1
|
Leão LPMDO, Neto AK, de Jesus Nicácio K, Lavorato SN, Leite FB, Teixeira KC, Murgu M, de Paula ACC, Soares MG, Chagas-Paula DA, Dias DF. Novel Synthesized Benzophenone Thiazole Hybrids Exhibited Ex Vivo and In Silico Anti-Inflammatory Activity. Chem Biol Drug Des 2024; 104:e14634. [PMID: 39424371 DOI: 10.1111/cbdd.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
Novel benzophenone-thiazole hybrids with different substituents were synthesized and evaluated for anti-inflammatory activity using an ex vivo human whole-blood assay. All hybrids (3c and 5a-h) showed significant anti-inflammatory activity via prostaglandin E2 (PGE2) release inhibition. Moreover, 5c (82.8% of PGE2 inhibition), 5e (83.1% of PGE2 inhibition), and 5h (82.1% of PGE2 inhibition) were comparable to the reference drugs. Molecular docking revealed potential preferable binding to the active sites of cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) enzymes. This study provides the first evidence that benzophenone-thiazole hybrids may also dock in mPGES-1, a new attractive anti-inflammatory drug target, besides providing promising ex vivo anti-inflammatory activity. Thus, the novel hybrids are promising anti-inflammatory lead compounds and highlight the significance of optimal substituent selection in the design of potent PGE2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Stefânia Neiva Lavorato
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Fernanda Brito Leite
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Ana Cláudia Chagas de Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Institute of Chemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | |
Collapse
|
2
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Bakr RB. Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Mol Divers 2024:10.1007/s11030-024-10906-9. [PMID: 39014146 DOI: 10.1007/s11030-024-10906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Pyrazole heterocycle is regarded as an extremely significant agent for the therapy of inflammation. Celecoxib, lonazolac, deracoxib, and phenylbutazone are examples of commercially approved pyrazole drugs with COX-2 inhibitory potential for curing inflammation. There have been recently many reviews for the biological significance of pyrazole derivatives. This review talks about pyrazole derivatives with anti-inflammatory activity and also sheds the light on the recent updates on pyrazole research with an emphasis on some synthetic pathways utilized to construct this privileged scaffold and structure activity relationship that accounts for the anti-inflammatory activity in an attempt to pave the opportunity for medicinal chemists to develop novel anti-inflammatory agents with better COX-2 selectivity.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt.
| |
Collapse
|
3
|
Khadri MJN, Ramu R, Simha NA, Khanum SA. Synthesis, molecular docking, analgesic, anti-inflammatory, and ulcerogenic evaluation of thiophene-pyrazole candidates as COX, 5-LOX, and TNF-α inhibitors. Inflammopharmacology 2024; 32:693-713. [PMID: 37985602 DOI: 10.1007/s10787-023-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
The thiophene bearing pyrazole derivatives (7a-j) were synthesized and examined for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities followed by the in vivo analgesic, anti-inflammatory, and ulcerogenic evaluations. The synthesized series (7a-j) were characterized using 1H NMR, 13C NMR, FT-IR, and mass spectral analysis. Initially, the compounds (7a-j) were evaluated for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities and the compound (7f) with two phenyl substituents in the pyrazole ring and chloro substituent in the thiophene ring and the compound (7g) with two phenyl substituents in the pyrazole ring and bromo substituent in the thiophene ring were observed as potent compounds among the series. The compounds (7f and 7g) with effective in vitro potentials were further analyzed for analgesic, anti-inflammatory, and ulcerogenic evaluations. Also, to ascertain the binding affinities of compounds (7a-j), docking assessments were carried out and the ligand (7f) with the highest binding affinity was docked to know the interactions of the ligand with amino acids of target proteins.
