1
|
Song P, Wu Y, Fan M, Chen X, Dong M, Qiao W, Dong N, Wang Q. Folic acid modified silver nanoparticles promote endothelialization and inhibit calcification of decellularized heart valves by immunomodulation with anti-bacteria property. BIOMATERIALS ADVANCES 2024; 166:214069. [PMID: 39447240 DOI: 10.1016/j.bioadv.2024.214069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Xenogeneic decellularized heart valves (DHVs) have become one of the most commonly used scaffolds for tissue engineered heart valves (TEHVs) due to extensive resources and possessing the distinct three-layer structure similar to native heart valves. However, DHVs as scaffolds face the shortages such as poor mechanical properties, proneness to thrombosis and calcification, difficulty in endothelialization and chronic inflammatory responses etc., which limit their applications in clinic. In this work, we constructed a novel TEHV with immunomodulatory functions by loading folic acid modified silver nanoparticles (FS NPs) on DHVs to overcome these issues. The FS NPs preferentially targeted M1 macrophages and reduced their intracellular H2O2 level, resulting in polarizing them into M2 phenotype. The increased M2 macrophages facilitated to eliminate inflammation, recruit endothelial cells, and promote their proliferation and endothelialization by secreting relative factors. We founded that FS NPs with the size of 80 nm modified DHVs (FSD-80) performed optimally on cytocompatibility and regulating macrophage phenotype ability in vitro. In addition, the FSD-80 had excellent mechanical properties, hemocompatibility and anti-bacteria property. The results of the subcutaneous implantation in rats revealed that the FSD-80 also had good performance in regulating macrophage phenotype, promoting endothelialization, remolding the extracellular matrix and anti-calcification in vivo. Therefore, FS NPs-loaded DHVs possess immunomodulatory functions, which is a feasible and promising strategy for constructing TEHVs with excellent comprehensive performance.
Collapse
Affiliation(s)
- Peng Song
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Mengna Dong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Yang F, Du X, Zhao Z, Guo G, Wang Y. Impact of Diabetic Condition on the Remodeling of In Situ Tissue-Engineered Heart Valves. ACS Biomater Sci Eng 2024; 10:6569-6580. [PMID: 39324571 DOI: 10.1021/acsbiomaterials.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Most in situ tissue-engineered heart valve (TEHV) evaluation studies are conducted in a healthy physical environment, which cannot accurately reflect the specific characteristics of patients. In this study, we established a diabetic rabbit model and implanted decellularized extracellular matrix (dECM) into the abdominal aorta of rabbits through interventional surgery with a follow-up period of 8 weeks. The results indicated that dECM implants in diabetic rabbits exhibited poorer endothelialization and more severe fibrosis compared to those in healthy animals. Furthermore, mechanistic studies revealed that high glucose induced endothelial cell (EC) apoptosis and impeded their proliferation and migration, accompanied by an increase in reactive oxygen species (ROS) concentration and a decrease in the nitric oxide (NO) level. High glucose also led to elevated ROS levels and an increased expression of inflammatory factors and transforming growth factor β1 (TGF-β1) in macrophages, contributing to fibrosis. These findings suggest that oxidative-stress-mediated mechanisms are likely the primary pathways affecting heart valve repair and regeneration under diabetic conditions. Therefore, future design and evaluation of TEHVs may concern more patient-specific circumstances.
Collapse
Affiliation(s)
- Fan Yang
- Chengdu Medical College, Chengdu 610500, China
| | - Xingzhuang Du
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Snyder Y, Jana S. Innovative Substrate Design with Basement Membrane Components for Enhanced Endothelial Cell Function and Endothelization. Adv Healthc Mater 2024; 13:e2401150. [PMID: 39021293 DOI: 10.1002/adhm.202401150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Enhancing endothelial cell growth on small-diameter vascular grafts produced from decellularized tissues or synthetic substrates is pivotal for preventing thrombosis. While optimized decellularization protocols can preserve the structure and many components of the extracellular matrix (ECM), the process can still lead to the loss of crucial basement membrane proteins, such as laminin, collagen IV, and perlecan, which are pivotal for endothelial cell adherence and functional growth. This loss can result in poor endothelialization and endothelial cell activation causing thrombosis and intimal hyperplasia. To address this, the basement membrane's ECM is emulated on fiber substrates, providing a more physiological environment for endothelial cells. Thus, fibroblasts are cultured on fiber substrates to produce an ECM membrane substrate (EMMS) with basement membrane proteins. The EMMS then underwent antigen removal (AR) treatment to eliminate antigens from the membrane while preserving essential proteins and producing an AR-treated membrane substrate (AMS). Subsequently, human endothelial cells cultured on the AMS exhibited superior proliferation, nitric oxide production, and increased expression of endothelial markers of quiescence/homeostasis, along with autophagy and antithrombotic factors, compared to those on the decellularized aortic tissue. This strategy showed the potential of pre-endowing fiber substrates with a basement membrane to enable better endothelization.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Wang Y, Fu Y, Wang Q, Kong D, Wang Z, Liu J. Recent advancements in polymeric heart valves: From basic research to clinical trials. Mater Today Bio 2024; 28:101194. [PMID: 39221196 PMCID: PMC11364905 DOI: 10.1016/j.mtbio.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Valvular heart diseases (VHDs) have become one of the most prevalent heart diseases worldwide, and prosthetic valve replacement is one of the effective treatments. With the fast development of minimal invasive technology, transcatheter valves replacement has been exploring in recent years, such as transcatheter aortic valve replacement (TAVR) technology. In addition, basic research on prosthetic valves has begun to shift from traditional mechanical valves and biological valves to the development of polymeric heart valves. The polymeric heart valves (PHVs) have shown a bright future due to their advantages of longer durability, better biocompatibility and reduced cost. This review gives a brief history of the development of polymeric heart valves, provides a summary of the types of polymer materials suitable for heart leaflets and the emerging processing/preparation methods for polymeric heart valves in the basic research. Besides, we facilitate a deeper understanding of polymeric heart valve products that are currently in preclinical/clinical studies, also summary the limitations of the present researches as well as the future development trends. Hence, this review will provide a holistic understanding for researchers working in the field of prosthetic valves, and will offer ideas for the design and research of valves with better durability and biocompatibility.
