1
|
Liu Y, Huang J, Li S, Li Z, Chen C, Qu G, Chen K, Teng Y, Ma R, Wu X, Ren J. Advancements in hydrogel-based drug delivery systems for the treatment of inflammatory bowel disease: a review. Biomater Sci 2024; 12:837-862. [PMID: 38196386 DOI: 10.1039/d3bm01645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder that affects millions of individuals worldwide. However, current drug therapies for IBD are plagued by significant side effects, low efficacy, and poor patient compliance. Consequently, there is an urgent need for novel therapeutic approaches to alleviate IBD. Hydrogels, three-dimensional networks of hydrophilic polymers with the ability to swell and retain water, have emerged as promising materials for drug delivery in the treatment of IBD due to their biocompatibility, tunability, and responsiveness to various stimuli. In this review, we summarize recent advancements in hydrogel-based drug delivery systems for the treatment of IBD. We first identify three pathophysiological alterations that need to be addressed in the current treatment of IBD: damage to the intestinal mucosal barrier, dysbiosis of intestinal flora, and activation of inflammatory signaling pathways leading to disequilibrium within the intestines. Subsequently, we discuss in depth the processes required to prepare hydrogel drug delivery systems, from the selection of hydrogel materials, types of drugs to be loaded, methods of drug loading and drug release mechanisms to key points in the preparation of hydrogel drug delivery systems. Additionally, we highlight the progress and impact of the hydrogel-based drug delivery system in IBD treatment through regulation of physical barrier immune responses, promotion of mucosal repair, and improvement of gut microbiota. In conclusion, we analyze the challenges of hydrogel-based drug delivery systems in clinical applications for IBD treatment, and propose potential solutions from our perspective.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Yitian Teng
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Rui Ma
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Xiuwen Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Jianan Ren
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
2
|
Coolich MK, Lanier OL, Cisneros E, Peppas NA. PEGylated insulin loaded complexation hydrogels for protected oral delivery. J Control Release 2023; 364:216-226. [PMID: 37890591 DOI: 10.1016/j.jconrel.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
While a number of enteric coatings and pH-sensitive oral delivery vehicles have been developed, they lack the ability to sufficiently protect proteins from proteolytic degradation once released from the carrier. In this work, we show that H-bonded, pH-sensitive poly(methacrylic acid-grafted ethylene glycol) glycol (henceforth designated as P(MAA-g-EG) gels) exhibit great promise as protein carriers, as they utilize poly(ethylene glycol) (PEG) chains to promote mucoadhesion in the small intestine, increasing the chances that the drug is released within the villus of the absorptive intestinal wall. Importantly, PEG was also conjugated to the B29-lysine (LysB29) position of insulin in order to protect the drug from proteolytic degradation once released in the small intestine and adhere the drug to the intestinal epithelium through improved mucoadhesion. PEG-conjugated (PEGylated) molecules were found to actively participate in the carrier loading and release mechanism, with the drug conjugate hydrogen bonding to the MAA while in the collapsed state and subsequently repulse the drug above the polymer's isoelectric point. This effect was enhanced through the evaluation of PEG graft density within the carrier. Cellular transport and changes in transepithelial resistance caused by the PEGylated insulin (PI) in the presence of P(MAA-g-EG) microparticles were analyzed using a 1:1 co-culture of human colon adenocarcinoma (Caco-2) and: the mucus-secreting human colon carcinoma cell(HT-29-MTX). Finally, the in vivo absorption of insulin was measured in Sprague-Dawley rats to ensure that the PEGylated insulin conjugates are biologically active, as well as to compare the bioavailability to control insulin. Collectively, these results lead toward the development of a novel system for improved insulin delivery, with improved stability of insulin through PEGylation.
Collapse
Affiliation(s)
| | - Olivia L Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
| | - Ethan Cisneros
- Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Chapa-Villarreal FA, Miller M, Rodriguez-Cruz JJ, Pérez-Carlos D, Peppas NA. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Biomaterials 2023; 300:122191. [PMID: 37295223 DOI: 10.1016/j.biomaterials.2023.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Matthew Miller
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - J Jesus Rodriguez-Cruz
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Diego Pérez-Carlos
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Oral docetaxel delivery with cationic polymeric core-shell nanocapsules: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Meneguin AB, Silvestre ALP, Sposito L, de Souza MPC, Sábio RM, Araújo VHS, Cury BSF, Chorilli M. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of Diabetes mellitus: A review. Carbohydr Polym 2020; 256:117504. [PMID: 33483027 DOI: 10.1016/j.carbpol.2020.117504] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Oral administration of insulin (INS) would represent a revolution in the treatment of diabetes, considering that this route mimics the physiological dynamics of endogenous INS. Nano- and microencapsulation exploiting the advantageous polysaccharides properties has been considered an important technological strategy to protect INS against harsh conditions of gastrointestinal tract, in the same time that improve the permeability via transcellular and/or paracellular pathways, safety and in some cases even selectivity for targeting delivery of INS. In fact, some polysaccharides also give to the systems functional properties such as pH-responsiveness, mucoadhesiveness under specific physiological conditions and increased intestinal permeability. In general, all polysaccharides can be functionalized with specific molecules becoming more selective to the cells to which INS is delivered. The present review highlights the advances in the past 10 years on micro- and nanoencapsulation of INS exploiting the unique natural properties of polysaccharides, including chitosan, starch, alginate, pectin, and dextran, among others.
Collapse
Affiliation(s)
- Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.