Collapse
Affiliation(s)
- M J Nagesh Khadri
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - N Akshaya Simha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
4
|
Mohammed YHI, Shamkh IM, Alharthi NS, Shanawaz MA, Alzahrani HA, Jabbar B, Beigh S, Alghamdi S, Alsakhen N, Khidir EB, Alhuthali HM, Karamalla THE, Rabie AM. Discovery of 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea as a promising anticancer drug via synthesis, characterization, biological screening, and computational studies. Sci Rep 2023; 13:22824. [PMID: 38129413 PMCID: PMC10739849 DOI: 10.1038/s41598-023-44662-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer and different types of tumors are still the most resistant diseases to available therapeutic agents. Finding a highly effective anticancer drug is the first target and concern of thousands of drug designers. In our attempts to address this concern, a new pyrazine derivative, 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea (BPU), was designed via structural optimization and synthesized to investigate its anticancer/antitumor potential. The in-vitro anticancer properties of BPU were evaluated by MTT assay using selected cell lines, including the Jurkat, HeLa, and MCF-7 cells. The Jurkat cells were chosen to study the effect of BPU on cell cycle analysis using flow cytometry technique. BPU exhibited an effective cytotoxic ability in all the three cell lines assessed. It was found to be more prominent with the Jurkat cell line (IC50 = 4.64 ± 0.08 µM). When it was subjected to cell cycle analysis, this compound effectively arrested cell cycle progression in the sub-G1 phase. Upon evaluating the antiangiogenic potential of BPU via the in-vivo/ex-vivo shell-less chick chorioallantoic membrane (CAM) assays, the compound demonstrated very significant findings, revealing a complementary supportive action for the compound to act as a potent anticancer agent through inhibiting blood vessel formation in tumor tissues. Moreover, the docking energy of BPU computationally scored - 9.0 kcal/mol with the human matrix metalloproteinase 2 (MMP-2) and - 7.8 kcal/mol with the human matrix metalloproteinase 9 (MMP-9), denoting promising binding results as compared to the existing drugs for cancer therapy. The molecular dynamics (MD) simulation outcomes showed that BPU could effectively bind to the previously-proposed catalytic sites of both MMP-2 and MMP-9 enzymes with relatively stable statuses and good inhibitory binding abilities and parameters. Our findings suggest that the compound BPU could be a promising anticancer agent since it effectively inhibited cell proliferation and can be selected for further in-vitro and in-vivo investigations. In addition, the current results can be extensively validated by conducting wet-lab analysis so as to develop novel and better derivatives of BPU for cancer therapy with much less side effects and higher activities.
Collapse
Affiliation(s)
- Yasser Hussein Issa Mohammed
- Department of Biochemistry, Faculty of Applied Science, University of Hajjah, Hajjah, Yemen.
- Department of Pharmacy, Faculty of Medicine and Medical Science, University of Al-Razi, Sana'a, Yemen.
| | - Israa M Shamkh
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Chemo and Bioinformatics Lab, Bio Search Research Institution (BSRI), Giza, Egypt
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed A Shanawaz
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Hind A Alzahrani
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Elshiekh B Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | | | - Amgad M Rabie
- Head of Drug Discovery and Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt.
| |
Collapse
|
5
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
6
|
Akhter N, Batool S, Khan SG, Rasool N, Anjum F, Rasul A, Adem Ş, Mahmood S, Rehman AU, Nisa MU, Razzaq Z, Christensen JB, Abourehab MAS, Shah SAA, Imran S. Bio-Oriented Synthesis and Molecular Docking Studies of 1,2,4-Triazole Based Derivatives as Potential Anti-Cancer Agents against HepG2 Cell Line. Pharmaceuticals (Basel) 2023; 16:211. [PMID: 37259360 PMCID: PMC9964635 DOI: 10.3390/ph16020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 08/22/2023] Open
Abstract
Triazole-based acetamides serve as important scaffolds for various pharmacologically active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a-f were produced in considerable yields (70-76%) by coupling the triazole of compound 1 with different electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated. Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that all of the compounds, especially 7f, have exhibited excellent binding affinities of -176.749 kcal/mol and -170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Naheed Akhter
