneous regeneration, but also considerably boost osseointegration in an infected bone defect after coating on orthopedic implants. As envisaged, this work demonstrates a novel therapeutic tactic with robust antibacterial effect to remedy infected tissue regeneration through activating competent cell-like stage.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Jialun Li
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Zhaohan Yu
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Jiyao Li
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Kunneng Liang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
23
|
Liu J, Wang T, Liao C, Geng W, Yang J, Ma S, Tian W, Liao L, Cheng C. Constructing Electron-Rich Ru Clusters on Non-Stoichiometric Copper Hydroxide for Superior Biocatalytic ROS Scavenging to Treat Inflammatory Spinal Cord Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411618. [PMID: 39394880 DOI: 10.1002/adma.202411618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Indexed: 10/14/2024]
Abstract
Traumatic spinal cord injury (SCI) represents a complex neuropathological challenge that significantly impacts the well-being of affected individuals. The quest for efficacious antioxidant and anti-inflammatory therapies is both a compelling necessity and a formidable challenge. Here, in this work, the innovative synthesis of electron-rich Ru clusters on non-stoichiometric copper hydroxide that contain oxygen vacancy defects (Ru/def-Cu(OH)2), which can function as a biocatalytic reactive oxygen species (ROS) scavenger for efficiently suppressing the inflammatory cascade reactions and modulating the endogenous microenvironments in SCI, is introduced. The studies reveal that the unique oxygen vacancies promote electron redistribution and amplify electron accumulation at Ru clusters, thus enhancing the catalytic activity of Ru/def-Cu(OH)2 in multielectron reactions involving oxygen-containing intermediates. These advancements endow the Ru/def-Cu(OH)2 with the capacity to mitigate ROS-mediated neuronal death and to foster a reparative microenvironment by dampening inflammatory macrophage responses, meanwhile concurrently stimulating the activity of neural stem cells, anti-inflammatory macrophages, and oligodendrocytes. Consequently, this results in a robust reparative effect on traumatic SCI. It is posited that the synthesized Ru/def-Cu(OH)2 exhibits unprecedented biocatalytic properties, offering a promising strategy to develop ROS-scavenging and anti-inflammatory materials for the management of traumatic SCI and a spectrum of other diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Jinglun Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chengcheng Liao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jian Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shixing Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310016, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
24
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
25
|
Wang Z, Li M, Chen J, Zhang S, Wang B, Wang J. Immunomodulatory Hydrogel for Electrostatically Capturing Pro-inflammatory Factors and Chemically Scavenging Reactive Oxygen Species in Chronic Diabetic Wound Remodeling. Adv Healthc Mater 2024:e2402080. [PMID: 39380409 DOI: 10.1002/adhm.202402080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Diabetic wound exhibits the complex characteristics involving continuous oxidative stress and excessive expression of pro-inflammatory cytokines to cause a long-term inflammatory microenvironment. The repair healing of chronic diabetic wounding is tremendously hindered due to persistent inflammatory reaction. To address the aforementioned issues, here, a dual-functional hydrogel is designed, consisting of N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1, 3-diaminium (TSPBA) modified polyvinyl alcohol (PVA) and methacrylamide carboxymethyl chitosan (CMCSMA) can not only electrostatically adsorb proinflammatory cytokines of IL1-β and TNF-α, but can also chemically scavenge the excessive reactive oxygen species (ROS) in situ. Both in vitro and in vivo evaluations verify that the negatively charged and ROS-responsive hydrogel (NCRH) can effectively modulate the chronic inflammatory microenvironment of diabetic wounds and significantly enhance wound remodeling. More importantly, the well-designed NCRH shows a superior skin recovery in comparison with the commercial competitor product of wound dressing. Consequently, the current work highlights the need for new strategies to expedite the healing process of diabetic wounds and offers a wound dressing material with immunomodulation.
Collapse
Affiliation(s)
- Zihao Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Mengyu Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jia Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
26
|
Wang Y, Tang S, Jiang L, Yuan Z, Zhang Y. A review of lignin application in hydrogel dressing. Int J Biol Macromol 2024; 281:135786. [PMID: 39366610 DOI: 10.1016/j.ijbiomac.2024.135786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the most abundant natural aromatic polymer in the world. Currently, researchers have developed a number of lignin-based composite materials that are widely used in various fields, including industry, agriculture and medicine. Especially in recent years, lignin has attracted great interest as a high-value product for biomedical applications. Due to its antioxidant, antibacterial, adhesive and other properties, lignin is a promising candidate for the development of hydrogel dressings. However, there is no comprehensive overview of the application of lignin-based hydrogel dressings. In this review, lignin-based hydrogel skin dressings were first presented, and the preparation methods of physical and chemical crosslinking in lignin-based hydrogel dressings were discussed. In addition, various functional and environmentally responsive lignin-based hydrogel dressings were primarily reviewed. Finally, the prospects for the development of novel multifunctional lignin-based hydrogel dressings in the future were presented. In conclusion, this review provided a timely and comprehensive summary of the latest advances in the use of lignin as a biomaterial for hydrogel dressings, which would provide valuable guidance for the further development of lignin-based hydrogels.
