1
|
Shi Z, Xiao S, Zhang Q. Interference with Systemic Negative Feedback Regulation as a Potential Mechanism for Nonmonotonic Dose-Responses of Endocrine-Disrupting Chemicals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611257. [PMID: 39282254 PMCID: PMC11398479 DOI: 10.1101/2024.09.04.611257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Endocrine-disrupting chemicals (EDCs) often exhibit nonmonotonic dose-response (NMDR) relationships, posing significant challenges to health risk assessment and regulations. Several molecular mechanisms operating locally in cells have been proposed, including opposing actions via different receptors, mixed-ligand heterodimer formation, and receptor downregulation. Systemic negative feedback regulation of hormone homeostasis, which is a common feature of many endocrine systems, has also been invoked as a mechanism; however, whether and how exactly such global feedback structure may underpin NMDRs is poorly understood. Objectives We hypothesize that an EDC may compete with the endogenous hormone for receptors (i) at the central site to interfere with the feedback regulation thus altering the physiological hormone level, and (ii) at the peripheral site to disrupt the hormone action; this dual-action may oppose each other, producing nonmonotonic endocrine effects. The objective here is to explore - through computational modeling - how NMDRs may arise through this potential mechanism and the relevant biological variabilities that enable susceptibility to nonmonotonic effects. Methods We constructed a dynamical model of a generic hypothalamic-pituitary-endocrine (HPE) axis with negative feedback regulation between a pituitary hormone and a terminal effector hormone (EH). The effects of model parameters, including receptor binding affinities and efficacies, on NMDR were examined for EDC agonists and antagonists. Monte Carlo human population simulations were then conducted to systemically explore biological parameter conditions that engender NMDR. Results When an EDC interferes sufficiently with the central feedback action of EH, the net endocrine effect at the peripheral target site can be opposite to what is expected of an agonist or antagonist at low concentrations. J/U or Bell-shaped NMDRs arise when the EDC has differential binding affinities and/or efficacies, relative to EH, for the peripheral and central receptors. Quantitative relationships between these biological variabilities and associated distributions were discovered, which can distinguish J/U and Bell-shaped NMDRs from monotonic responses. Conclusions The ubiquitous negative feedback regulation in endocrine systems can act as a universal mechanism for counterintuitive and nonmonotonic effects of EDCs. Depending on key receptor kinetic and signaling properties of EDCs and endogenous hormones, some individuals may be more susceptible to these complex endocrine effects.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, NJ 08854, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Sandström J, Bomanson J, Pérez-Tenorio G, Jönsson C, Nordenskjöld B, Fornander T, Lindström LS, Stål O. GATA3 and markers of epithelial-mesenchymal transition predict long-term benefit from tamoxifen in ER-positive breast cancer. NPJ Breast Cancer 2024; 10:78. [PMID: 39242600 PMCID: PMC11379893 DOI: 10.1038/s41523-024-00688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
GATA binding protein 3 (GATA3) is essential for normal development of the mammary gland and associated with ER-positive breast cancer. Loss of GATA3 has been associated with epithelial-mesenchymal transition (EMT) in experimental studies. We investigated tumoral GATA3 in a cohort of postmenopausal patients with lymph-node negative breast cancer, randomized to adjuvant tamoxifen or control. Nuclear GATA3 expression was assessed with immunohistochemistry and GATA3 gene expression with Agilent microarrays. High GATA3 nuclear expression was associated with a lower rate of distant recurrence in ER-positive breast cancer (HR = 0.60, 95% CI 0.39-0.93). Low gene expression of GATA3 was associated with limited long-term benefit from adjuvant tamoxifen (interaction: p = 0.033). GATA3 gene expression was associated with the epithelial markers CDH1 (E-cadherin) and FOXA1, whereas negatively associated with several mesenchymal markers. Low expression of CDH1 was associated with marginal tamoxifen benefit (HR = 0.80 (0.43-1.49)), whereas patients with higher expression showed a significant benefit (HR = 0.33 (0.20-0.55), interaction: p = 0.029). In ER-positive breast cancer, diminished expression of GATA3 is associated with markers of EMT and poor long-term benefit from tamoxifen.
Collapse
Affiliation(s)
- Josefine Sandström
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Jens Bomanson
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Carolin Jönsson
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Linda S Lindström
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Olle Stål
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Montoya-Novoa I, Gardeazábal-Torbado JL, Alegre-Martí A, Fuentes-Prior P, Estébanez-Perpiñá E. Androgen receptor post-translational modifications and their implications for pathology. Biochem Soc Trans 2024; 52:1673-1694. [PMID: 38958586 DOI: 10.1042/bst20231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A major mechanism to modulate the biological activities of the androgen receptor (AR) involves a growing number of post-translational modifications (PTMs). In this review we summarise the current knowledge on the structural and functional impact of PTMs that affect this major transcription factor. Next, we discuss the cross-talk between these different PTMs and the presence of clusters of modified residues in the AR protein. Finally, we discuss the implications of these covalent modifications for the aetiology of diseases such as spinal and bulbar muscular atrophy (Kennedy's disease) and prostate cancer, and the perspectives for pharmacological intervention.
Collapse
Affiliation(s)
- Inés Montoya-Novoa
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - José Luis Gardeazábal-Torbado
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
4
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
5
|
Nie Q, Wu X, Huang Y, Guo T, Kuang J, Du C. RNA N6-methyladenosine-modified-binding protein YTHDF1 promotes prostate cancer progression by regulating androgen function-related gene TRIM68. Eur J Med Res 2023; 28:552. [PMID: 38042806 PMCID: PMC10693040 DOI: 10.1186/s40001-023-01533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023] Open
Abstract
PURPOSE There is no report about the direct relationship between m6A modification and androgen receptor (AR)-related genes in prostate cancer (PC). We aimed to study the mechanisms of m6A methylation in regulating the pathogenesis of PC from the perspective of AR-related genes. METHODS qRT-PCR was applied to detect the expression of m6A-related genes in PC cell with or without AR inhibitor. The effects of YTHDF1 knockdown on PC cell viability, apoptosis, migration and invasion were investigated using flow cytometry, wound healing and transwell assays, respectively. The mechanism of YTHDF1 action was investigated using m6A RNA immunoprecipitation (MeRIP) sequencing. The biological functions of YTHDF1 were also explored through in vivo experiments. RESULTS YTHDF1 was significantly down-regulated in AR inhibitor group. YTHDF1 knockdown significantly decreased AR level, viability and m6A methylation level of PC cells. TRIM68 was identified as a direct target of YTHDF1. Both YTHDF1 and TRIM68 knockdown increased apoptosis, and decreased cell viability, migration, and invasion of PC cells, while TRIM68 overexpression reversed the effects of YTHDF1 knockdown on PC cells. In addition, knockdown of YTHDF1 or TRIM68 significantly decreased the m6A methylation level, and mRNA and protein levels of YTHDF1, TRIM68 and AR in PC cells, while TRIM68 overexpression increased the expression levels above. Furthermore, subcutaneous xenografts of nude mice also revealed that TRIM68 could reverse the effects of YTHDF1 knockdown in PC in vivo. CONCLUSION This study suggested the key role of YTHDF1-mediated m6A modification in PC progression by regulating androgen function-related gene TRIM68 in PC.
Collapse
Affiliation(s)
- Qihong Nie
- Department of Oncology, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, Jiangxi, China
| | - Xiaoyuan Wu
- Department of Urology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 341000, Jiangxi, China
| | - Yongming Huang
- Department of Urology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 341000, Jiangxi, China
| | - Tao Guo
- Department of Urology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 341000, Jiangxi, China
| | - Jin Kuang
- Department of Urology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 341000, Jiangxi, China
| | - Chuance Du
- Department of Urology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
6
|
Van-Duyne G, Blair IA, Sprenger C, Moiseenkova-Bell V, Plymate S, Penning TM. The androgen receptor. VITAMINS AND HORMONES 2023; 123:439-481. [PMID: 37717994 DOI: 10.1016/bs.vh.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.