- Department of Biochemistry, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sidra Batool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - Sadaf Mahmood
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Aziz ur Rehman
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Mehr un Nisa
- Department of Chemistry, University of Lahore, Lahore 40100, Pakistan
| | - Zainib Razzaq
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Shah Alam 40450, Selangor D.E., Malaysia
| |
Collapse
|
7
|
Design, synthesis, characterization and analysis of anti-inflammatory properties of novel N-(benzo[d]thiazol-2-yl)-2-[phenyl(2-(piperidin-1-yl) ethylamino] benzamides and N-(benzo[d]thiazol-2-yl)-2-[phenyl (2-morpholino) ethylamino] benzamides derivatives through in vitro and in silico approach. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Lusardi M, Profumo A, Rotolo C, Iervasi E, Rosano C, Spallarossa A, Ponassi M. Regioselective Synthesis, Structural Characterization, and Antiproliferative Activity of Novel Tetra-Substituted Phenylaminopyrazole Derivatives. Molecules 2022; 27:molecules27185814. [PMID: 36144549 PMCID: PMC9502416 DOI: 10.3390/molecules27185814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
A small library of highly functionalized phenylaminopyrazoles, bearing different substituents at position 1, 3, and 4 of the pyrazole ring, was prepared by the one-pot condensation of active methylene reagents, phenylisothiocyanate, and substituted hydrazine (namely, methyl- and benzyl-hydrazine). The identified reaction conditions proved to be versatile and efficient. Furthermore, the evaluation of alternative stepwise protocols affected the chemo- and regio-selectivity outcome of the one-pot procedure. The chemical identities of two N-methyl pyrazole isomers, selected as prototypes of the whole series, were unambiguously identified by means of NMR and mass spectrometry studies. Additionally, semiempirical calculations provided a structural rationale for the different chromatographic behavior of the two isomers. The prepared tetra-substituted phenylaminopyrazoles were tested in cell-based assays on a panel of cancer and normal cell lines. The tested compounds did not show any cytotoxic effect on the selected cell lines, thus supporting their pharmaceutical potentials.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Aldo Profumo
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Chiara Rotolo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Erika Iervasi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
- Correspondence:
| | - Marco Ponassi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| |
Collapse
|
9
|
Synthesis, analgesic, anti-inflammatory, ulcerogenic evaluation, and docking study of (benzoylphenoxy)-N-{5-[2-methylphenyl-6-chlorobenzoxazole]} acetamides as COX/5-LOX inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Nagesh KM, Prashanth T, Khamees HA, Khanum SA. Synthesis, analgesic, anti-inflammatory, COX/5-LOX inhibition, ulcerogenic evaluation, and docking study of benzimidazole bearing indole and benzophenone analogs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
12
|
Oubella A, Laamari Y, Hachim ME, Byadi S, Auhmani A, Morjani H, Riahi A, Podlipnik C, Rohand T, Van Meervelt L, Ait Itto MY. New gem‑dichlorocyclopropane-pyrazole hybrids with monoterpenic skeleton: Synthesis, crystal structure, cytotoxic evaluation, molecular dynamics and theoretical study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
14
|
M PH, Al-Ostoot FH, Vivek HK, Khanum SA. Synthesis, characterization, DFT, docking studies and molecular dynamics of some 3-phenyl-5-furan isoxazole derivatives as anti-inflammatory and anti-ulcer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Design, synthesis, in vitro evaluation, and docking studies on ibuprofen derived 1,3,4-oxadiazole derivatives as dual α-glucosidase and urease inhibitors. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02814-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Świątek P, Glomb T, Dobosz A, Gębarowski T, Wojtkowiak K, Jezierska A, Panek JJ, Świątek M, Strzelecka M. Biological Evaluation and Molecular Docking Studies of Novel 1,3,4-Oxadiazole Derivatives of 4,6-Dimethyl-2-sulfanylpyridine-3-carboxamide. Int J Mol Sci 2022; 23:ijms23010549. [PMID: 35008977 PMCID: PMC8745710 DOI: 10.3390/ijms23010549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.
