1
|
Pai R, Sirigiri DR, Malempati R, Vinjamuri S. Computational investigation of naturally occurring anticancer agents in regulating Hedgehog pathway proteins. PLoS One 2024; 19:e0311307. [PMID: 39625914 PMCID: PMC11614240 DOI: 10.1371/journal.pone.0311307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/11/2024] [Indexed: 12/06/2024] Open
Abstract
Embryonic development in humans is controlled by the Hedgehog pathway, which becomes inactive in mature tissues. Except for tissue maintenance and healing, activation of this pathway results in tumorigenesis with only a few exceptions. The drugs currently in use have shown no effectiveness in blocking the key proteins responsible for tumorigenesis. Therefore, it is crucial to find new inhibitors that can stop the abnormal activation of the pathway. A preliminary Insilco screening of naturally occurring compounds was carried out to identify potential inhibitors of the pathway. Docking of seventeen naturally occurring antitumorigenic compounds against the four key proteins of the regulatory proteins of the Hedgehog pathway using AutoDock v4.2.6 software was carried out. Liriodenine exhibited the strongest binding affinity towards three out of the four regulatory proteins (-7.61 kcal/mol with Smoothened, -8.14 kcal/mol with Patched-I, and -6.15 kcal/mol with Gli-II) of the Hedgehog pathway, whereas 2',4-dihydroxy-3-methoxychalcone displayed the highest binding affinity of -7.04 kcal/mol with the Sonic Hedgehog protein. Additional molecular dynamic simulation was conducted using Gromacs with Liriodenine and 2',4-dihydroxy-3-methoxy chalcone. Every protein-ligand complex underwent simulation using v5.1.4 software for a duration of 100 nanoseconds. The findings from the simulation indicate that Liriodenine and 2',4-dihydroxy-3-methoxy chalcone form a strong bond with their corresponding protein. Our findings show that the two aforementioned molecules have potential as new inhibitors of the pathway and should be further investigated in both invitro and in vivo experiments.
Collapse
Affiliation(s)
- Renu Pai
- Department of Biotechnology, BMS College of Engineering, Bengaluru, Karnataka, India
| | | | | | - Saisha Vinjamuri
- Department of Biotechnology, BMS College of Engineering, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Munakarmi S, Gurau Y, Shrestha J, Chand L, Park HS, Lee GH, Jeong YJ. trans-chalcone ameliorates CCl4-induced acute liver injury by suppressing endoplasmic reticulum stress, oxidative stress and inflammation. Pathol Res Pract 2024; 263:155663. [PMID: 39437640 DOI: 10.1016/j.prp.2024.155663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Acute liver injury serves as a crucial marker for detecting liver damage due to toxic, viral, metabolic, and autoimmune exposures. Due to the response to adverse external stimuli and various cellular homeostasis, Endoplasmic reticulum stress (ERS), Oxidative stress, and Inflammation have great potential for treating liver injury. Trans-chalcones (TC) is a polyphenolic compound derived from a natural plant with anti-oxidative and anti-inflammatory abilities. Here, TC was aimed to attenuate liver injury by triggering ER stress, oxidative stress, inflammation, and apoptosis. A single dose of carbon tetrachloride (CCl4) 1 mL/kg was administered intraperitoneally into C57BL6 mice to construct an in vivo NAFLD model, whereas AML12 cells were treated with lipopolysaccharides (LPS) to construct an in vitro NAFLD model. The mice used in the experiment were randomly assigned to two groups: a 12-hour set and a 24-hour set. Forty-nine mice were randomly divided into seven groups, the control group (Group I), TC group (Group II) 10 mg/kg TC, negative control group (Group III) CCl4, TC + CCl4 groups (Groups IV-VI), mice were subcutaneously treated with (5, 10, and 20) mg/kg of TC for three consecutive days before the CCl4 injection and the positive control group (Group VII) received 10 mg/kg Silymarin. After the experiment, serum transaminase, liver histological pathology, hepatic expression levels ERS, oxidative stress, and inflammation-related markers were assessed. TC pre-treatment significantly alleviates the expression of ER stress, oxidative stress, inflammatory cytokines, and apoptosis in both in vivo and in vitro models of liver injury. TC treatment significantly reduced serum transaminase levels (ALT and AST), and improved liver histopathological scores. TC administration also led to a reduction in MDA levels and the suppression of ROS generated by CCl4 in hepatic tissue, which contributed to an increase in GSH levels. The protective effect of TC on the liver injury mouse model was achieved by inhibiting hepatocyte apoptosis. Moreover, TC pre-treatment dramatically decreased the protein levels of ER stress indicators such as CHOP, Bip, Ero-Lα, IRE1α, PERK, Calnexin, and PDI when compared to the CCl4-only treated group. TC exerts hepatoprotective effects against CCl4-induced acute liver injuries in mice by modulating ERS, oxidative stress, and inflammation. These results suggest that TC pre-treatment at a dose of (20 mg/kg BW) was as effective as silymarin (10 mg/kg) in preventing CCl4-induced acute liver injury. Further investigations are necessary to elucidate the precise molecular mechanisms underlying the hepatoprotective effects of TC and to explore its therapeutic potential in clinical trials.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea.
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea.
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal.
| | - Lokendra Chand
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea; Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea; Department of Pathology, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Research Institute, Jeonbuk National Hospital, Jeonju 54907, Korea.
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea; Division of Pediatric Surgery, Department of Surgery, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea.
| |
Collapse
|
3
|
Rossi M, Pellegrino C, Rydzyk MM, Farruggia G, de Biase D, Cetrullo S, D'Adamo S, Bisi A, Blasi P, Malucelli E, Cappadone C, Gobbi S. Chalcones induce apoptosis, autophagy and reduce spreading in osteosarcoma 3D models. Biomed Pharmacother 2024; 179:117284. [PMID: 39151310 DOI: 10.1016/j.biopha.2024.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Osteosarcoma is the most common primary bone malignancy with a challenging prognosis marked by a high rate of metastasis. The limited success of current treatments may be partially attributed to an incomplete understanding of osteosarcoma pathophysiology and to the absence of reliable in vitro models to select the best molecules for in vivo studies. Among the natural compounds relevant for osteosarcoma treatment, Licochalcone A (Lic-A) and chalcone derivatives are particularly interesting. Here, Lic-A and selected derivatives have been evaluated for their anticancer effect on multicellular tumor spheroids from MG63 and 143B osteosarcoma cell lines. A metabolic activity assay revealed Lic-A, 1i, and 1k derivatives as the most promising candidates. To delve into their mechanism of action, caspase activity assay was conducted in 2D and 3D in vitro models. Notably, apoptosis and autophagic induction was generally observed for Lic-A and 1k. The invasion assay demonstrated that Lic-A and 1k possess the ability to mitigate the spread of osteosarcoma cells within a matrix. The effectiveness of chalcone as a natural scaffold for generating potential antiproliferative agents against osteosarcoma has been demonstrated. In particular, chalcones exert their antiproliferative activity by inducing apoptosis and autophagy, and in addition they are capable of reducing cell invasion. These findings suggest Lic-A and 1k as promising antitumor agents against osteosarcoma cells.
