1
|
Qneibi M, Hawash M, Bdir S, Bdair M, Aldwaik SA. Assessing the Effects of Thiazole-Carboxamide Derivatives on the Biophysical Properties of AMPA Receptor Complexes as a Potential Neuroprotective Agent. Molecules 2024; 29:3232. [PMID: 38999182 PMCID: PMC11243149 DOI: 10.3390/molecules29133232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer's, and Autism. One of the critical agents mediating excitatory neurotransmission is α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, which are concerned with synaptic plasticity, memory, and learning. An imbalance in neurotransmission finally results in excitotoxicity and neurological pathologies that should be corrected through specific compounds. Hence, the current study will prove to be an evaluation of new thiazole-carboxamide derivatives concerning AMPAR-modulating activity and extended medicinal potential. In the current project, five previously synthesized thiazole-carboxamide derivatives, i.e., TC-1 to TC-5, were used to interact with the AMPARs expressed in HEK293T cells, which overexpress different subunits of the AMPAR. Patch-clamp analysis was carried out while the effect of the drugs on AMPAR-mediated currents was followed with a particular emphasis on the kinetics of inhibition, desensitization, and deactivation. All tested TC compounds, at all subunits, showed potent inhibition of AMPAR-mediated currents, with TC-2 being the most powerful for all subunits. These compounds shifted the receptor kinetics efficiently, mainly enhancing the deactivation rates, and hence acted as a surrogate for their neuroprotective potentials. Additionally, recently published structure-activity relationship studies identified particular substituent groups as necessary for improving the pharmacologic profiles of these compounds. In this regard, thiazole-carboxamide derivatives, particularly those classified as TC-2, have become essential negative allosteric modulators of AMPAR function and potential therapeutics in neurological disturbances underlain by the dysregulation of excitatory neurotransmission. Given their therapeutic effectiveness and safety profiles, these in vivo studies need to be further validated, although computational modeling can be further developed for drug design and selectivity. This will open possibilities for new drug-like AMPAR negative allosteric modulators with applications at the clinical level toward neurology.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P400, Palestine
| |
Collapse
|
2
|
Qneibi M, Hawash M, Gümüş M, Çapan İ, Sert Y, Bdir S, Koca İ, Bdair M. Deciphering the Biophysical Properties of Ion Channel Gating Pores by Coumarin-Benzodiazepine Hybrid Derivatives: Selective AMPA Receptor Antagonists. Mol Neurobiol 2024; 61:4565-4576. [PMID: 38105408 DOI: 10.1007/s12035-023-03871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In the 1980s, the identification of specific pharmacological antagonists played a crucial role in enhancing our comprehension of the physiological mechanisms associated with α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs). The primary objective of this investigation was to identify specific AMPA receptor antagonists, namely 2,3-benzodiazepines, that function as negative allosteric modulators (NAMs) at distinct locations apart from the glutamate recognition site. These compounds have exhibited a diverse array of anticonvulsant properties. In order to conduct a more comprehensive investigation, the study utilized whole-cell patch-clamp electrophysiology to analyze the inhibitory effect and selectivity of benzodiazepine derivatives that incorporate coumarin rings in relation to AMPA receptors. The study's main objective was to acquire knowledge about the relationship between the structure and activity of the compound and comprehend the potential effects of altering the side chains on negative allosteric modulation. The investigation provided crucial insights into the interaction between eight CD compounds and AMPA receptor subunits. Although all compounds demonstrated effective blockade, CD8 demonstrated the greatest potency and selectivity towards AMPA receptor subunits. The deactivation and desensitization rates were significantly influenced by CD8, CD6, and CD5, distinguishing them from the remaining five chemicals. The differences in binding and inhibition of AMPA receptor subunits can be attributed to structural discrepancies among the compounds. The carboxyl group of CD8, situated at the para position of the phenyl ring, substantially influenced the augmentation of AMPA receptor affinity. The findings of this study highlight the potential of pharmaceutical compounds that specifically target AMPA receptors to facilitate negative allosteric modulation.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mehmet Gümüş
- Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - İrfan Çapan
- Technical Sciences Vocational College, Department of Material and Material Processing Technologies, Gazi University, 06560, Ankara, Turkey
- Basic and Engineering Sciences Central Laboratory Application and Research Center (GUTMAM), Gazi University, 06500, Ankara, Turkey
| | - Yusuf Sert
- Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
3
|
Hawash M, Qneibi M, Natsheh H, Mohammed NH, Hamda LA, Kumar A, Olech B, Dominiak PM, Bdir S, Bdair M. Evaluating the Neuroprotective Potential of Novel Benzodioxole Derivatives in Parkinson's Disease via AMPA Receptor Modulation. ACS Chem Neurosci 2024; 15:2334-2349. [PMID: 38747411 DOI: 10.1021/acschemneuro.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease (PD) is a significant health issue because it gradually damages the nervous system. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play a significant role in the development of PD. The current investigation employed hybrid benzodioxole-propanamide (BDZ-P) compounds to get information on AMPA receptors, analyze their biochemical and biophysical properties, and assess their neuroprotective effects. Examining the biophysical characteristics of all the subunits of the AMPA receptor offers insights into the impact of BDZ-P on the desensitization and deactivation rate. It demonstrates a partial improvement in the locomotor capacities in a mouse model of Parkinson's disease. In addition, the in vivo experiment assessed the locomotor activity by utilizing the open-field test. Our findings demonstrated that BDZ-P7 stands out with its remarkable potency, inhibiting the GluA2 subunit nearly 8-fold with an IC50 of 3.03 μM, GluA1/2 by 7.5-fold with an IC50 of 3.14 μM, GluA2/3 by nearly 7-fold with an IC50 of 3.19 μM, and GluA1 by 6.5-fold with an IC50 of 3.2 μM, significantly impacting the desensitization and deactivation rate of the AMPA receptor. BDZ-P7 showed an in vivo impact of partially reinstating locomotor abilities in a mouse model of PD. The results above suggest that the BDZ-P7 compounds show great promise as top contenders for the development of novel neuroprotective therapies.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Hiba Natsheh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Noor Haj Mohammed
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Lubaba Abu Hamda
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Anil Kumar
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Barbara Olech
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, ul. S. Banacha 2c, 02-097 Warsaw, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P403, Nablus 00970, Palestine
| |
Collapse
|
4
|
Eyraud N, Bloch S, Brizard B, Pena L, Tharsis A, Surget A, El-Hage W, Belzung C. Influence of Stress Severity on Contextual Fear Extinction and Avoidance in a Posttraumatic-like Mouse Model. Brain Sci 2024; 14:311. [PMID: 38671963 PMCID: PMC11048507 DOI: 10.3390/brainsci14040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a widespread fear-related psychiatric affection associated with fear extinction impairments and important avoidance behaviors. Trauma-related exposure therapy is the current first-hand treatment for PTSD, yet it needs to be improved to shorten the time necessary to reach remission and increase responsiveness. Additional studies to decipher the neurobiological bases of extinction and effects on PTSD-like symptoms could therefore be of use. However, a PTSD-like animal model exhibiting pronounced PTSD-related phenotypes even after an extinction training directly linked to the fearful event is necessary. Thus, using a contextual fear conditioning model of PTSD, we increased the severity of stress during conditioning to search for effects on extinction acquisition and on pre- and post-extinction behaviors. During conditioning, mice received either two or four electrical shocks while a control group was constituted of mice only exposed to the context. Stressed mice exhibited important fear generalization, high fear reaction to the context and selective avoidance of a contextual reminder even after the extinction protocol. Increasing the number of footshocks did not induce major changes on these behaviors.