Collapse
Affiliation(s)
- Yuqing Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China.
| | - Zhu Yuan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
27
|
Wang H, Song F, Qi X, Zhang X, Ma L, Shi D, Bai X, Dou S, Zhou Q, Wei C, Zhang BN, Wang T, Shi W. Penetrative Ionic Organic Molecular Cage Nanozyme for the Targeted Treatment of Keratomycosis. Adv Healthc Mater 2024; 13:e2401179. [PMID: 38895924 DOI: 10.1002/adhm.202401179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Keratomycosis, caused by pathogenic fungi, is an intractable blinding eye disease. Corneal penetration is an essential requirement for conventional antifungal medications to address keratomycosis. Due to the distinctive anatomical and physiological structure of the cornea, the therapeutic efficacy is hampered by the inadequate penetration capacity. Despite the emergence of diverse antifungal drug delivery systems and advanced antifungal nanomaterials, it has remained challenging to achieve corneal penetration over the past decade. This study fabricates a penetrative ionic organic molecular cage-based nanozyme (OMCzyme) for treating keratomycosis. The synthesis of OMCzyme involved two steps. Initially, the ionic OMC is synthesized by a [2+3] cycloimination reaction of triformylphloroglucinol and 2,3-diaminopropionic acid. Subsequently, OMCzyme is fabricated by coordination of Fe2⁺ with carboxyl anions and phenolic hydroxyls in the organic cage, and further deposition of silver nanoparticles on the surface of OMC-Fe complex. The as-prepared OMCzyme demonstrates excellent water dispersion, peroxidase-like activity, in vitro and in vivo biocompatibility, and corneal penetration. Notably, the nanozyme displays targeted antifungal activity, effectively combating Fusarium solani with negligible cytotoxicity toward human corneal epithelial cells. The hybrid mimic is further demonstrated to be effective in treating keratomycosis in mice, indicating the potential of OMCzyme for curing fungal infectious diseases.
Collapse
Affiliation(s)
- Hongwei Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Fangying Song
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xia Qi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xiaoyu Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Li Ma
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Depeng Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xiaofei Bai
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Chao Wei
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Bi Ning Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| |
Collapse
|
28
|
Hu C, Hou B, Yang F, Huang X, Chen Y, Liu C, Xiao X, Zou L, Deng J, Xie S. Enhancing diabetic wound healing through anti-bacterial and promoting angiogenesis using dual-functional slow-release microspheres-loaded dermal scaffolds. Colloids Surf B Biointerfaces 2024; 242:114095. [PMID: 39018912 DOI: 10.1016/j.colsurfb.2024.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Bacterial infections and the degeneration of the capillary network comprise the primary factors that contribute to the delayed healing of diabetic wounds. However, treatment modalities that cater to effective diabetic wounds healing in clinical settings are severely lacking. Herein, a dual-functional microsphere carrier was designed, which encapsulates polyhexamethylene biguanide (PHMB) or recombinant human vascular endothelial growth factor (rhVEGF) together. The in vitro release experiments demonstrated that the use of the microspheres ensured the sustained release of the drugs (PHMB or rhVEGF) over a period of 12 days. Additionally, the integration of these controlled-release microspheres into a dermal scaffold (DS-PLGA@PHMB/rhVEGF) imbued both antibacterial and angiogenic functions to the resulting material. Accordingly, the DS-PLGA@PHMB/rhVEGF scaffold exhibited potent antibacterial properties, effectively suppressing bacterial growth and providing a conducive environment for wound healing, thereby addressing the drawbacks associated with the susceptibility of rhVEGF to deactivation in inflammatory conditions. Additionally, the histological analysis revealed that the use of the DS-PLGA@PHMB/rhVEGF scaffold accelerated the process of wound healing by inhibiting inflammatory reactions, stimulating the production of collagen formation, and enhancing angiogenesis. This provides a novel solution for enhancing the antibacterial and vascularization capabilities of artificial dermal scaffolds, providing a beacon of hope for improving diabetic wound healing.
Collapse
Affiliation(s)
- Chaotao Hu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China; Medical School, University of Chinese Academy of Sciences, Beijing 100010, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Beijing 100010, China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Fen Yang
- Department of Infectious Diseases, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Xiongjie Huang
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Yanming Chen
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Changxiong Liu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Xiangjun Xiao
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Lihua Zou
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China.
| | - Jun Deng
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China; Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing 400038, China.
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China.
| |
Collapse
|
29
|
Hu D, Long D, Xia T, Wang Y, Zhang S, Wang J, Shi X, Wang Y. Accelerated healing of intractable biofilm-infected diabetic wounds by trypsin-loaded quaternized chitosan hydrogels that disrupt extracellular polymeric substances and eradicate bacteria. Int J Biol Macromol 2024; 278:134677. [PMID: 39142478 DOI: 10.1016/j.ijbiomac.2024.134677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Complex and stubborn bacterial biofilm infections significantly hinder diabetic wound healing and threaten public health. Therefore, a dressing material that effectively clears biofilms and promotes wound healing is urgently required. Herein, we introduce a novel strategy for simultaneously dispersing extracellular polymeric substances and eradicating drug-resistant bacteria. We prepared an ultrabroad-spectrum and injectable quaternized chitosan (QCS) hydrogel loaded with trypsin, which degrades biofilm extracellular proteins. Increased temperature initiated QCS gelation to form the hydrogel, enabling the sustained release of trypsin and effective adherence of the hydrogel to irregularly shaped wounds. To reproduce clinical scenarios, biofilms formed by a mixture of Staphylococcus aureus (S. aureus), Methicillin-resistant S. aureus, and Pseudomonas aeruginosa were administered to the wounds of rats with streptozotocin-induced diabetes. Under these severe infection conditions, the hydrogel efficiently suppressed inflammation, promoted angiogenesis, and enhanced collagen deposition, resulting in accelerated healing of diabetic wounds. Notably, the hydrogel demonstrates excellent biocompatibility without cytotoxicity. In summary, we present a trypsin-loaded QCS hydrogel with tremendous clinical applications potential for the treatment of chronic infected wounds.