Collapse
Affiliation(s)
- M Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - C Pellegrino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - M M Rydzyk
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - G Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - D de Biase
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - S Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna 40126, Italy
| | - S D'Adamo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - A Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - P Blasi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - E Malucelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - C Cappadone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy.
| | - S Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| |
Collapse
|
4
|
Liu M, Du Y, Gao D. Licochalcone A: a review of its pharmacology activities and molecular mechanisms. Front Pharmacol 2024; 15:1453426. [PMID: 39188947 PMCID: PMC11345200 DOI: 10.3389/fphar.2024.1453426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Licorice, derived from the root of Glycyrrhiza uralensis Fisch, is a key Traditional Chinese Medicine known for its detoxifying, spleen-nourishing, and qi-replenishing properties. Licochalcone A (Lico A), a significant component of licorice, has garnered interest due to its molecular versatility and receptor-binding affinity. This review explores the specific roles of Lico A in various diseases, providing new insights into its characteristics and guiding the rational use of licorice. Comprehensive literature searches using terms such as "licorice application" and "pharmacological activity of Lico A" were conducted across databases including CNKI, PubMed, and Google Scholar to gather relevant studies on Lico A's pharmacological activities and mechanisms. Lico A, a representative chalcone in licorice, targets specific mechanisms in anti-cancer and anti-inflammatory activities. It also plays a role in post-transcriptional regulation. This review delineates the similarities and differences in the anti-cancer and anti-inflammatory mechanisms of Lico A, concluding that its effects on non-coding RNA through post-transcriptional mechanisms deserve further exploration.
Collapse
Affiliation(s)
- Meihua Liu
- Research Center of Emotional Diseases, Shenyang Anning Hospital, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic, Shenyang, China
| | - Yang Du
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dejiang Gao
- Research Center of Emotional Diseases, Shenyang Anning Hospital, Shenyang, China
| |
Collapse
|
5
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Albahri G, Badran A, Abdel Baki Z, Alame M, Hijazi A, Daou A, Baydoun E. Potential Anti-Tumorigenic Properties of Diverse Medicinal Plants against the Majority of Common Types of Cancer. Pharmaceuticals (Basel) 2024; 17:574. [PMID: 38794144 PMCID: PMC11124340 DOI: 10.3390/ph17050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these products have played a significant role in the development of novel treatments whose bioactive components serve as both chemotherapeutic and chemo-preventive agents. Phytochemicals are naturally occurring molecules obtained from plants that have potential applications in both cancer therapy and the development of new medications. These phytochemicals function by regulating the molecular pathways connected to the onset and progression of cancer. Among the specific methods are immune system control, inducing cell cycle arrest and apoptosis, preventing proliferation, raising antioxidant status, and inactivating carcinogens. A thorough literature review was conducted using Google Scholar, PubMed, Scopus, Google Patent, Patent Scope, and US Patent to obtain the data. To provide an overview of the anticancer effects of several medicinal plants, including Annona muricata, Arctium lappa, Arum palaestinum, Cannabis sativa, Catharanthus roseus, Curcuma longa, Glycyrrhiza glabra, Hibiscus, Kalanchoe blossfeldiana, Moringa oleifera, Nerium oleander, Silybum marianum, Taraxacum officinale, Urtica dioica, Withania somnifera L., their availability, classification, active components, pharmacological activities, signaling mechanisms, and potential side effects against the most common cancer types were explored.
Collapse
Affiliation(s)
- Ghosoon Albahri
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Adnan Badran
- Department of Nutrition, University of Petra Amman Jordan, Amman P.O. Box 961343, Jordan;
| | - Zaher Abdel Baki
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Alame
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Akram Hijazi
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
7
|
Zeid MM, El-Badry OM, Elmeligie S, Hassan RA. Design, Synthesis, and Molecular Docking of Novel Miscellaneous Chalcones as p38α Mitogen-Activated Protein Kinase Inhibitors. Chem Biodivers 2024; 21:e202400077. [PMID: 38359316 DOI: 10.1002/cbdv.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
New chalcones were synthesized and evaluated to serve as p38-α type of mitogen-activated protein kinase (MAPK) inhibitors. According to the National Cancer Institute, the findings indicated that at a 10 μM dosage, compounds 3a and 6 were the most active among all the compounds examined, with mean growth inhibition% of 94.83 and 58.49, respectively. In 5-dose testing, they showed anticancer activity in the micro-molar range with GI50 in the range of 1.41-46.1 and 2.07-31.3 μM, respectively. Besides, powerful activity, especially against the leukaemia cell lines and good selectivity to cancer cells compared to normal PCS-800-017 with a selectivity index=12.41 and 23.77, respectively. Compounds 3a and 6 inhibited p38α MAPK with IC50 values of 0.1462±0.0063 and 0.4356±0.0189 μM, correspondingly. 3a showed good inhibition for HL-60(TB) cells and induced cell cycle arrest in HL-60(TB) cells at the G2/M phase. Besides, it elevated the total apoptosis by 14.68-fold and increased the caspase-3 level by 3.52-fold compared with doxorubicin, which raised it by 4.30-fold, inducing apoptosis by acting as caspase-dependent inducers. These results suggest that 3a is a promising antiproliferative and p38α MAPK inhibitor, confirmed by molecular docking with high compatibility 3a with the p38α MAPK binding site.
