1
|
Joo SW, Kim SK, Lee WH, Kim SH, Lee J. Association of clozapine with structural and resting-state functional abnormalities of the hippocampus in chronic schizophrenia. Front Psychiatry 2024; 15:1464066. [PMID: 39429532 PMCID: PMC11486750 DOI: 10.3389/fpsyt.2024.1464066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Abnormalities in the hippocampus have been extensively reported in schizophrenia research. However, inconsistent findings exist, and how structural and functional abnormalities of the hippocampus are associated with clinical symptoms in schizophrenia, especially concerning clozapine treatment, remains uncertain. Methods We recruited 52 patients with schizophrenia, each with an illness duration of at least 5 years, and categorized them based on clozapine treatment. T1-weighted images and resting-state functional magnetic resonance imaging scans were obtained and analyzed to perform group comparisons of the structural and functional changes in the hippocampus. Volumes of the hippocampal subregions, as well as resting-state functional connectivity maps from these areas were compared between the groups. Associations with clinical symptoms, including the severity of psychiatric symptoms and cognitive functions, were investigated. Results The clozapine group (n=23) exhibited smaller volumes in several hippocampal subregions, including the CA1, CA4, granule cell and molecular layers of the dentate gyrus, compared to the non-clozapine group (n=29). Seven clusters with significant group differences in functional connectivity with these hippocampal subregions were identified, with six of these clusters showing increased functional connectivity in the clozapine group. The reduced volumes of the hippocampal subregions were moderately associated with the severity of negative symptoms, general intelligence, and executive function. Discussion Patients with schizophrenia undergoing clozapine treatment exhibited smaller volumes in the hippocampal subregions, which were moderately associated with negative symptoms and cognitive functions, compared to those without clozapine treatment.
Collapse
Affiliation(s)
- Sung Woo Joo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Kyoung Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin, Republic of Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Leroux E, Tréhout M, Reboursiere E, de Flores R, Morello R, Guillin O, Quarck G, Dollfus S. Effects of web-based adapted physical activity on hippocampal plasticity, cardiorespiratory fitness, symptoms, and cardiometabolic markers in patients with schizophrenia: a randomized, controlled study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1245-1263. [PMID: 38740618 DOI: 10.1007/s00406-024-01818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Among the lifestyle interventions, the physical activity (PA) has emerged as an adjuvant non-pharmacological treatment improving mental and physical health in patients with schizophrenia (SZPs) and increasing the hippocampus (HCP) volume. Previously investigated PA programs have been face-to-face, and not necessary adapted to patients' physiological fitness. We propose an innovative 16-week adapted PA program delivered by real-time videoconferencing (e-APA), allowing SZPs to interact with a coach and to manage their physical condition. The primary goal was to demonstrate a greater increase of total HCP volumes in SZPs receiving e-APA compared to that observed in a controlled group. The secondary objectives were to demonstrate the greater effects of e-APA compared to a controlled group on HCP subfields, cardiorespiratory fitness, clinical symptoms, cognitive functions, and lipidic profile. Thirty-five SZPs were randomized to either e-APA or a controlled group receiving a health education program under the same conditions (e-HE). Variables were assessed at pre- and post-intervention time-points. The dropout rate was 11.4%. Compared to the e-HE group, the e-APA group did not have any effect on the HCP total volumes but increased the left subiculum volume. Also, the e-APA group significantly increased cardiorespiratory fitness (VO2max), improved lipidic profile and negative symptoms but not cognitive functions. This study demonstrated the high feasibility and multiple benefits of a remote e-APA program for SZPs. e-APA may increase brain plasticity and improve health outcomes in SZPs, supporting that PA should be an add-on therapeutic intervention. ClinicalTrial.gov on 25 august 2017 (NCT03261817).
