1
|
Moghadam ES, Al-Sadi AM, Moghadam MS, Bayati B, Mojtabavi S, Faramarzi MA, Amini M, Abdel-Jalil R. Potent α-glucosidase inhibitors with benzimidazole-propionitrile hybridization; synthesis, bioassay and docking study. Future Med Chem 2024:1-16. [PMID: 39392278 DOI: 10.1080/17568919.2024.2401314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background: Diabetes is characterized by a lack of insulin and insensitivity to insulin. In 2013, the global diabetes population was 382 million, with 90% of them having type 2 diabetes (non-insulin-dependent). It is predicted that this number will increase to 592 million by 2035.Aim: Here, we aimed to synthesize a series of benzimidazole-based derivatives B1-B32 with α-glucosidase inhibition potential as antidiabetic agents.Methods: Compounds B1-B32 were prepared in three three-step reactions, and the structures were elucidated using spectroscopic methods, namely 1H NMR, 13C NMR, MS and IR. Enzyme inhibition and kinetic study were done using commercial assay kits, and molecular docking study using autodock4.Results: Bioassay data showed that twenty-four out of the thirty-two tested compounds exhibited IC50 values ranging from 44 to 745 μM, surpassing the standard molecule, acarbose (IC50: 750 μM). it was determined that the best compound, B10, functions as a competitive inhibitor. Additionally, a molecular docking study provided insights into the interactions between the four most promising compounds (B5, B6, B10 and B28) and the active site residues within the enzyme.Conclusion: The tested compounds are interesting α-glucosidase inhibitors, which indicates the benefit of more bioassay studies, especially in vivo studies.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural & Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman
| |
Collapse
|
2
|
Mohammed HA, Said R, Abbas MM, Al-Najjar BO, Abd-Elmoniem E, Khan RA, Alsohim AS, Almahmoud SA, Kedra TA, Shehata SM, Ismail A. Phytochemical, biological, and computational investigations of Ephedra alata Decne. growing in salinity conditions of Arabian Peninsula. Sci Rep 2024; 14:21987. [PMID: 39313524 PMCID: PMC11420223 DOI: 10.1038/s41598-024-69607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Ephedra alata Decne is a medicinal plant widely used in traditional medicine for the management of bronchial asthma and cancer. Phytochemical analysis and biological activities, including antioxidant and anticancer effects, were investigated in the current work as new findings for the plant E. alata, a species growing wildly in the marsh and saline environments of the central area of Saudi Arabia. The Ultra Pressure Liquid Chromatography coupled with Electron spray ionization-Quadropole-Time of flight (UPLC-ESI-Q-TOF) system was used for the phytochemical analysis of the plant constituents. In addition, Polyphenolic profiling including the total phenolic (TPC) and flavonoid (TFC) contents of the plant extracts were measured. Phenolic acids were found at the highest relative percentages among all the identified compounds and were measured at 66.07 mg GAE (Gallic acid equivalent). The UPLC analysis of the E. alata extract indicated the presence of chlorogenic acid, syringic acid, caffeic acid, vanillic acid, rosmarinic acid, umbelliferone, isorhoifolin, and apigenin at the highest relative percentages. Mineral analysis indicated that the microelement content of E. alata was relatively low, except for magnesium (Mg). In vitro antioxidant assays revealed the ability of the plant to scavenge DPPH free radicals, reduced molybdenum ions, and ferrous at levels of 14.63, 19.97, and 27.78 mg Trolox equivalents, respectively. The extract induced transition metal chelation at 31.36 mg EDTA equivalents. The extract induced cytotoxic effects against MDA-231 and A549 cell lines at IC50 levels of 25.31 and 39.81 µg/mL, respectively. The plant extract inhibited the colonization and migration of cancer cells as part of its potential anticancer effects. In addition, major E. alata constituents like isorhoifolin, chlorogenic acid, apigenin, and rosmarinic acid exhibited the lowest binding energy to the CAIX enzyme at - 8.41, - 6.64, - 6.32, and - 6.26 kcal/mol, respectively, compared to the binding energy (- 7.72 kcal/mol) of the co-crystallized ligand (Y0R). The docking results further supported the selection of the CAIX enzyme as a standard predictive therapeutic target, since it exhibited significant binding interactions with the major constituents of the plant.
Collapse
Affiliation(s)
- Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Rana Said
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Pharmacological and Diagnostic Research Laboratory, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Manal M Abbas
- Pharmacological and Diagnostic Research Laboratory, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Belal O Al-Najjar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Pharmacological and Diagnostic Research Laboratory, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Essam Abd-Elmoniem
- Department of enviromental and natural resources, College of Agriculture and Food, Qassim University, P.O. Box 6622, Buraydah, 51452, Qassim, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Abdullah S Alsohim
- Department of Plant Production, College of Agriculture and Food, Qassim University, P.O. Box 6622, Buraydah, 51452, Qassim, Saudi Arabia
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Taha A Kedra
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Safia M Shehata
- Clinical Pathology Department, Ain Shams University Hospitals, Cairo, Egypt
| | - Ahmed Ismail
- Pharmacognosy Department, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
3
|
Bal M, Köse A, Güngör SA. Investigation of photoluminescence and DNA binding properties of benzimidazole compounds containing benzophenone group. J Biomol Struct Dyn 2024; 42:7847-7859. [PMID: 37526238 DOI: 10.1080/07391102.2023.2242496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
The synthesis of benzimidazole compounds containing benzophenone group in accordance with the literature and the investigation of DNA binding properties of these compounds by using UV-vis and photoluminescence spectroscopy methods constitute the basis of this research. The structures of the compounds were determined by methods such as FT-IR, 1H, 13C NMR, UV-vis, Photoluminescence spectroscopy, and X-ray crystallography. By using methods such as UV-vis, Photoluminescence spectroscopy, and viscosity tests, information were collected about the binding types, binding mode, and binding energies of the compounds with DNA. In addition, the binding interactions of the compounds with DNA were investigated using the molecular docking technique. Using this information, calibration equations, correlation coefficients (r2), and DNA binding constants (Kb) were calculated for their compounds. The binding constants (Kb) calculated for substances A, B, and C were found to be 3.0 × 104, 7.0 × 104, and 3.0 × 104 M-1, respectively. UV-vis, EB competitive binding, and viscosity tests showed that the compounds tended to bind to the DNA structure via the groove binding mode. At the end of molecular docking studies, it was determined that compound B showed the best DNA binding activity in in vitro studies. Compared with the studies in the literature, it is thought that the synthesized compounds can take place in cancer drug research as DNA binding agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Materials Science and Engineering, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School, Kahramanmaras Istiklal University, Kahramanmaraş, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| |
Collapse
|
4
|
Zahra S, Zaib S, Khan I. Identification of isobenzofuranone derivatives as promising antidiabetic agents: Synthesis, in vitro and in vivo inhibition of α-glucosidase and α-amylase, computational docking analysis and molecular dynamics simulations. Int J Biol Macromol 2024; 259:129241. [PMID: 38199537 DOI: 10.1016/j.ijbiomac.2024.129241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Diabetes mellitus, one of the major health challenges of the 21st century, is associated with numerous biomedical complications including retinopathy, neuropathy, nephropathy, cardiovascular diseases and liver disorders. To control the chronic hyperglycemic condition, the development of potential inhibitors of drug targets such as α-glucosidase and α-amylase remains a promising strategy and focus of continuous efforts. Therefore, in the present work, a concise library of isobenzofuranone derivatives (3a-q) was designed and synthesized using Suzuki-Miyaura cross-coupling approach. The biological potential of these heterocyclic compounds against carbohydrate-hydrolyzing enzymes; α-glucosidase and α-amylase, was examined. In vitro inhibitory results demonstrated that the tested isobenzofuranones were considerably more effective and potent inhibitors than the standard drug, acarbose. Compound 3d having an IC50 value of 6.82 ± 0.02 μM was emerged as the lead candidate against α-glucosidase with ⁓127-folds strong inhibition than acarbose. Similarly, compound 3g demonstrated ⁓11-folds higher inhibition strength against α-amylase when compared with acarbose. Both compounds were tested in vivo and results demonstrate that the treatment of diabetic rats with α-amylase inhibitor show more pronounced histopathological normalization in kidney and liver than with α-glucosidase inhibitor. The Lineweaver-Burk plot revealed an uncompetitive mode of inhibition for 3d against α-glucosidase whereas compound 3g exhibited mixed inhibition against α-amylase. Furthermore, in silico molecular docking and dynamics simulations validated the in vitro data for these compounds whereas pharmacokinetics profile revealed the druglike properties of potent inhibitors.