Collapse
Affiliation(s)
- Mai M Zeid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Osama M El-Badry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt, 33 Kasr El-Aini Street, Cairo, Egypt
| | - Rasha A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt, 33 Kasr El-Aini Street, Cairo, Egypt
| |
Collapse
|
8
|
Dinteren SV, Araya-Cloutier C, Robaczewska E, den Otter M, Witkamp R, Vincken JP, Meijerink J. Switching the polarity of mouse enteroids affects the epithelial interplay with prenylated phenolics from licorice ( Glycyrrhiza) roots. Food Funct 2024; 15:1852-1866. [PMID: 38086658 DOI: 10.1039/d3fo02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The utility of 3D-small intestinal organoid (enteroid) models for evaluating effects of e.g. food (related) compounds is limited due to the apical epithelium facing the interior. To overcome this limitation, we developed a novel 3D-apical-out enteroid model for mice, which allows apical exposure. Using this model, we evaluated the effects on the enteroids' intestinal epithelium (including cytotoxicity, cell viability, and biotransformation) after exposure to glabridin, a prenylated secondary metabolite with antimicrobial properties from licorice roots (Glycyrrhiza glabra). Apical-out enteroids were five times less sensitive to glabridin exposure compared to conventional apical-in enteroids, with obtained cytotoxicities of 1.5 mM and 0.31 mM, respectively. Apical-out enteroids showed a luminal/apical layer of fucose rich mucus, which may contribute to the protection against potential cytotoxicity of glabridin. Furthermore, in apical-in enteroids IC50 values for cytotoxicity were determined for licochalcone A, glycycoumarin, and glabridin, the species-specific prenylated phenolics from the commonly used G. inflata, G. uralensis, and G. glabra, respectively. Both enteroid models differed in their functional phase II biotransformation capacity, where glabridin was transformed to glucuronide- and sulfate-conjugates. Lastly, our results indicate that the prenylated phenolics do not show cytotoxicity in mouse enteroids at previously reported minimum inhibitory concentrations (MICs) against a diverse set of Gram positive bacteria. Altogether, we show that apical-out enteroids provide a better mimic of the gastrointestinal tract compared to conventional enteroids and are consequently a superior model to study effects of food (related) compounds. This work revealed that prenylated phenolics with promising antibacterial activity show no harmful effects in the GI-tract at their MICs and therefore may offer a new perspective to control unwanted microbial growth.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Edyta Robaczewska
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Mellody den Otter
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
9
|
Galindo CM, Milani L, de Lima LTF, Adami ER, Go S, de Noronha L, Beltrame OC, Klassen G, de Souza Ramos EA, Elferink RPJO, Acco A. 4-Nitrochalcone as a potential drug in non-clinical breast cancer studies. Chem Biol Interact 2024; 387:110790. [PMID: 37939893 DOI: 10.1016/j.cbi.2023.110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Breast cancer is a high-magnitude public health problem, continually challenging physicians and scientists worldwide in the field of drug therapy. 4-nitrochalcone (4NC) is a phenolic compound that has promising antitumor activity in vitro, but its application in breast cancer treatment is still poorly explored. This study aimed to evaluate the action of 4NC in vitro and in vivo breast cancer models. The cytotoxic potential of 4NC was tested towards MCF-7 and MDA-MD-231 breast cancer cells, with a lower impact in the non-tumor lineage HB4a. For in vivo studies, solid Ehrlich carcinoma (SEC) was used, a syngeneic mouse model with non-nuclear estrogen and progesterone positivity, characterized by immunohistochemistry. Daily oral administration of 4NC (25 mg kg-1) for 21 days led to a consistent reduction in tumor growth compared to the vehicle group. No signs of toxicity evaluated by hematological, biochemical, histological, and oxidative stress parameters were observed in mice, and the DL50 was >2000 mg kg-1. The effectors Raptor and S6K1 showed decreased activation, with a consequent reduction in protein synthesis; concomitantly, there was an increase in LC3-II levels, but the protective autophagic response was not completed, with the maintenance of p62 levels and cell death. These results open new possibilities for the use of 4NC as a tumor cell metabolism modulating agent.
Collapse
Affiliation(s)
| | - Letícia Milani
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Lucia de Noronha
- Experimental Pathology Laboratory, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | - Olair Carlos Beltrame
- Laboratory of Clinical Pathology, Veterinary Hospital, Federal University of Paraná, Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Senrung A, Tripathi T, Aggarwal N, Janjua D, Chhokar A, Yadav J, Chaudhary A, Thakur K, Singh T, Bharti AC. Anti-angiogenic Potential of Trans-chalcone in an In Vivo Chick Chorioallantoic Membrane Model: An ATP Antagonist to VEGFR with Predicted Blood-brain Barrier Permeability. Cardiovasc Hematol Agents Med Chem 2024; 22:187-211. [PMID: 37936455 DOI: 10.2174/0118715257250417231019102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by massive tumorinduced angiogenesis aiding tumorigenesis. Vascular endothelial growth factor A (VEGF-A) via VEGF receptor 2 (VEGFR-2) constitutes majorly to drive this process. Putting a halt to tumordriven angiogenesis is a major clinical challenge, and the blood-brain barrier (BBB) is the prime bottleneck in GBM treatment. Several phytochemicals show promising antiangiogenic activity across different models, but their ability to cross BBB remains unexplored. METHODS We screened over 99 phytochemicals having anti-angiogenic properties reported in the literature and evaluated them for their BBB permeability, molecular interaction with VEGFR-2 domains, ECD2-3 (extracellular domains 2-3) and TKD (tyrosine kinase domain) at VEGF-A and ATP binding site, cell membrane permeability, and hepatotoxicity using in silico tools. Furthermore, the anti-angiogenic activity of predicted lead Trans-Chalcone (TC) was evaluated in the chick chorioallantoic membrane. RESULTS Out of 99 phytochemicals, 35 showed an efficient ability to cross BBB with a probability score of > 0.8. Docking studies revealed 30 phytochemicals crossing benchmark binding affinity < -6.4 kcal/mol of TKD with the native ligand ATP alone. Out of 30 phytochemicals, 12 showed moderate to low hepatotoxicity, and 5 showed a violation of Lipinski's rule of five. Our in silico analysis predicted TC as a BBB permeable anti-angiogenic compound for use in GBM therapy. TC reduced vascularization in the CAM model, which was associated with the downregulation of VEGFR-2 transcript expression. CONCLUSION The present study showed TC to possess anti-angiogenic potential via the inhibition of VEGFR-2. In addition, the study predicted TC to cross BBB as well as a safe alternative for GBM therapy, which needs further investigation.
Collapse
Affiliation(s)
- Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, 110019, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tejveer Singh
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
11
|
Ding J, Su Y, Liu Y, Xu Y, Yang D, Wang X, Hao S, Zhou H, Li H. The role of CSTF2 in cancer: from technology to clinical application. Cell Cycle 2023; 22:2622-2636. [PMID: 38166492 PMCID: PMC10936678 DOI: 10.1080/15384101.2023.2299624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024] Open
Abstract
A protein called cleavage-stimulating factor subunit 2 (CSTF2, additionally called CSTF-64) binds RNA and is needed for the cleavage and polyadenylation of mRNA. CSTF2 is an important component subunit of the cleavage stimulating factor (CSTF), which is located on the X chromosome and encodes 557 amino acids. There is compelling evidence linking elevated CSTF2 expression to the pathological advancement of cancer and on its impact on the clinical aspects of the disease. The progression of cancers, including hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, and pancreatic cancer, is correlated with the upregulation of CSTF2 expression. This review provides a fresh perspective on the investigation of the associations between CSTF2 and various malignancies and highlights current studies on the regulation of CSTF2. In particular, the mechanism of action and potential clinical applications of CSTF2 in cancer suggest that CSTF2 can serve as a new biomarker and individualized treatment target for a variety of cancer types.
Collapse
Affiliation(s)
- Jiaxiang Ding
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Youru Liu
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Yuanyuan Xu
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xuefeng Wang
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Shuli Hao
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Huan Zhou
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Hongtao Li
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
12
|
Ulaganathan K, Puranam K, Mukta S, Hanumanth SR. Expression profiling of luminal B breast tumor in Indian women. J Cancer Res Clin Oncol 2023; 149:13645-13664. [PMID: 37516983 DOI: 10.1007/s00432-023-05195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE In this study, we aimed at profiling of luminal B breast cancer specific gene expression pattern in Indian women using mRNA-seq and validation based on TCGA expression data. METHODS RNA isolated from luminal B tumor and adjacent normal tissues was used for library construction and sequencing. Reference-based assemblies of these reads were used for differential gene expression analysis using DeSeq2. The DEGs were evaluated using TCGA expression data. Kaplan-Meier survival method was used to evaluate association between genes showing luminal B specific differential expression pattern and breast cancer prognosis and statistical significance was assessed using log-rank test. Alternate splicing analysis was done using rmats. RESULTS Differential expression analysis identified 2371 differentially expressed genes (DEGs) in luminal B breast tumors in comparison with adjacent normal tissues of Indian Women. Of them, 1692 DEGs were validated using TCGA luminal B paired samples. Integration of this data with the DEGs obtained by comparative analysis of unpaired luminal B with luminal A unpaired samples from TCGA resulted in 291 DEGs showing luminal B specific expression pattern. Further, 26 genes of prognostic value were identified. Differential splicing analysis between luminal B tumors and adjacent normal tissues in our cohort led to the identification of 687 genes showing significant differential alternate splicing events. CONCLUSION This study profiled gene expression pattern of luminal B tumors of Indian women and identified 26 key genes of prognostic value for luminal B breast cancer. This study also profiled differential alternate splicing and identified important alternate splicing events in luminal B breast cancer.