| | | | - Larissa Sposito
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Victor Hugo Sousa Araújo
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
7
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
8
|
Nie T, He Z, Zhou Y, Zhu J, Chen K, Liu L, Leong KW, Mao HQ, Chen Y. Surface Coating Approach to Overcome Mucosal Entrapment of DNA Nanoparticles for Oral Gene Delivery of Glucagon-like Peptide 1. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29593-29603. [PMID: 31348859 DOI: 10.1021/acsami.9b10294] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oral delivery of nucleic acid therapy is a promising strategy in treating various diseases because of its higher patient compliance and therapeutic efficiency compared to parenteral routes of administration. However, its success has been limited by the low transfection efficiency resulting from nucleic acid entrapment in the mucus layer and epithelial barrier of the gastrointestinal (GI) tract. Herein, we describe an approach to overcome this phenomenon and improve oral DNA delivery in the context of treating type II diabetes (T2D). Linear PEI (lPEI) was used as a carrier to form complexes with plasmid DNA encoding glucagon-like peptide 1 (GLP-1), a common target in T2D treatments. These nanoparticles were then coated with a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-rac-glycero-3-methoxy poly(ethylene glycol)-2000 (DMG-PEG) to render the nanoparticle surface hydrophilic and electrostatically neutral. The surface-modified lPEI/DNA nanoparticles showed higher diffusivity and transport in the mucus layer of the GI tract and mediated high levels of transfection efficiency in vitro and in vivo. Moreover, these modified nanoparticles demonstrated high levels of GLP-1 expression for more than 24 h in the liver, lungs, and intestine in a T2D murine model after a single dose, as well as controlled blood glucose levels within a normal range for at least 18 h with repeatable therapeutic effects upon multiple dosages. Taken together, this work demonstrates the feasibility of an oral plasmid DNA delivery approach in the treatment of T2D through a facile surface modification to improve the mucus permeability and delivery efficiency of the nanoparticles.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kam W Leong
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | | | | |
Collapse
|
9
|
Wechsler ME, Ramirez JEV, Peppas NA. 110 th Anniversary: Nanoparticle mediated drug delivery for the treatment of Alzheimer's disease: Crossing the blood-brain barrier. Ind Eng Chem Res 2019; 58:15079-15087. [PMID: 32982041 DOI: 10.1021/acs.iecr.9b02196] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease is an irreversible neurodegenerative disorder affecting approximately 6 million Americans, 90% of which are over the age of 65. The hallmarks of the disease are represented by amyloid plaques and neurofibrillary tangles. While the neuronal characteristics of Alzheimer's disease are well known, current treatments only provide temporary relief of the disease symptoms. Many of the approved therapeutic agents for the management of cognitive impairments associated with the disease are based on neurotransmitter or enzyme modulation. However, development of new treatment strategies is limited due to failures associated with poor drug solubility, low bioavailability, and the inability to overcome obstacles present along the drug delivery route. In addition, treatment technologies must overcome the challenges presented by the blood-brain barrier. This complex and highly regulated barrier surveys the biochemical, physicochemical, and structural features of nearby molecules at the periphery, only permitting passage of select molecules into the brain. To increase drug efficacy to the brain, many nanotechnology-based platforms have been developed. These methods for assisted drug delivery employ sophisticated design strategies and offer serveral advantages over traditional methods. For example, nanoparticles are generally low-cost technologies, which can be used for non-invasive administrations, and formulations are highly tunable to increase drug loading, targeting, and release efficacy. These nanoscale systems can facilitate passage of drugs through the blood-brain barrier, thus improving the bioavailability, pharmacokinetics, and pharmacodynamics of therapeutic agents. Examples of such nanocarriers which are discussed herein include polymeric nanoparticles, dendrimers, and lipid-based nanoparticles.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, United States.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Julia E Vela Ramirez
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, United States.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, United States.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States.,McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States.,Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
10
|
Caldorera-Moore M, Vela Ramirez JE, Peppas NA. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. J Drug Target 2019; 27:582-589. [PMID: 30457357 PMCID: PMC6522304 DOI: 10.1080/1061186x.2018.1547732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
Whereas significant advancements have been made in our fundamental understanding of cancer, they have not yet translated into effective clinical cancer treatments. One of the areas that has the potential to improve the efficacy of cancer therapies is the development of novel drug delivery technologies. In particular, the design of pH-sensitive polymeric complexation hydrogels may allow for targeted oral delivery of a wide variety of chemotherapeutic drugs and proteins. In this work, poly(methacrylic acid-grafted-ethylene glycol) hydrogel nanoparticles were synthesised, characterised, and studied as matrix-type, diffusion-controlled, pH-responsive carriers to enable the oral delivery of the chemotherapeutic agent interferon alpha (IFN-α). The biophysical mechanisms controlling the transport of IFN-α were investigated using a Caco-2/HT29-MTX co-culture as a gastrointestinal (GI) tract model. The synthesised nanoparticles exhibited pH-responsive swelling behaviour and allowed the permeation of IFN-α through the tight junctions of the developed cellular GI epithelium model. These studies demonstrate the capabilities of these particles to contribute to the improved oral delivery of protein chemotherapeutics.
Collapse
Affiliation(s)
- Mary Caldorera-Moore
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272
| | - Julia E. Vela Ramirez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
11
|
Larrañeta E, Stewart S, Ervine M, Al-Kasasbeh R, Donnelly RF. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J Funct Biomater 2018; 9:E13. [PMID: 29364833 PMCID: PMC5872099 DOI: 10.3390/jfb9010013] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been generally limited to the delivery of hydrophilic drugs. However, as many of the new drugs coming to market are hydrophobic in nature, new approaches for integrating hydrophobic drugs into hydrogels should be developed. This article discusses the possible new ways to incorporate hydrophobic drugs within hydrogel structures that have been developed through research. This review describes hydrogel-based systems for hydrophobic compound delivery included in the literature. The section covers all the main types of hydrogels, including physical hydrogels and chemical hydrogels. Additionally, reported applications of these hydrogels are described in the subsequent sections.
Collapse
Affiliation(s)
- Eneko Larrañeta
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sarah Stewart
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Michael Ervine
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Rehan Al-Kasasbeh
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
12
|
Gu D, O'Connor AJ, G H Qiao G, Ladewig K. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin Drug Deliv 2016; 14:879-895. [PMID: 27705026 DOI: 10.1080/17425247.2017.1245290] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Smart hydrogel systems present opportunities to not only provide hydrophobic molecule encapsulation capability but to also respond to specific delivery routes. Areas covered: An overview of the design principles, preparation methods and applications of hydrogel systems for delivery of hydrophobic drugs is given. It begins with a summary of the advantages of hydrogels as delivery vehicles over other approaches, particularly macromolecular nanocarriers, before proceeding to address the design and preparation strategies and chemistry involved, with a particular focus on the introduction of hydrophobic domains into (naturally) hydrophilic hydrogels. Finally, the applications in different delivery routes are discussed. Expert opinion: Modifications to conventional hydrogels can endow them with the capability to carry hydrophobic drugs but other functions as well, such as the improved mechanical stability, which is important for long-term in vivo residence and/or self-healing properties useful for injectable delivery pathways. These modifications harness hydrophobic-hydrophobic forces, physical interactions and inclusion complexes. The lack of in-depth understanding of these interactions, currently limits more delicate and application-oriented designs. Increased efforts are needed in (i) understanding the interplay of gel formation and simultaneous drug loading; (ii) improving hydrogel systems with respect to their biosafety; and (iii) control over release mechanism and profile.