Collapse
Affiliation(s)
- Greg Van-Duyne
- Department of Biophysics & Biochemistry, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Ian A Blair
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
8
|
Caratti G, Desgeorges T, Juban G, Stifel U, Fessard A, Koenen M, Caratti B, Théret M, Skurk C, Chazaud B, Tuckermann JP, Mounier R. Macrophagic AMPKα1 orchestrates regenerative inflammation induced by glucocorticoids. EMBO Rep 2023; 24:e55363. [PMID: 36520372 PMCID: PMC9900347 DOI: 10.15252/embr.202255363] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages are key cells after tissue damage since they mediate both acute inflammatory phase and regenerative inflammation by shifting from pro-inflammatory to restorative cells. Glucocorticoids (GCs) are the most potent anti-inflammatory hormone in clinical use, still their actions on macrophages are not fully understood. We show that the metabolic sensor AMP-activated protein kinase (AMPK) is required for GCs to induce restorative macrophages. GC Dexamethasone activates AMPK in macrophages and GC receptor (GR) phosphorylation is decreased in AMPK-deficient macrophages. Loss of AMPK in macrophages abrogates the GC-induced acquisition of their repair phenotype and impairs GC-induced resolution of inflammation in vivo during post-injury muscle regeneration and acute lung injury. Mechanistically, two categories of genes are impacted by GC treatment in macrophages. Firstly, canonical cytokine regulation by GCs is not affected by AMPK loss. Secondly, AMPK-dependent GC-induced genes required for the phenotypic transition of macrophages are co-regulated by the transcription factor FOXO3, an AMPK substrate. Thus, beyond cytokine regulation, GR requires AMPK-FOXO3 for immunomodulatory actions in macrophages, linking their metabolic status to transcriptional control in regenerative inflammation.
Collapse
Affiliation(s)
- Giorgio Caratti
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Thibaut Desgeorges
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Ulrich Stifel
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Aurélie Fessard
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Mascha Koenen
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
- Present address:
Laboratory of Molecular MetabolismThe Rockefeller UniversityNew YorkNYUSA
| | - Bozhena Caratti
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Marine Théret
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
- Present address:
Department of Medical GeneticsSchool of Biomedical Engineering and the Biomedical Research CentreVancouverBCCanada
| | - Carsten Skurk
- Department of CardiologyCharité Universitätsmedizin BerlinBerlinGermany
- Franklin/German Centre for Cardiovascular Research (DZHK), Partner Site Berlin/Institute of Health (BIH)BerlinGermany
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Jan P Tuckermann
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| |
Collapse
|
9
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
10
|
Qiu WR, Guan MY, Wang QK, Lou LL, Xiao X. Identifying Pupylation Proteins and Sites by Incorporating Multiple Methods. Front Endocrinol (Lausanne) 2022; 13:849549. [PMID: 35557849 PMCID: PMC9088680 DOI: 10.3389/fendo.2022.849549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Pupylation is an important posttranslational modification in proteins and plays a key role in the cell function of microorganisms; an accurate prediction of pupylation proteins and specified sites is of great significance for the study of basic biological processes and development of related drugs since it would greatly save experimental costs and improve work efficiency. In this work, we first constructed a model for identifying pupylation proteins. To improve the pupylation protein prediction model, the KNN scoring matrix model based on functional domain GO annotation and the Word Embedding model were used to extract the features and Random Under-sampling (RUS) and Synthetic Minority Over-sampling Technique (SMOTE) were applied to balance the dataset. Finally, the balanced data sets were input into Extreme Gradient Boosting (XGBoost). The performance of 10-fold cross-validation shows that accuracy (ACC), Matthew's correlation coefficient (MCC), and area under the ROC curve (AUC) are 95.23%, 0.8100, and 0.9864, respectively. For the pupylation site prediction model, six feature extraction codes (i.e., TPC, AAI, One-hot, PseAAC, CKSAAP, and Word Embedding) served to extract protein sequence features, and the chi-square test was employed for feature selection. Rigorous 10-fold cross-validations indicated that the accuracies are very high and outperformed its existing counterparts. Finally, for the convenience of researchers, PUP-PS-Fuse has been established at https://bioinfo.jcu.edu.cn/PUP-PS-Fuse and http://121.36.221.79/PUP-PS-Fuse/as a backup.
Collapse
Affiliation(s)
| | | | | | | | - Xuan Xiao
- *Correspondence: Wang-Ren Qiu, ; Xuan Xiao,
| |
Collapse
|
11
|
Shaughnessy CA, McCormick SD. 11-Deoxycortisol is a stress responsive and gluconeogenic hormone in a jawless vertebrate, the sea lamprey (Petromyzon marinus). J Exp Biol 2021; 224:269003. [PMID: 34086050 DOI: 10.1242/jeb.241943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Although corticosteroid-mediated hepatic gluconeogenic activity in response to stress has been extensively studied in fishes and other vertebrates, there is little information on the stress response in basal vertebrates. In sea lamprey (Petromyzon marinus), a representative member of the most basal extant vertebrate group Agnatha, 11-deoxycortisol and deoxycorticosterone are the major circulating corticosteroids. The present study examined changes in circulating glucose and 11-deoxycortisol concentrations in response to a physical stressor. Furthermore, the gluconeogenic actions of 11-deoxycortisol and deoxycorticosterone were examined. Within 6 h of exposure of larval and juvenile sea lamprey to an acute handling stress, plasma 11-deoxycortisol levels increased 15- and 6-fold, respectively, and plasma glucose increased 3- and 4-fold, respectively. Radiometric receptor binding studies revealed that a corticosteroid receptor (CR) is present in the liver at lower abundance than in other tissues (gill and anterior intestine) and that the binding affinity of the liver CR was similar for 11-deoxycortisol and deoxycorticosterone. Transcriptional tissue profiles indicate a wide distribution of cr transcription, kidney-specific transcription of steroidogenic acute regulatory protein (star) and liver-specific transcription of phosphoenolpyruvate carboxykinase (pepck). Ex vivo incubation of liver tissue with 11-deoxycortisol resulted in dose-dependent increases in pepck mRNA levels. Finally, intraperitoneal administration of 11-deoxycortisol and deoxycorticosterone demonstrated that only 11-deoxycortisol resulted in an increase in plasma glucose. Together, these results provide the first direct evidence for the gluconeogenic activity of 11-deoxycortisol in an agnathan, indicating that corticosteroid regulation of plasma glucose is a basal trait among vertebrates.
Collapse
Affiliation(s)
- Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.,U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Stephen D McCormick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.,U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Gadasheva Y, Nolze A, Grossmann C. Posttranslational Modifications of the Mineralocorticoid Receptor and Cardiovascular Aging. Front Mol Biosci 2021; 8:667990. [PMID: 34124152 PMCID: PMC8193679 DOI: 10.3389/fmolb.2021.667990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
During aging, the cardiovascular system is especially prone to a decline in function and to life-expectancy limiting diseases. Cardiovascular aging is associated with increased arterial stiffness and vasoconstriction as well as left ventricular hypertrophy and reduced diastolic function. Pathological changes include endothelial dysfunction, atherosclerosis, fibrosis, hypertrophy, inflammation, and changes in micromilieu with increased production of reactive oxygen and nitrogen species. The renin-angiotensin-aldosterone-system is an important mediator of electrolyte and blood pressure homeostasis and a key contributor to pathological remodeling processes of the cardiovascular system. Its effects are partially conveyed by the mineralocorticoid receptor (MR), a ligand-dependent transcription factor, whose activity increases during aging and cardiovascular diseases without correlating changes of its ligand aldosterone. There is growing evidence that the MR can be enzymatically and non-enzymatically modified and that these modifications contribute to ligand-independent modulation of MR activity. Modifications reported so far include phosphorylation, acetylation, ubiquitination, sumoylation and changes induced by nitrosative and oxidative stress. This review focuses on the different posttranslational modifications of the MR, their impact on MR function and degradation and the possible implications for cardiovascular aging and diseases.