Collapse
Affiliation(s)
- E Leroux
- PhIND "Physiopathology and Imaging of Neurological Disorders", UMR-S U1237, GIP CYCERON, INSERM, CYCERON, CHU de Caen Normandie, Normandie Univ, Université de Caen Normandie, Campus Jules Horowitz, Bd Henri Becquerel, BP 5229, 14074, Caen, France.
| | - M Tréhout
- PhIND "Physiopathology and Imaging of Neurological Disorders", UMR-S U1237, GIP CYCERON, INSERM, CYCERON, CHU de Caen Normandie, Normandie Univ, Université de Caen Normandie, Campus Jules Horowitz, Bd Henri Becquerel, BP 5229, 14074, Caen, France
- Centre Esquirol, Service de Psychiatrie Adulte, CHU de Caen Normandie, 14000, Caen, France
| | - E Reboursiere
- Service de Médecine du Sport, CHU de Caen Normandie, 14000, Caen, France
| | - R de Flores
- PhIND "Physiopathology and Imaging of Neurological Disorders", UMR-S U1237, GIP CYCERON, INSERM, CYCERON, CHU de Caen Normandie, Normandie Univ, Université de Caen Normandie, Campus Jules Horowitz, Bd Henri Becquerel, BP 5229, 14074, Caen, France
| | - R Morello
- Unité de Biostatistiques et Recherche Clinique, CHU de Caen Normandie, 14000, Caen, France
| | - O Guillin
- SHU du Rouvray, 76300, Sotteville-lès-Rouen, France
- Normandie Univ, UFR de Médecine, 76000, Rouen, France
- CHU de Rouen, 76000, Rouen, France
| | - G Quarck
- COMETE U1075, INSERM, CYCERON, CHU de Caen, Normandie Univ, Université de Caen Normandie, 14000, Caen, France
| | - S Dollfus
- PhIND "Physiopathology and Imaging of Neurological Disorders", UMR-S U1237, GIP CYCERON, INSERM, CYCERON, CHU de Caen Normandie, Normandie Univ, Université de Caen Normandie, Campus Jules Horowitz, Bd Henri Becquerel, BP 5229, 14074, Caen, France
- Centre Esquirol, Service de Psychiatrie Adulte, CHU de Caen Normandie, 14000, Caen, France
- Université de Caen Normandie, Normandie Univ, UFR de Santé, 14000, Caen, France
| |
Collapse
|
3
|
Sun Y, Wu D, Yang X, Tang B, Xia C, Luo C, Gong Q, Lui S, Hu N. The associations of peripheral interleukin alterations and hippocampal subfield volume deficits in schizophrenia. Cereb Cortex 2024; 34:bhae308. [PMID: 39077921 DOI: 10.1093/cercor/bhae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
The hippocampus is one of the brain regions most vulnerable to inflammatory insults, and the relationships between peripheral inflammation and hippocampal subfields in patients with schizophrenia remain unclear. In this study, forty-six stably medicated patients with schizophrenia and 48 demographically matched healthy controls (HCs) were recruited. The serum levels of IL - 1β, IL-6, IL-10, and IL-12p70 were measured, and 3D high-resolution T1-weighted magnetic resonance imaging was performed. The IL levels and hippocampal subfield volumes were both compared between patients and HCs. The associations of altered IL levels with hippocampal subfield volumes were assessed in patients. Patients with schizophrenia demonstrated higher serum levels of IL-6 and IL-10 but lower levels of IL-12p70 than HCs. In patients, the levels of IL-6 were positively correlated with the volumes of the left granule cell layer of the dentate gyrus (GCL) and cornu Ammonis (CA) 4, while the levels of IL-10 were negatively correlated with the volumes of those subfields. IL-6 and IL-10 might have antagonistic roles in atrophy of the left GCL and CA4. This suggests a complexity of peripheral cytokine dysregulation and the potential for its selective effects on hippocampal substructures, which might be related to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 18, Section 3, South Renmin Road, Chengdu 610041, China
| | - Xiyue Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Chunyan Luo
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Na Hu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| |
Collapse
|
4
|
Liou YJ, Liu MN, Yang KC, Hu LY, Hsieh WC, Chou YH. Hippocampal subfields in remitted schizophrenia. J Chin Med Assoc 2024; 87:627-634. [PMID: 38656303 DOI: 10.1097/jcma.0000000000001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Current evidence of volume changes in hippocampal subdivisions in schizophrenia remains inconsistent, and few studies have investigated the relationship between regional hippocampal volumes and symptom remission. METHODS In this cross-sectional study, we recruited 31 patients with schizophrenia and 31 healthy controls (HCs). Symptomatic remission in schizophrenia was determined according to Remission in Schizophrenia Working Group criteria. The volumes of hippocampal longitudinal subregions and transverse subfields were measured using manual and automatic techniques, respectively. Between-group regional hippocampal volume differences were analyzed using multivariate analysis of covariance followed by univariate analysis of covariance. RESULTS Compared with the HCs, the patients with schizophrenia had smaller bilateral heads and tails along the longitudinal axis; they also had reduced volumes of the bilateral CA1, CA3, CA4, GC-ML-DG, molecular layer, tail, left subiculum, left HATA, and right parasubiculum along the transverse axis in the hippocampus (all corrected p < 0.05). Furthermore, compared with the HCs and patients with remitted schizophrenia, the patients with nonremitted schizophrenia had smaller bilateral hippocampal tail subfields (corrected p < 0.05). CONCLUSION Our results indicated that the pathophysiology and symptomatic remission of schizophrenia are related to changes in the volumes of hippocampal subdivisions. These volume changes might be clinically relevant as biomarkers for schizophrenia identification and treatment.