Collapse
Affiliation(s)
- Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Teresa Glomb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Agnieszka Dobosz
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Małgorzata Świątek
- Hospital Pharmacy, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland;
| | - Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
17
|
Gurupadaswamy HD, Ranganatha VL, Ramu R, Patil SM, Khanum SA. Competent synthesis of biaryl analogs via asymmetric Suzuki–Miyaura cross-coupling for the development of anti-inflammatory and analgesic agents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [PMCID: PMC8723806 DOI: 10.1007/s13738-021-02460-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Based on the core structure of diflunisal drug, herein, we report a resembling series of biaryl analogs (3a–j) containing halogens, nitro, and methoxy substituents. They were designed and synthesized via a Suzuki–Miyaura cross-coupling reaction using Pd (OH)2 as a catalyst at a temperature of 65 °C with an intent to obtain improved and safer anti-inflammatory and analgesic agents. Suzuki–Miyaura transformation is the most significant among the cross-coupling reactions since its practical advantages include the commercially available low toxic reagents, mild reaction conditions, and functional group compatibility. On the other hand, a few conditions can be used to cross-couple aryl boronic acids or esters with aryl halides, especially 2-benzyl halides. Because of this, a novel Suzuki–Miyaura protocol is investigated that facilitates the selective conversion of halo aromatics, with an emphasis on the reaction to convert substituted bromobenzene to conjugated biphenyls. Finally, the obtained biaryl analogs (3a–j) were tested for in vitro and in vivo anti-inflammatory and analgesic applications. The results showed that compound 3b performed better than the standard drug with IC50 values comparable to that of the standard drug for COX-1 and COX-2 inhibition. Finally, molecular docking tests for the effective compound were carried out.
Collapse
|
18
|
M PH, Al-Ostoot FH, Vivek HK, Khanum SA. Design, docking, synthesis, and characterization of novel N'(2-phenoxyacetyl) nicotinohydrazide and N'(2-phenoxyacetyl)isonicotinohydrazide derivatives as anti-inflammatory and analgesic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Zabiulla, Al-Ostoot FH, S AM, Al-Ghorbani M, Khanum SA. Recent investigation on heterocycles with one nitrogen [piperidine, pyridine and quinoline], two nitrogen [1,3,4-thiadiazole and pyrazole] and three nitrogen [1,2,4-triazole]: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02293-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
An Investigation into the Interaction between Double Hydroxide-Based Antioxidant Benzophenone Derivatives and Cyclooxygenase 2. Molecules 2021; 26:molecules26216622. [PMID: 34771031 PMCID: PMC8587043 DOI: 10.3390/molecules26216622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenases 2 (COX2) is a therapeutic target for many inflammation and oxidative stress associated diseases. A high-throughput technique, biolayer interferometry, was performed to primarily screen the potential COX2 binding activities of twelve newly synthesized double hydroxide-based benzophenone derivatives. Binding confirmation was achieved by molecular docking and multi-spectroscopy studies. Such a combined method provided a comprehensive understanding of binding mechanism and conformational changes. Compounds DB2, SC2 and YB2 showed effective COX2 binding activity and underlined the benefits of three phenolic hydroxyl groups adjacent to each other on the B ring. The twelve tested derivatives were further evaluated for antioxidant activity, wherein compound SC2 showed the highest activity. Its concentration for the 50% of maximal effect (EC50) value was approximately 1000 times greater than that of the positive controls. SC2 treatment effectively improved biochemical indicators caused by oxidative stress. Overall, compound SC2 could serve as a promising candidate for further development of a new potent COX2 inhibitor.
Collapse
|
21
|
Bian M, Ma QQ, Wu Y, Du HH, Guo-Hua G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: a review. J Enzyme Inhib Med Chem 2021; 36:2139-2159. [PMID: 34628990 PMCID: PMC8516162 DOI: 10.1080/14756366.2021.1984903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inflammation and disease are closely related. Inflammation can induce various diseases, and diseases can promote inflammatory response, and two possibly induces each other in a bidirectional loop. Inflammation is usually treated using synthetic anti-inflammatory drugs which are associated with several adverse effects hence are not safe for long-term use. Therefore, there is need for anti-inflammatory drugs which are not only effective but also safe. Several researchers have devoted to the research and development of effective anti-inflammatory drugs with little or no side effects. In this review, we studied some small molecules with reported anti-inflammatory activities and hence potential sources of anti-inflammatory agents. The information was retrieved from relevant studies published between January 2019 and May, 2021 for review. This review study was aimed to provide relevant information towards the design and development of effective and safe anti-inflammation agents.