Collapse
Affiliation(s)
- Dunyin Gu
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Andrea J O'Connor
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Greg G H Qiao
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Katharina Ladewig
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| |
Collapse
|
13
|
Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, Warsi MH, Ahmad FJ. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J 2016; 24:413-28. [PMID: 27330372 PMCID: PMC4908063 DOI: 10.1016/j.jsps.2014.06.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023] Open
Abstract
In the modern world, a number of therapeutic proteins such as vaccines, antigens, and hormones are being developed utilizing different sophisticated biotechnological techniques like recombinant DNA technology and protein purification. However, the major glitches in the optimal utilization of therapeutic proteins and peptides by the oral route are their extensive hepatic first-pass metabolism, degradation in the gastrointestinal tract (presence of enzymes and pH-dependent factors), large molecular size and poor permeation. These problems can be overcome by adopting techniques such as chemical transformation of protein structures, enzyme inhibitors, mucoadhesive polymers and permeation enhancers. Being invasive, parenteral route is inconvenient for the administration of protein and peptides, several research endeavors have been undertaken to formulate a better delivery system for proteins and peptides with major emphasis on non-invasive routes such as oral, transdermal, vaginal, rectal, pulmonary and intrauterine. This review article emphasizes on the recent advancements made in the delivery of protein and peptides by a non-invasive (peroral) route into the body.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Faiyaz Shakeel
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arab
| | | | - Mohammed Anwar
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Neha Mallick
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
14
|
Pérez YA, Urista CM, Martínez JI, Nava MDCD, Rodríguez FAR. Functionalized Polymers for Enhance Oral Bioavailability of Sensitive Molecules. Polymers (Basel) 2016; 8:E214. [PMID: 30979310 PMCID: PMC6432083 DOI: 10.3390/polym8060214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Currently, many sensitive molecules have been studied for effective oral administration. These substances are biologically active compounds that mainly suffer early degradation in the gastrointestinal tract (GIT) and physicochemical instability, inactivation and poor solubility and permeability. The sensibility of the biomolecules has limited their oral administration in the body and today is an important research topic to achieve desired effects in medicine field. Under this perspective, various enhancement approaches have been studied as alternatives to increase their oral bioavailability. Some of these strategies include functionalized polymers to provide specific useful benefits as protection to the intestinal tract by preventing its degradation by stomach enzymes, to increase their absorption, permeability, stability, and to make a proper release in the GIT. Due to specific chemical groups, shapes and sizes, morphologies, mechanical properties, and degradation, recent advances in functionalized polymers have opened the door to great possibilities to improve the physicochemical characteristics of these biopharmaceuticals. Today, many biomolecules are found in basic studies, preclinical steps, and others are late stage clinical development. This review summarizes the contribution of functionalized polymers to enhance oral bioavailability of sensitive molecules and their application status in medicine for different diseases. Future trends of these polymers and their possible uses to achieve different formulation goals for oral delivery are also covered in this manuscript.
Collapse
Affiliation(s)
- Yolanda Alvarado Pérez
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Claudia Muro Urista
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Javier Illescas Martínez
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - María Del Carmen Díaz Nava
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Francisco A Riera Rodríguez
- Departamento de Ingeniería Química y Tecnología de Medio Ambiente, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain.
| |
Collapse
|
15
|
Caldorera-Moore M, Maass K, Hegab R, Fletcher G, Peppas N. Hybrid responsive hydrogel carriers for oral delivery of low molecular weight therapeutic agents. J Drug Deliv Sci Technol 2015; 30:352-359. [PMID: 26688695 DOI: 10.1016/j.jddst.2015.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogels have been influential in the development of controlled release systems for a wide variety of therapeutic agents. These materials are attractive as carriers for transmucosal and intracellular drug delivery because of their inherent biocompatibility, tunable physicochemical properties, basic synthesis, and ability to be physiologically responsive. Due to their hydrophilic nature, hydrogel-based carrier systems are not always the best systems for delivery of small molecular weight, hydrophobic therapeutic agents. In this work, versatile hydrogel-based carriers composed of copolymers of methyl methacrylate (MMA) and acrylic acid (AA) were designed and synthesized to create formulations for oral delivery of small molecular weight therapeutic agents. Through practical material selection and careful design of copolymer composition and molecular architecture, we engineered systems capable of responding to physiological changes, with tunable physicochemical properties that are optimized to load, protect, and deliver their payloads to their intended site of action. The synthesized carriers' ability to respond to changes in pH, to load and release small molecular weight drugs, and biocompatibility were investigated. Our results suggest these hydrophilic networks have great potential for controlled delivery of small-molecular weight, hydrophobic and hydrophilic agents.
Collapse
Affiliation(s)
- M Caldorera-Moore
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA ; Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA ; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - K Maass
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Hegab
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA
| | - G Fletcher
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - N Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA ; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA ; Division of Pharmaceutics, The University of Texas at Austin, Austin, TX 78712, USA ; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Kamei N, Aoyama Y, Khafagy ES, Henmi M, Takeda-Morishita M. Effect of different intestinal conditions on the intermolecular interaction between insulin and cell-penetrating peptide penetratin and on its contribution to stimulation of permeation through intestinal epithelium. Eur J Pharm Biopharm 2015; 94:42-51. [PMID: 25960330 DOI: 10.1016/j.ejpb.2015.04.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/17/2022]
Abstract
Our recent studies have shown that the coadministration of cell-penetrating peptides (CPPs) is a potential strategy for oral delivery of peptide- and protein-based biopharmaceuticals. The intermolecular interaction between drug and CPP is an essential factor in the effective delivery of these drugs, but the characteristics of the interaction under the conditions of the intestinal lumen remain unknown. In this study, therefore, we examined the characteristics of binding of the amphipathic CPP penetratin to insulin and the efficiency of its enhancement of epithelial insulin transport at different pH and in simulated intestinal fluids (SIFs). The binding between insulin and penetratin was pH dependent and particularly decreased at pH 5.0. In addition, we clarified that the sodium taurocholate (NaTC) present in two types of SIF (fasted-state SIF [FaSSIF] and fed-state SIF [FeSSIF]) affected binding efficiency. However, the permeation of insulin through a Caco-2 cell monolayer was significantly facilitated by coincubation with l- or d-penetratin at various pH values. Moreover, the permeation-stimulating effect of l-penetratin was observed in FaSSIF containing NaTC and lecithin, but not in 3mM NaTC solution, suggesting that the presence of lecithin was the key factor in maintaining the ability of penetratin to enhance the intestinal absorption of biopharmaceuticals. This report describes the essential considerations for in vivo use and clinical application of a CPP-based oral delivery strategy.