Collapse
Affiliation(s)
- Noémie Eyraud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Solal Bloch
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Bruno Brizard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Laurane Pena
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Antoine Tharsis
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Alexandre Surget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Wissam El-Hage
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
- Pôle de Psychiatrie et d’Addictologie, Centre Hospitalier Régional Universitaire de Tours, 37000 Tours, France
| | - Catherine Belzung
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| |
Collapse
|
5
|
Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, Hallak M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem Res 2024; 49:258-289. [PMID: 37768469 DOI: 10.1007/s11064-023-04032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Numerous studies have demonstrated essential oils' diverse chemical compositions and pharmacological properties encompassing antinociceptive, anxiolytic-like, and anticonvulsant activities, among other notable effects. The utilization of essential oils, whether inhaled, orally ingested, or applied topically, has commonly been employed as adjunctive therapy for individuals experiencing anxiety, insomnia, convulsions, pain, and cognitive impairment. The utilization of synthetic medications in the treatment of various disorders and symptoms is associated with a wide array of negative consequences. Consequently, numerous research groups across the globe have been prompted to explore the efficacy of natural alternatives such as essential oils. This review provides a comprehensive overview of the existing literature on the pharmacological properties of essential oils and their derived compounds and the underlying mechanisms responsible for these observed effects. The primary emphasis is on essential oils and their constituents, specifically targeting the nervous system and exhibiting significant potential in treating neurodegenerative disorders. The current state of research in this field is characterized by its preliminary nature, highlighting the necessity for a more comprehensive overlook of the therapeutic advantages of essential oils and their components. Integrating essential oils into conventional therapies can enhance the effectiveness of comprehensive treatment regimens for neurodegenerative diseases, offering a more holistic approach to addressing the multifaceted nature of these conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Diana Basit
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
6
|
Rahhal B, Qneibi M, Jaradat N, Hawash M, Qadi M, Issa L, Bdir S. Multi-biological activity assessment and phytochemical characterization of an aqueous extract of the Cymbopogon citratus grown in Palestine. BMC Complement Med Ther 2024; 24:27. [PMID: 38195607 PMCID: PMC10775582 DOI: 10.1186/s12906-024-04338-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Plants have historically been a rich source of medicinal compounds, with many modern pharmaceuticals derived from botanical origins. In contemporary healthcare, there is a resurgence in utilizing botanical substances as recognized medicinal agents. This study delved into understanding the phytochemical makeup and the multifaceted biological activities of an aqueous extract from Cymbopogon citratus (C. citratus). The investigated activities were its effect on AMPA receptors, antioxidant capacity, anti-lipase, anti-α-amylase actions, cytotoxicity, and antimicrobial properties. METHODS The extract of C. citratus received a comprehensive investigation, which included the study of its phytochemical composition, assessment of its antioxidant and anti-lipase properties, evaluation of its capacity to inhibit α-amylase, analysis of its impact on cell viability, and assessment of its antimicrobial activity. The approaches are used to clarify the complex physiological and biochemical characteristics. RESULTS The results were compelling; receptor kinetics had a marked impact, notably on the GluA2 subunit. Regarding its medicinal potential, the extract demonstrated potent antioxidant and anti-diabetic activities with IC50 values of 15.13 and 101.14 µg/mL, respectively. Additionally, it displayed significant inhibitory effects on the lipase enzyme and showed cytotoxicity against the Hep3B cancer cell line, with IC50 values of 144.35 and 148.37 µg/mL. In contrast, its effects on the normal LX-2 cell line were minimal, indicating selectivity. CONCLUSION The aqueous extract of C. citratus shows promising therapeutic properties. The findings advocate for further research into its compounds for potential isolation, purification, and in-depth pharmacological studies, especially in areas like nervous system disorders, diabetes, obesity, and combating oxidative stress.
Collapse
Affiliation(s)
- Belal Rahhal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
7
|