Collapse
Affiliation(s)
- Ming Bian
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Qian-Qian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yun Wu
- First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huan-Huan Du
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Gong Guo-Hua
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China.,First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
22
|
Patel M, Pandey N, Timaniya J, Parikh P, Chauhan A, Jain N, Patel K. Coumarin-carbazole based functionalized pyrazolines: synthesis, characterization, anticancer investigation and molecular docking. RSC Adv 2021; 11:27627-27644. [PMID: 35480680 PMCID: PMC9037808 DOI: 10.1039/d1ra03970a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
A series of novel pyrazoline scaffolds from coumarin-carbazole chalcones were synthesized. We explored various acetyl, amide, and phenyl substituents at the N-1 position of the pyrazoline core. The synthesized compounds were characterized by FTIR, 1H-NMR, 13C-NMR, DEPT, and mass spectroscopic techniques. The in vitro cytotoxicity study of all the synthesized compounds was evaluated against HeLa, NCI-H520 and NRK-52E cell lines. Compounds 4a and 7b became the most active compounds and exhibited their potential to arrest the cell cycle progression and induce apoptosis in both the cell lines. In addition, molecular docking studies revealed a higher binding affinity of both the molecules with CDK2 protein. Based on the obtained results, a comprehensive analysis is warranted to establish the role of compounds 4a and 7b as promising cancer therapeutic agents.
Collapse
Affiliation(s)
- Mrugesh Patel
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Gujarat 388421 India
| | - Nilesh Pandey
- Department of Medical Laboratory Technology, Charotar Institute of Paramedical Sciences, Charotar University of Science and Technology Gujarat 388421 India
| | - Jignesh Timaniya
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Gujarat 388421 India
| | - Paranjay Parikh
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Gujarat 388421 India
| | - Alex Chauhan
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Gujarat 388421 India
| | - Neeraj Jain
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Gujarat 388421 India
| | - Kaushal Patel
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Gujarat 388421 India
| |
Collapse
|
23
|
Sava A, Buron F, Routier S, Panainte A, Bibire N, Constantin SM, Lupașcu FG, Focșa AV, Profire L. Design, Synthesis, In Silico and In Vitro Studies for New Nitric Oxide-Releasing Indomethacin Derivatives with 1,3,4-oxadiazole-2-thiol Scaffold. Int J Mol Sci 2021; 22:7079. [PMID: 34209248 PMCID: PMC8267937 DOI: 10.3390/ijms22137079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Starting from indomethacin (IND), one of the most prescribed non-steroidal anti-inflammatory drugs (NSAIDs), new nitric oxide-releasing indomethacin derivatives with 1,3,4-oxadiazole-2-thiol scaffold (NO-IND-OXDs, 8a-p) have been developed as a safer and more efficient multitarget therapeutic strategy. The successful synthesis of designed compounds (intermediaries and finals) was proved by complete spectroscopic analyses. In order to study the in silico interaction of NO-IND-OXDs with cyclooxygenase isoenzymes, a molecular docking study, using AutoDock 4.2.6 software, was performed. Moreover, their biological characterization, based on in vitro assays, in terms of thermal denaturation of serum proteins, antioxidant effects and the NO releasing capacity, was also performed. Based on docking results, 8k, 8l and 8m proved to be the best interaction for the COX-2 (cyclooxygense-2) target site, with an improved docking score compared with celecoxib. Referring to the thermal denaturation of serum proteins and antioxidant effects, all the tested compounds were more active than IND and aspirin, used as references. In addition, the compounds 8c, 8h, 8i, 8m, 8n and 8o showed increased capacity to release NO, which means they are safer in terms of gastrointestinal side effects.