Collapse
Affiliation(s)
- Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wen-Chi Hsieh
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan, Taiwan, ROC
| | - Yuan-Hwa Chou
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, ROC
| |
Collapse
|
5
|
O'Neill A, Dooley N, Roddy D, Healy C, Carey E, Frodl T, O'Hanlon E, Cannon M. Longitudinal hippocampal subfield development associated with psychotic experiences in young people. Transl Psychiatry 2024; 14:44. [PMID: 38245522 PMCID: PMC10799917 DOI: 10.1038/s41398-024-02746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Hippocampal volumetric reductions are observed across the psychosis spectrum, with interest in the localisation of these reductions within the hippocampal subfields increasing. Deficits of the CA1 subfield in particular have been implicated in the neuropathophysiology of psychotic disorders. Investigating the trajectory of these abnormalities in healthy adolescents reporting sub-threshold psychotic experiences (PE) can provide insight into the neural mechanisms underlying psychotic symptoms without the potentially confounding effects of a formal disorder, or antipsychotic medication. In this novel investigation, a sample of 211 young people aged 11-13 participated initially in the Adolescent Brain Development study. PE classification was determined by expert consensus at each timepoint. Participants underwent neuroimaging at 3 timepoints, over 6 years. 78 participants with at least one scan were included in the final sample; 33 who met criteria for a definite PE at least once across all the timepoints (PE group), and 45 controls. Data from bilateral subfields of interest (CA1, CA2/3, CA4/DG, presubiculum and subiculum) were extracted for Linear Mixed Effects analyses. Before correction, subfield volumes were found to increase in the control group and decrease in the PE group for the right CA2 and CA2/3 subfields, with moderate to large effect sizes (d = -0.61, and d = -0.79, respectively). Before correction, right subiculum and left presubiculum volumes were reduced in the PE group compared to controls, regardless of time, with moderate effect sizes (d = -0.52, and d = -0.59, respectively). However, none of these effects survived correction. Severity of symptoms were not associated with any of the noted subfields. These findings provide novel insight to the discussion of the role of hippocampal subfield abnormalities in the pathophysiology underlying psychotic experiences.
Collapse
Affiliation(s)
- Aisling O'Neill
- Department of Psychology, St Patrick's Mental Health Services, Dublin, Ireland.
