1
|
Majima M, Matsuda Y, Watanabe SI, Ohtaki Y, Hosono K, Ito Y, Amano H. Prostanoids Regulate Angiogenesis and Lymphangiogenesis in Pathological Conditions. Cold Spring Harb Perspect Med 2024; 14:a041182. [PMID: 38565267 PMCID: PMC11610754 DOI: 10.1101/cshperspect.a041182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Angiogenesis, the formation of new blood vessels from the preexistent microvasculature, is an essential component of wound repair and tumor growth. Nonsteroidal anti-inflammatory drugs that suppress prostanoid biosynthesis are known to suppress the incidence and progression of malignancies including colorectal cancers, and also to delay the wound healing. However, the precise mechanisms are not fully elucidated. Accumulated results obtained from prostanoid receptor knockout mice indicate that a prostaglandin E-type receptor signaling EP3 in the host microenvironment is critical in tumor angiogenesis inducing vascular endothelial growth factor A (VEGF-A). Further, lymphangiogenesis was also enhanced by EP signaling via VEGF-C/D inductions in pathological settings. These indicate the importance of EP receptor to facilitate angiogenesis and lymphangiogenesis in vivo. Prostanoids act beyond their commonly understood activities in smooth muscle contraction and vasoactivity, both of which are quick responses elicited within several seconds on stimulations. Prostanoid receptor signaling will be a potential therapeutic target for disease conditions related to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Yasuaki Ohtaki
- Department of Human Sensing, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
2
|
Sasaki S, Oba K, Kodera Y, Itakura M, Shichiri M. ANGT_HUMAN[448–462], an Anorexigenic Peptide Identified using Plasma Peptidomics. J Endocr Soc 2022; 6:bvac082. [PMID: 35702602 PMCID: PMC9184509 DOI: 10.1210/jendso/bvac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
The discovery of bioactive peptides is an important research target that enables the elucidation of the pathophysiology of human diseases and provides seeds for drug discovery. Using a large number of native peptides previously identified using plasma peptidomics technology, we sequentially synthesized selected sequences and subjected them to functional screening using human cultured cells. A 15-amino-acid residue proangiotensinogen-derived peptide, designated ANGT_HUMAN[448–462], elicited cellular responses and bound to cultured human cells. Synthetic fluorescent-labeled and biotinylated ANGT_HUMAN[448–462] peptides were rendered to bind to cell- and tissue-derived proteins and peptide-cell protein complexes were retrieved and analyzed using liquid chromatography-tandem mass spectrometry, revealing the β-subunit of ATP synthase as its cell-surface binding protein. Because ATP synthase mediates the effects of anorexigenic peptides, the ability of ANGT_HUMAN[448–462] to modulate eating behavior in mice was investigated. Both intraperitoneal and intracerebroventricular injections of low doses of ANGT_HUMAN[448–462] suppressed spontaneous food and water intake throughout the dark phase of the diurnal cycle without affecting locomotor activity. Immunoreactive ANGT_HUMAN[448–462], distributed throughout human tissues and in human-derived cells, is mostly co-localized with angiotensin II and is occasionally present separately from angiotensin II. In this study, an anorexigenic peptide, ANGT_HUMAN[448–462], was identified by exploring cell surface target proteins of the human native peptides identified using plasma peptidomics.
Collapse
Affiliation(s)
- Sayaka Sasaki
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
| | - Kazuhito Oba
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
| | - Yoshio Kodera
- Department of Physics, Kitasato University School of Science, Kanagawa 252-0373, Japan
- Center for Disease Proteomics, Kitasato University School of Science, Kanagawa 252-0373, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Kyosai Hospital, Tokyo 153-8934, Japan
| |
Collapse
|
3
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
4
|
Schönborn M, Łączak P, Pasieka P, Borys S, Płotek A, Maga P. Pro- and Anti-Angiogenic Factors: Their Relevance in Diabetic Foot Syndrome-A Review. Angiology 2021; 73:299-311. [PMID: 34541892 DOI: 10.1177/00033197211042684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral arterial disease can involve tissue loss in up to 50% of patients with diabetic foot syndrome (DFS). Consequently, revascularization of narrowed or occluded arteries is one of the most common forms of comprehensive treatment. However, technically successful angioplasty does not always result in the healing of ulcers. The pathomechanism of this phenomenon is still not fully understood, but inadequate angiogenesis in tissue repair may play an essential role. Changes in pro- and anti-angiogenic factors among patients with DFS are not always clear and conclusive. In particular, some studies underline the role of decreased concentration of pro-angiogenic factors and higher levels of anti-angiogenic mediators. Nevertheless, there are still controversial issues, including the paradox of impaired wound healing despite high concentrations of some pro-angiogenic factors, dynamics of their expression during the healing process, and their mutual relationships. Exploring this process among diabetic patients may provide new insight into well-known methods of treatment and show their real benefits and chances for improving outcomes.