Collapse
Affiliation(s)
- Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Frederic Buron
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Alina Panainte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
| | - Sandra Mădălina Constantin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Florentina Geanina Lupașcu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Alin Viorel Focșa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Lenuţa Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| |
Collapse
|
24
|
Glomb T, Świątek P. Antimicrobial Activity of 1,3,4-Oxadiazole Derivatives. Int J Mol Sci 2021; 22:6979. [PMID: 34209520 PMCID: PMC8268636 DOI: 10.3390/ijms22136979] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The worldwide development of antimicrobial resistance forces scientists to search for new compounds to which microbes would be sensitive. Many new structures contain the 1,3,4-oxadiazole ring, which have shown various antimicrobial activity, e.g., antibacterial, antitubercular, antifungal, antiprotozoal and antiviral. In many publications, the activity of new compounds exceeds the activity of already known antibiotics and other antimicrobial agents, so their potential as new drugs is very promising. The review of active antimicrobial 1,3,4-oxadiazole derivatives is based on the literature from 2015 to 2021.
Collapse
Affiliation(s)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
25
|
Neha K, Wakode S. Contemporary advances of cyclic molecules proposed for inflammation. Eur J Med Chem 2021; 221:113493. [PMID: 34029774 DOI: 10.1016/j.ejmech.2021.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
This review stretches insight about the advancement (2011-2021) of synthesized non-heterocyclic, heterocyclic and natural occurring cyclic molecules for inflammation. While inflammation is very significant in the abolition of pathogens and other causes of soreness, a protracted inflammatory procedure takes to outcomes in chronic disease that might finally affect in organ failure or damage. Thus, restraining the provocative process by the use of anti-inflammatory agents is chief in controlling this damage. It also reveals other pursuit along with their anti-inflammatory activity. Molecular docking studies represent most suitable PDB (Protein Data Bank) ID for the synthesized heterocyclic molecules with their selective inhibitor. It discusses the findings presented in recent research papers and provides understanding to researchers intended for the growth of newer combinations/molecules having littler side things.
Collapse
Affiliation(s)
- Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India.
| |
Collapse
|
26
|
Molecular docking and synthesis of caffeic acid analogous and its anti-inflammatory, analgesic and ulcerogenic studies. Bioorg Med Chem Lett 2021; 33:127743. [DOI: 10.1016/j.bmcl.2020.127743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
|
27
|
Ahmed MF, Santali EY, El-Haggar R. Novel piperazine-chalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation. J Enzyme Inhib Med Chem 2020; 36:307-318. [PMID: 33349069 PMCID: PMC7758046 DOI: 10.1080/14756366.2020.1861606] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
New piperazine–chalcone hybrids and related pyrazoline derivatives have been designed and synthesised as potential vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. The National Cancer Institute (NCI) has selected six compounds to evaluate their antiproliferative activity in vitro against 60 human cancer cells lines. Preliminary screening of the examined compounds indicated promising anticancer activity against number of cell lines. The enzyme inhibitory activity against VEGFR-2 was evaluated and IC50 of the tested compounds ranged from 0.57 µM to 1.48 µM. The most potent derivatives Vd and Ve were subjected to further investigations. A cell cycle analysis showed that both compounds mainly arrest HCT-116 cell cycle in the G2/M phase. Annexin V-FITC apoptosis assay showed that Vd and Ve induced an approximately 18.7-fold and 21.2-fold total increase in apoptosis compared to the control. Additionally, molecular docking study was performed against VEGFR (PDB ID: 4ASD) using MOE 2015.10 software and Sorafenib as a reference ligand.
Collapse
Affiliation(s)
- Marwa F Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Eman Y Santali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Radwan El-Haggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
28
|
New 1,3,4-Oxadiazole Derivatives of Pyridothiazine-1,1-Dioxide with Anti-Inflammatory Activity. Int J Mol Sci 2020; 21:ijms21239122. [PMID: 33266208 PMCID: PMC7729791 DOI: 10.3390/ijms21239122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have confirmed the coexistence of oxidative stress and inflammatory processes. Long-term inflammation and oxidative stress may significantly affect the initiation of the neoplastic transformation process. Here, we describe the synthesis of a new series of Mannich base-type hybrid compounds containing an arylpiperazine residue, 1,3,4-oxadiazole ring, and pyridothiazine-1,1-dioxide core. The synthesis was carried out with the hope that the hybridization of different pharmacophoric molecules would result in a synergistic effect on their anti-inflammatory activity, especially the ability to inhibit cyclooxygenase. The obtained compounds were investigated in terms of their potencies to inhibit cyclooxygenase COX-1 and COX-2 enzymes with the use of the colorimetric inhibitor screening assay. Their antioxidant and cytotoxic effect on normal human dermal fibroblasts (NHDF) was also studied. Strong COX-2 inhibitory activity was observed after the use of TG6 and, especially, TG4. The TG11 compound, as well as reference meloxicam, turned out to be a preferential COX-2 inhibitor. TG12 was, in turn, a non-selective COX inhibitor. A molecular docking study was performed to understand the binding interaction of compounds at the active site of cyclooxygenases.