Collapse
Affiliation(s)
- Yekatarina Gadasheva
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Nolze
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
13
|
Xia X, Huang C, Liao Y, Liu Y, He J, Shao Z, Hu T, Yu C, Jiang L, Liu J, Huang H. The deubiquitinating enzyme USP15 stabilizes ERα and promotes breast cancer progression. Cell Death Dis 2021; 12:329. [PMID: 33771975 PMCID: PMC7997968 DOI: 10.1038/s41419-021-03607-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.
Collapse
Affiliation(s)
- Xiaohong Xia
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chuyi Huang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuning Liao
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan Liu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinchan He
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenlong Shao
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tumei Hu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cuifu Yu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lili Jiang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Hongbiao Huang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
14
|
Patt M, Gysi J, Faresse N, Cidlowski JA, Odermatt A. Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211. Mol Cell Endocrinol 2020; 518:110873. [PMID: 32585168 PMCID: PMC7606615 DOI: 10.1016/j.mce.2020.110873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/17/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
By acting as a ligand-dependent transcription factor the glucocorticoid receptor (GR) mediates the actions of glucocorticoids and regulates many physiological processes. An impaired regulation of glucocorticoid action has been associated with numerous disorders. Thus, the elucidation of underlying signaling pathways is essential to understand mechanisms of disrupted glucocorticoid function and contribution to diseases. This study found increased GR transcriptional activity upon overexpression of protein phosphatase 1 alpha (PP1α) in HEK-293 cells and decreased expression levels of GR-responsive genes following PP1α knockdown in the endogenous A549 cell model. Mechanistic investigations revealed reduced phosphorylation of GR-Ser211 following PP1α silencing and provided a first indication for an involvement of glycogen synthase kinase 3 (GSK-3). Thus, the present study identified PP1α as a novel post-translational activator of GR signaling, suggesting that disruption of PP1α function could lead to impaired glucocorticoid action and thereby contribute to diseases.
Collapse
Affiliation(s)
- Melanie Patt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Joël Gysi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | | | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
15
|
Jeffreys SA, Powter B, Balakrishnar B, Mok K, Soon P, Franken A, Neubauer H, de Souza P, Becker TM. Endocrine Resistance in Breast Cancer: The Role of Estrogen Receptor Stability. Cells 2020; 9:cells9092077. [PMID: 32932819 PMCID: PMC7564140 DOI: 10.3390/cells9092077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Therapy of hormone receptor positive breast cancer (BCa) generally targets estrogen receptor (ER) function and signaling by reducing estrogen production or by blocking its interaction with the ER. Despite good long-term responses, resistance to treatment remains a significant issue, with approximately 40% of BCa patients developing resistance to ET. Mutations in the gene encoding ERα, ESR1, have been identified in BCa patients and are implicated as drivers of resistance and disease recurrence. Understanding the molecular consequences of these mutations on ER protein levels and its activity, which is tightly regulated, is vital. ER activity is in part controlled via its short protein half-life and therefore changes to its stability, either through mutations or alterations in pathways involved in protein stability, may play a role in therapy resistance. Understanding these connections and how ESR1 alterations could affect protein stability may identify novel biomarkers of resistance. This review explores the current reported data regarding posttranslational modifications (PTMs) of the ER and the potential impact of known resistance associated ESR1 mutations on ER regulation by affecting these PTMs in the context of ET resistance.
Collapse
Affiliation(s)
- Sarah A. Jeffreys
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- Correspondence: ; Tel.: +61-2-873-89022
| | - Branka Powter
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
| | - Bavanthi Balakrishnar
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
| | - Kelly Mok
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
| | - Patsy Soon
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
- Department of Surgery, Bankstown Hospital, Bankstown NSW 2200, Australia
| | - André Franken
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Hans Neubauer
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Paul de Souza
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
- School of Medicine, University of Wollongong, Wollongong NSW 2522, Australia
| | - Therese M. Becker
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
| |
Collapse
|
16
|
Dexamethasone Upregulates the Expression of Aquaporin4 by Increasing SUMOylation in A549 Cells. Inflammation 2020; 43:1925-1935. [PMID: 32495129 DOI: 10.1007/s10753-020-01267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dexamethasone can alleviate the severity of bronchial and alveolar edema and therefore is widely applied in the treatment of various exudative diseases including pulmonary edema. However, the effectiveness of dexamethasone is still being questioned and its mechanism is not fully understood. Aquaporins (AQPs) are mainly responsible for the transmembrane transport of water, which is tightly associated with pulmonary edema. Small ubiquitin-like modifiers (SUMOs) are considered to play a protective role in some pathological conditions. In this study, we demonstrated that dexamethasone can upregulate the expression of AQPs in A549 cells by inducing SUMOylation. We found that a low dose of dexamethasone significantly upregulated the levels of SUMOylation and AQP expression in A549 cells, accompanied by a translocation of SUMOs from the cytoplasm to the nucleus. We also explored the possible relation between SUMOylation and AQPs. Knockdown of SUMO2/3 by RNA interference decreased the level of AQP4 in A549 cells after dexamethasone stimulation. Together, our findings demonstrated that AQP4 expression was upregulated in A549 cells exposed to dexamethasone, and SUMOylation may participate in the regulation of AQP4.
Collapse
|
17
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
18
|
Che X, Dai W. Negative regulation of aryl hydrocarbon receptor by its lysine mutations and exposure to nickel. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0050-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
20
|
Perkins MS, Louw-du Toit R, Africander D. Hormone Therapy and Breast Cancer: Emerging Steroid Receptor Mechanisms. J Mol Endocrinol 2018; 61:R133-R160. [PMID: 29899079 DOI: 10.1530/jme-18-0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Although hormone therapy is widely used by millions of women to relieve symptoms of menopause, it has been associated with several side-effects such as coronary heart disease, stroke and increased invasive breast cancer risk. These side-effects have caused many women to seek alternatives to conventional hormone therapy, including the controversial custom-compounded bioidentical hormone therapy suggested to not increase breast cancer risk. Historically estrogens and the estrogen receptor were considered the principal factors promoting breast cancer development and progression, however, a role for other members of the steroid receptor family in breast cancer pathogenesis is now evident, with emerging studies revealing an interplay between some steroid receptors. In this review, we discuss examples of hormone therapy used for the relief of menopausal symptoms, highlighting the distinction between conventional hormone therapy and custom-compounded bioidentical hormone therapy. Moreover, we highlight the fact that not all hormones have been evaluated for an association with increased breast cancer risk. We also summarize the current knowledge regarding the role of steroid receptors in mediating the carcinogenic effects of hormones used in menopausal hormone therapy, with special emphasis on the influence of the interplay or crosstalk between steroid receptors. Unraveling the intertwined nature of steroid hormone receptor signaling pathways in breast cancer biology is of utmost importance, considering that breast cancer is the most prevalent cancer among women worldwide. Moreover, understanding these mechanisms may reveal novel prevention or treatment options, and lead to the development of new hormone therapies that does not cause increased breast cancer risk.