Collapse
Affiliation(s)
- Shabab Zahra
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
5
|
Mehra A. Targeting Diabetes with Azole-derived Medicinal Agents. Med Chem 2024; 20:855-875. [PMID: 38840402 DOI: 10.2174/0115734064289990240524055002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 06/07/2024]
Abstract
Azoles have long been regarded as an ideal scaffold for the development of numerous innovative therapeutic agents as well as other incredibly adaptable and beneficial chemicals with prospective uses in a variety of fields, including materials, energetics (explosophores), and catalysis (azole organocatalytic arbitration). Azoles exhibit promising pharmacological activities, including antimicrobial, antidiabetic, antiviral, antidepressant, antihistaminic, antitumor, antioxidant, antiallergic, antihelmintic, and antihypertensive activity. According to a database analysis of U.S. FDAapproved medications, 59% of specific medications are connected to small molecules that have heterocycles having nitrogen atoms. The azole moiety has impressive electron abundance. Azoles promptly attach to various receptors as well as enzymes in the physiological environment via distinct specialized interactions, contributing to their anti-diabetic potential. This review encompasses the recent research progress on potent azole-derived antidiabetic agents that can be used as an alternative for the management of type-2 diabetes.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India
| |
Collapse
|
6
|
Peytam F, Hosseini FS, Hekmati M, Bayati B, Moghadam MS, Emamgholipour Z, Firoozpour L, Mojtabavi S, Faramarzi MA, Sadat-Ebrahimi SE, Tehrani MB, Foroumadi A. Imidazo[1,2-c]quinazolines as a novel and potent scaffold of α-glucosidase inhibitors: design, synthesis, biological evaluations, and in silico studies. Sci Rep 2023; 13:15672. [PMID: 37735489 PMCID: PMC10514295 DOI: 10.1038/s41598-023-42549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 μM to 308.33 ± 0.06 μM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 μM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 μM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a-c and 11a-o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively.
Collapse
Affiliation(s)
- Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
M. Aldebasi S, Tar H, S. Alnafisah A, Beji L, Kouki N, Morlet-Savary F, Alminderej FM, Aroua LM, Lalevée J. Photochemical Synthesis of Noble Metal Nanoparticles: Influence of Metal Salt Concentration on Size and Distribution. Int J Mol Sci 2023; 24:14018. [PMID: 37762321 PMCID: PMC10530956 DOI: 10.3390/ijms241814018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This paper explores the photochemical synthesis of noble metal nanoparticles, specifically gold (Au) and silver (Ag) nanoparticles, using a one-component photoinitiator system. The synthesis process involves visible light irradiation at a wavelength of 419 nm and an intensity of 250 mW/cm2. The radical-generating capabilities of the photoinitiators were evaluated using electron spin resonance (ESR) spectroscopy. The main objective of this study was to investigate how the concentration of metal salts influences the size and distribution of the nanoparticles. Proposed mechanisms for the photochemical formation of nanoparticles through photoinitiated radicals were validated using cyclic voltammetry. The results showed that the concentration of AgNO3 significantly impacted the size of silver nanoparticles, with diameters ranging from 1 to 5 nm at 1 wt% and 3 wt% concentrations, while increasing the concentration to 5 wt% led to an increase in the diameter of silver nanoparticles to 16 nm. When HAuCl4 was used instead of AgNO3, it was found that the average diameters of gold nanoparticles synthesized using both photoinitiators at different concentrations ranged between 1 and 4 nm. The findings suggest that variations in HAuCl4 concentration have minimal impact on the size of gold nanoparticles. The photoproduction of AuNPs was shown to be thermodynamically favorable, with the reduction of HAuCl4 to Au0 having ∆G values of approximately -3.51 and -2.96 eV for photoinitiators A and B, respectively. Furthermore, the photoreduction of Ag+1 to Ag0 was demonstrated to be thermodynamically feasible, with ∆G values of approximately -3.459 and -2.91 eV for photoinitiators A and B, respectively, confirming the effectiveness of the new photoinitiators on the production of nanoparticles. The synthesis of nanoparticles was monitored using UV-vis absorption spectroscopy, and their sizes were determined through particle size analysis of transmission electron microscopy (TEM) images.
Collapse
Affiliation(s)
- Shahad M. Aldebasi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Haja Tar
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Abrar S. Alnafisah
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Lotfi Beji
- Department of Physics, College of Sciences and Arts at ArRass, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Noura Kouki
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Fabrice Morlet-Savary
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France; (F.M.-S.); (J.L.)