Collapse
Affiliation(s)
- Yuanchi Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yulong Fu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, Nankai University School of Medicine, Tianjin 300071, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
5
|
Snyder Y, Mann FAT, Middleton J, Murashita T, Carney J, Bianco RW, Jana S. Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds. APPLIED MATERIALS TODAY 2024; 39:102323. [PMID: 39131741 PMCID: PMC11308761 DOI: 10.1016/j.apmt.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The clinical application of heart valve scaffolds is hindered by complications associated with the activation of valvular interstitial cell-like (VIC-like) cells and their transdifferentiation into myofibroblasts. This study aimed to examine several molecular pathway(s) that may trigger the overactive myofibroblast phenotypes in the implanted scaffolds. So, we investigated the influence of three molecular pathways - macrophage-induced inflammation, the TGF-β1-SMAD2, and WNT/β-catenin β on VIC-like cells during tissue engineering of heart valve scaffolds. We implanted electrospun heart valve scaffolds in adult sheep for up to 6 months in the right ventricular outflow tract (RVOT) and analyzed biomolecular (gene and protein) expression associated with the above three pathways by the scaffold infiltrating cells. The results showed a gradual increase in gene and protein expression of markers related to the activation of VIC-like cells and the myofibroblast phenotypes over 6 months of scaffold implantation. Conversely, there was a gradual increase in macrophage activity for the first three months after scaffold implantation. However, a decrease in macrophage activity from three to six months of scaffold tissue engineering suggested that immunological signal factors were not the primary cause of myofibroblast phenotype. Similarly, the gene and protein expression of factors associated with the TGF-β1-SMAD2 pathway in the cells increased in the first three months but declined in the next three months. Contrastingly, the gene and protein expression of factors associated with the WNT/β-catenin pathway increased significantly over the six-month study. Thus, the WNT/β-catenin pathway could be the predominant mechanism in activating VIC-like cells and subsequent myofibroblast phenotype.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| | - FA Tony Mann
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - John Middleton
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - Takashi Murashita
- Department of Surgery, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212
| | - John Carney
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
8
|
Li Y, Chen Z, Xia T, Wan H, Lu Y, Ding C, Zhang F, Shen Z, Pan S. The effect of bioactivity of airway epithelial cells using methacrylated gelatin scaffold loaded with exosomes derived from bone marrow mesenchymal stem cells. J Biomed Mater Res A 2024; 112:1025-1040. [PMID: 38363033 DOI: 10.1002/jbm.a.37687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The current evidence provides support for the involvement of bone marrow mesenchymal stem cells (BMSCs) in the regulation of airway epithelial cells. However, a comprehensive understanding of the underlying biological mechanisms remains elusive. This study aimed to isolate and characterize BMSC-derived exosomes (BMSC-Exos) and epithelial cells (ECs) through primary culture. Subsequently, the impact of BMSC-Exos on ECs was assessed in vitro, and sequencing analysis was conducted to identify potential molecular mechanisms involved in these interactions. Finally, the efficacy of BMSC-Exos was evaluated in animal models in vivo. In this study, primary BMSCs and ECs were efficiently isolated and cultured, and high-purity Exos were obtained. Upon uptake of BMSC-Exos, ECs exhibited enhanced proliferation (p < .05), while migration showed no difference (p > .05). Notably, invasion demonstrated significant difference (p < .05). Sequencing analysis suggested that miR-21-5p may be the key molecule responsible for the effects of BMSC-Exos, potentially mediated through the MAPK or PI3k-Akt signaling pathway. The in vivo experiments showed that the presence of methacrylated gelatin (GelMA) loaded with BMSC-Exos in composite scaffold significantly enhanced epithelial crawling in the patches in comparison to the pure decellularized group. In conclusion, this scheme provides a solid theoretical foundation and novel insights for the research and clinical application of tracheal replacement in the field of tissue engineering.