Collapse
Affiliation(s)
- Martyna Schönborn
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland.,Doctoral School of Medical and Health Sciences, 162261Jagiellonian University, Krakow, Poland
| | - Patrycja Łączak
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Pasieka
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Borys
- Department of Metabolic Diseases, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Anna Płotek
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Maga
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Taguchi T, Kodera Y, Oba K, Saito T, Nakagawa Y, Kawashima Y, Shichiri M. Suprabasin-derived bioactive peptides identified by plasma peptidomics. Sci Rep 2021; 11:1047. [PMID: 33441610 PMCID: PMC7806982 DOI: 10.1038/s41598-020-79353-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/08/2020] [Indexed: 01/29/2023] Open
Abstract
Identification of low-abundance, low-molecular-weight native peptides using non-tryptic plasma has long remained an unmet challenge, leaving potential bioactive/biomarker peptides undiscovered. We have succeeded in efficiently removing high-abundance plasma proteins to enrich and comprehensively identify low-molecular-weight native peptides using mass spectrometry. Native peptide sequences were chemically synthesized and subsequent functional analyses resulted in the discovery of three novel bioactive polypeptides derived from an epidermal differentiation marker protein, suprabasin. SBSN_HUMAN[279-295] potently suppressed food/water intake and induced locomotor activity when injected intraperitoneally, while SBSN_HUMAN[225-237] and SBSN_HUMAN[243-259] stimulated the expression of proinflammatory cytokines via activation of NF-κB signaling in vascular cells. SBSN_HUMAN[225-237] and SBSN_HUMAN[279-295] immunoreactivities were present in almost all human organs analyzed, while immunoreactive SBSN_HUMAN[243-259] was abundant in the liver and pancreas. Human macrophages expressed the three suprabasin-derived peptides. This study illustrates a new approach for discovering unknown bioactive peptides in plasma via the generation of peptide libraries using a novel peptidomic strategy.
Collapse
Affiliation(s)
- Tomomi Taguchi
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Yoshio Kodera
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan ,grid.410786.c0000 0000 9206 2938Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Kazuhito Oba
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Tatsuya Saito
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan ,grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Yuzuru Nakagawa
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Yusuke Kawashima
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Masayoshi Shichiri
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| |
Collapse
|
6
|
Tan S, Zang G, Wang Y, Sun Z, Li Y, Lu C, Wang Z. Differences of Angiogenesis Factors in Tumor and Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:3375-3388. [PMID: 34335038 PMCID: PMC8318726 DOI: 10.2147/dmso.s315362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, as a process occurring under the regulation of a variety of factors, is one of the important ways of vascular development. It coexists in a variety of pathological and physiological processes. Now a large number of studies have proved that tumor growth, metastasis, and various vascular complications of diabetes are closely related to angiogenesis, and an increasing number of studies have shown that there are many common factors between the two. But angiogenesis is the opposite of the two: it is enhanced in tumors and suppressed in diabetes. Therefore, this review discusses the causes of the phenomenon from the expression of various factors affecting angiogenesis in these two diseases and their effects on angiogenesis in the relevant microenvironment, as well as the application status of these factors or cells as therapeutic targets in the treatment of these two diseases.