Collapse
Affiliation(s)
| | - Kaushik Puranam
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India
| | - Srinivasulu Mukta
- Department of Surgical Oncology, MNJ Institute of Oncology and RCC, Hyderabad, Telangana, India
| | | |
Collapse
|
13
|
Mendez-Callejas G, Piñeros-Avila M, Yosa-Reyes J, Pestana-Nobles R, Torrenegra R, Camargo-Ubate MF, Bello-Castro AE, Celis CA. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int J Mol Sci 2023; 24:15185. [PMID: 37894866 PMCID: PMC10607159 DOI: 10.3390/ijms242015185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana). The chalcone structure was determined using HPLC/MS (QTOF), UV, and NMR spectroscopy. The compound cytotoxicity and selectivity were evaluated on prostate, cervical, and breast cancer cell lines using the MTT assay. Apoptosis and autophagy induction were assessed through flow cytometry by detecting annexin V/7-AAD, active Casp3/7, and LC3B proteins. These results were supported by Western blot analysis. Mitochondrial effects on membrane potential, as well as levels of pro- and anti-apoptotic proteins were analyzed using flow cytometry, fluorescent microscopy, and Western blot analysis specifically on a triple-negative breast cancer (TNBC) cell line. Furthermore, molecular docking (MD) and molecular dynamics (MD) simulations were performed to evaluate the interaction between the compounds and pro-survival proteins. The compound identified as 2',3,4-trihydroxy-4',6'-dimethoxy chalcone inhibited the cancer cell line proliferation and induced apoptosis and autophagy. MDA-MB-231, a TNBC cell line, exhibited the highest sensitivity to the compound with good selectivity. This activity was associated with the regulation of mitochondrial membrane potential, activation of the pro-apoptotic proteins, and reduction of anti-apoptotic proteins, thereby triggering the intrinsic apoptotic pathway. The chalcone consistently interacted with anti-apoptotic proteins, particularly the Bcl-2 protein, throughout the simulation period. However, there was a noticeable conformational shift observed with the negative autophagy regulator mTOR protein. Future studies should focus on the molecular mechanisms underlying the anti-cancer potential of the new chalcone and other flavonoids from Ch. tacotana, particularly against predominant cancer cell types.
Collapse
Affiliation(s)
- Gina Mendez-Callejas
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada (GIBGA), Laboratorio de Biología Celular y Molecular, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia;
| | - Marco Piñeros-Avila
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada (GIBGA), Laboratorio de Biología Celular y Molecular, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia;
| | - Juvenal Yosa-Reyes
- Grupo de Investigación en Ciencias Exactas, Física y Naturales Aplicadas, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080002, Colombia; (J.Y.-R.)
| | - Roberto Pestana-Nobles
- Grupo de Investigación en Ciencias Exactas, Física y Naturales Aplicadas, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080002, Colombia; (J.Y.-R.)
| | - Ruben Torrenegra
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - María F. Camargo-Ubate
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - Andrea E. Bello-Castro
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - Crispin A. Celis
- Grupo de Investigación en Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 40-62, Bogotá 1115511, Colombia
| |
Collapse
|
14
|
Komoto TT, Nishimura FG, Evangelista AF, de Freitas AJA, da Silva G, Silva WA, Peronni K, Marques MMC, Marins M, Fachin AL. Exploring the Therapeutic Potential of trans-Chalcone: Modulation of MicroRNAs Linked to Breast Cancer Progression in MCF-7 Cells. Int J Mol Sci 2023; 24:10785. [PMID: 37445965 DOI: 10.3390/ijms241310785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is responsible for 25% of all cancers that affect women. Due to its high heterogeneity pattern in clinical diagnosis and its molecular profile differences, researchers have been seeking new targets and therapies, with more specificity and fewer side effects. Thus, one compound that has garnered our attention is trans-chalcone, which is naturally occurring in various plants and possesses promising biological properties, including antitumor effects. MiRNA is an extensive class of non-coding small, endogenous, and single-stranded RNAs, and it is involved in post-translational gene regulation. Therefore, the objective of this study was to investigate the effects of TChal on miRNAs expression and its relationship with anticancer activity against MCF-7. Initially, the trans-chalcone IC50 value was established by MTT assay for MCF-7and HaCat (non-cancer cell), in which we found out that it was 53.73 and 44.18 μM, respectively. Subsequently, we treated MCF-7 cells with trans-chalcone at its IC50 concentration and performed Mi-seq analysis, which unveiled 23 differentially expressed miRNAs. From this set, we selected five miRNAs (miR-25-5p, miR-27a-3p, miR-891a, miR-449a, and miR-4485) for further validation using qRT-PCR, guided by in silico analysis and their known association with tumorigenesis. In conclusion, our research provides valuable insights into the potential use of TChal to reveal MicroRNAs molecular targets that can be applied in breast cancer therapy.
Collapse
Affiliation(s)
- Tatiana Takahasi Komoto
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, Brazil
| | - Felipe Garcia Nishimura
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Adriane Feijó Evangelista
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-361, Brazil
| | - Ana Julia Aguiar de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, Brazil
| | - Gabriel da Silva
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Wilson Araujo Silva
- Center for Medical Genomics at the Clinics Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Kamila Peronni
- Center for Medical Genomics at the Clinics Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Ana Lucia Fachin
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| |
Collapse
|
15
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
16
|
Seo J, Lee DE, Kim SM, Kim E, Kim JK. Licochalcone A Exerts Anti-Cancer Activity by Inhibiting STAT3 in SKOV3 Human Ovarian Cancer Cells. Biomedicines 2023; 11:biomedicines11051264. [PMID: 37238935 DOI: 10.3390/biomedicines11051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Licochalcone A (LicA), a major active component of licorice, has been reported to exhibit various pharmacological actions. The purpose of this study was to investigate the anticancer activity of LicA and detail its molecular mechanisms against ovarian cancer. SKOV3 human ovarian cancer cells were used in this study. Cell viability was measured using a cell counting kit-8 assay. The percentages of apoptotic cells and cell cycle arrest were determined by flow cytometry and Muse flow cytometry. The expression levels of proteins regulating cell apoptosis, cell cycle, and the signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using Western blotting analysis. The results indicated that LicA treatment inhibited the cell viability of SKOV3 cells and induced G2/M phase arrest. Furthermore, LicA induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspases and cytoplasmic cytochrome c. Additionally, LicA caused a dramatic decrease in STAT3 protein levels, but not mRNA levels, in SKOV3 cells. Treatment with LicA also reduced phosphorylation of the mammalian target of rapamycin and eukaryotic translation initiation factor 4E-binding protein in SKOV3 cells. The anti-cancer effects of LicA on SKOV3 cells might be mediated by reduced STAT3 translation and activation.