Collapse
Affiliation(s)
- Di Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Dakun Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Tian Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunhao Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Shicheng Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Jianjie Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer based Medical Materials, Wuhan 430072, China.
| |
Collapse
|
30
|
Fu YJ, Wang RK, Ma CY, Wang LY, Long SY, Li K, Zhao X, Yang W. Injectable Oxygen-Carrying Microsphere Hydrogel for Dynamic Regulation of Redox Microenvironment of Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403781. [PMID: 38850188 DOI: 10.1002/smll.202403781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Indexed: 06/10/2024]
Abstract
The delayed healing of infected wounds can be attributed to the increased production of reactive oxygen species (ROS) and consequent damages to vascellum and tissue, resulting in a hypoxic wound environment that further exacerbates inflammation. Current clinical treatments including hyperbaric oxygen therapy and antibiotic treatment fail to provide sustained oxygenation and drug-free resistance to infection. To propose a dynamic oxygen regulation strategy, this study develops a composite hydrogel with ROS-scavenging system and oxygen-releasing microspheres in the wound dressing. The hydrogel itself reduces cellular damage by removing ROS derived from immune cells. Simultaneously, the sustained release of oxygen from microspheres improves cell survival and migration in hypoxic environments, promoting angiogenesis and collagen regeneration. The combination of ROS scavenging and oxygenation enables the wound dressing to achieve drug-free anti-infection through activating immune modulation, inhibiting the secretion of pro-inflammatory cytokines interleukin-6, and promoting tissue regeneration in both acute and infected wounds of rat skins. Thus, the composite hydrogel dressing proposed in this work shows great potential for dynamic redox regulation of infected wounds and accelerates wound healing without drugs.
Collapse
Affiliation(s)
- Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rao-Kaijuan Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng-Ye Ma
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li-Ya Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Si-Yu Long
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Zhao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
31
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Jiang N, Liu X, Sui B, Wang J, Liu X, Zhang Z. Using Hybrid MnO 2-Au Nanoflowers to Accelerate ROS Scavenging and Wound Healing in Diabetes. Pharmaceutics 2024; 16:1244. [PMID: 39458576 PMCID: PMC11509962 DOI: 10.3390/pharmaceutics16101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: Excessive reactive oxygen species (ROS) in diabetic wounds are major contributors to chronic wounds and impaired healing, posing significant challenges in regenerative medicine. Developing innovative drug delivery systems is crucial to address these issues by modifying the adverse microenvironment and promoting effective wound healing. Methods: Herein, we designed a novel drug delivery platform using manganese dioxide nanoflower hybridized gold nanoparticle composites (MnO2-Au) synthesized via a hydrothermal reaction, and investigated the potential of MnO2-Au nanoflowers to relieve the high oxidative stress microenvironment and regulate diabetic wound tissue healing. Results: This hybrid material demonstrated superior catalytic activity compared to MnO2 alone, enabling the rapid decomposition of hydrogen peroxide and a substantial reduction in ROS levels within dermal fibroblasts. The MnO2-Au nanoflowers also facilitated enhanced dermal fibroblast migration and Col-I expression, which are critical for tissue regeneration. Additionally, a hydrogel-based wound dressing incorporating MnO2-Au nanoflowers was developed, showing its potential as an intelligent drug delivery system. This dressing significantly reduced oxidative stress, accelerated wound closure, and improved the quality of neonatal epithelial tissue regeneration in a diabetic rat skin defect model. Conclusions: Our findings underscore the potential of MnO2-Au nanoflower-based drug delivery systems as a promising therapeutic approach for chronic wound healing, particularly in regenerative medicine.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Oral and Craniomaxillofacial Science, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Xinwei Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiale Wang
- College of Science, Donghua University, Shanghai 201620, China;
- Shanghai Institute of Intelligent Electronics and Systems, Donghua University, Shanghai 201620, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; (X.L.); (B.S.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zun Zhang
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| |
Collapse
|
33
|
Xue TT, Cha HJ, Liu QK, Yang D, Zhang Z, Jiang JS, Song JK, Wang MX, Shen F, Zheng Q, Kuai L, Ru Y, Li X, Li B. Sirtuin-6 knockout causes exacerbated stalled healing of diabetic ulcers in mice. Biochem Biophys Res Commun 2024; 726:150235. [PMID: 38908345 DOI: 10.1016/j.bbrc.2024.150235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Diabetic ulcers (DUs) are characterized by chronic inflammation and delayed re-epithelialization, with a high incidence and weighty economic burden. The primary therapeutic strategies for refractory wounds include surgery, non-invasive wound therapy, and drugs, while the optimum regimen remains controversial. Sirtuin-6 (SIRT6) is a histone deacetylase and a key epigenetic factor that exerts anti-inflammatory and pro-proliferatory effects in wound healing. However, the exact function of SIRT6 in DUs remains unclear. METHODS We generated tamoxifen-inducible SIRT6 knockout mice by crossing SIRT6flox/flox homozygous mice with UBC-creERT2+ transgenic mice. Systemic SIRT6 null mice, under either normal or diabetic conditions, were utilized to assess the effects of SIRT6 in DUs treatment. Gene and protein expressions of SIRT6 and inflammatory cytokines were measured by Western blotting and RT-qPCR. Histopathological examination confirmed the altered re-epithelialization (PCNA), inflammation (NF-κB p50 and F4/80), and angiogenesis (CD31) markers during DUs restoration. RESULTS Knockout of SIRT6 inhibited the healing ability of DUs, presenting attenuated re-epithelialization (PCNA), exacerbated inflammation responses (NF-κB p50, F4/80, Il-1β, Tnf-α, Il-6, Il-10, and Il-4), and hyperplasia vascular (CD31) compared with control mice. CONCLUSIONS SIRT6 could boost impaired wound healing through improving epidermal proliferation, inflammation, and angiogenesis. Our study highlighted the therapeutic potential of the SIRT6 agonist for DUs treatment.