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (A.S.A.); (N.K.); (F.M.A.); (L.M.A.)
| | - Jacques Lalevée
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France; (F.M.-S.); (J.L.)
| |
Collapse
|
8
|
Mohammed HA, Abd-Elraouf M, Sulaiman GM, Almahmoud SA, Hamada FA, Khan RA, Hegazy MM, Abd-El-Wahab MF, Kedra TA, Ismail A. Variability in the volatile constituents and biological activities of Achillea millefolium L. essential oils obtained from different plant parts and by different solvents. ARAB J CHEM 2023; 16:105103. [DOI: 10.1016/j.arabjc.2023.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
9
|
Aldebasi SM, Tar H, Alnafisah AS, Salmi-Mani H, Kouki N, Alminderej FM, Lalevée J. Surface Modification of PP and PBT Nonwoven Membranes for Enhanced Efficiency in Photocatalytic MB Dye Removal and Antibacterial Activity. Polymers (Basel) 2023; 15:3378. [PMID: 37631435 PMCID: PMC10459508 DOI: 10.3390/polym15163378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we developed highly efficient nonwoven membranes by modifying the surface of polypropylene (PP) and poly(butylene terephthalate) (PBT) through photo-grafting polymerization. The nonwoven membrane surfaces of PP and PBT were grafted with poly(ethylene glycol) diacrylate (PEGDA) in the presence of benzophenone (BP) and metal salt. We immobilized tertiary amine groups as BP synergists on commercial nonwoven membranes to improve PP and PBT surfaces. In situ Ag, Au, and Au/Ag nanoparticle formation enhances the nonwoven membrane surface. SEM, FTIR, and EDX were used to analyze the surface. We evaluated modified nonwoven membranes for photocatalytic activity by degrading methylene blue (MB) under LED and sunlight. Additionally, we also tested modified membranes for antibacterial activity against E. coli. The results indicated that the modified membranes exhibited superior efficiency in removing MB from water. The PBT showed the highest efficiency in dye removal, and bimetallic nanoparticles were more effective than monometallic. Modified membranes exposed to sunlight had higher efficiency than those exposed to LED light, with the PBT/Au/Ag membrane showing the highest dye removal at 97% within 90 min. The modified membranes showed reuse potential, with dye removal efficiency decreasing from 97% in the first cycle to 85% in the fifth cycle.
Collapse
Affiliation(s)
- Shahad M. Aldebasi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (F.M.A.)
| | - Haja Tar
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (F.M.A.)
| | - Abrar S. Alnafisah
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (F.M.A.)
| | - Hanène Salmi-Mani
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris-Saclay, CNRS, 91405 Orsay Cedex, France;
| | - Noura Kouki
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (F.M.A.)
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.M.A.); (F.M.A.)
| | - Jacques Lalevée
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France;
| |
Collapse
|
10
|
Devi M, Kumar P, Singh R, Sindhu J, Kumar A, Lal S, Singh D, Kumar H. α-amylase inhibition and in silico studies of novel naphtho[2,3- d]imidazole-4,9-dione linked N-acyl hydrazones. Future Med Chem 2023; 15:1511-1525. [PMID: 37610859 DOI: 10.4155/fmc-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Aim: To enrich the pool of α-amylase inhibitors to manage Type 2 diabetes. Methods: Synthesis, conformational study, α-amylase inhibitory action and various in silico studies of novel N'-(arylbenzylidene)-2-(4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d]imidazol-1-yl)acetohydrazides carried out. Results: Compound H6 demonstrated the highest activity (IC50 = 0.0437 μmol mL-1) among the tested compounds. Structure-activity relationship study suggested that variable substitution at the aryl ring has a pivotal role in determining the inhibitory action of tested compounds. Docking simulations of the most active compound (H6) confirmed its interaction potential with active site residues of A. oryzae α-amylase. The root-mean-square deviation fluctuations substantiated the stability of protein-ligand complex. Absorption, distribution, metabolism and excretion prediction revealed optimal values for absorption, distribution, metabolism and excretion parameters. Conclusion: The developed molecules could be beneficial for the development of novel α-amylase inhibitors to treat Type 2 diabetes.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123031, India
| |
Collapse
|
11
|
Khan S, Iqbal S, Taha M, Hussain R, Rahim F, Shah M, Awwad NS, Ibrahium HA, Alahmdi MI, Dera AA, Ullah H, Bahadur A, Aljazzar SO, Elkaeed EB, Rauf M. Synthesis, in vitro biological assessment, and molecular docking study of benzimidazole-based thiadiazole derivatives as dual inhibitors of α-amylase and α-glucosidase. Front Chem 2023; 11:1125915. [PMID: 37214481 PMCID: PMC10196468 DOI: 10.3389/fchem.2023.1125915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/07/2023] [Indexed: 05/24/2023] Open
Abstract
The clinical significance of benzimidazole-containing drugs has increased in the current study, making them more effective scaffolds. These moieties have attracted strong research interest due to their diverse biological features. To examine their various biological significances, several research synthetic methodologies have recently been established for the synthesis of benzimidazole analogs. The present study aimed to efficiently and quickly synthesize a new series of benzimidazole analogs. Numerous spectroscopic techniques, including 1H-NMR, 13C-NMR, and HREI-MS, were used to confirm the synthesized compounds. To explore the inhibitory activity of the analogs against α-amylase and α-glucosidase, all derivatives (1-17) were assessed for their biological potential. Compared to the reference drug acarbose (IC50 = 8.24 ± 0.08 µM), almost all the derivatives showed promising activity. Among the tested series, analog 2 (IC50 = 1.10 ± 0.10 & 2.10 ± 0.10 µM, respectively) displayed better inhibitory activity. Following a thorough examination of the various substitution effects on the inhibitory capacity of α-amylase and α-glucosidase, the structure-activity relationship (SAR) was determined. We looked at the potential mechanism of how active substances interact with the catalytic cavity of the targeted enzymes in response to the experimental results of the anti-glucosidase and anti-amylase. Molecular docking provided us with information on the interactions that the active substances had with the various amino acid residues of the targeted enzymes for this purpose.
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Mazloom Shah
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Nasser S. Awwad
- Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Hala A. Ibrahium
- Department of Biology, Nuclear Materials Authority, El Maadi, Egypt
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Ali Bahadur
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Samar O. Aljazzar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Muhammad Rauf
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
12
|
Choudhary A, Viradiya RH, Ghoghari RN, Chikhalia KH. Recent Scenario for the Synthesis of Benzimidazole Moiety(2020–2022). ChemistrySelect 2023. [DOI: 10.1002/slct.202204910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Annu Choudhary
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Riddhi H. Viradiya
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Rajnikant N. Ghoghari
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| |
Collapse
|
13
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
14
|
Antimicrobial, Antibiofilm, and Antioxidant Potentials of Four Halophytic Plants, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, Growing in Qassim Region of Saudi Arabia: Phytochemical Profile and In Vitro and In Silico Bioactivity Investigations. Antibiotics (Basel) 2023; 12:antibiotics12030501. [PMID: 36978368 PMCID: PMC10044527 DOI: 10.3390/antibiotics12030501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The current study aimed to investigate the phytochemical contents and antioxidant, antimicrobial, and antibiofilm activities of four halophytic plants, namely, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, native to central Saudi Arabia. The alcoholic extract of E. chamaesyce was found to be the most potent in various bioactivities-based evaluations and rich in polyphenols and flavonoid secondary metabolites, with 68.0 mg/g and 39.23 mg/g gallic acid and quercetin equivalents, respectively. Among all plants’ extracts, the alcoholic extract of E. chamaesyce had the highest DPPH scavenging and metal chelating antioxidant activities at 74.15 Trolox equivalents and 16.28 EDTA equivalents, respectively. The highest antimicrobial activity of E. chamaesyce extract was found to be against Shigella flexneri, with a mean zone of inhibition diameter of 18.1 ± 0.2 mm, whereas the minimum inhibitory concentration, minimum biocidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration values were 12.5, 25, 25, and 50 mg/mL, respectively. The LC-ESI-MS/MS analysis of the E. chamaesyce extract showed the presence of six flavonoids and ten phenolic constituents. The in silico binding of the E. chamaesyce extract’s constituents to Staphylococcus aureus tyrosyl-tRNA synthetase enzyme displayed −6.2 to −10.1 kcal/mol binding energy values, suggesting that these constituents can contribute to the antimicrobial properties of the plant extract, making it an essential medicinal ingredient. In conclusion, these results warrant further investigation to standardize the antimicrobial profiles of these plant extracts.