Collapse
Affiliation(s)
- Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Lu
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou University, Yangzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, China
| | - Ziqing Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Gene Pharma Co., Ltd, Suzhou, China
| |
Collapse
|
9
|
Xu C, Yang K, Xu Y, Meng X, Zhou Y, Xu Y, Li X, Qiao W, Shi J, Zhang D, Wang J, Xu W, Yang H, Luo Z, Dong N. Melt-electrowriting-enabled anisotropic scaffolds loaded with valve interstitial cells for heart valve tissue Engineering. J Nanobiotechnology 2024; 22:378. [PMID: 38943185 PMCID: PMC11212200 DOI: 10.1186/s12951-024-02656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold. By integrating the anisotropic MEW-PCL scaffold with bioactive hydrogels (GelMA/ChsMA), we successfully crafted an elastic scaffold with tunable mechanical properties closely mirroring the structure and mechanical characteristics of natural heart valves. This scaffold not only supports the growth of valvular interstitial cells (VICs) within a 3D culture but also fosters the remodeling of extracellular matrix of VICs. The in vitro experiments demonstrated that the introduction of ChsMA improved the hemocompatibility and endothelialization of TEHV scaffold. The in vivo experiments revealed that, compared to their non-hydrogel counterparts, the PCL-GelMA/ChsMA scaffold, when implanted into SD rats, significantly suppressed immune reactions and calcification. In comparison with the PCL scaffold, the PCL-GelMA/ChsMA scaffold exhibited higher bioactivity and superior biocompatibility. The amalgamation of MEW technology and biomimetic design approaches provides a new paradigm for manufacturing scaffolds with highly controllable microstructures, biocompatibility, and anisotropic mechanical properties required for the fabrication of TEHVs.
Collapse
Affiliation(s)
- Chao Xu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China
| | - Kun Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Yin Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Xiangfu Meng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Yanping Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Xueyao Li
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Jianglin Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Weilin Xu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China
| | - Hongjun Yang
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China.
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China.
| |
Collapse
|
10
|
Tong Q, Cai J, Wang Z, Sun Y, Liang X, Xu Q, Mahamoud OA, Qian Y, Qian Z. Recent Advances in the Modification and Improvement of Bioprosthetic Heart Valves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309844. [PMID: 38279610 DOI: 10.1002/smll.202309844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Indexed: 01/28/2024]
Abstract
Valvular heart disease (VHD) has become a burden and a growing public health problem in humans, causing significant morbidity and mortality worldwide. An increasing number of patients with severe VHD need to undergo heart valve replacement surgery, and artificial heart valves are in high demand. However, allogeneic valves from donors are lacking and cannot meet clinical practice needs. A mechanical heart valve can activate the coagulation pathway after contact with blood after implantation in the cardiovascular system, leading to thrombosis. Therefore, bioprosthetic heart valves (BHVs) are still a promising way to solve this problem. However, there are still challenges in the use of BHVs. For example, their longevity is still unsatisfactory due to the defects, such as thrombosis, structural valve degeneration, calcification, insufficient re-endothelialization, and the inflammatory response. Therefore, strategies and methods are needed to effectively improve the biocompatibility and longevity of BHVs. This review describes the recent research advances in BHVs and strategies to improve their biocompatibility and longevity.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Jie Cai
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yiren Sun
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Xuyue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Qiyue Xu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Oumar Abdel Mahamoud
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
11
|
Kim BS, Kim JU, Lee JW, Ryu KM, Koh RH, So KH, Hwang NS. Comparative analysis of supercritical fluid-based and chemical-based decellularization techniques for nerve tissue regeneration. Biomater Sci 2024; 12:1847-1863. [PMID: 38411258 DOI: 10.1039/d3bm02072j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Axon regeneration and Schwann cell proliferation are critical processes in the repair and functional recovery of damaged neural tissues. Biomaterials can play a crucial role in facilitating cell proliferative processes that can significantly impact the target tissue repair. Chemical decellularization and supercritical fluid-based decellularization methods are similar approaches that eliminate DNA from native tissues for tissue-mimetic biomaterial production by using different solvents and procedures to achieve the final products. In this study, we conducted a comparative analysis of these two methods in the context of nerve regeneration and neuron cell differentiation efficiency. We evaluated the efficacy of each method in terms of biomaterial quality, preservation of extracellular matrix components, promotion of neuronal cell differentiation and nerve tissue repair ability in vivo. Our results indicate that while both methods produce high-quality biomaterials, supercritical fluid-based methods have several advantages over conventional chemical decellularization, including better preservation of extracellular matrix components and mechanical properties and superior promotion of cellular responses. We conclude that supercritical fluid-based methods show great promise for biomaterial production for nerve regeneration and neuron cell differentiation applications.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Madalosso HB, Guindani C, Maniglia BC, Hermes de Araújo PH, Sayer C. Collagen-decorated electrospun scaffolds of unsaturated copolyesters for bone tissue regeneration. J Mater Chem B 2024; 12:3047-3062. [PMID: 38421173 DOI: 10.1039/d3tb02665e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Many efforts have been devoted to bone tissue to regenerate damaged tissues, and the development of new biocompatible materials that match the biological, mechanical, and chemical features required for this application is crucial. Herein, a collagen-decorated scaffold was prepared via electrospinning using a synthesized unsaturated copolyester (poly(globalide-co-pentadecalactone)), followed by two coupling reactions: thiol-ene functionalization with cysteine and further conjugation via EDC/NHS chemistry with collagen, aiming to design a bone tissue regeneration device with improved hydrophilicity and cell viability. Comonomer ratios were varied, affecting the copolymer's thermal and chemical properties and highlighting the tunable features of this copolyester. Functionalization with cysteine created new carboxyl and amine groups needed for bioconjugation with collagen, which is responsible for providing biological and structural integrity to the extra-cellular matrix. Bioconjugation with collagen turned the scaffold highly hydrophilic, decreasing its contact angle from 107 ± 2° to 0°, decreasing the copolymer crystallinity by 71%, and improving cell viability by 85% compared with the raw scaffold, thus promoting cell growth and proliferation. The highly efficient and biosafe strategy to conjugate polymers and proteins created a promising device for bone repair in tissue engineering.