Collapse
Affiliation(s)
- Ting-Ting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hui-Jung Cha
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qing-Kai Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Dan Yang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ming-Xia Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
34
|
Jiang Q, Qin X, Wang Z, Chen C, Dai W, Wang Z, Miao X, Jiang Z, Zhang Y, Gao C, Xi Y, Yang G. Hyperbranched Poly-l-Lysine Modified Titanium Surface With Enhanced Osseointegration, Bacteriostasis, and Anti-Inflammatory Properties for Implant Application: An Experimental In Vivo Study. Clin Oral Implants Res 2024. [PMID: 39262294 DOI: 10.1111/clr.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES This study aimed to explore multiple effects of hyperbranched poly-l-lysine (HBPL) titanium (Ti) surfaces on osseointegration, bacteriostasis, and anti-inflammation across three different animal models. METHODS Ti surfaces were covalently modified with HBPL, with uncoated surfaces as controls. Characterization included scanning electron microscopy (SEM) and surface chemistry and elemental analysis (EDX). Ti and Ti-HBPL implants were placed in conventional canine edentulous sites, post-operative infection canine edentulous sites, and diabetic rat tibias. Implants from canine edentulous models were analyzed using micro-CT and histomorphometry to assess osseointegration at 8 weeks. Post-operative infection beagles were used to evaluate antibacterial efficacy through clinical parameters and bacterial cultures at 1 week. In diabetic rats, micro-CT and histomorphometry were performed at 8 weeks. RESULTS HBPL was uniformly grafted on Ti-HBPL surfaces. Ti-HBPL surfaces showed higher bone volume/total volume (BV/TV, p < 0.001), bone-implant contact (BIC%, p < 0.001), and trabecular number (Tb.N, p < 0.01) in beagles. Besides, it displayed higher BIC% (p < 0.001) and bone area fraction occupancy (BAFO%, p < 0.01) in hard tissue sections. In an infected model, Ti-HBPL surfaces exhibited lower bleeding on probing (BOP, p < 0.001), and plaque index (DI, p < 0.01), with reduced bacterial colony formation (p < 0.001) compared to the control group. In diabetic rats, Ti-HBPL surfaces showed an increase in BV/TV (p < 0.01) and Tb.N (p < 0.001), downregulated TNF-α and IL-1β (p < 0.01), and upregulated IL-10 (p < 0.01) and osteocalcin (OCN) expression (p < 0.01). CONCLUSIONS HBPL-Ti surfaces demonstrated enhanced osseointegration, bacteriostasis, and anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Qifeng Jiang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiaoru Qin
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chaozhen Chen
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wei Dai
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhikang Wang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiaoyan Miao
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jiang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanmin Zhang
- Department of Stomatology, Integrated Traditional and Western Medicine Hospital of Linping District, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Xi
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Guoli Yang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
35
|
Sun L, Hu J, Yang Y, Wang Y, Wang Z, Gao Y, Nie Y, Liu C, Kan H. ChatGPT Combining Machine Learning for the Prediction of Nanozyme Catalytic Types and Activities. J Chem Inf Model 2024; 64:6736-6744. [PMID: 38829968 DOI: 10.1021/acs.jcim.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The design of nanozymes with superior catalytic activities is a prerequisite for broadening their biomedical applications. Previous studies have exerted significant effort in theoretical calculation and experimental trials for enhancing the catalytic activity of nanozyme. Machine learning (ML) provides a forward-looking aid in predicting nanozyme catalytic activity. However, this requires a significant amount of human effort for data collection. In addition, the prediction accuracy urgently needs to be improved. Herein, we demonstrate that ChatGPT can collaborate with humans to efficiently collect data. We establish four qualitative models (random forest (RF), decision tree (DT), adaboost random forest (adaboost-RF), and adaboost decision tree (adaboost-DT)) for predicting nanozyme catalytic types, such as peroxidase, oxidase, catalase, superoxide dismutase, and glutathione peroxidase. Furthermore, we use five quantitative models (random forest (RF), decision tree (DT), Support Vector Regression (SVR), gradient boosting regression (GBR), and fully connected deep neuron network (DNN)) to predict nanozyme catalytic activities. We find that GBR model demonstrates superior prediction performance for nanozyme catalytic activities (R2 = 0.6476 for Km and R2 = 0.95 for Kcat). Moreover, an open-access web resource, AI-ZYMES, with a ChatGPT-based nanozyme copilot is developed for predicting nanozyme catalytic types and activities and guiding the synthesis of nanozyme. The accuracy of the nanozyme copilot's responses reaches more than 90% through the retrieval augmented generation. This study provides a new potential application for ChatGPT in the field of nanozymes.