Collapse
|
29
|
Turones LC, Martins AN, Moreira LKDS, Fajemiroye JO, Costa EA. Development of pyrazole derivatives in the management of inflammation. Fundam Clin Pharmacol 2020; 35:217-234. [PMID: 33171533 DOI: 10.1111/fcp.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
The therapeutic limitations and poor management of inflammatory conditions are anticipated to impact patients negatively over the coming decades. Following the synthesis of the first pyrazole-antipyrine in 1887, several other derivatives have been screened for anti-inflammatory, analgesic, and antipyretic activities. Arguably, the pyrazole ring, as a major pharmacophore and central scaffold partly, defines the pharmacological profile of several derivatives. In this review, we explore the structural-activity relationship that accounts for the pharmacological profile of pyrazole derivatives and highlights future research perspectives capable of optimizing current advancement in the search for safe and efficacy anti-inflammatory drugs. The flourishing research into the pyrazole derivatives as drug candidates has advanced our understanding of inflammation-related diseases and treatment.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
30
|
Wang G, Liu W, Peng Z, Huang Y, Gong Z, Li Y. Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Bioorg Chem 2020; 103:104141. [DOI: 10.1016/j.bioorg.2020.104141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/29/2023]
|
31
|
Hajalsiddig TTH, Osman ABM, Saeed AEM. 2D-QSAR Modeling and Molecular Docking Studies on 1 H-Pyrazole-1-carbothioamide Derivatives as EGFR Kinase Inhibitors. ACS OMEGA 2020; 5:18662-18674. [PMID: 32775868 PMCID: PMC7407542 DOI: 10.1021/acsomega.0c01323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Epidermal growth factor receptor (EGFR) kinase has been commonly associated with cancers such as lung, ovarian, hormone-refractory prostate, metastatic colorectal, glioblastoma, pancreatic, and breast cancers. A series of 1H-pyrazole-1-carbothioamide derivatives and their EGFR inhibitory activities were subjected to two-dimensional (2D) quantitative structure-activity relationship (2D-QSAR) studies. The 2D-QSAR models were constructed based on a forward selection of partial least-squares (PLS) and stepwise multiple linear regression (SW-MLR) methods validated by leave-one-out (LOO) and external test set prediction approaches. The stepwise multiple linear regression (SW-MLR) method presented an encouraging result as compared to other methods. The results of the study indicated that the activity of 1H-pyrazole-1-carbothioamide derivatives as an EGFR kinase inhibitor was more influenced by adjacency distance matrix descriptors. The models were improved after outlier removal through the applicability domain. Based on the resultant models, 11 new compounds with high potency were designed as EGFR kinase inhibitors. Molecular docking studies were performed for designing compounds, and they were compared with erlotinib as a reference to predict their interactions in the active site and identify structural features necessary for producing biological activities.
Collapse
Affiliation(s)
- Tawassl T. H. Hajalsiddig
- Department
of Chemistry, College of Science, Sudan
University of Science and Technology, Khartoum, Sudan
| | - Abu Baker M. Osman
- Department
of Chemistry, College of Science & Arts (Suratabidha), King Khalid University, Abha, Saudi Arabia
| | - Ahmed E. M. Saeed
- Department
of Chemistry, College of Science, Sudan
University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
32
|
Sharma S, Kumar D, Singh G, Monga V, Kumar B. Recent advancements in the development of heterocyclic anti-inflammatory agents. Eur J Med Chem 2020; 200:112438. [DOI: 10.1016/j.ejmech.2020.112438] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
|