Collapse
|
15
|
Soltani S, Koubaa I, Dhouib I, Khemakhem B, Marchand P, Allouche N. New Specific α-Glucosidase Inhibitor Flavonoid from Thymelaea tartonraira Leaves: Structure Elucidation, Biological and Molecular Docking Studies. Chem Biodivers 2023; 20:e202200944. [PMID: 36757004 DOI: 10.1002/cbdv.202200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The phytochemical investigation of Thymelaea tartonraira leaves led to the isolation and characterization of six compounds, including one new flavonoid glycoside identified as hypolaetin 8-O-β-D-galactopyranoside (4) along with five known compounds, daphnoretin (1), triumbelletin (2), genkwanin (3), tiliroside (5) and yuankanin (6). Their structures were established based on spectroscopic methods, such as UV, IR, NMR, and HR-ESI-MS. Triumbelletin (2) and tiliroside (5) were isolated for the first time from T. tartonraira leaves. The antioxidant property of all isolated compounds was tested based on DPPH, FRAP and total antioxidant capacity assays. Compound 4 displayed an antioxidant potency more interesting than vitamin C with an IC50 =15.00±0.50 μg/ml, followed by compound 5. Furthermore, the both compounds 4 and 5 were tested for their α-amylase inhibitory activity in-vitro. Compound 4 displayed higher potency to inhibit α-amylase, with an IC50 =46.49±2.32 μg/ml, than compound 5, with an IC50 =184.2±9.2 μg/ml, while the reference compound acarbose presented the highest potency to inhibit α-amylase with an IC50 =0.44±0.022 μg/ml. Compound 4 displayed a strong inhibitory ability of α-glucosidase activity approximately twice more than the reference compound, acarbose, with IC50 values of 60.00±3.00 and 125.00±6.25 μg/ml, respectively. Thus, compound 4 exhibited a specific inhibitory activity for α-glucosidase. The molecular docking studies have supported our findings and suggested that compound 4 has been involved in various binding interactions within the active site of both enzymes α-amylase and α-glucosidase.
Collapse
Affiliation(s)
- Siwar Soltani
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| | - Imed Koubaa
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| | - Ines Dhouib
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| | - Bassem Khemakhem
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| | - Pascal Marchand
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P. B.1171, Sfax, 3000, Tunisia
| |
Collapse
|
16
|
Khan S, Iqbal S, Rehman W, Hussain N, Hussain R, Shah M, Ali F, Fouda AM, Khan Y, Dera AA, Issa Alahmdi M, Bahadur A, Al-ghulikah HA, Elkaeed EB. Synthesis, Molecular docking and ADMET studies of bis-benzimidazole-based thiadiazole derivatives as potent inhibitors, in vitro α-amylase and α-glucosidase. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
17
|
Acar Çevik U, Celik I, Paşayeva L, Fatullayev H, Bostancı HE, Özkay Y, Kaplancıklı ZA. New benzimidazole-oxadiazole derivatives: Synthesis, α-glucosidase, α-amylase activity, and molecular modeling studies as potential antidiabetic agents. Arch Pharm (Weinheim) 2023; 356:e2200663. [PMID: 36760015 DOI: 10.1002/ardp.202200663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Benzimidazole-1,3,4-oxadiazole derivatives (5a-z) were synthesized and characterized with different spectroscopic techniques such as 1 H NMR, 13 C NMR, and HRMS. The synthesized analogs were examined against α-glucosidase and α-amylase enzymes to determine their antidiabetic potential. Compounds 5g and 5q showed the most activity with 35.04 ± 1.28 and 47.60 ± 2.16 µg/mL when compared with the reference drug acarbose (IC50 = 54.63 ± 1.95 µg/mL). Compounds 5g, 5o, 5s, and 5x were screened against the α-amylase enzyme and were found to show excellent potential, with IC50 values ranging from 22.39 ± 1.40 to 32.07 ± 1.55 µg/mL, when compared with the standard acarbose (IC50 = 46.21 ± 1.49 µg/mL). The antioxidant activities of the effective compounds (5o, 5g, 5s, 5x, and 5q) were evaluated by TAS methods. A molecular docking research study was conducted to identify the active site and explain the functions of the active chemicals. To investigate the most likely binding mode of the substances 5g, 5o, 5q, 5s, and 5x, a molecular dynamics simulation was also carried out.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Leyla Paşayeva
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hanifa Fatullayev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hayrani E Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
18
|
Synthesis, Molecular Docking, and Bioactivity Study of Novel Hybrid Benzimidazole Urea Derivatives: A Promising α-Amylase and α-Glucosidase Inhibitor Candidate with Antioxidant Activity. Pharmaceutics 2023; 15:pharmaceutics15020457. [PMID: 36839780 PMCID: PMC9963656 DOI: 10.3390/pharmaceutics15020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
A novel series of benzimidazole ureas 3a-h were elaborated using 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a-h. The antioxidant and possible antidiabetic activities of the target benzimidazole-ureas 3a-h were evaluated. Almost all compounds 3a-h displayed strong to moderate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA, compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the majority of the compounds tested had good to moderate activity. The most favorable results were obtained with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 μM), 3e (IC50 = 20.7 ± 0.06 μM), and 3g (IC50 = 22.33 ± 0.12 μM) had good α-amylase inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 μM). Furthermore, the inhibitory effect of 3c (IC50 = 17.47 ± 0.03 μM), 3e (IC50 = 21.97 ± 0.19 μM), and 3g (IC50 = 23.01 ± 0.12 μM) on α-glucosidase was also comparable to acarbose (IC50 = 15.41 ± 0.32 μM). According to in silico molecular docking studies, compounds 3a-h had considerable affinity for the active sites of human lysosomal acid α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined compounds had potential anti-hyperglycemic action.