Collapse
Affiliation(s)
- Liping Sun
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jili Hu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yongkang Wang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijian Wang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yong Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yiqi Nie
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Can Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| |
Collapse
|
36
|
Wei YJ, Chen H, Zhou ZW, Liu CX, Cai CX, Li J, Yu XQ, Zhang J, Liu YH, Wang N. Kill Two Birds with One Stone: Dual-Metal MOF-Nanozyme-Decorated Hydrogels with ROS-Scavenging, Oxygen-Generating, and Antibacterial Abilities for Accelerating Infected Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403679. [PMID: 39240068 DOI: 10.1002/smll.202403679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Indexed: 09/07/2024]
Abstract
Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.
Collapse
Affiliation(s)
- Yun-Jie Wei
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Heng Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zi-Wen Zhou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Chun-Xiu Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Chun-Xian Cai
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jing Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
37
|
Liu Y, Zhou M, Xu M, Wang X, Zhang Y, Deng Y, Zhang Z, Jiang J, Zhou X, Li C. Reprogramming monocytes into M2 macrophages as living drug depots to enhance treatment of myocardial ischemia-reperfusion injury. J Control Release 2024; 374:639-652. [PMID: 39208931 DOI: 10.1016/j.jconrel.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Delivering therapeutic agents efficiently to inflamed regions remains an intractable challenge following myocardial ischemia-reperfusion injury (MI/RI) due to the transient nature of the enhanced permeability and retention effect, which disappears after 24 h. Leveraging the inflammation-homing and plasticity properties of circulating monocytes (MN) as hitchhiking carriers and further inducing their polarization into anti-inflammatory phenotype macrophages upon reaching the inflamed sites is beneficial for MI/RI therapy. Herein, DSS/PB@BSP nanoparticles capable of clearing reactive oxygen species and inhibiting inflammation were developed by employing hollow Prussian blue nanoparticles (PB) as carriers to encapsulate betamethasone sodium phosphate (BSP) and further modified with dextran sulfate sodium (DSS), a targeting ligand for the scavenger receptor on MN. This formulation was internalized into MN as living cell drug depots, reprogramming them into anti-inflammation type macrophages to inhibit inflammation. In vitro assessments revealed the successful construction of the nanoparticle. In a murine MI/RI model, circulating MN laden with these nanoparticles significantly enhanced drug delivery and accumulation at the cardiac injury site, exhibiting favorable therapeutic ability and promoting M2-biased differentiation. Our study provides an effective approach with minimally invasion and biosecurity that makes this nanoplatform as a promising candidate for immunotherapy and clinical translation in the treatment of MI/RI.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yingying Zhang
- Department of Anesthesiology, The affiliated hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
38
|
Saleem M, Syed Khaja AS, Moursi S, Altamimi TA, Alharbi MS, Usman K, Khan MS, Alaskar A, Alam MJ. Narrative review on nanoparticles based on current evidence: therapeutic agents for diabetic foot infection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6275-6297. [PMID: 38639898 DOI: 10.1007/s00210-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Diabetes's effects on wound healing present a major treatment challenge and increase the risk of amputation. When traditional therapies fail, new approaches must be investigated. With their submicron size and improved cellular internalisation, nanoparticles present a viable way to improve diabetic wound healing. They are attractive options because of their innate antibacterial qualities, biocompatibility, and biodegradability. Nanoparticles loaded with organic or inorganic compounds, or embedded in biomimetic matrices such as hydrogels, chitosan, and hyaluronic acid, exhibit excellent anti-inflammatory, antibacterial, and antioxidant properties. Drug delivery systems (DDSs)-more precisely, nanodrug delivery systems (NDDSs)-use the advantages of nanotechnology to get around some of the drawbacks of traditional DDSs. Recent developments show how expertly designed nanocarriers can carry a variety of chemicals, transforming the treatment of diabetic wounds. Biomaterials that deliver customised medications to the wound microenvironment demonstrate potential. Delivery techniques for nanomedicines become more potent than ever, overcoming conventional constraints. Therapeutics for diabetes-induced non-healing wounds are entering a revolutionary era thanks to precisely calibrated nanocarriers that effectively distribute chemicals. This review highlights the therapeutic potential of nanoparticles and outlines the multifunctional nanoparticles of the future that will be used for complete wound healing in diabetics. The investigation of novel nanodrug delivery systems has the potential to revolutionise diabetic wound therapy and provide hope for more efficient and focused therapeutic approaches.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia.