Collapse
Affiliation(s)
- Jeonghyeon Seo
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Da Eun Lee
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Seong Mi Kim
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si 38430, Republic of Korea
| |
Collapse
|
17
|
Deng N, Qiao M, Li Y, Liang F, Li J, Liu Y. Anticancer effects of licochalcones: A review of the mechanisms. Front Pharmacol 2023; 14:1074506. [PMID: 36755942 PMCID: PMC9900005 DOI: 10.3389/fphar.2023.1074506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is a disease with a high fatality rate representing a serious threat to human health. Researchers have tried to identify effective anticancer drugs. Licorice is a widely used traditional Chinese medicine with various pharmacological properties, and licorice-derived flavonoids include licochalcones like licochalcone A, licochalcone B, licochalcone C, licochalcone D, licochalcone E, and licochalcone H. By regulating the expression in multiple signaling pathways such as the EGFR/ERK, PI3K/Akt/mTOR, p38/JNK, JAK2/STAT3, MEK/ERK, Wnt/β-catenin, and MKK4/JNK pathways, and their downstream proteins, licochalcones can activate the mitochondrial apoptosis pathway and death receptor pathway, promote autophagy-related protein expression, inhibit the expression of cell cycle proteins and angiogenesis factors, regulate autophagy and apoptosis, and inhibit the proliferation, migration, and invasion of cancer cells. Among the licochalcones, the largest number of studies examined licochalcone A, far more than other licochalcones. Licochalcone A not only has prominent anticancer effects but also can be used to inhibit the efflux of antineoplastic drugs from cancer cells. Moreover, derivatives of licochalcone A exhibit strong antitumor effects. Currently, most results of the anticancer effects of licochalcones are derived from cell experiments. Thus, more clinical studies are needed to confirm the antineoplastic effects of licochalcones.
Collapse
Affiliation(s)
- Nan Deng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingming Qiao
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengyan Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Yanfeng Liu,
| |
Collapse
|
18
|
Çevik D, Erdogan S, Serttas R, Kan Y, Kırmızıbekmez H. Cytotoxic and Antimigratory Activity of Retrochalcones from Glycyrrhiza echinata L. on Human Cancer Cells. Chem Biodivers 2023; 20:e202200589. [PMID: 36448364 DOI: 10.1002/cbdv.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Cytotoxic activity-guided fractionation studies on Glycyrrhiza echinata roots led to the isolation of eight compounds (1-8). Chemical structures of the isolates were identified by NMR and MS analysis. Among the tested molecules, retrochalcones namely echinatin (3) (IC50 =23.45-41.83 μM), licochalcone B (4) (IC50 =36.04-39.53 μM) and tetrahydroxylmethoxychalcone (5) (IC50 =7.09-80.81 μM) were the most active ones against PC3, MCF7 and HepG2 cells. Moreover, 5 exhibited selectivity on prostate cancer cells (SI: 5.19). Hoechst staining and Annexin V/PI binding assays as well as cell cycle analysis on the compounds 3 (23 μM) and 5 (5 and 7 μM) demonstrated that these retrochalcones induced apoptosis and significantly suppressed cell cycle in G1 and G2 /M phases. Furthermore, 3 and 5 showed antimigratory effects on PC3 cells by wound healing assay. The results indicated that tested retrochalcones most particularly 5 could be potential anticancer drug candidates that prevent proliferation and migration of cancer cells.
Collapse
Affiliation(s)
- Dicle Çevik
- Department of Pharmacognosy, Faculty of Pharmacy, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Yüksel Kan
- Department of Medicinal Plants, Faculty of Agriculture, Selçuk University, 42070, Konya, Turkey
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755, Kayışdağı, İstanbul, Turkey
| |
Collapse
|
19
|
Dadi V, Malla RR, Siragam S. Natural and Synthetic Chalcones: Potential Impact on Breast Cancer. Crit Rev Oncog 2023; 28:27-40. [PMID: 38050979 DOI: 10.1615/critrevoncog.2023049659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chalcones are small molecules, naturally found in fruits and vegetables, and exhibit diverse pharmacological activities. They also possess anticancer activity against different tumors. They can be converted into numerous derivatives by modifying hydrogen moieties, enabling the exploration of their diverse anticancer potentials. The main aims are to provide valuable insights into the recent progress made in utilizing chalcones and their derivatives as agents against breast cancer while delivering their underlying molecular mechanisms of action. This review presents anticancer molecular mechanisms and signaling pathways modulated by chalcones. Furthermore, it helps in the understating of the precise mechanisms of action and specific molecular targets of chalcones and their synthetic derivatives for breast cancer treatment.
Collapse
Affiliation(s)
- Vasudha Dadi
- Department of Pharmaceutical Chemistry, Vignan Institute of Pharmaceutical Technology, Visakhapatnam 530049, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Satyalakshmi Siragam
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Visakhapatnam 530049, India
| |
Collapse
|
20
|
Kaptan Y, Güvenilir Y. Polycaprolactone/epoxide-functionalized silica composite microparticles for long-term controlled release of trans-chalcone. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
In this study, controlled release of trans-chalcone was achieved by using a polycaprolactone-based hybrid system as the drug carrier material. Encapsulation efficiency was obtained in the range of 70–75% for various formulations and in vitro release studies, conducted at 37 °C and pH 7.4, revealed slow profile reaching 60% cumulative release. As interpreted from kinetic modelling, drug release was controlled mainly by Fickian diffusion; polymer erosion did not contribute to the TC release. Difference in drug loading efficiencies of the hybrid and neat PCL microparticles was observed such that PCL microparticles had lower loading efficiency than the hybrid microparticles whereas the release profiles were similar. pH of the release medium had affected release profiles; acidic medium enhanced drug release. Characterization of the microparticles were realized by FT-IR, TGA, DSC, SEM and WCA which revealed key properties such as molecular dispersion state and hydrophilicity. With the results obtained, we concluded that our hybrid system has a significant potential for long term release of trans-chalcone.
Collapse
Affiliation(s)
- Yasemin Kaptan
- Department of Chemical Engineering , Istanbul Technical University , İstanbul 34469 , Turkey
| | - Yüksel Güvenilir
- Department of Chemical Engineering , Istanbul Technical University , İstanbul 34469 , Turkey
| |
Collapse
|
21
|
Kaptan Y, Güvenilir Y. Enzymatic PCL-grafting to NH 2-end grouped silica and development of microspheres for pH-stimulated release of a hydrophobic model drug. Eur J Pharm Biopharm 2022; 181:60-78. [PMID: 36347484 DOI: 10.1016/j.ejpb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
This study set out to evaluate novel PCL-based silica containing nanohybrids as the polymer matrix in a hydrophobic drug-loaded microsphere system. Nanohybrids were synthesized by PCL-grafting to NH2-end grouped silica by in situ enzymatic ring opening polymerization of ε-caprolactone. Molecular weight and monomer conversion, PCL grafting percentage, thermal properties and crystallinity of the nanohybrids were determined by 1H NMR, TGA, DSC and XRD. Synthesized nanohybrids had low crystallinity percentage (32 and 39 %) and molecular weight (4800 and 8700 g/mol), promising for controlled drug release applications. The nanohybrids were used for fabrication of trans-chalcone-loaded microspheres by O/W single emulsion solvent evaporation. Mean particle diameter of the microspheres were between 15 and 30 µm. The result of release studies showed that optimum microsphere formulations (AP4 and A2, respectively) had 61 and 64 % encapsulation efficiency. One of the more significant findings to emerge from this investigation is that TC release was extended to 16 and 37 days, in a controlled manner. TC release was significantly enhanced in acidic pH media (pH 3.6 and 5.6) indicating pH-dependent release from nanohybrid microspheres; releasing 80-100 % of the loaded drug in 4-14 days. Drug/polymer interactions and molecular structures were investigated by FT-IR spectroscopy and DSC analysis. According to the results obtained, enzymatically synthesized nanohybrids have potential for pH-dependent release of the model drug, trans-chalcone.