Hawash M. Thiazole Derivatives as Modulators of GluA2 AMPA Receptors: Potent Allosteric Effects and Neuroprotective Potential. Biomolecules 2023; 13:1694. [PMID: 38136566 PMCID: PMC10741633 DOI: 10.3390/biom13121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Thiazole carboxamide derivatives were synthesized in this investigation, with a subsequent examination of their impact on GluA2 AMPA receptors. The synthesized compounds, namely MMH-1-5, were subjected to characterization using high-resolution mass spectrometry (HRMS), proton nuclear magnetic resonance (1H-NMR), and carbon-13 nuclear magnetic resonance (13C-NMR). The present work thoroughly investigates the impact of five thiazole derivatives on GluA2 AMPA receptors. This investigation examined their effects on both whole-cell currents and receptor kinetics. In addition, the cytotoxicity of the samples was assessed using the MTS test. The compound MMH-5 had the highest effect level, resulting in a notable drop in current amplitude by a factor of six. Similarly, MMH-4 and MMH-3 also caused major reductions in the current amplitude. The compounds mentioned above also influenced the rates of deactivation and desensitization. MMH-5 and MMH-4 exhibited an increase in deactivation, while MMH-5 showed reduced desensitization. Our research findings highlight the efficacy of MMH-5 as a negative allosteric modulator of GluA2 AMPA receptors, exerting substantial effects on both the magnitude and time course of receptor activity. Significantly, the compound MMH-2 demonstrated noteworthy cytotoxic effects, as evidenced by cell viability rates dropping below 6.79% for all cancer cell lines and 17.52% for the normal cell line (LX-2). Of particular interest is the pronounced cytotoxicity observed in MMH-5, suggesting its potential as a safe neuroprotective agent targeting the AMPA receptor, as indicated by cell viability percentages exceeding 85.44% across all cancer and normal cell lines. Docking simulations were performed to determine possible modes of interaction between MMH5 and the GluA2-AMPA receptor (PDB:7RZ5). The abovementioned facts and the well-documented effects of further thiazole derivatives provide a strong foundation for future research endeavors to enhance tailored treatments for neurological disorders that rely heavily on GluA2 signaling. The present study elucidates the intricate association between thiazole derivatives and GluA2 receptors, providing valuable perspectives on the prospects of enhanced and specific therapeutic interventions for diverse neurological conditions.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
8
|
Qneibi M, Jaradat N, Al-Maharik N, Hawash M, Issa L, Suboh S, Yahya L, Khait AA, Warasneh A, Bdir S. The effect of Lavandula Coronopifolia essential oil on the biophysical properties of desensitization and deactivation gating currents in ionotropic receptors. Sci Rep 2023; 13:8417. [PMID: 37225859 DOI: 10.1038/s41598-023-35698-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/22/2023] [Indexed: 05/26/2023] Open
Abstract
The rising incidence of cancer and the lack of effective therapeutic interventions for many neurological illnesses like Alzheimer's and epilepsy has prompted us to investigate the composition and effects of the Lavandula coronopifolia oil from Palestine on cancer cells and AMPA receptor subunits in the brain due to the vast range of beneficial properties of Lavandula coronopifolia essential oil (EO). GC/MS was used to analyze L. coronopifolia's EO chemistry. EO's cytotoxicity and biophysical effects on AMPA receptors were investigated using MTS and electrophysiological techniques. The GC-MS results revealed that L. coronopifolia EO has a high content of eucalyptol (77.23%), β-pinene (6.93%), and α-pinene (4.95%). The EO showed more significant antiproliferative selectivity activities against HepG2 cancer cell lines than HEK293T cell lines with IC50 values of 58.51 and 133.22 µg/mL, respectively. The EO of L. coronopifolia affected AMPA receptor kinetics (desensitization and deactivation) and preferred homomeric GluA1 and heteromeric GluA1/A2 receptors. These findings indicate the potential therapeutic use of L. coronopifolia EO in the selective treatment of HepG2 cancer cell lines and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Nawaf Al-Maharik
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Shorooq Suboh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Leen Yahya
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Adan Abu Khait
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Amjaad Warasneh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
9
|
Golubeva EA, Lavrov MI, Radchenko EV, Palyulin VA. Diversity of AMPA Receptor Ligands: Chemotypes, Binding Modes, Mechanisms of Action, and Therapeutic Effects. Biomolecules 2022; 13:biom13010056. [PMID: 36671441 PMCID: PMC9856200 DOI: 10.3390/biom13010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
L-Glutamic acid is the main excitatory neurotransmitter in the central nervous system (CNS). Its associated receptors localized on neuronal and non-neuronal cells mediate rapid excitatory synaptic transmission in the CNS and regulate a wide range of processes in the brain, spinal cord, retina, and peripheral nervous system. In particular, the glutamate receptors selective to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) also play an important role in numerous neurological disorders and attract close attention as targets for the creation of new classes of drugs for the treatment or substantial correction of a number of serious neurodegenerative and neuropsychiatric diseases. For this reason, the search for various types of AMPA receptor ligands and studies of their properties are attracting considerable attention both in academic institutions and in pharmaceutical companies around the world. This review focuses mainly on the advances in this area published since 2017. Particular attention is paid to the structural diversity of new chemotypes of agonists, competitive AMPA receptor antagonists, positive and negative allosteric modulators, transmembrane AMPA regulatory protein (TARP) dependent allosteric modulators, ion channel blockers as well as their binding sites. This review also presents the studies of the mechanisms of action of AMPA receptor ligands that mediate their therapeutic effects.