| | | | - Soha Moursi
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Tahani Almofeed Altamimi
- Department of Family Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Kauser Usman
- Department of Internal Medicine, King George's Medical University, Lucknow, India
| | - Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Alwaleed Alaskar
- Department of Diabetes and Endocrinology, King Salman Specialist Hospital, 55211, Hail, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, 55211, Hail, Saudi Arabia
| |
Collapse
|
39
|
Bu Q, Jiang D, Yu Y, Deng Y, Chen T, Xu L. Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus Infection. Drug Resist Updat 2024; 76:101102. [PMID: 38936006 DOI: 10.1016/j.drup.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Because of the extremely complexed microenvironment of drug-resistant bacterial infection, nanomaterials with both bactericidal and immuno-modulating activities are undoubtedly the ideal modality for overcoming drug resistance. Herein, we precisely engineered the surface chemistry of selenium nanoparticles (SeNPs) using neutral (polyvinylpyrrolidone-PVP), anionic (letinan-LET) and cationic (chitosan-CS) surfactants. It was found that surface chemistry greatly influenced the bioactivities of functionalized SeNPs, their interactions with methicillin-resistant Staphylococcus aureus (MRSA), immune cells and metabolisms. LET-functionalized SeNPs with distinct metabolisms exhibited the best inhibitory efficacy compared to other kinds of SeNPs against MRSA through inducing robust ROS generation and damaging bacterial cell wall. Meanwhile, only LET-SeNPs could effectively activate natural kill (NK) cells, and enhance the phagocytic capability of macrophages and its killing activity against bacteria. Furthermore, in vivo studies suggested that LET-SeNPs treatment highly effectively combated MRSA infection and promoted wound healing by triggering much more mouse NK cells, CD8+ and CD4+ T lymphocytes infiltrating into the infected area at the early stage to efficiently eliminate MRSA in the mouse model. This study demonstrates that the novel functionalized SeNP with dual functions could serve as an effective antibacterial agent and could guide the development of next generation antibacterial agents.
Collapse
Affiliation(s)
- Qingyue Bu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Dan Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yangyang Yu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yunqing Deng
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| | - Ligeng Xu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
40
|
Li X, Zhang M, Feng J, Wang J, Wang K, Ju B, Wang X, Pang G. Mechanisms of Xuefu Zhuyu Tang in the Treatment of Diabetic Erectile Dysfunction in Rats Through the Regulation of Vascular Endothelial Function by CaSR/PLC/PKC and MEK/ERK/RSK Pathways. Am J Mens Health 2024; 18:15579883241277423. [PMID: 39434501 PMCID: PMC11497541 DOI: 10.1177/15579883241277423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 10/23/2024] Open
Abstract
Xuefu zhuyu Tang (XFZYT) is a classic formula used for promoting blood circulation and resolving blood stasis in Traditional Chinese Medicine. Clinical data have indicated that XFZYT plays a significant therapeutic role in diabetes-induced erectile dysfunction (DIED) disease, but the underlying mechanism remains elusive. Male Sprague-Dawley (SD) rats were randomly categorized into normal, model, and treatment groups. The diabetic rat model was established via intraperitoneal injection of streptozotocin. DIED rats were screened using apomorphine, and the number of erections was measured after 8 weeks of XFZYT treatment. Serum nitric oxide (NO) and endothelin-1 levels as well as penile tissue structure alterations were assessed by hematoxylin-eosin staining and electron microscopy. CaSR/PLC/PKC and MEK/ERK/RSK pathway-related proteins in the penile tissue were detected by western blotting (WB) analysis and polymerase chain reaction (PCR). Compared with the blank group, the model group rats showed a significant decrease in weight and erectile function. The pathological damage in the penile tissues of the model rats was indicated by a significantly decreased serum NO level and an increased endothelin-1 content. After treatment with XFZYT, the protein expression of CaSR, PLCβ1, PKCβ, MEK1, ERK1, and RSK1 in the penile tissue was significantly increased. Overall, the treatment group showed significant improvements in the evaluated indexes. In conclusion, this study revealed that XFZYT improves erectile function in diabetic rats, and the underlying mechanism might be linked with the regulation of CaSR/PLC/PKC and related molecules of the MEK/ERK/RSK pathway, which promotes the vascular endothelial diastolic effect.
Collapse
Affiliation(s)
- Xiao Li
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingzhao Zhang
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junlong Feng
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaifeng Wang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China
| | - Baojun Ju
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiangyu Wang
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guoming Pang
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China
| |
Collapse
|
41
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
42
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
43
|
Liang L, Jia M, Zhao M, Deng Y, Tang J, He X, Liu Y, Yan K, Yu X, Yang H, Li C, Li Y, Li T. Progress of Nanomaterials Based on Manganese Dioxide in the Field of Tumor Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8883-8900. [PMID: 39224196 PMCID: PMC11368147 DOI: 10.2147/ijn.s477026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
As a pivotal transition metal oxide, manganese dioxide (MnO2) has garnered significant attention owing to its abundant reserves, diverse crystal structures and exceptional performance. Nanosizing MnO2 results in smaller particle sizes, larger specific surface areas, optimized material characteristics, and expanded application possibilities. With the burgeoning research efforts in this field, MnO2 has emerged as a promising nanomaterial for tumor diagnosis and therapy. The distinctive properties of MnO2 in regulating the tumor microenvironment (TME) have attracted considerable interest, leading to a rapid growth in research on MnO2-based nanomaterials for tumor diagnosis and treatment. Additionally, MnO2 nanomaterials are also gradually showing up in the regulation of chronic inflammatory diseases. In this review, we mainly summarized the recent advancements in various MnO2 nanomaterials for tumor diagnosis and therapy. Furthermore, we discuss the current challenges and future directions in the development of MnO2 nanomaterials, while also envisaging their potential for clinical translation.