Collapse
|
19
|
Alnafisah AS, Alqrairy E, Tar H, M Alminderej F, Aroua LM, Graff B, Lalevee J. Light-Assisted Synthesis of Silver and Gold Nanoparticles by New Benzophenone Derivatives. ACS OMEGA 2023; 8:3207-3220. [PMID: 36713746 PMCID: PMC9878651 DOI: 10.1021/acsomega.2c06655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Benzophenone derivatives were evaluated as new photoinitiators in combination with triethylamine (TEA) and iodonium salt (Iod) for very rapid and efficient formation of metal nanoparticles in an organic solvent, by which silver and gold ions were reduced under light at 419 nm (photoreactor) with an irradiation intensity of 250 microwatts/cm2. The new benzophenone derivatives combined with TEA/Iod salt showed good production of metal nanoparticles (Au0 and Ag0) and a small size of nanoparticles of around 4-13 nm. The photochemical mechanisms for the production of initiating radicals were studied using cyclic voltammetry, where a negative ΔG of around -1.96 eV was obtained, which made the process favorable. The obtained results proved the formation of amine and phenyl radicals, which led to the reduction of gold III chloride or silver ions to the gold and silver NPs. The UV-vis spectroscopy technique was used as a very beneficial tool for the surface plasmon resonance band detection of metal nanoparticles. To sum up the results, we have observed that nanoparticles (NPs) were distributed differently in different photoinitiator systems and the particle size also changed by changing the system of initiation. In comparison to the system alone, not only were the nanoparticles smaller but they were also generated within a shorter period of irradiation time for the system BP\Iod\TEA. Finally, the quenching process of benzophenone fluorescence by the gold and silver nanoparticles was investigated.
Collapse
Affiliation(s)
- Abrar S. Alnafisah
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
| | - Elaf Alqrairy
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
| | - Haja Tar
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
| | - Fahad M Alminderej
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
| | - Lotfi M. Aroua
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
- Laboratory
of Organic Structural Chemistry and Macromolecules, Department of
Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar I, 2092 Tunis, Tunisia
| | - Bernadette Graff
- Institut
de Science des Matériaux de Mulhouse IS2M—UMR CNRS 7361—UHA, 15, Rue Jean Starcky, 68057 Mulhouse, CEDEX, France
| | - Jacques Lalevee
- Institut
de Science des Matériaux de Mulhouse IS2M—UMR CNRS 7361—UHA, 15, Rue Jean Starcky, 68057 Mulhouse, CEDEX, France
| |
Collapse
|
20
|
Design, synthesis and bio-evaluation of indolin-2-ones as potential antidiabetic agents. Future Med Chem 2023; 15:25-42. [PMID: 36644975 DOI: 10.4155/fmc-2022-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Diabetes mellitus is a serious global health concern, and this is expected to impact more than 300 million people by 2025. The current study focuses on identifying substituted indolin-2-one-based inhibitors for two indispensable drug targets, α-amylase and α-glucosidase. Methods: The structures of synthetic compounds were confirmed by spectroscopic techniques and evaluated for enzyme inhibition activities. Kinetic and in silico studies were also performed. Results: All compounds exhibited good-to-moderate inhibitory potential. Most importantly, compounds 1, 2, 6, 16 and 17 were identified as potent α-glucosidase inhibitors (IC50 = 9.15 ± 0.12-13.74 ± 0.12 μM). Conclusion: This study identified that these synthetic compounds might serve as potential lead molecules for antidiabetic agents.
Collapse
|
21
|
Ullah H, Khan S, Rahim F, Taha M, Iqbal R, Sarfraz M, Shah SAA, Sajid M, Awad MF, Omran A, Albalawi MA, Abdelaziz MA, Al Areefy A, Jafri I. Benzimidazole Bearing Thiosemicarbazone Derivatives Act as Potent α-Amylase and α-Glucosidase Inhibitors; Synthesis, Bioactivity Screening and Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206921. [PMID: 36296520 PMCID: PMC9609971 DOI: 10.3390/molecules27206921] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
Diabetes mellitus is one of the most chronic metabolic diseases. In the past few years, our research group has synthesized and evaluated libraries of heterocyclic analogs against α-glucosidase and α-amylase enzymes and found encouraging results. The current study comprises the evaluation of benzimidazole-bearing thiosemicarbazone as antidiabetic agents. A library of fifteen derivatives (7-21) was synthesized, characterized via different spectroscopic techniques such as HREI-MS, NMR, and screened against α-glucosidase and α-amylase enzymes. All derivatives exhibited excellent to good biological inhibitory potentials. Derivatives 19 (IC50 = 1.30 ± 0.20 µM and 1.20 ± 0.20 µM) and 20 (IC50 = 1.60 ± 0.20 µM and 1.10 ± 0.01 µM) were found to be the most potent among the series when compared with standard drug acarbose (IC50 = 11.29 ± 0.07 and 11.12 ± 0.15 µM, respectively). These derivatives may potentially serve as the lead candidates for the development of new therapeutic representatives. The structure-activity relationship was carried out for all molecules which are mainly based upon the pattern of substituent/s on phenyl rings. Moreover, in silico docking studies were carried out to investigate the active binding mode of selected derivatives with the target enzymes.
Collapse
Affiliation(s)
- Hayat Ullah
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
- Correspondence: (H.U.); (F.R.)
| | - Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
- Correspondence: (H.U.); (F.R.)
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Maliha Sarfraz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Punjab 36050, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Muhammad Sajid
- Department of Biochemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Awatif Omran
- Department of Biochemistry, College of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Mahmoud A. Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Azza Al Areefy
- Clinical Nutrition Department, Applied Medical Science Collage, Jazan University, Jazan 45142, Saudi Arabia
- Faculty of Home Economics, Nutrition & Food Science Department, Helwan University, P.O. Box 11795, Cairo 11281, Egypt
| | - Ibrahim Jafri
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
22
|
Synthesis of Novel Benzimidazole-Based Thiazole Derivatives as Multipotent Inhibitors of α-Amylase and α-Glucosidase: In Vitro Evaluation along with Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196457. [PMID: 36234994 PMCID: PMC9572811 DOI: 10.3390/molecules27196457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
In this study, hybrid analogs of benzimidazole containing a thiazole moiety (1-17) were afforded and then tested for their ability to inhibit α-amylase and α-glucosidase when compared to acarbose as a standard drug. The recently available analogs showed a wide variety of inhibitory potentials that ranged between 1.31 ± 0.05 and 38.60 ± 0.70 µM (against α-amylase) and between 2.71 ± 0.10 and 42.31 ± 0.70 µM (against α-glucosidase) under the positive control of acarbose (IC50 = 10.30 ± 0.20 µM against α-amylase) (IC50 = 9.80 ± 0.20 µM against α-glucosidase). A structure-activity relationship (SAR) study was carried out for all analogs based on substitution patterns around both rings B and C respectively. It was concluded from the SAR study that analogs bearing either substituent(s) of smaller size (-F and Cl) or substituent(s) capable of forming hydrogen bonding (-OH) with the catalytic residues of targeted enzymes enhanced the inhibitory potentials. Therefore, analogs 2 (bearing meta-fluoro substitution), 3 (having para-fluoro substitution) and 4 (with ortho-fluoro group) showed enhanced potency when evaluated against standard acarbose drug with IC50 values of 4.10 ± 0.10, 1.30 ± 0.05 and 1.90 ± 0.10 (against α-amylase) and 5.60 ± 0.10, 2.70 ± 0.10 and 2.90 ± 0.10 µM (against α-glucosidase), correspondingly. On the other hand, analogs bearing substituent(s) of either a bulky nature (-Br) or that are incapable of forming hydrogen bonds (-CH3) were found to lower the inhibitory potentials. In order to investigate the binding sites for synthetic analogs and how they interact with the active areas of both targeted enzymes, molecular docking studies were also conducted on the potent analogs. The results showed that these analogs adopted many important interactions with the active areas of enzymes. The precise structure of the newly synthesized compounds was confirmed using several spectroscopic techniques as NMR and HREI-MS.