Collapse
Affiliation(s)
- Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Yukina Aoyama
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - El-Sayed Khafagy
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 415-22, Egypt
| | - Mao Henmi
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| |
Collapse
|
17
|
In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J Control Release 2014; 189:19-24. [DOI: 10.1016/j.jconrel.2014.06.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 05/18/2014] [Accepted: 06/15/2014] [Indexed: 12/24/2022]
|
18
|
Lopes MA, Abrahim BA, Cabral LM, Rodrigues CR, Seiça RMF, de Baptista Veiga FJ, Ribeiro AJ. Intestinal absorption of insulin nanoparticles: Contribution of M cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1139-51. [DOI: 10.1016/j.nano.2014.02.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/19/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
|
19
|
Müller C, Perera G, König V, Bernkop-Schnürch A. Development and in vivo evaluation of papain-functionalized nanoparticles. Eur J Pharm Biopharm 2014; 87:125-31. [DOI: 10.1016/j.ejpb.2013.12.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
20
|
He P, Liu H, Tang Z, Deng M, Yang Y, Pang X, Chen X. Poly(ester amide) blend microspheres for oral insulin delivery. Int J Pharm 2013; 455:259-66. [DOI: 10.1016/j.ijpharm.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/13/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
|
21
|
|
22
|
Tsibouklis J, Middleton AM, Patel N, Pratten J. Toward mucoadhesive hydrogel formulations for the management of xerostomia: the physicochemical, biological, and pharmacological considerations. J Biomed Mater Res A 2013; 101:3327-38. [PMID: 23529996 DOI: 10.1002/jbm.a.34626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 01/17/2023]
Abstract
Although hydrogel formulations that may be applied to many mucosal surfaces are now readily accessible, little research effort has been concentrated on the development of systems that may be usefully employed for the prolonged hydration of the oral cavity. To this end, and set within the context of oral care in general, this review considers the requirements for the design of hydrogel formulations with an affinity for buccal cells and details methods for evaluating the performance of these formulations as treatments for the management of xerostomia.
Collapse
Affiliation(s)
- John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DT, United Kingdom
| | | | | | | |
Collapse
|
23
|
Schoener CA, Hutson HN, Peppas NA. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. J Biomed Mater Res A 2012; 101:2229-36. [PMID: 23281185 DOI: 10.1002/jbm.a.34532] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 01/13/2023]
Abstract
Amphiphilic polymer carriers were formed by polymerizing a hydrophilic, pH-responsive hydrogel composed of poly(methacrylic-grafted-ethylene glycol) (P(MAA-g-EG)) in the presence of hydrophobic PMMA nanoparticles. These polymer carriers were varied in PMMA nanoparticle content to elicit a variety of physiochemical properties which would preferentially load doxorubicin, a hydrophobic chemotherapeutic, and release doxorubicin locally in the colon for the treatment of colon cancers. Loading levels ranged from 49% to 64% and increased with increasing nanoparticle content. Doxorubicin loaded polymers were released in a physiological model where low pH was used to simulate the stomach and then stepped to more neutral conditions to simulate the upper small intestine. P(MAA-g-EG) containing nanoparticles were less mucoadhesive as determined using a tensile tester, polymer samples, and fresh porcine small intestine. The cytocompatibility of the polymer materials were assessed using cell lines representing the GI tract and colon cancer and were noncytotoxic at varying concentrations and exposure times.
Collapse
Affiliation(s)
- Cody A Schoener
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
24
|
Schoener CA, Peppas NA. pH-responsive hydrogels containing PMMA nanoparticles: an analysis of controlled release of a chemotherapeutic conjugate and transport properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2012; 24:1027-40. [PMID: 23683036 PMCID: PMC3662499 DOI: 10.1080/09205063.2012.731376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biopolymers composed of a pH-responsive, hydrophilic poly(methacrylic acid-grafted-ethylene glycol) network polymerized in the presence of poly(methyl methacrylate) nanoparticles were designed for the oral delivery of chemotherapeutics for the treatment of colon cancer. An inulin-doxorubicin conjugate, designed to target the colon and improve doxorubicin efficacy, was loaded into these polymer carriers at an efficiency of 54%. Release studies indicated these polymer carriers minimized conjugate release in low pH conditions and released the conjugate at neutral pH conditions using a two-step pH experiment modeling the stomach and the small intestine. At lower concentration levels, the presence of the polymer carriers did not disrupt tight junctions as determined by transepithelial electrical resistance studies using Caco-2 and HT29-MTX cell lines which are an accurate model of the GI tract epithelia. Permeability values of unmodified doxorubicin and the inulin-doxorubicin conjugate in the presence of the polymer carriers were also determined using the same cell models and ranged from 1.87 to 3.80 × 10 (-6) cm/s.
Collapse
Affiliation(s)
- Cody A. Schoener
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
25
|
Schoener CA, Hutson HN, Peppas NA. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Delivery of Hydrophobic Therapeutic Agents. POLYM INT 2012; 61:874-879. [PMID: 23087546 DOI: 10.1002/pi.4219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To investigate the delivery of hydrophobic therapeutic agents, a new class of polymer carriers was synthesized. These carriers are composed of two components: (i) a pH-responsive hydrogel composed of methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and (ii) hydrophobic poly(methyl methacrylate) (PMMA) nanoparticles. Before the P(MAA-g-EG) hydrogel was crosslinked, PMMA nanoparticles were added to the solution and upon exposure to UV light they were photoencapsulated throughout the P(MAA-g-EG) hydrogel structure. The pH-responsive behavior of P(MAA-g-EG) is capable of triggered release of a loaded therapeutic agent, such as a low molecular weight drug or protein, when it passes from the stomach (low pH) to upper small intestine (neutral pH). The introduction of PMMA nanoparticles into the hydrogel structure affected the swelling behavior, therapeutic agent loading efficiency, and solute release profiles. In equilibrium swelling conditions the swelling ratio of nanoparticle-containing hydrogels decreased with increasing nanoparticle content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 38 - 51 % and increased with increasing hydrophobic content. Release studies from neat P(MAA-g-EG) and the ensuing P(MAA-g-EG) hydrogels containing nanoparticles indicated that the transition from low pH (2.0) to neutral pH (7.0) triggered fluorescein release. Maximum fluorescein release depended on the structure and hydrophobicity of the carriers used in these studies.