Collapse
Affiliation(s)
- Meghan S Perkins
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
21
|
Mitsuishi Y, Shibata H, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, Hayashi T, Jo R, Nakamura T, Morisaki M, Itoh H. Epidermal growth factor receptor/extracellular signal-regulated kinase pathway enhances mineralocorticoid receptor transcriptional activity through protein stabilization. Mol Cell Endocrinol 2018; 473:89-99. [PMID: 29391190 DOI: 10.1016/j.mce.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Activation of mineralocorticoid receptor (MR) is evoked by aldosterone, and it induces hypertension and cardiovascular disease when it's concomitant with excessive salt loading. We have proposed the notion of "MR-associated hypertension", in which add-on therapy of MR blockers is effective even though serum aldosterone level is within normal range. To elucidate its underlying molecular mechanism, we focused on the effect of epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) activation on MR activity. Epidermal growth factor (EGF) administration increased MR transcriptional activity through EGFR/ERK pathway and increased protein level by counteracting MR ubiquitylation in vitro. EGF administration in vivo also increased MR protein level and target gene expression in kidney, which were decreased by EGFR inhibitor. In addition, the administration of EGFR inhibitor lowered systolic blood pressure and MR activity in DOCA/salt-treated mice. In conclusion, EGFR/ERK pathway activation is considered as one of the underlying mechanisms of aberrant MR activation and EGFR/ERK pathway blockade could be an alternative approach for the prevention of MR-related cardiovascular events.
Collapse
Affiliation(s)
- Yuko Mitsuishi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Shibata
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamamachi, Yufu 879-5593, Oita, Japan.
| | - Isao Kurihara
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sakiko Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenichi Yokota
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayano Murai-Takeda
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Diabetes Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishimbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Rie Jo
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshifumi Nakamura
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuha Morisaki
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
22
|
Nevedomskaya E, Baumgart SJ, Haendler B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int J Mol Sci 2018; 19:ijms19051359. [PMID: 29734647 PMCID: PMC5983695 DOI: 10.3390/ijms19051359] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Novel drugs, drug sequences and combinations have improved the outcome of prostate cancer in recent years. The latest approvals include abiraterone acetate, enzalutamide and apalutamide which target androgen receptor (AR) signaling, radium-223 dichloride for reduction of bone metastases, sipuleucel-T immunotherapy and taxane-based chemotherapy. Adding abiraterone acetate to androgen deprivation therapy (ADT) in order to achieve complete androgen blockade has proven highly beneficial for treatment of locally advanced prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). Also, ADT together with docetaxel treatment showed significant benefit in mHSPC. Ongoing clinical trials for different subgroups of prostate cancer patients include the evaluation of the second-generation AR antagonists enzalutamide, apalutamide and darolutamide, of inhibitors of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, of inhibitors of DNA damage response, of targeted alpha therapy and of prostate-specific membrane antigen (PSMA) targeting approaches. Advanced clinical studies with immune checkpoint inhibitors have shown limited benefits in prostate cancer and more trials are needed to demonstrate efficacy. The identification of improved, personalized treatments will be much supported by the major progress recently made in the molecular characterization of early- and late-stage prostate cancer using “omics” technologies. This has already led to novel classifications of prostate tumors based on gene expression profiles and mutation status, and should greatly help in the choice of novel targeted therapies best tailored to the needs of patients.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Simon J Baumgart
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
23
|
Rider V, Abdou NI, Kimler BF, Lu N, Brown S, Fridley BL. Gender Bias in Human Systemic Lupus Erythematosus: A Problem of Steroid Receptor Action? Front Immunol 2018; 9:611. [PMID: 29643853 PMCID: PMC5882779 DOI: 10.3389/fimmu.2018.00611] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease resulting from abnormal interactions between T and B cells. The acquisition of SLE is linked to genetic susceptibility, and diverse environmental agents can trigger disease onset in genetically susceptible individuals. However, the strongest risk factor for developing SLE is being female (9:1 female to male ratio). The female sex steroid, estradiol, working through its receptors, contributes to the gender bias in SLE although the mechanisms remain enigmatic. In a small clinical trial, monthly administration of the estrogen receptor (ERα) antagonist, ICI182,780 (fulvestrant), significantly reduced disease indicators in SLE patients. In order to identify changes that could account for improved disease status, the present study utilized fulvestrant (Faslodex) to block ERα action in cultured SLE T cells that were purified from blood samples collected from SLE patients (n = 18, median age 42 years) and healthy control females (n = 25, median age 46 years). The effects of ERα antagonism on estradiol-dependent gene expression and canonical signaling pathways were analyzed. Pathways that were significantly altered by addition of Faslodex included T helper (Th) cell differentiation, steroid receptor signaling [glucocorticoid receptor (GR), ESR1 (ERα)], ubiquitination, and sumoylation pathways. ERα protein expression was significantly lower (p < 0.018) in freshly isolated, resting SLE T cells suggesting ERα turnover is inherently faster in SLE T cells. In contrast, ERα/ERβ mRNA and ERβ protein levels were not significantly different between SLE and normal control T cell samples. Plasma estradiol levels did not differ (p > 0.05) between SLE patients and controls. A previously undetected interaction between GR and ERα signaling pathways suggests posttranslational modification of steroid receptors in SLE T cells may alter ERα/GR actions and contribute to the strong gender bias of this autoimmune disorder.
Collapse
Affiliation(s)
- Virginia Rider
- Department of Biology, Pittsburg State University, Pittsburg, KS, United States
| | - Nabih I Abdou
- Center for Rheumatic Diseases, St. Luke's Hospital, Kansas City, MO, United States
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Nanyan Lu
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, MO, United States
| |
Collapse
|
24
|
Kim M, Lee HA, Cho HM, Kang SH, Lee E, Kim IK. Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing's syndrome. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:23-33. [PMID: 29302209 PMCID: PMC5746509 DOI: 10.4196/kjpp.2018.22.1.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/14/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022]
Abstract
Cushing's syndrome (CS) is a collection of symptoms caused by prolonged exposure to excess cortisol. Chronically elevated glucocorticoid (GC) levels contribute to hepatic steatosis. We hypothesized that histone deacetylase inhibitors (HDACi) could attenuate hepatic steatosis through glucocorticoid receptor (GR) acetylation in experimental CS. To induce CS, we administered adrenocorticotropic hormone (ACTH; 40 ng/kg/day) to Sprague-Dawley rats by subcutaneous infusion with osmotic mini-pumps. We administered the HDACi, sodium valproate (VPA; 0.71% w/v), in the drinking water. Treatment with the HDACi decreased steatosis and the expression of lipogenic genes in the livers of CS rats. The enrichment of GR at the promoters of the lipogenic genes, such as acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), and sterol regulatory element binding protein 1c (Srebp1c), was markedly decreased by VPA. Pan-HDACi and an HDAC class I-specific inhibitor, but not an HDAC class II a-specific inhibitor, attenuated dexamethasone (DEX)-induced lipogenesis in HepG2 cells. The transcriptional activity of Fasn was decreased by pretreatment with VPA. In addition, pretreatment with VPA decreased DEX-induced binding of GR to the glucocorticoid response element (GRE). Treatment with VPA increased the acetylation of GR in ACTH-infused rats and DEX-induced HepG2 cells. Taken together, these results indicate that HDAC inhibition attenuates hepatic steatosis hrough GR acetylation in experimental CS.