Collapse
Affiliation(s)
- Heloísa Bremm Madalosso
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, Brazil.
| | - Camila Guindani
- Chemical Engineering Program/COPPE, Federal University of Rio de Janeiro, Cidade Universitária, CP: 68502, Rio de Janeiro, 21941-972 RJ, Brazil
| | - Bianca Chieregato Maniglia
- São Carlos Institute of Chemistry, University of São Paulo - USP, Campus São Carlos, 13566-590, São Carlos, SP, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, Brazil.
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, Brazil.
| |
Collapse
|
13
|
Dehghani S, Aghaee Z, Soleymani S, Tafazoli M, Ghabool Y, Tavassoli A. An overview of the production of tissue extracellular matrix and decellularization process. Cell Tissue Bank 2024; 25:369-387. [PMID: 37812368 DOI: 10.1007/s10561-023-10112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
Thousands of patients need an organ transplant yearly, while only a tiny percentage have this chance to receive a tissue/organ transplant. Nowadays, decellularized animal tissue is one of the most widely used methods to produce engineered scaffolds for transplantation. Decellularization is defined as physically or chemically removing cellular components from tissues while retaining structural and functional extracellular matrix (ECM) components and creating an ECM-derived scaffold. Then, decellularized scaffolds could be reseeded with different cells to fabricate an autologous graft. Effective decellularization methods preserve ECM structure and bioactivity through the application of the agents and techniques used throughout the process. The most valuable agents for the decellularization process depend on biological properties, cellular density, and the thickness of the desired tissue. ECM-derived scaffolds from various mammalian tissues have been recently used in research and preclinical applications in tissue engineering. Many studies have shown that decellularized ECM-derived scaffolds could be obtained from tissues and organs such as the liver, cartilage, bone, kidney, lung, and skin. This review addresses the significance of ECM in organisms and various decellularization agents utilized to prepare the ECM. Also, we describe the current knowledge of the decellularization of different tissues and their applications.
Collapse
Affiliation(s)
- Shima Dehghani
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Zahra Aghaee
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Safoura Soleymani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Maryam Tafazoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Yasin Ghabool
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| |
Collapse
|
14
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Hu M, Shi S, Peng X, Pu X, Yu X. A synergistic strategy of dual-crosslinking and loading intelligent nanogels for enhancing anti-coagulation, pro-endothelialization and anti-calcification properties in bioprosthetic heart valves. Acta Biomater 2023; 171:466-481. [PMID: 37793601 DOI: 10.1016/j.actbio.2023.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Currently, glutaraldehyde (GA)-crosslinked bioprosthetic heart valves (BHVs) still do not guarantee good biocompatibility and long-term effective durability for clinical application due to their subacute thrombus, inflammation, calcification, tearing and limited durability. In this study, double-modified xanthan gum (oxidized/vinylated xanthan gum (O2CXG)) was acquired from xanthan gum for subsequent double crosslinking and modification platform construction. Sulfonic acid groups with anticoagulant properties were also introduced through the free radical polymerization of vinyl sulfonate (VS) and vinyl on O2CXG. Taking advantage of the drug-loading function of xanthan gum, the treated pericardium was further loaded with inflammation-triggered dual drug-loaded nanogel (heparin (Hep) and atorvastatin (Ator)). Mechanical properties of O2CXG-crosslinked porcine pericardium (O2CXG-PP) were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Due to the presence of sulfonic acid groups as well as the dual drug release from nanogels under the stimulation of H2O2, the hemocompatibility, anti-inflammatory, pro-endothelialization and anti-calcification properties of the crosslinked pericardium modified with nanogels loaded with Hep and Ator (O2CXG+VS+(Hep+Ator) nanogel-PP) was significantly better than that of GA-crosslinked PP (GA-PP). The collaborative strategy of double crosslinking and sequential release of anticoagulant/endothelium-promoting drugs triggered by inflammation could effectively meet the requirement of enhanced multiple performance and long-term durability of bioprosthetic heart valves and provide a valuable pattern for multi-functionalization of blood contacting materials. STATEMENT OF SIGNIFICANCE: Currently, glutaraldehyde-crosslinked bioprosthetic heart valves (BHVs) are subject to subacute thrombus, inflammation, calcification and tearing, which would not guarantee good biocompatibility and long-term effective durability. We developed a cooperative strategy of double crosslinking and surface modification in which double-modified xanthan gum plays a cornerstone. The mechanical properties of this BHV were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Inflammation-triggered combination delivery of heparin and atorvastatin has been demonstrated to enhance anticoagulation, anti-inflammatory and pro-endothelialization of BHVs by utilizing local inflammatory response. The collaborative strategy could effectively meet the requirement of enhanced multiple performance and long-term durability of BHVs and provide a valuable pattern for the multi-functionalization of blood-contacting materials.