Collapse
Affiliation(s)
- Yasemin Kaptan
- Istanbul Technical University, Department of Chemical Engineering, Istanbul Technical University, 34469 Maslak-Istanbul, Turkey.
| | - Yüksel Güvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul Technical University, 34469 Maslak-Istanbul, Turkey
| |
Collapse
|
22
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
23
|
Yadav K, Singh D, Singh MR, Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Functional regulations between genetic alteration-driven genes and drug target genes acting as prognostic biomarkers in breast cancer. Sci Rep 2022; 12:10641. [PMID: 35739271 PMCID: PMC9226112 DOI: 10.1038/s41598-022-13835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Differences in genetic molecular features including mutation, copy number alterations and DNA methylation, can explain interindividual variability in response to anti-cancer drugs in cancer patients. However, identifying genetic alteration-driven genes and characterizing their functional mechanisms in different cancer types are still major challenges for cancer studies. Here, we systematically identified functional regulations between genetic alteration-driven genes and drug target genes and their potential prognostic roles in breast cancer. We identified two mutation and copy number-driven gene pairs (PARP1-ACSL1 and PARP1-SRD5A3), three DNA methylation-driven gene pairs (PRLR-CDKN1C, PRLR-PODXL2 and PRLR-SRD5A3), six gene pairs between mutation-driven genes and drug target genes (SLC19A1-SLC47A2, SLC19A1-SRD5A3, AKR1C3-SLC19A1, ABCB1-SRD5A3, NR3C2-SRD5A3 and AKR1C3-SRD5A3), and four copy number-driven gene pairs (ADIPOR2-SRD5A3, CASP12-SRD5A3, SLC39A11-SRD5A3 and GALNT2-SRD5A3) that all served as prognostic biomarkers of breast cancer. In particular, RARP1 was found to be upregulated by simultaneous copy number amplification and gene mutation. Copy number deletion and downregulated expression of ACSL1 and upregulation of SRD5A3 both were observed in breast cancers. Moreover, copy number deletion of ACSL1 was associated with increased resistance to PARP inhibitors. PARP1-ACSL1 pair significantly correlated with poor overall survival in breast cancer owing to the suppression of the MAPK, mTOR and NF-kB signaling pathways, which induces apoptosis, autophagy and prevents inflammatory processes. Loss of SRD5A3 expression was also associated with increased sensitivity to PARP inhibitors. The PARP1-SRD5A3 pair significantly correlated with poor overall survival in breast cancer through regulating androgen receptors to induce cell proliferation. These results demonstrate that genetic alteration-driven gene pairs might serve as potential biomarkers for the prognosis of breast cancer and facilitate the identification of combination therapeutic targets for breast cancers.
Collapse
|
25
|
Li MT, Xie L, Jiang HM, Huang Q, Tong RS, Li X, Xie X, Liu HM. Role of Licochalcone A in Potential Pharmacological Therapy: A Review. Front Pharmacol 2022; 13:878776. [PMID: 35677438 PMCID: PMC9168596 DOI: 10.3389/fphar.2022.878776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Licochalcone A (LA), a useful and valuable flavonoid, is isolated from Glycyrrhiza uralensis Fisch. ex DC. and widely used clinically in traditional Chinese medicine. We systematically updated the latest information on the pharmacology of LA over the past decade from several authoritative internet databases, including Web of Science, Elsevier, Europe PMC, Wiley Online Library, and PubMed. A combination of keywords containing “Licochalcone A,” “Flavonoid,” and “Pharmacological Therapy” was used to help ensure a comprehensive review. Collected information demonstrates a wide range of pharmacological properties for LA, including anticancer, anti-inflammatory, antioxidant, antibacterial, anti-parasitic, bone protection, blood glucose and lipid regulation, neuroprotection, and skin protection. LA activity is mediated through several signaling pathways, such as PI3K/Akt/mTOR, P53, NF-κB, and P38. Caspase-3 apoptosis, MAPK inflammatory, and Nrf2 oxidative stress signaling pathways are also involved with multiple therapeutic targets, such as TNF-α, VEGF, Fas, FasL, PI3K, AKT, and caspases. Recent studies mainly focus on the anticancer properties of LA, which suggests that the pharmacology of other aspects of LA will need additional study. At the end of this review, current challenges and future research directions on LA are discussed. This review is divided into three parts based on the pharmacological effects of LA for the convenience of readers. We anticipate that this review will inspire further research.
Collapse
Affiliation(s)
- Meng-Ting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong-Sheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Mei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Effect of Licochalcone-A Combined with Rab23 Gene on Proliferation of Glioma U251 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9299442. [PMID: 35497928 PMCID: PMC9054455 DOI: 10.1155/2022/9299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
This research aimed to explore the effect of Licochalcone-A (LCA) combined with Rab23 gene on the proliferation, migration, and invasion of glioma U251 cells through the Wnt/β-catenin signaling pathway. The glioma U251 cell line was taken as the research object, and the Rab23 overexpression plasmid was constructed. According to the treatment method, U251 cells were rolled into blank control group (BC), Rab23 overexpression plasmid transfection group (Rab23), 25 μmol·L−1 LCA treatment group (LCA), and Rab23 overexpression plasmid transfection combined with 25 μmol·L−1 LCA treatment group (Rab23 + LCA). Subsequently, the ability of cell proliferation, migration, and invasion of each group was detected by methyl thiazolyl tetrazolium (MTT) assay, scratch healing test, and Transwell cell invasion test, respectively. Western blot was implemented to detect the expression differences of cell proliferation antigen Ki-67, apoptosis-related proteins Bcl-2 and Bax, and Wnt/β-catenin pathway-related proteins β-catenin, glycogen synthase kinase-3 (GSK3β), Axin2, and c-myc. The results showed the successful construction of Rab23 overexpression and stable transfection U251 cell line. After grouping and treatments, the cell proliferation, migration, and invasion ability of the Rab23 group, LCA group, and Rab23 + LCA group was substantially reduced relative to BC group (P < 0.05). In addition, the cell proliferation, migration, and invasion ability of Rab23 + LCA group decreased relatively more significantly. The expression levels of Ki-67, Bcl-2, β-catenin, and c-myc in the Rab23, LCA, and Rab23 + LCA groups were greatly lower versus those of BC group. Moreover, the protein expression levels of Bax, GSK3β, and Axin2 were considerably increased (P < 0.05), while the expression of protein in Rab23 + LCA group increased notably. These findings indicate that LCA combined with Rab23 gene can inhibit the proliferation, migration, and invasion of glioma U251 cells through the Wnt/β-catenin signaling and can promote cell apoptosis.