Collapse
Affiliation(s)
- Mina Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Hae-Ahm Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Hyun-Min Cho
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Seol-Hee Kang
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Eunjo Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - In Kyeom Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 41944, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 41944, Korea
| |
Collapse
|
25
|
Shen J, Lin H, Li G, Jin RA, Shi L, Chen M, Chang C, Cai X. TR4 nuclear receptor enhances the cisplatin chemo-sensitivity via altering the ATF3 expression to better suppress HCC cell growth. Oncotarget 2017; 7:32088-99. [PMID: 27050071 PMCID: PMC5077999 DOI: 10.18632/oncotarget.8525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/02/2016] [Indexed: 12/30/2022] Open
Abstract
Early studies indicated that TR4 nuclear receptor (TR4) may play a key role to modulate the prostate cancer progression, its potential linkage to liver cancer progression, however, remains unclear. Here we found that higher TR4 expression in hepatocellular carcinoma (HCC) cells might enhance the efficacy of cisplatin chemotherapy to better suppress the HCC progression. Knocking down TR4 with TR4-siRNA in HCC Huh7 and Hep3B cells increased cisplatin chemotherapy resistance and overexpression of TR4 with TR4-cDNA in HCC LM3 and SNU387 cells increased cisplatin chemotherapy sensitivity. Mechanism dissection found that TR4 might function through altering the ATF3 expression at the transcriptional level to enhance the cisplatin chemotherapy sensitivity, and interrupting ATF3 expression via ATF3-siRNA reversed TR4-enhanced cisplatin chemotherapy sensitivity in HCC cells. The in vivo HCC mouse model using xenografted HCC LM3 cells also confirmed in vitro cell lines data showing TR4 enhanced the cisplatin chemotherapy sensitivity. Together, these results provided a new potential therapeutic approach via altering the TR4-ATF3 signals to increase the efficacy of cisplatin to better suppress the HCC progression.
Collapse
Affiliation(s)
- Jiliang Shen
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hui Lin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Ren-An Jin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Liang Shi
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mingming Chen
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
26
|
Bao W, You ZH, Huang DS. CIPPN: computational identification of protein pupylation sites by using neural network. Oncotarget 2017; 8:108867-108879. [PMID: 29312575 PMCID: PMC5752488 DOI: 10.18632/oncotarget.22335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
Recently, experiments revealed the pupylation to be a signal for the selective regulation of proteins in several serious human diseases. As one of the most significant post translational modification in the field of biology and disease, pupylation has the ability to playing the key role in the regulation various diseases’ biological processes. Meanwhile, effectively identification such type modification will be helpful for proteins to perform their biological functions and contribute to understanding the molecular mechanism, which is the foundation of drug design. The existing algorithms of identification such types of modified sites often have some defects, such as low accuracy and time-consuming. In this research, the pupylation sites’ identification model, CIPPN, demonstrates better performance than other existing approaches in this field. The proposed predictor achieves Acc value of 89.12 and Mcc value of 0.7949 in 10-fold cross-validation tests in the Pupdb Database (http://cwtung.kmu.edu.tw/pupdb). Significantly, such algorithm not only investigates the sequential, structural and evolutionary hallmarks around pupylation sites but also compares the differences of pupylation from the environmental, conservative and functional characterization of substrates. Therefore, the proposed feature description approach and algorithm results prove to be useful for further experimental investigation of such modification’s identification.
Collapse
Affiliation(s)
- Wenzheng Bao
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Kang SH, Lee HA, Lee E, Kim M, Kim I. Histone deacetylase inhibition, but not a mineralocorticoid receptor antagonist spironolactone, attenuates atypical transcription by an activating mutant MR (MRS 810L ). Clin Exp Pharmacol Physiol 2017; 43:995-1003. [PMID: 27362706 DOI: 10.1111/1440-1681.12614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 05/12/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
A mutation in the mineralocorticoid receptor (MRS 810L ) leads to early-onset hypertension, which is markedly exacerbated during pregnancy. The mutation causes progesterone and even the MR antagonist spironolactone to become potent agonists. Thus, it is hard to control hypertension in patients harbouring this mutation. We hypothesized that histone deacetylase inhibition (HDACi), but not the MR antagonist spironolactone, attenuates atypical transcriptional activity of activating mutant MR (MRS 810L ). We established HEK293T cells overexpressing wild-type MR (MRWT ) or MRS 810L and determined their transcriptional activities by luciferase assay. Expression of MR target genes was measured by quantitative real-time PCR (qRT-PCR). Treatment with aldosterone increased the expression of MR target genes as well as the transcriptional activities in HEK293T cells transfected either with MRWT or MRS 810L . Treatment with either spironolactone or progesterone also increased the expression of MR target genes as well as transcriptional activity, but only in HEK293T cells transfected with MRS 810L . Spironolactone abolished the promoter activity stimulated by aldosterone in HEK293T cells transfected with MRWT . Treatment with HDAC inhibitors attenuated the transcriptional activity as well as the expression of MR target genes induced by aldosterone, spironolactone, or progesterone whether HEK293T cells were transfected with either MRWT or MRS 810L . These results indicate that HDACi, but not an MR antagonist spironolactone, attenuates atypical transcriptional activity of an activating mutant MR (MRS 810L ).
Collapse
Affiliation(s)
- Seol-Hee Kang
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hae-Ahm Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea
| | - Eunjo Lee
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea
| | - Mina Kim
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea
| | - Inkyeom Kim
- Department of Pharmacology, Cardiovascular Research Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
28
|
Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:283-298. [PMID: 28197919 DOI: 10.1007/978-3-319-50044-7_17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Hee June Choi
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
29
|
Vetterkind S, Lin QQ, Morgan KG. A novel mechanism of ERK1/2 regulation in smooth muscle involving acetylation of the ERK1/2 scaffold IQGAP1. Sci Rep 2017; 7:9302. [PMID: 28839270 PMCID: PMC5571205 DOI: 10.1038/s41598-017-09434-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Ceramide, a bioactive lipid and signaling molecule associated with cardiovascular disease, is known to activate extracellular signal regulated kinases 1 and 2 (ERK1/2). Here, we determined that the effect of ceramide on ERK1/2 is mediated by ceramide signaling on an ERK scaffold protein, IQ motif containing GTPase activating protein 1 (IQGAP1). Experiments were performed with aortic smooth muscle cells using inhibitor screening, small interfering RNA (siRNA), immunoprecipitation (IP), immunoblots and bioinformatics. We report here that C6 ceramide increases serum-stimulated ERK1/2 activation in a manner dependent on the ERK1/2 scaffold IQGAP1. C6 ceramide increases IQGAP1 protein levels by preventing its cleavage. Bioinformatic analysis of the IQGAP1 amino acid sequence revealed potential cleavage sites for proteases of the proprotein convertase family that match the cleavage products. These potential cleavage sites overlap with known motifs for lysine acetylation. Deacetylase inhibitor treatment increased IQGAP1 acetylation and reduced IQGAP1 cleavage. These data are consistent with a model in which IQGAP1 cleavage is regulated by acetylation of the cleavage sites. Activation of ERK1/2 by ceramide, known to increase lysine acetylation, appears to be mediated by acetylation-dependent stabilization of IQGAP1. This novel mechanism could open new possibilities for therapeutic intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Susanne Vetterkind
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, 02215, USA
| | - Qian Qian Lin
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, 02215, USA
| | - Kathleen G Morgan
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, 02215, USA.
| |
Collapse
|
30
|
Li X, Anderson M, Collin D, Muegge I, Wan J, Brennan D, Kugler S, Terenzio D, Kennedy C, Lin S, Labadia ME, Cook B, Hughes R, Farrow NA. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors. J Biol Chem 2017; 292:11618-11630. [PMID: 28546429 DOI: 10.1074/jbc.m117.789024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/23/2017] [Indexed: 12/31/2022] Open
Abstract
The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists.