Collapse
Affiliation(s)
- Cody A Schoener
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
26
|
Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes--future perspectives. Int J Pharm 2012; 440:48-62. [PMID: 22503954 DOI: 10.1016/j.ijpharm.2012.03.056] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 03/19/2012] [Accepted: 03/23/2012] [Indexed: 01/12/2023]
Abstract
Diabetes is a metabolic disease and is a major cause of mortality and morbidity in epidemic proportions. A type I diabetic patient is dependent on daily injections of insulin, for survival and also to maintain a normal life, which is uncomfortable, painful and also has deleterious effects. Extensive efforts are being made worldwide for developing noninvasive drug delivery systems, especially via oral route. Oral route is the most widely accepted means of administration. However it is not feasible for direct delivery of peptide and protein drugs. To overcome the gastro-intestinal barriers various types of formulations such as polymeric micro/nanoparticles, liposomes, etc. are investigated. In the recent years lot of advances have taken place in developing and understanding the oral peptide delivery systems. Simultaneously, the development and usage of other peptides having anti-diabetic potentials are also considered for diabetes therapy. In this review we are focusing on the advances reported during the past decade in the field of oral insulin delivery along with the possibility of other peptidic incretin hormones such as GLP-1, exendin-4, for diabetes therapy.
Collapse
Affiliation(s)
- M R Rekha
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | | |
Collapse
|
27
|
Abstract
The concept of mucoadhesion and the molecular design requirements for the synthesis of mucoadhesive agents are both well understood and, as a result, hydrogel formulations that may be applied to mucosal surfaces are readily accessible. Nanosized hydrogel systems that make use of biological recognition or targeting motifs, by reacting to disease-specific environmental triggers and/or chemical signals to affect drug release, are now emerging as components of a new generation of therapeutics that promise improved residence time, faster response to stimuli and triggered release.
Collapse
|
28
|
He P, Tang Z, Lin L, Deng M, Pang X, Zhuang X, Chen X. Novel Biodegradable and pH-Sensitive Poly(ester amide) Microspheres for Oral Insulin Delivery. Macromol Biosci 2012; 12:547-56. [DOI: 10.1002/mabi.201100358] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/07/2011] [Indexed: 12/18/2022]
|
29
|
Schoener C, Peppas N. Oral delivery of chemotherapeutic agents: background and potential of drug delivery systems for colon delivery. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50081-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Schoener CA, Hutson HN, Fletcher GK, Peppas NA. Amphiphilic Interpenetrating Networks for the Delivery of Hydrophobic, Low Molecular Weight Therapeutic Agents. Ind Eng Chem Res 2011; 50:12556-12561. [PMID: 22247592 DOI: 10.1021/ie201593h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the delivery of hydrophobic therapeutic agents, a novel class of interpenetrating networks (IPNs) were synthesized and composed of two networks: methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and poly(n-butyl acrylate) (PBA). The hydrophilic P(MAA-g-EG) networks are pH-responsive hydrogels capable of triggered release of an encapsulated therapeutic agent, such as a low molecular weight drug or a protein, when it passes from the stomach (low pH) to upper small intestine (neutral pH). PBA is a hydrophobic homopolymer that can affect the IPN swelling behavior, the therapeutic agent loading efficiencies in IPNs, and solute release profiles from IPNs. In dynamic swelling conditions, IPNs had greater swelling ratios than P(MAA-g-EG), but in equilibrium swelling conditions the IPN swelling ratio decreased with increasing PBA content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 21 - 44%. Release studies from neat P(MAA-g-EG) and the ensuing IPNs indicated that the transition from low pH (2.0) to neutral pH (7.0) triggered fluorescein release. Maximum fluorescein release depended on the structure and hydrophilicity of the carriers used in these studies.
Collapse
Affiliation(s)
- Cody A Schoener
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
31
|
Advanced molecular design of biopolymers for transmucosal and intracellular delivery of chemotherapeutic agents and biological therapeutics. J Control Release 2011; 155:119-27. [PMID: 21699934 DOI: 10.1016/j.jconrel.2011.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/21/2011] [Accepted: 06/03/2011] [Indexed: 12/22/2022]
Abstract
Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious material selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability to respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids.
Collapse
|
32
|
Peppas NA, Carr DA. Impact of Absorption and Transport on Intelligent Therapeutics and Nano-scale Delivery of Protein Therapeutic Agents. Chem Eng Sci 2009; 64:4553-4565. [PMID: 20161384 PMCID: PMC2782827 DOI: 10.1016/j.ces.2009.04.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The combination of materials design and advances in nanotechnology has led to the development of new therapeutic protein delivery systems. The pulmonary, nasal, buccal and other routes have been investigated as delivery options for protein therapy, but none result in improved patient compliances and patient quality of life as the oral route. For the oral administration of these new systems, an understanding of protein transport is essential because of the dynamic nature of the gastrointestinal tract and the barriers to transport that exist.Models have been developed to describe the transport between the gastrointestinal lumen and the bloodstream, and laboratory techniques like cell culture provide a means to investigate the absorption and transport of many therapeutic agents. Biomaterials, including stimuli-sensitive complexation hydrogels, have been investigated as promising carriers for oral delivery. However, the need to develop models that accurately predict protein blood concentration as a function of the material structure and properties still exists.
Collapse
Affiliation(s)
- Nicholas A. Peppas
- Center of Biomaterials, Drug Delivery, Bionanotechnology and Molecular Recognition, Departments of Chemical and Biomedical Engineering and College of Pharmacy, The University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712, USA
| | | |
Collapse
|
33
|
Pandey G, Fatma T, Cowsik SM, Komath SS. Specific interaction of jacalin with phycocyanin, a fluorescent phycobiliprotein. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 97:87-93. [DOI: 10.1016/j.jphotobiol.2009.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 04/24/2009] [Accepted: 08/11/2009] [Indexed: 11/17/2022]
|
34
|
Amet N, Wang W, Shen WC. Human growth hormone-transferrin fusion protein for oral delivery in hypophysectomized rats. J Control Release 2009; 141:177-82. [PMID: 19761807 DOI: 10.1016/j.jconrel.2009.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/26/2009] [Accepted: 09/07/2009] [Indexed: 11/24/2022]
Abstract
Transferrin (Tf)-based recombinant fusion protein approach was investigated to achieve oral delivery for human growth hormone (hGH). Plasmid constructs expressing the fusion proteins were established by fusing coding sequences of both hGH and Tf in frame. Fusion proteins were produced in serum free media by transient transfection of human embryonic kidney HEK293 cells. The SDS-PAGE analysis of conditioned media showed that fusion proteins expressed at high purity with a 100 kDa molecular weight; the Western blot analysis with anti-hGH and anti-Tf antibodies verified the identity of fusion proteins. The Nb2 cell proliferation and Caco-2 cell Tf receptor (TfR) binding assays demonstrated that fusion proteins retained bioactivity of both hGH and Tf, respectively. A helical linker was inserted as spacer between hGH- and Tf-domain to enhance the bioactivity and the yield of the fusion protein. Two fusion proteins, hGH-Tf (GT) and hGH-(H4)(2)-Tf (GHT) were obtained and assessed in hGH-deficient hypophysectomized rats for in vivo biological activity. Results from seven-day subcutaneous dosing (1.25mg/kg/day) demonstrated that both GT and GHT fusion proteins were bioactive in vivo, comparable to native hGH. However, only the GHT, but not GT, fusion protein promoted a modest but statistically significant weight gain after oral dosing with 12.5mg/kg/day.