Collapse
Grants
- This work was supported by the Sichuan Science and Technology Program (grant numbers 2023NSFSC0620, 2022YFS0614, 2022YFS0622, 2022YFS0627), the Luzhou Municipal People’s Government-Southwest Medical University Joint Scientific Research Project (grant number 2023LZXNYDHZ003), the Open fund for Key Laboratory of Medical Electrophysiology of Ministry of Education (grant numbers KeyME-2023-07), the Youth Science Foundation Project of Southwest Medical University (grant numbers 2023QN075, 2022QN025), the Southwest Medical University Science and Technology Project (No.2021ZKMS034), the Hejiang County People’s Hospital-Southwest Medical University Joint Scientific Research Project (grant numbers 2023HJXNYD03, 2022HJXNYD03, 2022HJXNYD14), Chinese student innovation and entrepreneurship project (202310632027)
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Pharmacy, Hejiang County People’s Hospital, Luzhou, Sichuan, People’s Republic of China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nanchong Institute for Food and Drug Control, Nanchong, Sichuan, People’s Republic of China
| | - Min Zhao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hong Yang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Science and Technology department, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
44
|
Fang Z, He Q, Hu Y, Chen X, Li F, Cai X. Polydopamine-assisted smart bacteria-responsive hydrogel: Switchable antimicrobial and antifouling capabilities for accelerated wound healing. J Adv Res 2024:S2090-1232(24)00368-0. [PMID: 39168246 DOI: 10.1016/j.jare.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Wound infections and formation of biofilms caused by multidrug-resistant bacteria have constituted a series of wound deteriorated and life-threatening problems. The in situ resisting bacterial adhesion, killing multidrug-resistance bacteria, and releasing dead bacteria is strongly required to supply a gap of existing sterilization strategies. OBJECTIVES This study aims to present a facile approach to construct a bacteria-responsive hydrogel with switchable antimicrobial-antifouling properties through a "resisting-killing-releasing" method. METHODS The smart bacteria-responsive hydrogel was constructed by two-step immersion strategy: a simple immersion-coating process to construct Polydopamine (pDA) coatings on the surface of a gelatin-chitosan composite hydrogel and followed by grafting of bactericidal quaternary ammonium chitosan (QCS) as well as pH-responsive PMAA to this pDA coating. The in vitro antimicrobial activity, biocompatibility and the in vivo wound healing effects in a mouse MRSA-infected full-thickness defect model of the hydrogel were further evaluated. RESULTS Assisted by polydopamine coating, the pH-responsive PMAA and bactericidal QCS are successfully grafted onto a gelatin-chitosan composite hydrogel surface and hydrogels maintain the adequate mechanical properties. At physiological conditions, the PMAA hydration layer endows the hydrogel with resistance to initial bacterial attachment. Once bacteria colonize and acidize local environment, the swelling PMAA chains tend to collapse then expose the bactericidal QCS, realizing the on-demand kill bacteria. Moreover, the dead bacteria can be released and the hydrogel will resume the resistance due to hydrophilicity of PMAA at increased pH, endowing the surface renewable ability. In vitro and in vivo studies demonstrate the favorable biocompatibility and wound healing capacity of hydrogels that can inhibit infection and further facilitate granulation tissue, angiogenesis, and collagen synthesis. CONCLUSION This strategy provides a novel methodology for the development and design of smart wound dressing to combat multidrug-resistant bacteria infections.
Collapse
Affiliation(s)
- Zheng Fang
- Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingyan He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanyu Hu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fan Li
- Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
45
|
Yu D, Chen L, Yan T, Zhang Y, Sun X, Lv G, Zhang S, Xu Y, Li C. Enhancing Infected Diabetic Wound Healing through Multifunctional Nanocomposite-Loaded Microneedle Patch: Inducing Multiple Regenerative Sites. Adv Healthc Mater 2024; 13:e2301985. [PMID: 38776526 DOI: 10.1002/adhm.202301985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Infected diabetic wound (DW) presents a prolonged and challenging healing process within the field of regenerative medicine. The effectiveness of conventional drug therapies is hindered by their limited ability to reach deep tissues and promote adequate wound healing rates. Therefore, there is an imperative to develop drug delivery systems that can penetrate deep tissues while exhibiting multifunctional properties to expedite wound healing. In this study, w e devised a soluble microneedle (MN) patch made of γ-PGA, featuring multiple arrays, which w as loaded with core-shell structured nanoparticles (NPs) known as Ag@MSN@CeO2, to enhance the healing of infected DWs. The NP comprises a cerium dioxide (CeO2) core with anti-inflammatory and antioxidant properties, a mesoporous silica NP (MSN) shell with angiogenic characteristics, and an outermost layer doped with Ag to combat bacterial infections. W e demonstrated that the MN platform loaded with Ag@MSN@CeO2 successfully penetrated deep tissues for effective drug delivery. These MN tips induced the formation of multiple regenerative sites at various points, leading to antibacterial, reactive oxygen species-lowering, macrophage ecological niche-regulating, vascular regeneration-promoting, and collagen deposition-promoting effects, thus significantly expediting the healing process of infected DWs. Considering these findings, the multifunctional MN@Ag@MSN@CeO2 patch exhibits substantial potential for clinical applications in the treatment of infected DW.