Collapse
|
23
|
Synthesis of Novel N-Methylmorpholine-Substituted Benzimidazolium Salts as Potential α-Glucosidase Inhibitors. Molecules 2022; 27:molecules27186012. [PMID: 36144750 PMCID: PMC9501035 DOI: 10.3390/molecules27186012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The α-glucosidase enzyme, located in the brush border of the small intestine, is responsible for overall glycemic control in the body. It hydrolyses the 1,4-linkage in the carbohydrates to form blood-absorbable monosaccharides that ultimately increase the blood glucose level. α-Glucosidase inhibitors (AGIs) can reduce hydrolytic activity and help to control type 2 diabetes. Aiming to achieve this, a novel series of 1-benzyl-3-((2-substitutedphenyl)amino)-2-oxoethyl)-2-(morpholinomethyl)-1H-benzimidazol-3-ium chloride was synthesized and screened for its α-glucosidase inhibitory potential. Compounds 5d, 5f, 5g, 5h and 5k exhibited better α-glucosidase inhibitions compared to the standard drug (acarbose IC50 = 58.8 ± 0.012 µM) with IC50 values of 15 ± 0.030, 19 ± 0.060, 25 ± 0.106, 21 ± 0.07 and 26 ± 0.035 µM, respectively. Furthermore, the molecular docking studies explored the mechanism of enzyme inhibitions by different 1,2,3-trisubstituted benzimidazolium salts via significant ligand–receptor interactions.
Collapse
|
24
|
Synthesis, antimicrobial and α-glucosidase inhibition of new benzimidazole-1,2,3-triazole-indoline derivatives: a combined experimental and computational venture. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02436-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Cele N, Awolade P, Seboletswe P, Olofinsan K, Islam MS, Singh P. α-Glucosidase and α-Amylase Inhibitory Potentials of Quinoline-1,3,4-oxadiazole Conjugates Bearing 1,2,3-Triazole with Antioxidant Activity, Kinetic Studies, and Computational Validation. Pharmaceuticals (Basel) 2022; 15:ph15081035. [PMID: 36015183 PMCID: PMC9414972 DOI: 10.3390/ph15081035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetes mellitus (DM) is a multifaceted metabolic disorder that remains a major threat to global health security. Sadly, the clinical relevance of available drugs is burdened with an upsurge in adverse effects; hence, inhibiting the carbohydrate-hydrolyzing enzymes α-glucosidase and α-amylase while preventing oxidative stress is deemed a practicable strategy for regulating postprandial glucose levels in DM patients. We report herein the α-glucosidase and α-amylase inhibition and antioxidant profile of quinoline hybrids 4a–t and 12a–t bearing 1,3,4-oxadiazole and 1,2,3-triazole cores, respectively. Overall, compound 4i with a bromopentyl sidechain exhibited the strongest α-glucosidase inhibition (IC50 = 15.85 µM) relative to reference drug acarbose (IC50 = 17.85 µM) and the best antioxidant profile in FRAP, DPPH, and NO scavenging assays. Compounds 4a and 12g also emerged as the most potent NO scavengers (IC50 = 2.67 and 3.01 µM, respectively) compared to gallic acid (IC50 = 728.68 µM), while notable α-glucosidase inhibition was observed for p-fluorobenzyl compound 4k (IC50 = 23.69 µM) and phenyl-1,2,3-triazolyl compound 12k (IC50 = 22.47 µM). Moreover, kinetic studies established the mode of α-glucosidase inhibition as non-competitive, thus classifying the quinoline hybrids as allosteric inhibitors. Molecular docking and molecular dynamics simulations then provided insights into the protein–ligand interaction profile and the stable complexation of promising hybrids at the allosteric site of α-glucosidase. These results showcase these compounds as worthy scaffolds for developing more potent α-glucosidase inhibitors with antioxidant activity for effective DM management.
Collapse
Affiliation(s)
- Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Kolawole Olofinsan
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban 4000, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
- Correspondence: or
| |
Collapse
|
26
|
Cinnamaldehyde-Based Self-Nanoemulsion (CA-SNEDDS) Accelerates Wound Healing and Exerts Antimicrobial, Antioxidant, and Anti-Inflammatory Effects in Rats’ Skin Burn Model. Molecules 2022; 27:molecules27165225. [PMID: 36014463 PMCID: PMC9413107 DOI: 10.3390/molecules27165225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022] Open
Abstract
Cinnamaldehyde, the main phytoconstituent of the cinnamon oil, has been reported for its potential wound healing activity, associated to its antimicrobial and anti-inflammatory effects. In this study, we are reporting on the cinnamaldehyde-based self-nanoemulsifying drug delivery system (CA-SNEDDS), which was prepared and evaluated for its antimicrobial, antioxidant, anti-inflammatory, and wound healing potential using the rat third-degree skin injury model. The parameters, i.e., skin healing, proinflammatory, and oxidative/antioxidant markers, were evaluated after 3 weeks of treatment regimens with CA-SNEDDS. Twenty rats were divided randomly into negative control (untreated), SNEDDS control, silver sulfadiazine cream positive control (SS), and CA-SNEDDS groups. An aluminum cylinder (120 °C, 10-s duration) was used to induce 3rd-degree skin burns (1-inch square diameter each) on the rat’s dorsum. At the end of the experiment, skin biopsies were collected for biochemical analysis. The significantly reduced wound size in CA-SNEDDS compared to the negative group was observed. CA-SNEDDS-treated and SS-treated groups demonstrated significantly increased antioxidant biomarkers, i.e., superoxide dismutase (SOD) and catalase (CAT), and a significant reduction in the inflammatory marker, i.e., NAP-3, compared to the negative group. Compared to SNEDDS, CA-SNEDDS exhibited a substantial antimicrobial activity against all the tested organisms at the given dosage of 20 µL/disc. Among all the tested microorganisms, MRSA and S. typhimurium were the most susceptible bacteria, with an inhibition zone diameter (IZD) of 17.0 ± 0.3 mm and 19.0 ± 0.9 mm, respectively. CA-SNEDDS also exhibited strong antifungal activity against C. albicans and A. niger, with IZD of 35.0 ± 0.5 mm and 34.0 ± 0.5 mm, respectively. MIC and MBC of CA-SNEDDS for the tested bacteria ranged from 3.125 to 6.25 µL/mL and 6.25 to 12.5 µL/mL, respectively, while the MIC and MBC for C. albicans and A. niger were 1.56 µL/mL and 3.125 µL/mL, respectively. The MBIC and MBEC of CA-SNEDDS were also very significant for the tested bacteria and ranged from 6.25 to 12.5 µL/mL and 12.5 to 25.0 µL/mL, respectively, while the MBIC and MBEC for C. albicans and A. niger were 3.125 µL/mL and 6.25 µL/mL, respectively. Thus, the results indicated that CA-SNEDDS exhibited significant wound healing properties, which appeared to be attributed to the formulation’s antimicrobial, antioxidant, and anti-inflammatory effects.