Collapse
Affiliation(s)
- Xiang Li
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368.
| | - Marie Anderson
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Delphine Collin
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Ingo Muegge
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - John Wan
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Debra Brennan
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Stanley Kugler
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Donna Terenzio
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Charles Kennedy
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Siqi Lin
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Mark E Labadia
- Immunology and Respiratory Diseases, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877-0368
| | - Brian Cook
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Robert Hughes
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Neil A Farrow
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| |
Collapse
|
31
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
32
|
Ren J, Li B. The Functional Stability of FOXP3 and RORγt in Treg and Th17 and Their Therapeutic Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:155-189. [PMID: 28215223 DOI: 10.1016/bs.apcsb.2016.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The balance of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and effector T cells plays a key role in maintaining immune homeostasis, while the imbalance of them is related to many inflammatory diseases in both human and mice. Here we discuss about the plasticity of Tregs and Th17 cells, and the related human diseases resulted from the imbalance of them. Further, we will focus on the mechanisms regulating the plasticity between Tregs and Th17 cells and the potential therapeutic strategies by targeting regulators of the expression and activity of FOXP3 and RORγt or regulators of Treg/Th17 balance in autoimmune diseases, allergy, infection, and cancer.
Collapse
Affiliation(s)
- J Ren
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China
| | - B Li
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
33
|
Abstract
Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases.
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
34
|
Post-translational regulation of RORγt—A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine Growth Factor Rev 2016; 30:1-17. [DOI: 10.1016/j.cytogfr.2016.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/16/2023]
|
35
|
Wagenfeld A, Saunders PTK, Whitaker L, Critchley HOD. Selective progesterone receptor modulators (SPRMs): progesterone receptor action, mode of action on the endometrium and treatment options in gynecological therapies. Expert Opin Ther Targets 2016; 20:1045-54. [PMID: 27138351 PMCID: PMC4989858 DOI: 10.1080/14728222.2016.1180368] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: The progesterone receptor plays an essential role in uterine physiology and reproduction. Selective progesterone receptor modulators (SPRMs) have emerged as a valuable treatment option for hormone dependent conditions like uterine fibroids, which have a major impact on women’s quality of life. SPRMs offer potential for longer term medical treatment and thereby patients may avoid surgical intervention. Areas covered: The authors have reviewed the functional role of the progesterone receptor and its isoforms and their molecular mechanisms of action via genomic and non-genomic pathways. The current knowledge of the interaction of the PR and different SPRMs tested in clinical trials has been reviewed. The authors focused on pharmacological effects of selected SPRMs on the endometrium, their anti-proliferative action, and their suppression of bleeding. Potential underlying molecular mechanisms and the specific histological changes in the endometrium induced by SPRMs (PAEC; Progesterone receptor modulator Associated Endometrial Changes) have been discussed. The clinical potential of this compound class including its impact on quality of life has been covered. Expert Opinion: Clinical studies indicate SPRMs hold promise for treatment of benign gynecological complaints (fibroids, heavy menstrual bleeding; HMB). There however remains a knowledge gap concerning mechanism of action.
Collapse
Affiliation(s)
- Andrea Wagenfeld
- a Bayer HealthCare , Drug Discovery, TRG Gynecological Therapies , Berlin , Germany
| | - Philippa T K Saunders
- b MRC Centre for Inflammation Research , The University of Edinburgh , Edinburgh , UK
| | - Lucy Whitaker
- c MRC Centre for Reproductive Health , The University of Edinburgh , Edinburgh , UK
| | - Hilary O D Critchley
- c MRC Centre for Reproductive Health , The University of Edinburgh , Edinburgh , UK
| |
Collapse
|
36
|
Seo M, Song M, Seok YM, Kang SH, Lee HA, Sohn UD, Kim IK. Lysine acetyltransferases cyclic adenosine monophosphate response element-binding binding protein and acetyltransferase p300 attenuate transcriptional activity of the mineralocorticoid receptor through its acetylation. Clin Exp Pharmacol Physiol 2016; 42:559-66. [PMID: 25707758 DOI: 10.1111/1440-1681.12377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/12/2022]
Abstract
Acetylation of the mineralocorticoid receptor (MR) by inhibition of lysine deacetylases attenuates MR's transcriptional activity. However, the specific lysine acetyltransferases that are responsible for acetylation of the MR remain unknown. We hypothesized that the acetyltransferases cyclic adenosine monophosphate response element-binding binding protein (CBP) and acetyltransferase p300 (p300) attenuate transcriptional activity of the MR through its acetylation. Expression of MR target genes was measured by quantitative real-time polymerase chain reaction. Recruitment of MR and RNA polymerase II (Pol II) on promoters of target genes was analysed by chromatin immunoprecipitation. Acetylation of the MR was determined by western blot with an anti-acetyl-lysine antibody after immunoprecipitation with an anti-MR antibody. In human embryonic kidney (HEK) 293 cells, overexpression of CBP or p300, but not p300/CBP-associated factor, increased MR acetylation and decreased expression of MR target genes. The downregulation of target genes coincided with a decrease in the recruitment of MR and Pol II to specific hormone response elements. These results demonstrate that overexpression of CBP or p300 attenuates the transcriptional activity of the MR through its acetylation in HEK 293 cells. Our data provide strong evidence identifying CBP and p300 as lysine acetyltransferases responsible for the regulation of MR that may provide new therapeutic targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Minchul Seo
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea; Laboratory of Clinical Medicine, Dongguk University College of Medicine, Gyeongju, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Nieto L, Tharun IM, Balk M, Wienk H, Boelens R, Ottmann C, Milroy LG, Brunsveld L. Estrogen Receptor Folding Modulates cSrc Kinase SH2 Interaction via a Helical Binding Mode. ACS Chem Biol 2015; 10:2624-32. [PMID: 26352092 DOI: 10.1021/acschembio.5b00568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this interaction have not been elucidated. Here, we used phosphorylated ER peptide and semisynthetic protein constructs in a combined biochemical and structural study to, for the first time, provide a quantitative and structural characterization of the cSrc SH2-ER interaction. Fluorescence polarization experiments delineated the SH2 binding motif in the ER sequence. Chemical shift perturbation analysis by nuclear magnetic resonance (NMR) together with molecular dynamics (MD) simulations allowed us to put forward a 3D model of the ER-SH2 interaction. The structural basis of this protein-protein interaction has been compared with that of the high affinity SH2 binding sequence GpYEEI. The ER features a different binding mode from that of the "two-pronged plug two-hole socket" model in the so-called specificity determining region. This alternative binding mode is modulated via the folding of ER helix 12, a structural element directly C-terminal of the key phosphorylated tyrosine. The present findings provide novel molecular entries for understanding nongenomic ER signaling and targeting the corresponding disease states.
Collapse
Affiliation(s)
- Lidia Nieto
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
of Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Inga M. Tharun
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
of Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Mark Balk
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
of Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Hans Wienk
- Bijvoet
Center for Biomolecular Research, NMR Spectroscopy Utrecht University, 3584CH Utrecht, The Netherlands
| | - Rolf Boelens
- Bijvoet
Center for Biomolecular Research, NMR Spectroscopy Utrecht University, 3584CH Utrecht, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
of Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
of Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
of Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
38
|
Abstract
The small ubiquitin-like modifier SUMO regulates many aspects of cellular physiology to maintain cell homeostasis, both under normal conditions and during cell stress. Components of the transcriptional apparatus and chromatin are among the most prominent SUMO substrates. The prevailing view is that SUMO serves to repress transcription. However, as we will discuss in this review, this model needs to be refined, because recent studies have revealed that SUMO can also have profound positive effects on transcription.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Aurélie Nguéa P
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Gordon A, Garrido-Gracia JC, Aguilar R, Sánchez-Criado JE. Understanding the regulation of pituitary progesterone receptor expression and phosphorylation. Reproduction 2015; 149:615-23. [DOI: 10.1530/rep-14-0592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Administration of human FSH (hFSH) during the diestrus phase in cyclic rats is followed by a reduction in the preovulatory LH surge. This inhibitory action of FSH involves a decrease in the stimulatory effect of gonadotrope progesterone receptor (PR) activation, in a ligand-dependent (progesterone) and -independent (GNRH) manner. PR activation and action are mandatory for LH surge, and are dependent on the phosphorylation of serine (Ser) residues. Together with this post-translational modification, PR is marked for downregulation by proteasome machinery. These experiments used the western blotting technique to measure pituitary expression of PR-A and PR-B isoforms and phosphorylation levels of Ser294 and Ser400 PR-B in rats bearing i) hFSH treatment or ii) PR downregulation. Treatment with hFSH reduced LH secretion and increased that of estradiol in proestrus afternoon. hFSH injections, without altering PR-A and PR-B content or ratio, caused a reduction in phosphorylation of Ser294 and Ser400 but only when pituitaries were previously challenged with progesterone or GNRH for 2 h. However, while pSer294 levels increased after 2 h of pituitary incubation with progesterone or GNRH, those of pSer400 were not modified by thesein vitrotreatments. Finally, progesterone had a biphasic effect: in 2-h incubations increased pituitary PR-A and PR-B content, but after 8 h caused downregulation and altered PR-A:PR-B ratio. The results provide a potential mechanism through which LH levels are decreased by hFSH administration and better understanding of the control of PR expression and phosphorylation in rat pituitaries.