Collapse
Affiliation(s)
- Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, PR China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
16
|
Turan Sorhun D, Kuşoğlu A, Öztürk E. Developing Bovine Brain-Derived Extracellular Matrix Hydrogels: a Screen of Decellularization Methods for Their Impact on Biochemical and Mechanical Properties. ACS OMEGA 2023; 8:36933-36947. [PMID: 37841171 PMCID: PMC10569007 DOI: 10.1021/acsomega.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Tissue models that recapitulate the key biochemical and physical aspects of the brain have been highly pursued in neural tissue engineering. Decellularization of native organs offers the advantage of preserving the composition of native extracellular matrix (ECM). Brain ECM has distinct features which play a major role in neural cell behavior. Cell instructive ligands and mechanical properties take part in the regulation of cellular processes in homeostasis and diseases. One of the main challenges in decellularization is maintaining mechanical integrity in reconstituted hydrogels and achieving physiologically relevant stiffness. The effect of the decellularization process on different mechanical aspects, particularly the viscoelasticity of brain-derived hydrogels, has not been addressed. In this study, we developed bovine brain-derived hydrogels for the first time. We pursued seven protocols for decellularization and screened their effect on biochemical content, hydrogel formation, and mechanical characteristics. We show that bovine brain offers an easily accessible alternative for in vitro brain tissue modeling. Our data demonstrate that the choice of decellularization method strongly alters gelation as well as the stiffness and viscoelasticity of the resulting hydrogels. Lastly, we investigated the cytocompatibility of brain ECM hydrogels and the effect of modulated mechanical properties on the growth and morphological features of neuroblastoma cells.
Collapse
Affiliation(s)
- Duygu Turan Sorhun
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Alican Kuşoğlu
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department
of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
17
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Zhang C, Hao J, Shi W, Su Y, Mitchell K, Hua W, Jin W, Lee S, Wen L, Jin Y, Zhao D. Sacrificial scaffold-assisted direct ink writing of engineered aortic valve prostheses. Biofabrication 2023; 15:10.1088/1758-5090/aceffb. [PMID: 37579750 PMCID: PMC10566457 DOI: 10.1088/1758-5090/aceffb] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Heart valve disease has become a serious global health problem, which calls for numerous implantable prosthetic valves to fulfill the broader needs of patients. Although current three-dimensional (3D) bioprinting approaches can be used to manufacture customized valve prostheses, they still have some complications, such as limited biocompatibility, constrained structural complexity, and difficulty to make heterogeneous constructs, to name a few. To overcome these challenges, a sacrificial scaffold-assisted direct ink writing approach has been explored and proposed in this work, in which a sacrificial scaffold is printed to temporarily support sinus wall and overhanging leaflets of an aortic valve prosthesis that can be removed easily and mildly without causing any potential damages to the valve prosthesis. The bioinks, composed of alginate, gelatin, and nanoclay, used to print heterogenous valve prostheses have been designed in terms of rheological/mechanical properties and filament formability. The sacrificial ink made from Pluronic F127 has been developed by evaluating rheological behavior and gel temperature. After investigating the effects of operating conditions, complex 3D structures and homogenous/heterogenous aortic valve prostheses have been successfully printed. Lastly, numerical simulation and cycling experiments have been performed to validate the function of the printed valve prostheses as one-way valves.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Jiangtao Hao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Weiliang Shi
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Ya Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Wenbo Jin
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Serena Lee
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Danyang Zhao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
19
|
Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol 2023; 246:125672. [PMID: 37406920 DOI: 10.1016/j.ijbiomac.2023.125672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues are made up of three parts: extracellular matrix (ECM), signaling systems, and cells. Therefore, biomimetic ECM scaffold is one of the best candidates for tissue engineering scaffolds. Among the many scaffold materials of biomimetic ECM structure, decellularized ECM scaffolds (dECMs) obtained from natural ECM after acellular treatment stand out because of their inherent natural components and microenvironment. First, an overview of the family of dECMs is provided. The principle, mechanism, advances, and shortfalls of various decellularization technologies, including physical, chemical, and biochemical methods are then critically discussed. Subsequently, a comprehensive review is provided on recent advances in the versatile applications of dECMs including but not limited to decellularized small intestinal submucosa, dermal matrix, amniotic matrix, tendon, vessel, bladder, heart valves. And detailed examples are also drawn from scientific research and practical work. Furthermore, we outline the underlying development directions of dECMs from the perspective that tissue engineering scaffolds play an important role as an important foothold and fulcrum at the intersection of materials and medicine. As scaffolds that have already found diverse applications, dECMs will continue to present both challenges and exciting opportunities for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Min
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
20
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
İnal MS, Darcan C, Akpek A. Characterization of a Decellularized Sheep Pulmonary Heart Valves and Analysis of Their Capability as a Xenograft Initial Matrix Material in Heart Valve Tissue Engineering. Bioengineering (Basel) 2023; 10:949. [PMID: 37627834 PMCID: PMC10451205 DOI: 10.3390/bioengineering10080949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
In order to overcome the disadvantages of existing treatments in heart valve tissue engineering, decellularization studies are carried out. The main purpose of decellularization is to eliminate the immunogenicity of biologically derived grafts and to obtain a scaffold that allows recellularization while preserving the natural tissue architecture. SD and SDS are detergent derivatives frequently used in decellularization studies. The aim of our study is to decellularize the pulmonary heart valves of young Merino sheep by using low-density SDS and SD detergents together, and then to perform their detailed characterization to determine whether they are suitable for clinical studies. Pulmonary heart valves of 4-6-month-old sheep were decellularized in detergent solution for 24 h. The amount of residual DNA was measured to determine the efficiency of decellularization. Then, the effect of decellularization on the ECM by histological staining was examined. In addition, the samples were visualized by SEM to determine the surface morphologies of the scaffolds. A uniaxial tensile test was performed to examine the effect of decellularization on biomechanical properties. In vitro stability of scaffolds decellularized by collagenase treatment was determined. In addition, the cytotoxic effect of scaffolds on 3T3 cells was examined by MTT assay. The results showed DNA removal of 94% and 98% from the decellularized leaflet and pulmonary wall portions after decellularization relative to the control group. No cell nuclei were found in histological staining and it was observed that the three-layer leaflet structure was preserved. As a result of the tensile test, it was determined that there was no statistically significant difference between the control and decellularized groups in the UTS and elasticity modulus, and the biomechanical properties did not change. It was also observed that decellularized sheep pulmonary heart valves had no cytotoxic effect. In conclusion, we suggest that the pulmonary valves of decellularized young Merino sheep can be used as an initial matrix in heart valve tissue engineering studies.