Collapse
|
27
|
Nagesh KM, Prashanth T, Khamees HA, Khanum SA. Synthesis, analgesic, anti-inflammatory, COX/5-LOX inhibition, ulcerogenic evaluation, and docking study of benzimidazole bearing indole and benzophenone analogs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Shayegan N, Iraji A, Bakhshi N, Moazzam A, Faramarzi MA, Mojtabavi S, Pour SMM, Tehrani MB, Larijani B, Rezaei Z, Yousefi P, Khoshneviszadeh M, Mahdavi M. Design, synthesis, and in silico studies of benzimidazole bearing phenoxyacetamide derivatives as α-glucosidase and α-amylase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Mohammed HA. Phytochemical Analysis, Antioxidant Potential, and Cytotoxicity Evaluation of Traditionally Used Artemisia absinthium L. (Wormwood) Growing in the Central Region of Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1028. [PMID: 35448756 PMCID: PMC9029736 DOI: 10.3390/plants11081028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Artemisia absinthium, a plant distributed worldwide, has been reported for its numerous traditional uses, and its phytoconstituents have been investigated in several previous publications. The current study was designed to investigate the chemistry and quality; i.e., the antioxidant and cytotoxic activities, of A. absinthium volatile oil from plant species growing in the central area of Saudi Arabia compared to reported data for the plant growing in other parts of the world. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID) spectroscopic analyses, in addition to in vitro antioxidant and cytotoxic assays, were conducted to fulfill the aims, and integrated the study's conclusion. A total of 34 compounds representing 99.98% of the essential oil of the plant were identified; among them, cis-davanone was found at the highest concentration (52.51%) compared to the other constituents. In addition, α-gurjunene (7.15%), chamazulene (3.38%), camphene (3.27), γ-eudesmol (2.49%), pinocarvone (2.18%), and ocimenone (2.03%) were also identified as major constituents of the plant's essential oil. The total percentage of davanones (53%) was the highest percentage found in the plant species growing elsewhere in the world. The antioxidant assays; i.e., the total antioxidant capacity (TAC), ferric-reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl-scavenging activity (DPPH-SA), evidenced the potential in vitro antioxidant activity of the A. absinthium essential oil, with 35.59, 10.54, and 24.00 mg Trolox equivalent per gram of the essential oil. In addition, the metal-cheating activity (MCA) of the essential oil was measured at 29.87 mg ethylenediaminetetraacetic acid (EDTA) equivalent per gram of the essential oil. Moreover, a limited cytotoxic effect of the essential oil against all tested cell lines was observed, which might be considered as an indicator of the safety of A. absinthium as a worldwide edible plant. In conclusion, the study confirmed the variations in the A. absinthium essential oil constituents in response to the environmental conditions. The study also highlighted the potential health benefits of the plant's essential oil as an antioxidant agent.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; ; Tel.: +966-566-176-074
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| |
Collapse
|
30
|
Aroua LM, Al-Hakimi AN, Abdulghani MA, Alhag SK. Elaboration of novel urea bearing schiff bases as potent in vitro anticancer candidates with low in vivo acute oral toxicity. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel series of urea Schiff base derivatives were synthesized via the condensation of o-phenylenediamine, naphthyl isocyanate and appropriate aryl aldehyde. The results of the in vitro cytotoxic activities of compounds 5a–h against cancer cells lines PC3, SKOV-3 and HeLa, revealed that almost all compounds exhibited good to moderate activities Compound 5g owing bromine atom at p-position displayed higher activity compared to homolog 5b possessing chlorine atom due to adequate diameter of bromine which is more favourable than chlorine for the inhibition activity. In addition, compound 5h is the best candidate of this series exhibiting excellent activity for three cancer cells lines. Compound 5h demonstrated also an excellent activity with IC50 value of 0.6±0.3μg/mL for prostate cancer cell line PC3 and it is considered more effective than the standard drug doxorubicin Dox (IC50 = 2.6±0.03μg/mL). The most active compound 5h displayed the best activity against ovarian cancer cell line SKOV3 with IC50 = 1.8±0.2μg/mL. This results are higher than clinically used drug Dox (IC50. 2.2±0.02μg/mL). The results of screening activities cytotoxic effect toward cervix cancer cell line HeLa, affirm that compound 5h manifest an activity with IC50 value of 2.2±0.4μg/mL comparable to Dox (IC50. 1.9±0.04μg/mL). In the current study, in vivo acute oral toxicity assessment of urea Schiff base hybrid compounds 5a – h indicated that there was no mortality on treated female mice during 14 days assessment test compared with the vehicle-treated group confirming the safety with LD50 greater than 2000 mg/kg. In the actual study, the results affirmed that compounds 5a–h manifested in vivo no toxicity to saint cells, the compounds 5b, 5g and 5h presented higher anticancer activities against three cancer cells which authorizes promoters to use them as candidate anticancer agents.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, Buraydah, Qassim, Kingdom of Saudi Arabia
- Laboratory of Organic Structural Chemistry & Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar, Tunis Tunisia
- Carthage University, Department of Chemistry, Faculty of Sciences of Bizerte, Jarzouna, Tunisia
| | - Ahmed N. Al-Hakimi
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, Buraydah, Qassim, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Mahfoudh A.M. Abdulghani
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Kingdom of Saudi Arabia
| | - Sadeq K. Alhag
- Department of Biology, College of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
- Department of Biology, College of Science, Ibb University, Yemen
| |
Collapse
|
31
|
Mohammed HA, Qureshi KA, Ali HM, Al-Omar MS, Khan O, Mohammed SAA. Bio-Evaluation of the Wound Healing Activity of Artemisia judaica L. as Part of the Plant’s Use in Traditional Medicine; Phytochemical, Antioxidant, Anti-Inflammatory, and Antibiofilm Properties of the Plant’s Essential Oils. Antioxidants (Basel) 2022; 11:antiox11020332. [PMID: 35204215 PMCID: PMC8868479 DOI: 10.3390/antiox11020332] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Artemisia judaica (ArJ) is a Mediterranean aromatic plant used traditionally to treat gastrointestinal ailments, skin diseases, atherosclerosis, and as an immuno-stimulant. This study describes ArJ essential oil constituents and investigates their wound healing activity. The in vitro antioxidant and antibiofilm activities of ArJ essential oil were investigated. The in vivo pro/anti-inflammatory and oxidative/antioxidant markers were compared with standard silver sulfadiazine (SS) in a second-degree skin burn experimental rat model. The gas chromatography-equipped flame ionization detector (GC-FID) analysis of ArJ essential oil revealed the major classes of compounds as oxygenated monoterpenes (>57%) and cinnamic acid derivatives (18.03%). The antimicrobial tests of ArJ essential oil revealed that Bacillus cereus, Candida albicans, and Aspergillus niger were the most susceptible test organisms. Two second-degree burns (each 1 inch square in diameter) were created on the dorsum of rats using an aluminum cylinder heated to 120 °C for 10 s. The wounds were treated either with ArJ or SS ointments for 21 days, while the negative control remained untreated, and biopsies were obtained for histological and biochemical analysis. The ArJ group demonstrated a significant increase in antioxidant superoxide dismutase (SOD) and catalase (CAT) enzymatic activities, while lipid peroxide (LP) levels remained insignificant compared to the negative control group. Additionally, ArJ and SS groups demonstrated a significant decrease in inflammatory levels of tumor necrosis factor α (TNF-α) compared to the negative group, while interleukin 1 beta (IL-1b) and IL-6 were comparable to the negative group. At the same time, anti-inflammatory IL-10 and transforming growth factor beta 1 (TGF-b1) markers increased significantly in the ArJ group compared to the negative control. The ArJ results demonstrated potent wound healing effects, comparable to SS, attributable to antioxidant and anti-inflammatory effects as well as a high proportion of oxygenated monoterpenes and cinnamate derivatives.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
- Correspondence: (H.A.M.); (S.A.A.M.)