Collapse
Affiliation(s)
- Shidong Tan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Cheng Lu
- General Office, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
- Correspondence: Cheng Lu General Office, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, People's Republic of China, +86 511 88986902 Email
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
- Zhongqun Wang Department of Cardiology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, People’s Republic of ChinaTel +86 511 85030586 Email
| |
Collapse
|
7
|
Woodward DF, Wang JW, Ni M, Bauer AJ, Poloso NJ. In Vivo Choroidal Neovascularization and Macrophage Studies Provide Further Evidence for a Broad Role of Prostacyclin in Angiogenesis. J Ocul Pharmacol Ther 2019; 35:98-105. [DOI: 10.1089/jop.2018.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- David F. Woodward
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Jenny W. Wang
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Ming Ni
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Alex J. Bauer
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Neil J. Poloso
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| |
Collapse
|
8
|
Bioanalysis of sulprostone, a prostaglandin E2 analogue and selective EP3 agonist, in monkey plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:51-57. [DOI: 10.1016/j.jchromb.2018.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
|
9
|
Chen D, Tang J, Wan Q, Zhang J, Wang K, Shen Y, Yu Y. E-Prostanoid 3 Receptor Mediates Sprouting Angiogenesis Through Suppression of the Protein Kinase A/β-Catenin/Notch Pathway. Arterioscler Thromb Vasc Biol 2017; 37:856-866. [DOI: 10.1161/atvbaha.116.308587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/16/2017] [Indexed: 01/14/2023]
Abstract
Objective—
Angiogenesis is a hallmark of embryonic development and various ischemic and inflammatory diseases. Prostaglandin E2 receptor subtype 3 (EP3) plays an important role in pathophysiologic angiogenesis; however, the precise mechanisms remain unknown. Here, we investigated the role of EP3 in zebra fish embryo and mouse retina angiogenesis and evaluated the underlying mechanisms.
Approach and Results—
The EP3 receptor was highly expressed in the vasculature in both zebra fish embryos and murine fetal retinas. Pharmacological inhibition or genetic deletion of EP3 significantly reduced vasculature formation in zebra fish embryos and mouse retinas. Further characterization revealed reduced filopodia extension of tip cells in embryonic retinas in EP3-deficient mice. EP3 deletion activated Notch activity by upregulation of delta-like ligand 4 expression in endothelial cells (ECs). Inhibition of Notch signaling rescued the angiogenic defects in EP3-deficient mouse retinas. Moreover, EP3 deficiency led to a significant increase in β-catenin phosphorylation at Ser675 and nuclear accumulation of β-catenin in ECs. Knockdown or inhibition of β-catenin restored the impaired sprouting angiogenesis resulting from EP3 deficiency in ECs. The EP3 receptor depressed protein kinase A activity in ECs by coupling to Gαi. Inhibition of protein kinase A activity significantly reduced Ser675 phosphorylation and nuclear translocation of β-catenin, abolished the increased delta-like ligand 4 expression, and subsequently restored the impaired angiogenic capacity of EP3-deficient ECs both in vitro and in vivo.
Conclusions—
Activation of the EP3 receptor facilitates sprouting angiogenesis through protein kinase A–dependent Notch signaling, suggesting that EP3 and its downstream pathways maybe potential therapeutic targets in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Di Chen
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Juan Tang
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Qiangyou Wan
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Jian Zhang
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Kai Wang
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Yujun Shen
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Ying Yu
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| |
Collapse
|
10
|
Photobiomodulation laser and pulsed electrical field increase the viability of the musculocutaneous flap in diabetic rats. Lasers Med Sci 2017; 32:641-648. [DOI: 10.1007/s10103-017-2160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023]
|
11
|
Vascular Endothelial Growth Factor Receptor Type 1 Signaling Prevents Delayed Wound Healing in Diabetes by Attenuating the Production of IL-1β by Recruited Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1481-98. [DOI: 10.1016/j.ajpath.2016.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 01/01/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
|
12
|
Vascular endothelial growth factor receptor-1 (VEGFR-1) signaling enhances angiogenesis in a surgical sponge model. Biomed Pharmacother 2016; 78:140-149. [PMID: 26898435 DOI: 10.1016/j.biopha.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF)-A binds to both VEGF receptor (VEGFR)-1 and VEGFR-2, thereby promoting angiogenesis. It is widely accepted that VEGF-A, especially VEGFR-2, is a central player in angiogenesis, however the role of VEGFR-1 in angiogenesis remains unclear. The present study was conducted to examine the role of VEGFR-1 signaling in angiogenesis, using a quantitative in vivo angiogenesis model. METHODS Polyurethane sponge disks were implanted into dorsal subcutaneous tissue of mice. Angiogenesis was estimated by determining the number of CD31(+) vessels by immunohistochemical analysis. The expression of pro-angiogenic factors was quantified by reverse transcription quantitative polymerase chain reaction. RESULTS Compared to control IgG-treated mice, the number of CD31(+) vessels in the sponge implant was significantly suppressed in anti-VEGF-A neutralizing antibody-treated mice. CD31(+) vessel counts were suppressed in VEGFR-1 tyrosine kinase knockout (TKKO) mice, at the same level as in VEGFR-2 tyrosine kinase inhibitor (ZD6474)-treated mice compared to wild-type (WT) mice. The accumulation of VEGFR-1(+) cells in granulation tissue was significantly suppressed in VEGFR-1 TKKO mice compared to WT mice. In addition, expression of the pro-angiogenic growth factors, VEGF-A, matrix metalloproteinase-2, interleukin-6, and basic fibroblast growth factor in granulation tissue was suppressed in VEGFR-1 TKKO mice. A bone marrow (BM) transplantation experiment showed that the number of VEGFR-1(+) BM-derived cells and angiogenesis were significantly suppressed in VEGFR-1 TKKO mice transplanted with green fluorescent protein (GFP)(+) VEGFR-1 TKKO BM compared to WT mice transplanted with GFP(+) WT BM. CONCLUSIONS These results suggest that the VEGFR-1 tyrosine kinase signaling has an effect on angiogenesis. A selective VEGFR-1 agonist/antagonist could be a candidate therapeutic agent to control angiogenesis with recruitment of BM cells.