Collapse
|
10
|
α-Lipoic Acid Derivatives as Allosteric Modulators for Targeting AMPA-Type Glutamate Receptors' Gating Modules. Cells 2022; 11:cells11223608. [PMID: 36429036 PMCID: PMC9688225 DOI: 10.3390/cells11223608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
The ionotropic glutamate receptor subtype α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) is responsible for most excitatory transmission in the brain. AMPA receptor function is altered in numerous neurological illnesses, making AMPA receptors appealing therapeutic targets for clinical intervention. Alpha-Lipoic acid (α-LA) is a naturally occurring compound, which functions as a co-factor in metabolism and energy production. α-LA is an antioxidant with various benefits in treating diabetes, including managing symptomatic diabetic neuropathy. This study will test a novel and innovative strategy to synthesize a new isomer of lipoic acid (R-LA) derivatives (bifunctional NO-donor/antioxidant) in one chemical on homomeric and heteromeric AMPA receptor subunits. We used patch-clamp electrophysiology to examine LA derivatives expressed in human embryonic kidney 293 cells (HEK293) for inhibition and changes in desensitization or deactivation rates. LA derivatives were shown to be potent antagonists of AMPA receptors, with an 8-11-fold reduction in AMPA receptor currents seen following the delivery of the compounds. Furthermore, the LA derivatives influenced the rates of desensitization and deactivation of AMPA receptors. Based on our results, especially given that α-LA is closely connected to the nervous system, we may better understand using AMPA receptors and innovative drugs to treat neurological diseases associated with excessive activation of AMPA receptors.
Collapse
|
11
|
Qneibi M, Hawash M, Bdir S, Nacak Baytas S. Targeting the kinetics mechanism of AMPA receptor inhibition by 2-oxo-3H-benzoxazole derivatives. Bioorg Chem 2022; 129:106163. [PMID: 36137313 DOI: 10.1016/j.bioorg.2022.106163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Ionotropic glutamate receptors are ligand-gated ion channels found in most excitatory synapses in the brain that allow for rapid information transfer. Due to their quick excitatory processes, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate (AMPA) receptors have been linked to various neurodegenerative disorders, including epilepsy and Parkinson's disease. It has been critical to develop new neuroprotective compounds that inhibit AMPA-sensitive glutamate-controlled channels allosterically, and many classes of AMPA receptor-inhibiting compounds have been synthesized and evaluated. The current study focuses on thirteen 2-oxo-3H-benzoxazole derivatives (COBs) as potential AMPA receptor modulators. The whole-cell patch-clamp technique was used to assess the effects of COBs on AMPA receptor subunits (i.e., GluA1, GluA2, GluA1/2, and GluA2/3) amplitudes in the human embryonic kidney (HEK293) cells and the rates of desensitization and deactivation before and after COBs delivery. According to our findings, the COBs bind AMPA receptors allosterically and alter AMPAR characteristics in various ways. COB-1, COB-2, and COB-13 were the most effective in decreasing AMPAR currents by around 10-12 folds compared to the other COBs. Furthermore, the COBs significantly impacted AMPA receptor deactivation and desensitization rates. Of the examined homomeric and heteromeric AMPAR subunits, GluA2 was the most impacted. COB compounds appear to be a viable candidate for future study and development in regulating neurological diseases involving AMPA receptors.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
12
|
Qneibi M, Hawash M, Jaradat N, Bdir S. Affecting AMPA Receptor Biophysical Gating Properties with Negative Allosteric Modulators. Mol Neurobiol 2022; 59:5264-5275. [PMID: 35687302 PMCID: PMC9186005 DOI: 10.1007/s12035-022-02913-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022]
Abstract
Glutamatergic chemical synapses mediate excitatory neurotransmission by the ion flow through α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors in the central nervous system (CNS). AMPA receptor-mediated synaptic transmission abnormalities may play a role in neurologic and neurodegenerative diseases, and compounds that can modulate AMPA receptor (AMPAR) signaling have been studied for decades as possible therapies for Alzheimer's disease, Parkinson's disease, depression, and epilepsy. Here, we aimed to determine the modulating effect of allosteric regulators on AMPA receptors by comparing their actions on AMPA-evoked currents, desensitization, and deactivation rate in human embryonic kidney cells (HEK293T) recombinant AMPAR subunits. In this study, patch-clamp electrophysiology was performed to examine how the AMPA subunit responded to benzodioxole (BDZ) derivatives. Our results showed that the BDZ derivatives affected AMPARs as negative modulators, particularly BDZs (8, 9, and 15), where they increased the desensitization rate and delayed the deactivation process. The BDZ compounds were utilized in this study as AMPA modulators to investigate fundamental and clinical AMPA receptor processes. We test BDZs as negative allosteric AMPAR modulators to reestablish glutamatergic synaptic transmission. These efforts have resulted in important molecules with neuroprotective properties on AMPA receptors.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