Collapse
|
40
|
Tharun IM, Nieto L, Haase C, Scheepstra M, Balk M, Möcklinghoff S, Adriaens W, Dames SA, Brunsveld L. Subtype-specific modulation of estrogen receptor-coactivator interaction by phosphorylation. ACS Chem Biol 2015; 10:475-84. [PMID: 25386784 DOI: 10.1021/cb5007097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The estrogen receptor (ER) is the number one target for the treatment of endocrine responsive breast cancer and remains a highly attractive target for new drug development. Despite considerable efforts to understand the role of ER post-translational modifications (PTMs), the complexity of these modifications and their impact, at the molecular level, are poorly understood. Using a chemical biology approach, fundamentally rooted in an efficient protein semisynthesis of tyrosine phosphorylated ER constructs, the complex role of the ER tyrosine phosphorylation is addressed here for the first time on a molecular level. The semisynthetic approach allows for the site-specific introduction of PTMs as well as biophysical probes. A combination of biophysical techniques, including NMR, with molecular dynamics studies reveals the role of the phosphorylation of the clinically relevant tyrosine 537 (Y537) in ERα and the analogous tyrosine (Y488) in ERβ. Phosphorylation has important effects on the dynamics of the ER Helix 12, which is centrally involved in receptor activity regulation, and on its interplay with ligand and cofactor binding, but with differential regulatory effects of the analogous PTMs on the two ER subtypes. Combined, the results bring forward a novel molecular model of a phosphorylation-induced subtype specific ER modulatory mechanism, alternative to the widely accepted ligand-induced activation mechanism.
Collapse
Affiliation(s)
- Inga M. Tharun
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Eindhoven University of Technology, Den Dolech
2, 5612AZ Eindhoven, The Netherlands
| | - Lidia Nieto
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Eindhoven University of Technology, Den Dolech
2, 5612AZ Eindhoven, The Netherlands
| | - Christian Haase
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Eindhoven University of Technology, Den Dolech
2, 5612AZ Eindhoven, The Netherlands
| | - Marcel Scheepstra
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Eindhoven University of Technology, Den Dolech
2, 5612AZ Eindhoven, The Netherlands
| | - Mark Balk
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Eindhoven University of Technology, Den Dolech
2, 5612AZ Eindhoven, The Netherlands
| | - Sabine Möcklinghoff
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Eindhoven University of Technology, Den Dolech
2, 5612AZ Eindhoven, The Netherlands
| | - Wencke Adriaens
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Eindhoven University of Technology, Den Dolech
2, 5612AZ Eindhoven, The Netherlands
| | - Sonja A. Dames
- Chair
of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Institute
of Structural Biology, Helmholtz Zentrum München, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Luc Brunsveld
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Eindhoven University of Technology, Den Dolech
2, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
41
|
Kang SH, Seok YM, Song MJ, Lee HA, Kurz T, Kim I. Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats. Mol Pharmacol 2015; 87:782-91. [PMID: 25667225 DOI: 10.1124/mol.114.096974] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inhibition of histone deacetylases (HDACs) by valproic acid (VPA) attenuates inflammatory, hypertrophic, and fibrotic responses in the hearts of spontaneously hypertensive rats (SHRs); however, the molecular mechanism is still unclear. We hypothesized that HDAC inhibition (HDACi) attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor (MR) in SHRs. Seven-week-old SHRs and Wistar-Kyoto rats were treated with an HDAC class I inhibitor (0.71% w/v in drinking water; VPA) for 11 weeks. Sections of heart were visualized after trichrome stain as well as H&E stain. Histone modifications, such as acetylation (H3Ac [acetylated histone 3]) and fourth lysine trimethylation (H3K4me3) of histone 3, and recruitment of MR and RNA polymerase II (Pol II) into promoters of target genes were measured by quantitative real-time polymerase chain reaction after chromatin immunoprecipitation assay. MR acetylation was determined by Western blot with anti-acetyl-lysine antibody after immunoprecipitation with anti-MR antibody. Treatment with VPA attenuated cardiac hypertrophy and fibrosis. Although treatment with VPA increased H3Ac and H3K4me3 on promoter regions of MR target genes, expression of MR target genes as well as recruitment of MR and Pol II on promoters of target genes were decreased. Although HDACi did not affect MR expression, it increased MR acetylation. These results indicate that HDACi attenuates cardiac hypertrophy and fibrosis through acetylation of MR in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Seol-Hee Kang
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Young Mi Seok
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Min-ji Song
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Hae-Ahm Lee
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Thomas Kurz
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - InKyeom Kim
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| |
Collapse
|
42
|
Wang J, Wang S, Li S. Sumoylation modulates 20-hydroxyecdysone signaling by maintaining USP protein levels in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:80-88. [PMID: 25240618 DOI: 10.1016/j.ibmb.2014.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The nuclear receptor complex for the insect steroid hormone, 20-hydroxyecdysone (20E), is a heterodimer of EcR and USP. It has been shown that Drosophila EcR and USP can be sumoylated in mammalian cells, but it is unknown whether EcR-USP sumoylation naturally occurs in Drosophila. In Drosophila cells, USP, but not EcR, was sumoylated by Smt3, the only Drosophila SUMO protein. The presence of EcR enhanced USP sumoylation, which is further enhanced by 20E treatment. In addition to the Lys20 sumoylation site, five potential acceptor lysine residues in USP were predicted and verified. Mutation of the USP sumoylation sites or reduction of smt3 expression by RNAi attenuated 20E-induced reporter activity. Moreover, in the salivary glands, reducing smt3 expression by RNAi decreased 20E-induced reporter activity, gene expression, and autolysosome formation. Importantly, at least partially, the smt3 RNAi-mediated reduction in 20E signaling resulted from decreased protein levels of USP. In conclusion, sumoylation modulates 20E signaling by maintaining USP protein levels in Drosophila.