Collapse
|
27
|
Zhang MH, Liu J. Cleavage stimulation factor 2 promotes malignant progression of liver hepatocellular carcinoma by activating phosphatidylinositol 3'-kinase/protein kinase B/mammalian target of rapamycin pathway. Bioengineered 2022; 13:10047-10060. [PMID: 35412944 PMCID: PMC9161829 DOI: 10.1080/21655979.2022.2063100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is the most common type, comprising 75-85% of all liver malignancies. We investigated the roles of cleavage stimulation factor 2 (CSTF2) in LIHC and explored the underlying mechanisms. CSTF2 expression and its association with LIHC patient survival probability were analyzed with The Cancer Genome Atlas. CSTF2 expression in LIHC cells was assessed using western blot and quantitative real-time PCR. Alterations in CSTF2 expression were induced by cell transfection. Cell colony formation, apoptosis, proliferation, invasion, and migration were assessed using colony formation, flow cytometry, 5-ethynyl-2'-deoxyuridine, and transwell assays. Pathway enrichment analysis was performed using gene set enrichment analysis (GSEA). The expression of apoptosis-, metastasis-, and pathway-associated factors was determined via western blot. The pathway rescue assay was further performed using 740Y-P or Wortmannin. CSTF2 upregulation was observed in LIHC tissues and cells. Patients with high CSTF2 expression had a lower probability of overall survival. CSTF2 overexpression enhanced colony formation, proliferation, invasion and migration, while repressing apoptosis in LIHC cells. GSEA revealed that CSTF2 was mainly enriched in the phosphatidylinositol 3'-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Western blot analysis proved that CSTF2 overexpression activated this pathway. CSTF2 knockdown yielded the opposite effects. 740Y-P, a PI3K activator, reversed the CSTF2 knockdown-triggered effects on cell proliferation, apoptosis, invasion, and migration. Moreover, Wortmannin, a PI3K inhibitor, also reversed the CSTF2 overexpression-induced effects on cell proliferation, apoptosis, invasion, and migration. These results indicated that CSTF2 overexpression might exacerbate the malignant phenotypes of LIHC cells via activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Meng-Hui Zhang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of General Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
28
|
van Dinteren S, Meijerink J, Witkamp R, van Ieperen B, Vincken JP, Araya-Cloutier C. Valorisation of liquorice ( Glycyrrhiza) roots: antimicrobial activity and cytotoxicity of prenylated (iso)flavonoids and chalcones from liquorice spent ( G. glabra, G. inflata, and G. uralensis). Food Funct 2022; 13:12105-12120. [DOI: 10.1039/d2fo02197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenylated phenolics are antimicrobials found in liquorice (Glycyrrhiza spp.).
Collapse
Affiliation(s)
- Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Bo van Ieperen
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
29
|
Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, Kandasamy G, Vasudevan R, Ali MS, Amir M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122751. [PMID: 34961221 PMCID: PMC8703329 DOI: 10.3390/plants10122751] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
There are more than 30 species of Glycyrrhiza genus extensively spread worldwide. It was the most prescribed herb in Ancient Egyptian, Roman, Greek, East China, and the West from the Former Han era. There are various beneficial effects of licorice root extracts, such as treating throat infections, tuberculosis, respiratory, liver diseases, antibacterial, anti-inflammatory, and immunodeficiency. On the other hand, traditional medicines are getting the attraction to treat many diseases. Therefore, it is vital to screen the medicinal plants to find the potential of new compounds to treat chronic diseases such as respiratory, cardiovascular, anticancer, hepatoprotective, etc. This work comprehensively reviews ethnopharmacological uses, phytochemistry, biological activities, clinical evidence, and the toxicology of licorice, which will serve as a resource for future clinical and fundamental studies. An attempt has been made to establish the pharmacological effect of licorice in different diseases. In addition, the focus of this review article is on the molecular mechanism of licorice extracts and their four flavonoids (isoliquiritigenin, liquiritigenin, lichalocone, and glabridin) pharmacologic activities. Licorice could be a natural alternative for current therapy to exterminate new emerging disorders with mild side effects. This review will provide systematic insights into this ancient drug for further development and clinical use.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
- Correspondence:
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohd Amir
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|
30
|
Mohamed MF, Ibrahim NS, Ibrahim SA, El-Manawaty MA, El-Hallouty SM, Hassaneen HM, Abdelhamid IA. Cytotoxic Activity, Apoptosis Induction and Cell Cycle Arrest in Human Breast Cancer (MCF7) Cells by a Novel Fluorinated Tetrahydro-[1,2,4]Triazolo[3,4-a]Isoquinolin Chalcones. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2014535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Magda F. Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | - Nada S. Ibrahim
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | | | - May A. El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Giza, Egypt
| | - Salwa M. El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Giza, Egypt
| | | | | |
Collapse
|
31
|
de Souza PS, Bibá GCC, Melo EDDN, Muzitano MF. Chalcones against the hallmarks of cancer: a mini-review. Nat Prod Res 2021; 36:4809-4826. [PMID: 34865580 DOI: 10.1080/14786419.2021.2000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chalcones (1,3-diphenylpropen-1-ones) are a class of flavonoids that have been shown a broad spectrum of biological activities with therapeutic potential. Naturally occurring chalcones or synthetic chalcone derivatives have been extensively investigated as anticancer compounds. Cancer is still among the leading causes of death globally, although cancer treatments have improved over the past decades. Most of chemotherapeutic drugs target proliferating tumor cells; however, the cancer cells capabilities are also associated to tumor surround microenvironment. Thereby, the search of new compounds with a broad antitumor activity is still a great challenge. The cytotoxicity mechanisms of chalcones are beyond apoptosis induction in tumor cells, which make them promising compound for cancer therapy. In this mini-review we summarized recent studies that describe the anticancer potential of chalcones related to some of hallmarks of cancer. We shed a light on sustaining proliferative signaling, tumor-promoting inflammation, activating invasion and metastasis, inducing angiogenesis and resisting cell death.