13
|
Cheng YJ, Li CW, Kuo CL, Shih TL, Chen JJ. Improved Synthesis of Asymmetric Curcuminoids and Their Assessment as Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082547. [PMID: 35458741 PMCID: PMC9030899 DOI: 10.3390/molecules27082547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
In this paper, the syntheses of twelve asymmetric curcumin analogs using Pabon's method are reported. Generally, the previously reported yields of asymmetric curcuminoids, such as 9a (53%), 9c (38%), and 9k (38%), have been moderate or low. Herein, we propose that the low yields were due to the presence of water and n-BuNH2 in the reaction media. To prove this formulated hypothesis, we have demonstrated that the yields can be improved by adding molecular sieves (MS) (4 Å) to the reaction mixture, thus reducing the interference of water. Therefore, improved yields (41-76%) were obtained, except for 9b (36.7%), 9g (34%), and 9l (39.5%). Furthermore, compounds 9b, 9d, 9e, 9f, 9g, 9h, 9i, 9j, and 9l are reported herein for the first time. The structures of these synthetic compounds were determined by spectroscopic and mass spectrometry analyses. The free radical scavenging ability of these synthetic asymmetric curcuminoids was evaluated and compared to that of the positive control butylated hydroxytoluene (BHT). Among the synthesized asymmetric curcuminoids, compounds 9a (IC50 = 37.57 ± 0.89 μM) and 9e (IC50 = 37.17 ± 1.76 μM) possessed effective 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities, and compounds 9h (IC50 = 11.36 ± 0.65 μM) and 9i (IC50 = 10.91 ± 0.77 μM) displayed potent 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical scavenging abilities comparable to that of curcumin (IC50 = 10.14 ± 1.04 μM). Furthermore, all the synthetic asymmetric curcuminoids were more active than BHT.
Collapse
Affiliation(s)
- Yang-Je Cheng
- Department of Chemistry, Tamkang University, Tamsui Dist., New Taipei City 251301, Taiwan; (Y.-J.C.); (C.-L.K.)
| | - Cai-Wei Li
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Cing-Ling Kuo
- Department of Chemistry, Tamkang University, Tamsui Dist., New Taipei City 251301, Taiwan; (Y.-J.C.); (C.-L.K.)
| | - Tzenge-Lien Shih
- Department of Chemistry, Tamkang University, Tamsui Dist., New Taipei City 251301, Taiwan; (Y.-J.C.); (C.-L.K.)
- Correspondence: (T.-L.S.); (J.-J.C.); Tel.: +886-2-2826-7195 (J.-J.C.); Fax: +886-2-2823-2940 (J.-J.C.)
| | - Jih-Jung Chen
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Correspondence: (T.-L.S.); (J.-J.C.); Tel.: +886-2-2826-7195 (J.-J.C.); Fax: +886-2-2823-2940 (J.-J.C.)
| |
Collapse
|
14
|
Itakhunov RN, Odin IS, Gusev DM, Grabovskiy SA, Gordon KV, Vologzhanina AV, Sokov SA, Sosnin IM, Golovanov AA. Cyclization of arylhydrazones of cross-conjugated enynones: synthesis of luminescent styryl-1 H-pyrazoles and propenyl-1 H-pyrazoles. Org Biomol Chem 2022; 20:8693-8713. [DOI: 10.1039/d2ob01427k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
On the basis of available ethynyl vinyl ketones and arylhydrazines, the authors have developed the two-stage synthesis method for styrylpyrazoles possessing fluorescent abilities, as well as the gram-scale synthesis method for fluorescent probes.
Collapse
Affiliation(s)
- Radik N. Itakhunov
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Ivan S. Odin
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Dmitry M. Gusev
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Stanislav A. Grabovskiy
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
- Laboratory of Chemical Kinetics, Ufa Institute of Chemistry, UFRS of the Russian Academy of Science, October Av. 71, Ufa, 450054, Russia
| | - Kareem V. Gordon
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Anna V. Vologzhanina
- Laboratory for X-Ray Diffraction Studies – X-Ray Structural Centre (XRSC), A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Science, 28 Vavilova Str., Moscow, 119334, Russia
| | - Sergey A. Sokov
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Ilya M. Sosnin
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Alexander A. Golovanov
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| |
Collapse
|