Collapse
Affiliation(s)
- Müslüm Süleyman İnal
- Department of Molecular Biology and Genetics, Institute of Science, Bilecik Seyh Edebali University, Bilecik 11230, Turkey;
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Seyh Edebali University, Bilecik 11230, Turkey;
| | - Ali Akpek
- Department of Biomedical Engineering, Faculty of Electrical-Electronics, Yildiz Technical University, Istanbul 34220, Turkey
| |
Collapse
|
22
|
Patrawalla NY, Kajave NS, Albanna MZ, Kishore V. Collagen and Beyond: A Comprehensive Comparison of Human ECM Properties Derived from Various Tissue Sources for Regenerative Medicine Applications. J Funct Biomater 2023; 14:363. [PMID: 37504858 PMCID: PMC10381652 DOI: 10.3390/jfb14070363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Collagen, along with proteoglycans, glycosaminoglycans, glycoproteins, and various growth factors, forms the extracellular matrix (ECM) and contributes to the complexity and diversity of different tissues. Herein, we compared the physicochemical and biological properties of ECM hydrogels derived from four different human tissues: skin, bone, fat, and birth. Pure human collagen type I hydrogels were used as control. Physical characterization of ECM hydrogels and assessment of cell response of cord-tissue mesenchymal stem cells (CMSCs) were performed. Decellularization efficiency was found to be >90% for all ECM. Hydroxyproline quantification assay showed that collagen content in birth ECM was comparable to collagen control and significantly greater than other sources of ECM. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed the presence of γ, β, α1 and α2 collagen chains in all ECMs. Gelation kinetics of ECM hydrogels was significantly slower than collagen control. Compressive modulus of skin ECM was the highest and birth ECM was the lowest. Skin and birth ECM hydrogels were more stable than bone and fat ECM hydrogels. CMSCs encapsulated in birth ECM hydrogels exhibited the highest metabolic activity. Rheological characterization revealed that all ECM-derived inks exhibited shear thinning properties, and skin-derived ECM inks were most suitable for extrusion-based bioprinting for the concentration and printing conditions used in this study. Overall, results demonstrate that the physicochemical and biological properties of ECM hydrogels vary significantly depending on the tissue source. Therefore, careful selection of tissue source is important for development of ECM-based biomimetic tissue constructs for regenerative medicine applications.
Collapse
Affiliation(s)
- Nashaita Y Patrawalla
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | | | - Mohammad Z Albanna
- Humabiologics® Inc., Phoenix, AZ 85034, USA
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27101, USA
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
23
|
Farzamfar S, Elia E, Richer M, Chabaud S, Naji M, Bolduc S. Extracellular Matrix-Based and Electrospun Scaffolding Systems for Vaginal Reconstruction. Bioengineering (Basel) 2023; 10:790. [PMID: 37508817 PMCID: PMC10376078 DOI: 10.3390/bioengineering10070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Congenital vaginal anomalies and pelvic organ prolapse affect different age groups of women and both have significant negative impacts on patients' psychological well-being and quality of life. While surgical and non-surgical treatments are available for vaginal defects, their efficacy is limited, and they often result in long-term complications. Therefore, alternative treatment options are urgently needed. Fortunately, tissue-engineered scaffolds are promising new treatment modalities that provide an extracellular matrix (ECM)-like environment for vaginal cells to adhere, secrete ECM, and be remodeled by host cells. To this end, ECM-based scaffolds or the constructs that resemble ECM, generated by self-assembly, decellularization, or electrospinning techniques, have gained attention from both clinicians and researchers. These biomimetic scaffolds are highly similar to the native vaginal ECM and have great potential for clinical translation. This review article aims to discuss recent applications, challenges, and future perspectives of these scaffolds in vaginal reconstruction or repair strategies.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1666677951, Iran
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
24
|
Wang G, Feng Y, Gao C, Zhang X, Wang Q, Zhang J, Zhang H, Wu Y, Li X, Wang L, Fu Y, Yu X, Zhang D, Liu J, Ding J. Biaxial stretching of polytetrafluoroethylene in industrial scale to fabricate medical ePTFE membrane with node-fibril microstructure. Regen Biomater 2023; 10:rbad056. [PMID: 37397871 PMCID: PMC10310521 DOI: 10.1093/rb/rbad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Expanded polytetrafluoroethylene (ePTFE) is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties. However, ePTFE material prepared by the traditional biaxial stretching process is with thicker middle and thinner sides due to the bowing effect, which poses a major problem in industrial-scale fabrication. To solve this problem, we design an olive-shaped winding roller to provide the middle part of the ePTFE tape with a greater longitudinal stretching amplitude than the two sides, so as to make up for the excessive longitudinal retraction tendency of the middle part when it is transversely stretched. The as-fabricated ePTFE membrane has, as designed, uniform thickness and node-fibril microstructure. In addition, we examine the effects of mass ratio of lubricant to PTFE powder, biaxial stretching ratio and sintering temperature on the performance of the