Collapse
Affiliation(s)
- Nurmamet Amet
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, PSC 404B, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | | | | |
Collapse
|
35
|
Hearnden V, Lomas H, Macneil S, Thornhill M, Murdoch C, Lewis A, Madsen J, Blanazs A, Armes S, Battaglia G. Diffusion studies of nanometer polymersomes across tissue engineered human oral mucosa. Pharm Res 2009; 26:1718-28. [PMID: 19387800 DOI: 10.1007/s11095-009-9882-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 03/19/2009] [Indexed: 11/29/2022]
Abstract
PURPOSE To measure the diffusion of nanometer polymersomes through tissue engineered human oral mucosa. METHODS In vitro models of full thickness tissue engineered oral mucosa (TEOM) were used to assess the penetration properties of two chemically different polymersomes comprising two of block copolymers, PMPC-PDPA and PEO-PDPA. These copolymers self-assemble into membrane-enclosed vesicular structures. Polymersomes were conjugated with fluorescent rhodamine in order to track polymersome diffusion. Imaging and quantification of the diffusion properties were assessed by confocal laser scanning microscopy (CLSM). RESULTS TEOM is morphologically similar to natural oral mucosa. Using CLSM, both formulations were detectable in the TEOM within 6 h and after 48 h both penetrated up to 80 microm into the TEOM. Diffusion of PMPC-PDPA polymersomes was widespread across the epithelium with intra-epithelial uptake, while PEO-PDPA polymersomes also diffused into the epithelium. CONCLUSIONS CLSM was found to be an effective and versatile method for analysing the level of diffusion of polymersomes into TEOM. The penetration and retention of PMPC-PDPA and PEO-PDPA polymersomes means they may have potential for intra-epithelial drug delivery and/or trans-epithelial delivery of therapeutic agents.
Collapse
Affiliation(s)
- Vanessa Hearnden
- Biomaterials and Tissue Engineering Group, Department of Engineering Materials, Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S37HQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Serra L, Doménech J, Peppas NA. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur J Pharm Biopharm 2008; 71:519-28. [PMID: 18976706 DOI: 10.1016/j.ejpb.2008.09.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/17/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
The goal of this critical review is to provide a critical analysis of the chain dynamics responsible for the action of micro- and nanoparticles of mucoadhesive biomaterials. The objective of using bioadhesive controlled drug delivery devices is to prolong their residence at a specific site of delivery, thus enhancing the drug absorption process. These mucoadhesive devices can protect the drug during the absorption process in addition to protecting it on its route to the delivery site. The major emphasis of recent research on mucoadhesive biomaterials has been on the use of adhesion promoters, which would enhance the adhesion between synthetic polymers and mucus. The use of adhesion promoters such as linear or tethered polymer chains is a natural result of the diffusional characteristics of adhesion. Mucoadhesion depends largely on the structure of the synthetic polymer gels used in controlled release applications.
Collapse
Affiliation(s)
- Laura Serra
- Biomaterials, Drug Delivery, Bionanotechnology and Molecular Recognition Laboratories, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
37
|
Abstract
Oral administration of anticancer agents is preferred by patients for its convenience and potential for use in outpatient and palliative setting. In addition, oral administration facilitates a prolonged exposure to the cytotoxic agents. Enhancement of bioavailability of emerging cytotoxic agents is a pre-requisite for successful development of oral modes of cancer treatment. Over the last decade, our studies have focused specifically on the utilization of large (MW>10(5)) and non-degradable polymers in oral chemotherapy. A family of block-graft copolymers of the poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) Pluronic(R) polyethers and poly(acrylic acid) (PAA) bound by carbon-carbon bonds emerged, wherein both polymeric components are generally recognized as safe. Animal studies with Pluronic-PAA copolymers demonstrated that these molecules are excreted when administered orally and do not absorb into the systemic circulation. The Pluronic-PAA copolymers are surface-active and self-assemble, at physiological pH, into intra- and intermolecular micelles with hydrophobic cores of dehydrated PPO and multilayered coronas of hydrophilic PEO and partially ionized PAA segments. These micelles efficiently solubilize hydrophobic drugs such as paclitaxel and steroids and protect molecules such as camptothecins from the hydrolytic reactions. High surface activity of the Pluronic-PAA copolymers in water results in interactions with cell membranes and suppression of the membrane pumps such as P-glycoprotein. The ionizable carboxyls in the micellar corona facilitate mucoadhesion that enhances the residence time of the micelles and solubilized drugs in the gastrointestinal tract. Large payloads of the Pluronic-PAA micelles with weakly basic and water-soluble drugs such as doxorubicin and its analogs, mitomycin C, mitoxantrone, fluorouracil, and cyclophosphamide are achieved through electrostatic interactions with the micellar corona. Mechanical and physical properties of the Pluronic-PAA powders, blends, and micelles allow for formulation procedures where an active is simply dispersed into an aqueous Pluronic-PAA micellar formulation followed by optional lyophilization and processing into a ready dosage form. We review a number of in vivo and in vitro experiments demonstrating that that the oral administration of the cytotoxics formulated with the Pluronic-PAA copolymer micelles results in enhanced drug bioavailability.
Collapse
|
38
|
Pitarresi G, Tripodo G, Cavallaro G, Palumbo FS, Giammona G. Inulin–iron complexes: A potential treatment of iron deficiency anaemia. Eur J Pharm Biopharm 2008; 68:267-76. [PMID: 17574404 DOI: 10.1016/j.ejpb.2007.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/04/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
The aim of this work was that to synthesize macromolecular derivatives based on inulin able to complex iron and useful in the treatment of iron deficiency anaemia. Carboxylated or thiolated/carboxylated inulin derivatives were obtained by single or double step reactions, respectively. The first one was obtained by reaction of inulin (INU) with succinic anhydride (SA) alone obtaining INU-SA derivative; the second one was obtained by the reaction of INU with succinic anhydride and subsequent reaction of INU-SA with cysteine; both derivatives were treated with ferric chloride in order to obtain the INU-SA-Fe(III) and INU-SA-Cys-Fe(III) complexes. Both complexes showed an excellent biodegradability in the presence of inulinase and pronounced mucoadhesion properties; in particular, thiolated derivative INU-SA-Cys showed greater mucoadhesive properties than polyacrylic acid chosen, as a positive reference polymer, and a good iron release profile in condition mimicking the intestinal tract. These results suggest the potential employment of such systems in the oral treatment of iron deficiency anaemia or as supplement of iron in foods.