Collapse
|
13
|
Ceddia RP, Lee D, Maulis MF, Carboneau BA, Threadgill DW, Poffenberger G, Milne G, Boyd KL, Powers AC, McGuinness OP, Gannon M, Breyer RM. The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice. Endocrinology 2016; 157:220-32. [PMID: 26485614 PMCID: PMC4701878 DOI: 10.1210/en.2015-1693] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mice carrying a targeted disruption of the prostaglandin E2 (PGE2) E-prostanoid receptor 3 (EP3) gene, Ptger3, were fed a high-fat diet (HFD), or a micronutrient matched control diet, to investigate the effects of disrupted PGE2-EP3 signaling on diabetes in a setting of diet-induced obesity. Although no differences in body weight were seen in mice fed the control diet, when fed a HFD, EP3(-/-) mice gained more weight relative to EP3(+/+) mice. Overall, EP3(-/-) mice had increased epididymal fat mass and adipocyte size; paradoxically, a relative decrease in both epididymal fat pad mass and adipocyte size was observed in the heaviest EP3(-/-) mice. The EP3(-/-) mice had increased macrophage infiltration, TNF-α, monocyte chemoattractant protein-1, IL-6 expression, and necrosis in their epididymal fat pads as compared with EP3(+/+) animals. Adipocytes isolated from EP3(+/+) or EP3(-/-) mice were assayed for the effect of PGE2-evoked inhibition of lipolysis. Adipocytes isolated from EP3(-/-) mice lacked PGE2-evoked inhibition of isoproterenol stimulated lipolysis compared with EP3(+/+). EP3(-/-) mice fed HFD had exaggerated ectopic lipid accumulation in skeletal muscle and liver, with evidence of hepatic steatosis. Both blood glucose and plasma insulin levels were similar between genotypes on a control diet, but when fed HFD, EP3(-/-) mice became hyperglycemic and hyperinsulinemic when compared with EP3(+/+) fed HFD, demonstrating a more severe insulin resistance phenotype in EP3(-/-). These results demonstrate that when fed a HFD, EP3(-/-) mice have abnormal lipid distribution, developing excessive ectopic lipid accumulation and associated insulin resistance.
Collapse
MESH Headings
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Adiposity
- Animals
- Cell Size
- Crosses, Genetic
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/immunology
- Diet, High-Fat/adverse effects
- Insulin Resistance
- Lipid Metabolism
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Macrophage Activation
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Necrosis
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/immunology
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Panniculitis/etiology
- Panniculitis/immunology
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Weight Gain
Collapse
Affiliation(s)
- Ryan P Ceddia
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - DaeKee Lee
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Matthew F Maulis
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Bethany A Carboneau
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - David W Threadgill
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Greg Poffenberger
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ginger Milne
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Kelli L Boyd
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alvin C Powers
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Owen P McGuinness
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Maureen Gannon
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Richard M Breyer
- Department of Veterans Affairs (A.C.P., M.G., R.M.B.), Tennessee Valley Health Authority, and Department of Medicine (R.M.B.), Division of Nephrology and Hypertension; Departments of Pharmacology (R.P.C., G.M., R.M.B.) and Cell and Developmental Biology (D.L., D.W.T., M.G.); Department of Medicine (M.F.M., G.P., A.C.P., M.G.), Division of Diabetes, Endocrinology, and Metabolism; and Departments of Molecular Physiology and Biophysics (B.A.C., A.C.P., O.P.G., M.G.) and Pathology, Microbiology, and Immunology (K.L.B.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|