resultant ePTFE membranes. Particularly, the relation between the internal microstructure of the ePTFE membrane and its mechanical properties is revealed. Besides stable mechanical properties, the sintered ePTFE membrane exhibits satisfactory biological properties. We make a series of biological assessments including in vitro hemolysis, coagulation, bacterial reverse mutation and in vivo thrombosis, intracutaneous reactivity test, pyrogen test and subchronic systemic toxicity test; all of the results meet the relevant international standards. The muscle implantation of the sintered ePTFE membrane into rabbits indicates acceptable inflammatory reactions of our sintered ePTFE membrane fabricated on industrial scale. Such a medical-grade raw material with the unique physical form and condensed-state microstructure is expected to afford an inert biomaterial potentially for stent-graft membrane.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Yusheng Feng
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xu Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jie Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yongqiang Wu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Wang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
25
|
Ni R, Jiang L, Zhang C, Liu M, Luo Y, Hu Z, Mou X, Zhu Y. Biologic Mechanisms of Macrophage Phenotypes Responding to Infection and the Novel Therapies to Moderate Inflammation. Int J Mol Sci 2023; 24:ijms24098358. [PMID: 37176064 PMCID: PMC10179618 DOI: 10.3390/ijms24098358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingjing Jiang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chaohai Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
26
|
Konsek H, Sherard C, Bisbee C, Kang L, Turek JW, Rajab TK. Growing Heart Valve Implants for Children. J Cardiovasc Dev Dis 2023; 10:jcdd10040148. [PMID: 37103027 PMCID: PMC10143004 DOI: 10.3390/jcdd10040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The current standard of care for pediatric patients with unrepairable congenital valvular disease is a heart valve implant. However, current heart valve implants are unable to accommodate the somatic growth of the recipient, preventing long-term clinical success in these patients. Therefore, there is an urgent need for a growing heart valve implant for children. This article reviews recent studies investigating tissue-engineered heart valves and partial heart transplantation as potential growing heart valve implants in large animal and clinical translational research. In vitro and in situ designs of tissue engineered heart valves are discussed, as well as the barriers to clinical translation.
Collapse
|
27
|
Gotnayer L, Aranovich D, Fraenkel M, Yoel U, Vidavsky N. Zinc in microscopic calcifications isolated from thyroid fine needle aspiration may serve as a biomarker of thyroid nodule malignancy: A promising proof-of-concept. Acta Biomater 2023; 161:275-284. [PMID: 36931418 DOI: 10.1016/j.actbio.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Thyroid nodules (TNs) are common neck ultrasonography (US) findings, yet only 5-10% of these nodules harbor thyroid cancer (TC). When US characteristics are consistent with an intermediate or high suspicion for TN malignancy, fine needle aspiration for cytology (FNAC) is indicated. The main limitation of FNAC is that cytological results can be indeterminate in up to 30% of cases, necessitating reevaluation through repeated FNAC, expensive molecular testing, or diagnostic thyroid lobe resection. As such, there is a need for further refinement of current diagnostic algorithms for TNs without subjecting patients to additional invasive procedures. As calcifications detected during thyroid US are considered a high-risk feature for malignancy, we used the material remaining following routine thyroid FNAC to isolate microscopic calcifications (MCs). We then characterized the elemental composition, morphology, and crystal phases of these MCs, ultimately revealing differences between the MCs from benign and malignant TNs. Specifically, thyroid MCs were identified as calcium phosphate crystals containing varying levels of magnesium, sodium, iron, and zinc. MCs obtained from malignant TNs, mainly papillary thyroid carcinoma, were composed of sub-micrometer spherical particles, whereas MCs from benign TNs consisted of faceted particles. While samples from most patients with a final diagnosis of malignant TNs (50% of them with indeterminate cytology) harbored zinc-containing MCs, zinc was largely absent in MCs from benign TNs (23% with indeterminate or non-diagnostic cytology). Together, these data suggest that the presence of zinc in MCs isolated from samples collected during routine FNAC may potentially offer value as a biomarker of TN malignancy. STATEMENT OF SIGNIFICANCE: As up to 40% of patients assessed for thyroid malignancy do not receive a definite diagnosis following thyroid nodule (TN) fine needle aspiration (FNA), there is a pressing need to improve the accuracy of current diagnostic algorithms. Chemical analyses of microscopic calcifications (MCs) may serve as a diagnostic target. We developed a straightforward protocol to chemically characterize MCs from excess material collected from TNs during routine FNA and found that these MCs differed between benign and malignant TNs. Specifically, zinc in TN-derived MCs may indicate a higher nodule malignancy risk, thus increasing the diagnostic accuracy of the FNA procedure, reducing the need for recurrent biopsies and diagnostic surgical procedures, and decreasing the costs, uncertainty, and stress faced by affected patients.