Collapse
Affiliation(s)
- Giovanna Pitarresi
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy.
| | | | | | | | | |
Collapse
|
39
|
McConaughy SD, Stroud PA, Boudreaux B, Hester RD, McCormick CL. Structural Characterization and Solution Properties of a Galacturonate Polysaccharide Derived from Aloe vera Capable of in Situ Gelation. Biomacromolecules 2008; 9:472-80. [DOI: 10.1021/bm7009653] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shawn D. McConaughy
- Department of Polymer Science and Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, and DelSite Biotechnologies, Irving, Texas 75038
| | - Paul A. Stroud
- Department of Polymer Science and Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, and DelSite Biotechnologies, Irving, Texas 75038
| | - Brent Boudreaux
- Department of Polymer Science and Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, and DelSite Biotechnologies, Irving, Texas 75038
| | - Roger D. Hester
- Department of Polymer Science and Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, and DelSite Biotechnologies, Irving, Texas 75038
| | - Charles L. McCormick
- Department of Polymer Science and Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, and DelSite Biotechnologies, Irving, Texas 75038
| |
Collapse
|
40
|
Fisher OZ, Peppas NA. Quantifying Tight Junction Disruption Caused by Biomimetic pH-Sensitive Hydrogel Drug Carriers. J Drug Deliv Sci Technol 2008; 18:47-50. [PMID: 21686051 DOI: 10.1016/s1773-2247(08)50006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Facilitation of protein transport across biomimetic polymers and carriers used in drug delivery is a subject of major importance in the field of oral delivery. Quantitative immunofluorescence of epithelial tight junctions can be a valuable tool in the evaluation of paracellular permeation enhancement and macromolecular drug absorption. The tight junctional space is composed of transmembrane protein networks that provide both mechanical support and a transport barrier. Both of these may be affected by drug delivery agents that enhance paracytosis. Imaging is the only tool that can tease apart these processes. A confocal microscopy imaging method was developed to determine the effect of microparticulate poly(methacrylic acid) grafted poly(ethylene glycol) (P(MAA-g-EG)) hydrogel drug carriers on the integrity of claudin-1 and E-cadherin networks in Caco-2 monolayers. Z-stack projection images showed the lateral disruption of tight junctions in the presence of drug carriers. Tight junction image fraction measurements showed more significant differences between membranes exposed to microparticles and a control group. Mechanical disruption was much more pronounced in the presence of P(MAA-g-EG) microparticles as compared to the effect of EDTA.
Collapse
Affiliation(s)
- Omar Z Fisher
- Biomaterials, Drug Delivery, Bionanotechnology and Molecular Recognition Laboratories, The University of Texas at Austin, Austin, TX, 78712, U.S.A
| | | |
Collapse
|
41
|
Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, Veiga F. Strategies Toward the Improved Oral Delivery of Insulin Nanoparticles via Gastrointestinal Uptake and Translocation. BioDrugs 2008; 22:223-37. [DOI: 10.2165/00063030-200822040-00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
Hayashi Y, Milton Harris J, Hoffman AS. Delivery of PEGylated drugs from mucoadhesive formulations by pH-induced disruption of H-bonded complexes of PEG-drug with poly(acrylic acid). REACT FUNCT POLYM 2007. [DOI: 10.1016/j.reactfunctpolym.2007.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Betancourt T, Brannon-Peppas L. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int J Nanomedicine 2007; 1:483-95. [PMID: 17722281 PMCID: PMC2676643 DOI: 10.2147/nano.2006.1.4.483] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Micro- and nanofabrication techniques have revolutionized the pharmaceutical and medical fields as they offer the possibility for highly reproducible mass-fabrication of systems with complex geometries and functionalities, including novel drug delivery systems and bionsensors. The principal micro- and nanofabrication techniques are described, including photolithography, soft lithography, film deposition, etching, bonding, molecular self assembly, electrically induced nanopatterning, rapid prototyping, and electron, X-ray, colloidal monolayer, and focused ion beam lithography. Application of these techniques for the fabrication of drug delivery and biosensing systems including injectable, implantable, transdermal, and mucoadhesive devices is described.
Collapse
Affiliation(s)
| | - Lisa Brannon-Peppas
- Correspondence: Lisa Brannon-Peppas, Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0300, Austin, TX 78712, USA, Tel +1 512 471 4348, Fax +1 512 471 4348, Email
| |
Collapse
|
44
|
Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 2007; 24:1415-26. [PMID: 17380266 DOI: 10.1007/s11095-007-9257-9] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Colloidal metallic systems have been recently investigated in the area of nanomedicine. Gold nanoparticles have found themselves useful for diagnostic and drug delivery applications. Herein we have reported a novel method for synthesis of gold nanoparticles using a natural, biocompatible and biodegradable polymer; chitosan. Use of chitosan serves dual purpose by acting as a reducing agent in the synthesis of gold nanoparticles and also promotes the penetration and uptake of peptide hormone insulin across the mucosa. To demonstrate the use of chitosan reduced gold nanoparticles as carriers for drug delivery, we report herein the transmucosal delivery of insulin loaded gold nanoparticles. MATERIALS AND METHODS Gold nanoparticles were prepared using different concentrations of chitosan (from 0.01% w/v up to 1% w/v). The gold nanoparticles were characterized for surface plasmon band, zeta potential, surface morphology, in vitro diffusion studies and fluorescence spectroscopy. The in vivo studies in diabetic male Wistar rats were carried out using insulin loaded chitosan reduced gold nanoparticles. RESULTS Varying concentrations of chitosan used for the synthesis of gold nanoparticles demonstrated that the nanoparticles obtained at higher chitosan concentrations (>0.1% w/v) were stable showing no signs of aggregation. The nanoparticles also showed long term stability in terms of aggregation for about 6 months. Insulin loading of 53% was obtained and found to be stable after loading. Blood glucose lowering at the end of 2 h following administration of insulin loaded gold nanoparticles to diabetic rats was found to be 30.41 and 20.27% for oral (50 IU/kg) and nasal (10 IU/kg), respectively. Serum gold level studies have demonstrated significant improvement in the uptake of chitosan reduced gold nanoparticles. CONCLUSIONS The synthesis of gold nanoparticles using a biocompatible polymer, chitosan would improve its surface properties for binding of biomolecules. Our studies indicate that oral and nasal administration of insulin loaded chitosan reduced gold nanoparticles has led to improved pharmacodynamic activity. Thus, chitosan reduced gold nanoparticles loaded with insulin prove to be promising in controlling the postprandial hyperglycemia.