Collapse
Affiliation(s)
- Jiawan Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sheng Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; Division of Neuropathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
43
|
Mackinnon JAG, Gallastegui N, Osguthorpe DJ, Hagler AT, Estébanez-Perpiñá E. Allosteric mechanisms of nuclear receptors: insights from computational simulations. Mol Cell Endocrinol 2014; 393:75-82. [PMID: 24911885 DOI: 10.1016/j.mce.2014.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 01/07/2023]
Abstract
The traditional structural view of allostery defines this key regulatory mechanism as the ability of one conformational event (allosteric site) to initiate another in a separate location (active site). In recent years computational simulations conducted to understand how this phenomenon occurs in nuclear receptors (NRs) has gained significant traction. These results have yield insights into allosteric changes and communication mechanisms that underpin ligand binding, coactivator binding site formation, post-translational modifications, and oncogenic mutations. Moreover, substantial efforts have been made in understanding the dynamic processes involved in ligand binding and coregulator recruitment to different NR conformations in order to predict cell/tissue-selective pharmacological outcomes of drugs. They also have improved the accuracy of in silico screening protocols so that nowadays they are becoming part of optimisation protocols for novel therapeutics. Here we summarise the important contributions that computational simulations have made towards understanding the structure/function relationships of NRs and how these can be exploited for rational drug design.
Collapse
Affiliation(s)
- Jonathan A G Mackinnon
- Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biology, University of Barcelona (UB), Baldiri-Reixac 15-21, 08028 Barcelona, Spain
| | - Nerea Gallastegui
- Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biology, University of Barcelona (UB), Baldiri-Reixac 15-21, 08028 Barcelona, Spain
| | - David J Osguthorpe
- Shifa Biomedical, 1 Great Valley Parkway, Suite 8, Malvern, PA 19355, USA
| | - Arnold T Hagler
- Department of Chemistry, University of Massachusetts, 701 Lederle, Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003-9336, USA.
| | - Eva Estébanez-Perpiñá
- Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biology, University of Barcelona (UB), Baldiri-Reixac 15-21, 08028 Barcelona, Spain.
| |
Collapse
|
44
|
Knowlton AA, Korzick DH. Estrogen and the female heart. Mol Cell Endocrinol 2014; 389:31-9. [PMID: 24462775 PMCID: PMC5709037 DOI: 10.1016/j.mce.2014.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/05/2014] [Indexed: 12/24/2022]
Abstract
Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system.
Collapse
Affiliation(s)
- A A Knowlton
- The Department of Veteran's Affairs, Northern California VA, Sacramento, CA, USA; Molecular & Cellular Cardiology, Departments of Medicine and Pharmacology, University of California, Davis, USA.
| | - D H Korzick
- Intercollege Program in Physiology and Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
45
|
Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther 2014; 142:114-25. [PMID: 24291072 PMCID: PMC3943696 DOI: 10.1016/j.pharmthera.2013.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022]
Abstract
Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR's contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered alongside antiestrogens and aromatase inhibitors.
Collapse
Affiliation(s)
- Todd P Knutson
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
46
|
Abdel-Hafiz HA, Horwitz KB. Post-translational modifications of the progesterone receptors. J Steroid Biochem Mol Biol 2014; 140:80-9. [PMID: 24333793 PMCID: PMC3923415 DOI: 10.1016/j.jsbmb.2013.12.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 01/21/2023]
Abstract
Progesterone plays a key role in the development, differentiation and maintenance of female reproductive tissues and has multiple non-reproductive neural functions. Depending on the cell and tissue, the hormonal environment, growth conditions and the developmental stage, progesterone can either stimulate cell growth or inhibit it while promoting differentiation. Progesterone receptors (PRs) belong to the steroid hormone receptor superfamily of ligand-dependent transcription factors. PR proteins are subject to extensive post-translational modifications that include phosphorylation, acetylation, ubiquitination and SUMOylation. The interplay among these modifications is complex with alteration of the receptors by one factor influencing the impact of another. Control over these modifications is species-, tissue- and cell-specific. They in turn regulate multiple functions including PR stability, their subcellular localization, protein-protein interactions and transcriptional activity. These complexities may explain how tissue- and gene-specific differences in regulation are achieved in the same organism, by the same receptor protein and hormone. Here we review current knowledge of PR post-translational modifications and discuss how these may influence receptor function focusing on human breast cancer cells. There is much left to be learned. However, our understanding of this may help to identify therapeutic agents that target PR activity in tissue-specific, even gene-specific ways.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
47
|
Androgens and the androgen receptor (AR). Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Seliga J, Bielska K, Wieczorek E, Orłowski M, Niedenthal R, Ożyhar A. Multidomain sumoylation of the ecdysone receptor (EcR) from Drosophila melanogaster. J Steroid Biochem Mol Biol 2013; 138:162-73. [PMID: 23727127 DOI: 10.1016/j.jsbmb.2013.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 02/05/2023]
Abstract
The 20-hydroxyecdysone receptor (EcR) is a transcription factor belonging to the nuclear receptor superfamily. Together with the ultraspiracle nuclear receptor (Usp) it coordinates critical biological processes in insects such as development and reproduction. EcR and its ligands are used in commercially available ecdysone-inducible expression systems and are considered to be artificial gene switches with potential therapeutic applications. However, the regulation of EcR action is still unclear, especially in mammals and as far as posttranslational modifications are concerned. Up until now, there has been no study on EcR sumoylation. Using bioinformatic predictors, a Ubc9 fusion-directed sumoylation system and mutagenesis experiments, we present EcR as a new target of SUMO1 and SUMO3 modification. Our research revealed that EcR undergoes isoform-specific multisumoylation. The pattern of modification remains unchanged in the presence of the ligand and the dimerization partner. The SUMO acceptor sites are located in the DNA-binding domain and the ligand-binding domain that both exhibit structural plasticity. We also demonstrated the existence of a sumoylation site in the F region and EcRA-A/B region, both revealing characteristics of intrinsically disordered regions. The consequences of modification and the resulting impact on conformation and function may be especially crucial for the disordered sequences in these two areas. The isoform-specificity of sumoylation may explain the differences in the transcriptional activity of EcR isoforms.
Collapse
Affiliation(s)
- Justyna Seliga
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
49
|
Ying S, Dünnebier T, Si J, Hamann U. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells. PLoS One 2013; 8:e75695. [PMID: 24086615 PMCID: PMC3785449 DOI: 10.1371/journal.pone.0075695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/21/2013] [Indexed: 12/31/2022] Open
Abstract
UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER-positive breast cancer and be useful for the development of cancer therapies targeting UBC9.
Collapse
Affiliation(s)
- Shibo Ying
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Thomas Dünnebier
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jing Si
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
50
|
Synergistic Action of Flavonoids, Baicalein, and Daidzein in Estrogenic and Neuroprotective Effects: A Development of Potential Health Products and Therapeutic Drugs against Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:635694. [PMID: 24058373 PMCID: PMC3766606 DOI: 10.1155/2013/635694] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/15/2013] [Accepted: 06/10/2013] [Indexed: 01/13/2023]
Abstract
Despite the classical hormonal effect, estrogen has been reported to mediate neuroprotection in the brain, which leads to the searching of estrogen-like substances for treating neurodegenerative diseases. Flavonoids, a group of natural compounds, are well known to possess estrogenic effects and used to substitute estrogen, that is, phytoestrogen. Flavonoid serves as one of the potential targets for the development of natural supplements and therapeutic drugs against different diseases. The neuroprotection activity of flavonoids was chosen for a possible development of anti-Alzheimer's drugs or food supplements. The estrogenic activity of two flavonoids, baicalein and daidzein, were demonstrated by their strong abilities in stimulating estrogen receptor phosphorylation and transcriptional activation of estrogen responsive element in MCF-7 breast cells. The neuroprotection effects of flavonoids against β-amyloid (Aβ) were revealed by their inhibition effects on in vitro Aβ aggregation and Aβ-induced cytotoxicity in PC12 neuronal cells. More importantly, the estrogenic and neuroprotective activities of individual flavonoid could be further enhanced by the cotreatment in the cultures. Taken together, this synergistic effect of baicalein and daidzein might serve as a method to improve the therapeutic efficacy of different flavonoids against Aβ, which might be crucial in developing those flavonoidsin treating Alzheimer's disease in the future.
Collapse
|