Collapse
Affiliation(s)
- Lotem Gotnayer
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dina Aranovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Merav Fraenkel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Endocrinology, Soroka University Medical Center, Beer Sheva, Israel
| | - Uri Yoel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Endocrinology, Soroka University Medical Center, Beer Sheva, Israel.
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
28
|
Snyder Y, Jana S. Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering. ACS Biomater Sci Eng 2023; 9:1570-1584. [PMID: 36802499 DOI: 10.1021/acsbiomaterials.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart valve leaflets have a complex trilayered structure with layer-specific orientations, anisotropic tensile properties, and elastomeric characteristics that are difficult to mimic collectively. Previously, trilayer leaflet substrates intended for heart valve tissue engineering were developed with nonelastomeric biomaterials that cannot deliver native-like mechanical properties. In this study, by electrospinning polycaprolactone (PCL) polymer and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer, we created elastomeric trilayer PCL/PLCL leaflet substrates with native-like tensile, flexural, and anisotropic properties and compared them with trilayer PCL leaflet substrates (as control) to find their effectiveness in heart valve leaflet tissue engineering. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for 1 month in static conditions to produce cell-cultured constructs. The PCL/PLCL substrates had lower crystallinity and hydrophobicity but higher anisotropy and flexibility than PCL leaflet substrates. These attributes contributed to more significant cell proliferation, infiltration, extracellular matrix production, and superior gene expression in the PCL/PLCL cell-cultured constructs than in the PCL cell-cultured constructs. Further, the PCL/PLCL constructs showed better resistance to calcification than PCL constructs. Trilayer PCL/PLCL leaflet substrates with native-like mechanical and flexural properties could significantly improve heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
29
|
Sun L, Wang Y, Xu D, Zhao Y. Emerging technologies for cardiac tissue engineering and artificial hearts. SMART MEDICINE 2023; 2:e20220040. [PMID: 39188557 PMCID: PMC11235648 DOI: 10.1002/smmd.20220040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 08/28/2024]
Abstract
Heart diseases, especially cardiovascular diseases, have brought heavy burden on society for their high morbidity and mortality. In clinical, heart transplantation is recognized as an effective strategy to rescue the lives of patients, while it may suffer from lack of donors and possible immune responses. In view of this, tremendous efforts have been devoted to developing alternative strategies to recover the function and promote the regeneration of cardiac tissues. As an emerging field blending cell biology and material science, tissue engineering technique allows the construction of biomimetic living complexes as organ substitutes for heart repair. In this review, we will present the recent progress in cardiac tissue engineering and artificial hearts. After introducing the critical elements in cardiac tissue engineering, we will present advanced fabrication methods to achieve scaffolds with desired micro/nanostructure design as well as the applications of these bioinspired scaffolds. We will also discuss the current dilemma and possible development direction from a biomedical perspective.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
30
|
Tong Q, Sun A, Wang Z, Li T, He X, Qian Y, Qian Z. Hybrid heart valves with VEGF-loaded zwitterionic hydrogel coating for improved anti-calcification and re-endothelialization. Mater Today Bio 2022; 17:100459. [PMID: 36278142 PMCID: PMC9583583 DOI: 10.1016/j.mtbio.2022.100459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
With the aging of the population in worldwide, valvular heart disease has become one of the most prominent life-threatening diseases in human health, and heart valve replacement surgery is one of the therapeutic methods for valvular heart disease. Currently, commercial bioprosthetic heart valves (BHVs) for clinical application are prepared with xenograft heart valves or pericardium crosslinked by glutaraldehyde. Due to the residual cell toxicity from glutaraldehyde, heterologous antigens, and immune response, there are still some drawbacks related to the limited lifespan of bioprosthetic heart valves, such as thrombosis, calcification, degeneration, and defectiveness of re-endothelialization. Therefore, the problems of calcification, defectiveness of re-endothelialization, and poor biocompatibility from the use of bioprosthetic heart valve need to be solved. In this study, hydrogel hybrid heart valves with improved anti-calcification and re-endothelialization were prepared by taking decellularized porcine heart valves as scaffolds following grafting with double bonds. Then, the anti-biofouling zwitterionic monomers 2-methacryloyloxyethyl phosphorylcholine (MPC) and vascular endothelial growth factor (VEGF) were utilized to obtain a hydrogel-coated hybrid heart valve (PEGDA-MPC-DHVs@VEGF). The results showed that fewer platelets and thrombi were observed on the surface of the PEGDA-MPC-DHVs@VEGF. Additionally, the PEGDA-MPC-DHVs@VEGF exhibited excellent collagen stability, biocompatibility and re-endothelialization potential. Moreover, less calcification deposition and a lower immune response were observed in the PEGDA-MPC-DHVs@VEGF compared to the glutaraldehyde-crosslinked DHVs (Glu-DHVs) after subcutaneous implantation in rats for 30 days. These studies demonstrated that the strategy of zwitterionic hydrogels loaded with VEGF may be an effective approach to improving the biocompatibility, anti-calcification and re-endothelialization of bioprosthetic heart valves. A new and promising strategy of overcoming defects of bioprosthetic heart valves. The zwitterionic hydrogel with VEGF is utilized to improve anti-calcification and re-endothelialization properties of heart valves. The hybrid heart valves with a VEGF-loaded zwitterionic hydrogel coating exhibits excellent biocompatibility.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ao Sun
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Tao Li
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xinye He
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China,Corresponding author. Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China,Corresponding author. State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| |
Collapse
|