Collapse
Affiliation(s)
- Daojiang Yu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Lei Chen
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Tao Yan
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Yuanyuan Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Guozhong Lv
- The Affiliated Hospital of Jiangnan University, Jiangsu, 214000, China
| | - Shuyu Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
46
|
Jin Y, Lu Y, Jiang X, Wang M, Yuan Y, Zeng Y, Guo L, Li W. Accelerated infected wound healing by probiotic-based living microneedles with long-acting antibacterial effect. Bioact Mater 2024; 38:292-304. [PMID: 38745591 PMCID: PMC11091528 DOI: 10.1016/j.bioactmat.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Delays in infected wound healing are usually a result of bacterial infection and local inflammation, which imposes a significant and often underappreciated burden on patients and society. Current therapies for chronic wound infection generally suffer from limited drug permeability and frequent drug administration, owing to the existence of a wound biofilm that acts as a barrier restricting the entry of various antibacterial drugs. Here, we report the design of a biocompatible probiotic-based microneedle (MN) patch that can rapidly deliver beneficial bacteria to wound tissues with improved delivery efficiency. The probiotic is capable of continuously producing antimicrobial substances by metabolizing introduced glycerol, thereby facilitating infected wound healing through long-acting antibacterial and anti-inflammatory effects. Additionally, the beneficial bacteria can remain highly viable (>80 %) inside MNs for as long as 60 days at 4 °C. In a mouse model of Staphylococcus aureus-infected wounds, a single administration of the MN patch exhibited superior antimicrobial efficiency and wound healing performance in comparison with the control groups, indicating great potential for accelerating infected wound closure. Further development of live probiotic-based MN patches may enable patients to better manage chronically infected wounds.
Collapse
Affiliation(s)
- Yinli Jin
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yun Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Jiang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqi Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yongnian Zeng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Chen LP, Wang XY, Ren MJ, Wang Y, Zhao JM, Qiang TT, Dong LY, Wang XH. Promoting the healing of infected diabetic wound by nanozyme-containing hydrogel with anti-bacterial inflammation suppressing, ROS-scavenging and oxygen-generating properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35458. [PMID: 39122663 DOI: 10.1002/jbm.b.35458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Bacterial infections already pose a significant threat to skin wounds, especially in diabetic patients who have difficulty healing wounds. However, wound or bacterial infections are known to produce excess reactive oxygen species (ROS), and hypoxia may further hinder wound healing and the development of chronic wounds. In this study, a multifunctional hydrogel for ROS scavenging and bacterial inhibition was developed by cross-linking polyvinyl alcohol (PVA) and sodium alginate (SA) with graphene oxide (GO) loaded with silver-platinum hybrid nanoparticles (GO@Ag-Pt). The PVA/SA hydrogel loaded with GO@Ag-Pt exhibited the ability to scavenge different types of ROS, generate O2, and kill a broad spectrum of bacteria in vitro. The silver-platinum hybrid nanoparticles significantly increased the antibacterial ability against Escherichia coli and Staphylococcus aureus compared with silver nanoparticles (AgNps). GO@Ag-Pt loaded hydrogel was effective in treating infections caused by S.aureus, thereby significantly promoting wound healing during the inflammatory phase. Hydrogel therapy significantly reduced the level of ROS and alleviated inflammation levels. Notably, our ROS-scavenging, antibacterial hydrogels can be used to effectively treat various types of wounds, including difficult-to-heal diabetic wounds with bacterial infections. Thus, this study proposes an effective strategy for various chronic wound healing based on ROS clearance and bacteriostatic hydrogels.
Collapse
Affiliation(s)
- Le-Ping Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin-Yu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ming-Jin Ren
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jia-Meng Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ti-Ti Qiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
48
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
49
|
He M, Wang Z, Xiang D, Sun D, Chan YK, Ren H, Lin Z, Yin G, Deng Y, Yang W. A H₂S-Evolving Alternately-Catalytic Enzyme Bio-Heterojunction with Antibacterial and Macrophage-Reprogramming Activity for All-Stage Infectious Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405659. [PMID: 38943427 DOI: 10.1002/adma.202405659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The disorder of the macrophage phenotype and the hostile by-product of lactate evoked by pathogenic infection in hypoxic deep wound inevitably lead to the stagnant skin regeneration. In this study, hydrogen sulfide (H2S)-evolving alternately catalytic bio-heterojunction enzyme (AC-BioHJzyme) consisting of CuFe2S3 and lactate oxidase (LOD) named as CuFe2S3@LOD is developed. AC-BioHJzyme exhibits circular enzyme-mimetic antibacterial (EMA) activity and macrophage re-rousing capability, which can be activated by near-infrared-II (NIR-II) light. In this system, LOD exhausts lactate derived from bacterial anaerobic respiration and generated hydrogen peroxide (H2O2), which provides an abundant stock for the peroxidase-mimetic activity to convert the produced H2O2 into germicidal •OH. The GPx-mimetic activity endows AC-BioHJzyme with a glutathione consumption property to block the antioxidant systems in bacterial metabolism, while the O2 provided by the CAT-mimetic activity can generate 1O2 under the NIR-II irradiation. Synchronously, the H2S gas liberated from CuFe2S3@LOD under the infectious micromilieu allows the reduction of Fe(III)/Cu(II) to Fe(II)/Cu(І), resulting in sustained circular EMA activity. In vitro and in vivo assays indicate that the CuFe2S3@LOD AC-BioHJzyme significantly facilitates the infectious cutaneous regeneration by killing bacteria, facilitating epithelialization/collagen deposition, promoting angiogenesis, and reprogramming macrophages. This study provides a countermeasure for deep infectious wound healing via circular enzyme-mimetic antibiosis and macrophage re-rousing.
Collapse
Affiliation(s)
- Miaomiao He
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuyao Wang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Danni Xiang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Department Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Yau Kai Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Huilin Ren
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhijie Lin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
50
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|