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Niamh Dooley
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Darren Roddy
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Colm Healy
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Department of Medicine, University College Dublin, Dublin, Ireland
| | - Eleanor Carey
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
| | - Thomas Frodl
- Department of Medicine, University College Dublin, Dublin, Ireland
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Uniklinik RWTH Aachen, Aachen, Germany
| | - Erik O'Hanlon
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Cao P, Chen C, Si Q, Li Y, Ren F, Han C, Zhao J, Wang X, Xu G, Sui Y. Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder. Front Psychiatry 2023; 14:1191170. [PMID: 37547217 PMCID: PMC10400724 DOI: 10.3389/fpsyt.2023.1191170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective There is considerable debate as to whether the continuum of major psychiatric disorders exists and to what extent the boundaries extend. Converging evidence suggests that alterations in hippocampal volume are a common sign in psychiatric disorders; however, there is still no consensus on the nature and extent of hippocampal atrophy in schizophrenia (SZ), major depressive disorder (MDD) and bipolar disorder (BD). The aim of this study was to verify the continuum of SZ - BD - MDD at the level of hippocampal subfield volume and to compare the volume differences in hippocampal subfields in the continuum. Methods A total of 412 participants (204 SZ, 98 MDD, and 110 BD) underwent 3 T MRI scans, structured clinical interviews, and clinical scales. We segmented the hippocampal subfields with FreeSurfer 7.1.1 and compared subfields volumes across the three diagnostic groups by controlling for age, gender, education, and intracranial volumes. Results The results showed a gradual increase in hippocampal subfield volumes from SZ to MDD to BD. Significant volume differences in the total hippocampus and 13 of 26 hippocampal subfields, including CA1, CA3, CA4, GC-ML-DG, molecular layer and the whole hippocampus, bilaterally, and parasubiculum in the right hemisphere, were observed among diagnostic groups. Medication treatment had the most effect on subfields of MDD compared to SZ and BD. Subfield volumes were negatively correlated with illness duration of MDD. Positive correlations were found between subfield volumes and drug dose in SZ and MDD. There was no significant difference in laterality between diagnostic groups. Conclusion The pattern of hippocampal volume reduction in SZ, MDD and BD suggests that there may be a continuum of the three disorders at the hippocampal level. The hippocampus represents a phenotype that is distinct from traditional diagnostic strategies. Combined with illness duration and drug intervention, it may better reflect shared pathophysiology and mechanisms across psychiatric disorders.
Collapse
Affiliation(s)
- Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Congxin Chen
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Huai’an No. 3 People’s Hospital, Huai’an, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chongyang Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingjing Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xiying Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
7
|
Liu S, Won H, Clarke D, Matoba N, Khullar S, Mu Y, Wang D, Gerstein M. Illuminating links between cis-regulators and trans-acting variants in the human prefrontal cortex. Genome Med 2022; 14:133. [PMID: 36424644 PMCID: PMC9685876 DOI: 10.1186/s13073-022-01133-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders afflict a large portion of the global population and constitute a significant source of disability worldwide. Although Genome-wide Association Studies (GWAS) have identified many disorder-associated variants, the underlying regulatory mechanisms linking them to disorders remain elusive, especially those involving distant genomic elements. Expression quantitative trait loci (eQTLs) constitute a powerful means of providing this missing link. However, most eQTL studies in human brains have focused exclusively on cis-eQTLs, which link variants to nearby genes (i.e., those within 1 Mb of a variant). A complete understanding of disease etiology requires a clearer understanding of trans-regulatory mechanisms, which, in turn, entails a detailed analysis of the relationships between variants and expression changes in distant genes. METHODS By leveraging large datasets from the PsychENCODE consortium, we conducted a genome-wide survey of trans-eQTLs in the human dorsolateral prefrontal cortex. We also performed colocalization and mediation analyses to identify mediators in trans-regulation and use trans-eQTLs to link GWAS loci to schizophrenia risk genes. RESULTS We identified ~80,000 candidate trans-eQTLs (at FDR<0.25) that influence the expression of ~10K target genes (i.e., "trans-eGenes"). We found that many variants associated with these candidate trans-eQTLs overlap with known cis-eQTLs. Moreover, for >60% of these variants (by colocalization), the cis-eQTL's target gene acts as a mediator for the trans-eQTL SNP's effect on the trans-eGene, highlighting examples of cis-mediation as essential for trans-regulation. Furthermore, many of these colocalized variants fall into a discernable pattern wherein cis-eQTL's target is a transcription factor or RNA-binding protein, which, in turn, targets the gene associated with the candidate trans-eQTL. Finally, we show that trans-regulatory mechanisms provide valuable insights into psychiatric disorders: beyond what had been possible using only cis-eQTLs, we link an additional 23 GWAS loci and 90 risk genes (using colocalization between candidate trans-eQTLs and schizophrenia GWAS loci). CONCLUSIONS We demonstrate that the transcriptional architecture of the human brain is orchestrated by both cis- and trans-regulatory variants and found that trans-eQTLs provide insights into brain-disease biology.