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Hussein M. Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Mohsen S. Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan
| | - Omar Khan
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: (H.A.M.); (S.A.A.M.)
| |
Collapse
|
32
|
Comparative Phytochemical Profile and Biological Activity of Four Major Medicinal Halophytes from Qassim Flora. PLANTS 2021; 10:plants10102208. [PMID: 34686017 PMCID: PMC8538075 DOI: 10.3390/plants10102208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
Four halophytic plants, Lycium shawii, Anabasis articulata, Rumex vesicarius, and Zilla spinosa, growing in the central Qassim area, Saudi Arabia, were phytochemically and biologically investigated. Their hydroalcoholic extracts’ UPLC-ESIQ-TOF analyses demonstrated the presence of 44 compounds of phenolic acids, flavonoids, saponins, carbohydrates, and fatty acids chemical classes. Among all the plants’ extracts, L. shawii showed the highest quantities of total phenolics, and flavonoids contents (52.72 and 13.01 mg/gm of the gallic acid and quercetin equivalents, respectively), along with the antioxidant activity in the TAA (total antioxidant activity), FRAP (ferric reducing antioxidant power), and DPPH-SA (2,2-diphenyl-1-picryl-hydrazyl-scavenging activity) assays with 25.6, 56.68, and 19.76 mg/gm, respectively, as Trolox equivalents. The hydroalcoholic extract of the L. shawii also demonstrated the best chelating activity at 21.84 mg/gm EDTA equivalents. Among all the four halophytes, the hydroalcoholic extract of L. shawii exhibited the highest antiproliferative activity against MCF7 and K562 cell lines with IC50 values at 194.5 µg/mL and 464.9 µg/mL, respectively. The hydroalcoholic extract of A. articulata demonstrated better cytotoxic activity amongst all the tested plants’ extracts against the human pancreatic cancer cell lines (PANC1) with an IC50 value of 998.5 µg/mL. The L. shawii induced apoptosis in the MCF7 cell lines, and the percentage of the necrotic cells changed to 28.1% and 36.5% for the IC50 and double-IC50 values at 22.9% compared with the untreated groups. The hydroalcoholic extract of L. shawii showed substantial antibacterial activity against Bacillus cereus ATCC 10876 with a MIC value of 12.5 mg/mL. By contrast, the A. articulata and Z. spinosa exhibited antifungal activities against Aspergillus niger ATCC 6275 with MIC values at 12.5 and 50 mg/mL, respectively. These findings suggested that the L. shawii is a potential halophyte with remarkable biological properties, attributed to its contents of phenolics and flavonoid classes of compounds in its extract.
Collapse
|
33
|
Chemical Profile, Antioxidant, Antimicrobial, and Anticancer Activities of the Water-Ethanol Extract of Pulicaria undulata Growing in the Oasis of Central Saudi Arabian Desert. PLANTS 2021; 10:plants10091811. [PMID: 34579344 PMCID: PMC8472717 DOI: 10.3390/plants10091811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
Pulicaria undulata (L.) C. A. Mey has multiple uses as part of the traditional medicament, and several biological activities of the plant have been corroborated in the scientific literature. The current work evaluates the phytochemical constituents and biological properties of the water-ethanol extract of the P. undulata growing in Qassim, the central arid regions of the Kingdom of Saudi Arabia. Qualitative UPLC-ESIQ-TOF analysis identified 27 compounds belonging to the phenolics, flavonoids, triterpenes, coumarins, and of fatty acids chemical classes. The quantitative analysis exhibited 33.3 mg/g GAE (Gallic Acid Equivalents), and 10.8 mg/g QE (Quercetin Equivalents) of the phenolics and flavonoids in the plant’s concentrated (to dryness) water-ethanol extract. The trace elements analysis of the plant’s dry powder established the presence of copper (20.13 µg/kg), and zinc (68.2 µg/kg) in the higher levels of occurrences. In terms of the antioxidant potential of the plant’s extract, the ferric-reducing, and free-radicals scavenging activities were recorded at 47.11 mg/g, and 19.13 mg/g equivalents of the concentrated to dryness water-ethanol extract of the plant. The water-ethanol extract of P. undulata also exhibited antimicrobial activity against the tested Gram-positive bacteria, while no activity was observed against the tested Gram-negative bacteria, or the fungi. The MIC (minimum inhibitory concentration) values were in the range of 49 to 1563 µg/mL, whereas the MBC (minimum bactericidal concentration) values ranged from 49 to 3125 µg/mL, against the tested Gram-positive bacteria. The P. undulata water-ethanol extract also exhibited potent cytotoxic effects with the IC50 value at 519.2 µg/mL against the MCF-7 breast cancer cell-lines, followed by the anticancer activity of erythroleukemic cell-lines, K562 at 1212 µg/mL, and pancreatic cell-lines, PANC-1, at 1535 µg/mL, as compared to the normal fibroblast cells (4048 µg/mL). The Annexin-V assay demonstrated that, as the P. undulata extract’s dose increased from IC50 to twice of the IC50, the percentage of the necrosis was found to be increased in the late apoptosis stage of the cancer cells. These data confirmed the P. undulata extract’s ability to inhibit several human cancer cell lines’ growth in comparison to other local halophytes. The antimicrobial activity of the plant was also confirmed.
Collapse
|