Collapse
Affiliation(s)
- Devika R Bhumkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, 411 038, India
| | | | | | | |
Collapse
|
45
|
Zhang Y, Yao Q, Xia C, Jiang X, Wang PG. Trapping Norovirus by Glycosylated Hydrogels: a Potential Oral Antiviral Drug. ChemMedChem 2006; 1:1361-6. [PMID: 17042040 DOI: 10.1002/cmdc.200600135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yalong Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
A novel approach toward improvements of oral chemotherapeutic formulations has evolved, which combines solubilisation (molecular dispersion) of the hydrophobic anticancer drugs in micelles attached to large macromolecules or microparticles. The large size of the macromolecules or microgels prevents the gel components from being transported into the systemic circulation. The discussed gels comprise copolymers of poly(acrylic acid) (PAA) and Pluronic surfactants, linked via C-C bonds. The Pluronic-PAA copolymers are non-irritating when administered orally. The micelles formed in the Pluronic-PAA solutions and in crosslinked microgels can be loaded with chemotherapeutic drugs and then released in contact with the intestine. The microgels are collapsed at the acidic pH of the stomach and expand, thus releasing the loaded drugs at the pH of the lower gastrointestinal tract. Yet the microgels are mucoadhesive and enable longer retention time and prolonged release in the colon. Ease of preparation and formulation of the drugs with the Pluronic-PAA polymers and gels may enable the wider use of oral chemotherapy, resulting in a better patient compliance and improved quality of life of the patients.
Collapse
Affiliation(s)
- Lev Bromberg
- Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Bai Y, Shen WC. Improving the Oral Efficacy of Recombinant Granulocyte Colony-Stimulating Factor and Transferrin Fusion Protein by Spacer Optimization. Pharm Res 2006; 23:2116-21. [PMID: 16952003 DOI: 10.1007/s11095-006-9059-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To improve the oral efficacy of the recombinant fusion protein containing granulocyte colony-stimulating factor (G-CSF) and transferrin (Tf) by inserting a linker between the two protein domains. MATERIALS AND METHODS Oligonucleotides encoding flexible and helix-forming peptides were inserted to the recombinant plasmids. The fusion protein without linker insertion was used for comparison. The G-CSF cell-proliferation and Tf receptor-binding activities of the fusion proteins were tested in NFS-60 cells and Caco-2 cells, respectively, and in vivo myelopoietic assay with both subcutaneous and oral administration was performed in BDF1 mice. RESULTS All fusion proteins produced from transfected HEK293 cells were positive in Western-blotting assay with anti-G-CSF and anti-Tf antibodies. Among them, the fusion protein with a long helical (H4-2) linker showed the highest activity in NFS-60 cell proliferation assay, with an EC50 about ten-fold lower than that of the non-linker fusion protein. The fusion protein with H4-2 linker also showed a significantly higher myelopoietic effect when administered either subcutaneously or orally in BDF1 mice. CONCLUSION The insertion of a linker peptide, such as the helix linker H4-2, between G-CSF and Tf domains in the recombinant fusion protein can improve significantly both in vitro and in vivo myelopoietic activity over the non-linker fusion protein.
Collapse
Affiliation(s)
- Yun Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
48
|
Csaba N, Garcia-Fuentes M, Alonso MJ. The performance of nanocarriers for transmucosal drug delivery. Expert Opin Drug Deliv 2006; 3:463-78. [PMID: 16822222 DOI: 10.1517/17425247.3.4.463] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Most of the newly designed drug molecules are characterised by low solubility in aqueous medium, low permeability through biological membranes and/or an insufficient stability in the biological environment. Fundamental studies have provided proof-of-concept of the potential of particulate nanocarriers for overcoming these unsuitable properties. For example, it is known that polymeric nanosystems may enhance transmucosal transport of drugs with poor penetration capacities while preserving their biological activity. Moreover, in recent years it has become clear that through an appropriate selection of the nanosystem components it is possible to enhance its affinity for the mucosa and, hence, the residence time of the drug in contact with the absorptive epithelium. These properties, combined with a suitably tailored release profile can markedly increase the efficacy of pharmaceuticals. Overall, the properties that have been identified as critical for the performance of these delivery systems are particle size, surface charge and surface chemical composition. These properties are known to affect the physical and chemical stability of the nanoparticles in the biological environment as well as their ability to interact (unspecific bioadhesion, receptor-mediated interaction and so on) and, eventually, overcome biological barriers. The present article aims to critically review the latest advances in this area and to provide some insights into these complex issues. Thus, herein the most widely investigated transmucosal drug delivery nanosystems and their most promising applications are reported.
Collapse
Affiliation(s)
- Noémi Csaba
- Drug Formulation and Delivery Group, Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli Str. 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
49
|
|
50
|
Komath SS, Kavitha M, Swamy MJ. Beyond carbohydrate binding: new directions in plant lectin research. Org Biomol Chem 2006; 4:973-88. [PMID: 16525538 DOI: 10.1039/b515446d] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although for a long time carbohydrate binding property has been used as the defining feature of lectins, studies carried out mostly during the last two decades or so demonstrate that many plant lectins exhibit specific interactions with small molecules that are predominantly hydrophobic in nature. Such interactions, in most cases, appear to be at specific sites that do not interfere with the ability of the lectins to recognise and bind carbohydrates. Further, several of these ligands have binding affinities comparable to those for the binding of specific carbohydrates to the lectins. Given the ability of lectins to specifically recognise the glycocode (carbohydrate code) on different cell surfaces and distinguish between diseased and normal tissues, these additional sites may be viewed as potential drug carrying sites that could be exploited for targeted delivery to sites of choice. Porphyrin-lectin complexes are especially suited for such targeting since porphyrins are already under investigation in photodynamic therapy for cancer. This review will provide an update on the interactions of plant lectins with non-carbohydrate ligands, with particular emphasis on porphyrin ligands. The implications and potential applications of such studies will also be discussed.
Collapse
Affiliation(s)
- Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| | | | | |
Collapse
|