Collapse
Affiliation(s)
- Shuang Liu
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Declan Clarke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Yudi Mu
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA. .,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA. .,Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA. .,Department of Computer Science, Yale University, New Haven, CT, 06520, USA. .,Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Nasa A, Mosley O, Roman E, Kelliher A, Gaughan C, Levins KJ, Coppinger D, O'Hanlon E, Cannon M, Roddy DW. MRI volumetric changes in hippocampal subfields in psychosis: a protocol for a systematic review and meta-analysis. Syst Rev 2022; 11:44. [PMID: 35292116 PMCID: PMC8925181 DOI: 10.1186/s13643-022-01916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The hippocampus has for long been known for its ability to form new, declarative memory. However, emerging findings across conditions in the psychosis spectrum also implicate its role in emotional regulation. Systematic reviews have demonstrated consistent volume atrophic changes in the hippocampus. The aim of the systematic review and metanalysis which will follow from this protocol will be to investigate the volume-based neuroimaging findings across each of the subfields of the hippocampus in psychosis independent of diagnosis. METHODS Volume changes across subfields of the hippocampus in psychotic illnesses will be assessed by systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). MRI neuroimaging studies of patients with a definitive diagnosis of psychosis (including brief pre-diagnostic states) will be included. Studies lacking adequate controls, illicit drug use, medical psychosis, history of other significant psychiatric comorbidities, or emphasis on age groups above 65 or below 16 will be excluded. Subfields investigated will include the CA1, CA2/3, CA4, subiculum, presubiculum, parasubiculum, dentate gyrus, stratum, molecular layer, granular cell layer, entorhinal cortex, and fimbria. Two people will independently screen abstracts from the output of the search to select suitable studies. This will be followed by the two reviewers performing a full-text review of the studies which were selected based on suitable abstracts. One reviewer will independently perform all the data extraction, and another reviewer will then systemically check all the extracted information using the original articles to ensure accuracy. Statistical analysis will be performed using the metafor and meta-packages in R Studio with the application of the random-effects model. DISCUSSION This study will provide insight into the volumetric changes in psychosis of the subfields of the hippocampus, independent of diagnosis. This may shed light on the intricate neural pathology which encompasses psychosis and will open avenues for further exploration of the structures identified as potential drivers of volume change. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020199558.
Collapse
Affiliation(s)
- Anurag Nasa
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Olivia Mosley
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Allison Kelliher
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Caoimhe Gaughan
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Kirk J Levins
- Department of Anaesthesiology, Intensive Care and Pain Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
| | - David Coppinger
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Darren William Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland. .,Department of Physiology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
9
|
Sasabayashi D, Yoshimura R, Takahashi T, Takayanagi Y, Nishiyama S, Higuchi Y, Mizukami Y, Furuichi A, Kido M, Nakamura M, Noguchi K, Suzuki M. Reduced Hippocampal Subfield Volume in Schizophrenia and Clinical High-Risk State for Psychosis. Front Psychiatry 2021; 12:642048. [PMID: 33828496 PMCID: PMC8019805 DOI: 10.3389/fpsyt.2021.642048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) studies in schizophrenia demonstrated volume reduction in hippocampal subfields divided on the basis of specific cytoarchitecture and function. However, it remains unclear whether this abnormality exists prior to the onset of psychosis and differs across illness stages. MRI (3 T) scans were obtained from 77 patients with schizophrenia, including 24 recent-onset and 40 chronic patients, 51 individuals with an at-risk mental state (ARMS) (of whom 5 subsequently developed psychosis within the follow-up period), and 87 healthy controls. Using FreeSurfer software, hippocampal subfield volumes were measured and compared across the groups. Both schizophrenia and ARMS groups exhibited significantly smaller volumes for the bilateral Cornu Ammonis 1 area, left hippocampal tail, and right molecular layer of the hippocampus than the healthy control group. Within the schizophrenia group, chronic patients exhibited a significantly smaller volume for the left hippocampal tail than recent-onset patients. The left hippocampal tail volume was positively correlated with onset age, and negatively correlated with duration of psychosis and duration of medication in the schizophrenia group. Reduced hippocampal subfield volumes observed in both schizophrenia and ARMS groups may represent a common biotype associated with psychosis vulnerability. Volumetric changes of the left hippocampal tail may also suggest ongoing atrophy after the onset of schizophrenia.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ryo Yoshimura
- Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Health Administration Center, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|