Collapse
Affiliation(s)
- Paloma Silva de Souza
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geysa Cristina Caldas Bibá
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelynn Dalila do Nascimento Melo
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Constantinescu T, Lungu CN. Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci 2021; 22:11306. [PMID: 34768736 PMCID: PMC8582663 DOI: 10.3390/ijms222111306] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is a condition caused by many mechanisms (genetic, immune, oxidation, and inflammatory). Anticancer therapy aims to destroy or stop the growth of cancer cells. Resistance to treatment is theleading cause of the inefficiency of current standard therapies. Targeted therapies are the most effective due to the low number of side effects and low resistance. Among the small molecule natural compounds, flavonoids are of particular interest for theidentification of new anticancer agents. Chalcones are precursors to all flavonoids and have many biological activities. The anticancer activity of chalcones is due to the ability of these compounds to act on many targets. Natural chalcones, such as licochalcones, xanthohumol (XN), panduretin (PA), and loncocarpine, have been extensively studied and modulated. Modification of the basic structure of chalcones in order to obtain compounds with superior cytotoxic properties has been performed by modulating the aromatic residues, replacing aromatic residues with heterocycles, and obtaining hybrid molecules. A huge number of chalcone derivatives with residues such as diaryl ether, sulfonamide, and amine have been obtained, their presence being favorable for anticancer activity. Modification of the amino group in the structure of aminochalconesis always favorable for antitumor activity. This is why hybrid molecules of chalcones with different nitrogen hetercycles in the molecule have been obtained. From these, azoles (imidazole, oxazoles, tetrazoles, thiazoles, 1,2,3-triazoles, and 1,2,4-triazoles) are of particular importance for the identification of new anticancer agents.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Claudiu N. Lungu
- Department of Surgery, Country Emergency Hospital Braila, 810249 Braila, Romania
| |
Collapse
|
33
|
Trans-chalcone suppresses tumor growth mediated at least in part by the induction of heme oxygenase-1 in breast cancer. Toxicol Res 2021; 37:485-493. [PMID: 34631505 PMCID: PMC8476688 DOI: 10.1007/s43188-021-00089-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/03/2022] Open
Abstract
Despite intensive research efforts in recent decades, cancer remains a leading cause of death worldwide. The chalcone family is a promising group of phytochemicals for therapeutic use against cancer development. Naturally-occurring chalcones, as well as synthetic chalcone analogues, have shown many beneficial biological properties, including anti-inflammatory, antioxidant, and anti-cancer activities. In this report, trans-chalcone (TChal) was found to increase cell death in breast cancer cells, assessed using high content screening. Subsequently, using antibody array analysis, TChal was found to increase heme oxygenase-1 (HO-1) expression in TChal-treated breast cancer cells. Blocking of HO-1 by siRNA in breast cancer cells diminished the effect of TChal on cell growth inhibition. TChal-fed mice also showed less tumor growth compared to vehicle-fed mice. Overall, we found that TChal increases HO-1 expression in breast cancer cells, thereby enhancing anti-tumorigenesis. Our results suggest that HO-1 expression could be a potential new target of TChal for anti-tumorigenesis in breast cancer.
Collapse
|
34
|
Mercado SAS, Caleño JDQ. Use of Lens culinaris Med test as environmental bioindicator to identify the cytogenotoxic effect of paraquat pesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51321-51328. [PMID: 33977433 DOI: 10.1007/s11356-021-14352-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Paraquat is the most widely used herbicide and the third most sold pesticide in the world, applied in more than 120 countries despite being banned in the European Union. It is a risk to ecosystems. The genotoxic effect of paraquat was evaluated using the Lens culinaris test. L. culinaris seeds were subjected to 6 concentrations of paraquat (0.1, 0.5, 1, 1.5, 1.5, 2, and 3 ppm) plus a control (distilled water). During 72 h, root development was measured every 24 h. After 3 days, root apices were analyzed to obtain the inhibition of the mitotic index, as well as the type and rate of chromosomal abnormalities present. A decrease in root growth of more than 50% (72 h of exposure) and an inhibition of the mitotic index of 2.9 times in the treatment with 3 ppm compared to the control were observed. The 2 ppm concentration presented all the anomalies found with a frequency of 84 ± 2.5 of micronuclei, 106 ± 3.5 of nuclear lesions, 14 ± 4.7 of nucleus absence, 8 ± 2.7 of telophase bridges, 7 ± 2.7 of binucleated cells, among others. It is also recommended to establish comparisons of L. culinaris with multiple biomarkers since it is presented as a practical and economic alternative.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Departamento de Biología , Universidad Francisco de Paula Santander , Avenida Gran, Colombia No. 12E-96B Colsag , San José de Cúcuta , Colombia.
| | - Jesús David Quintero Caleño
- Departamento de Matemáticas y Estadística , Universidad Francisco de Paula Santander , San José , de Cúcuta, Colombia
| |
Collapse
|
35
|
New insights into binding of natural chalcones to Bcl-2, Bcl-xL and Mcl-1 anti-apoptotic proteins. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Trans-Chalcone Plus Baicalein Synergistically Reduce Intracellular Amyloid Beta (Aβ 42) and Protect from Aβ 42 Induced Oxidative Damage in Yeast Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179456. [PMID: 34502362 PMCID: PMC8430801 DOI: 10.3390/ijms22179456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Finding an effective therapeutic to prevent or cure AD has been difficult due to the complexity of the brain and limited experimental models. This study utilized unmodified and genetically modified Saccharomyces cerevisiae as model organisms to find potential natural bioactive compounds capable of reducing intracellular amyloid beta 42 (Aβ42) and associated oxidative damage. Eleven natural bioactive compounds including mangiferin, quercetin, rutin, resveratrol, epigallocatechin gallate (EGCG), urolithin A, oleuropein, rosmarinic acid, salvianolic acid B, baicalein and trans-chalcone were screened for their ability to reduce intracellular green fluorescent protein tagged Aβ42 (GFP-Aβ42) levels. The two most effective compounds from the screens were combined in varying concentrations of each to study the combined capacity to reduce GFP-Aβ42. The most effective combinations were examined for their effect on growth rate, turnover of native Aβ42 and reactive oxygen species (ROS). The bioactive compounds except mangiferin and urolithin A significantly reduced intracellular GFP-Aβ42 levels. Baicalein and trans-chalcone were the most effective compounds among those that were screened. The combination of baicalein and trans-chalcone synergistically reduced GFP-Aβ42 levels. A combination of 15 μM trans-chalcone and 8 μM baicalein was found to be the most synergistic combination. The combination of the two compounds significantly reduced ROS and Aβ42 levels in yeast cells expressing native Aβ42 without affecting growth of the cells. These findings suggest that the combination of baicalein and trans-chalcone could be a promising multifactorial therapeutic strategy to cure or prevent AD. However, further studies are recommended to look for similar cytoprotective activity in humans and to find an optimal dosage.
Collapse
|
37
|
Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021; 11:1203. [PMID: 34439870 PMCID: PMC8392591 DOI: 10.3390/biom11081203] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.
Collapse
Affiliation(s)
- Hiba A. Jasim
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Al-Anbar 10081, Iraq
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mohammad A. Jasim
- Department of Biology, College of Education for Women, University of Anbar, Al-Anbar 10081, Iraq;
| | - Sharon A. Moore
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Kenneth J. Ritchie
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| |
Collapse
|
38
|
Lertpatipanpong P, Lee J, Kim I, Eling T, Oh SY, Seong JK, Baek SJ. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci Rep 2021; 11:15027. [PMID: 34294853 PMCID: PMC8298384 DOI: 10.1038/s41598-021-94581-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) plays a role in various diseases. Here, the anti-diabetic effects of NAG-1 were evaluated using a high-fat diet/streptozotocin-induced diabetic mouse model. NAG-1-overexpressing transgenic (NAG-1 Tg) mice exhibited lower body weight, fasting blood glucose levels, and serum insulin levels than wild-type (WT) mice. The homeostatic model assessment of insulin resistance scores of NAG-1 Tg mice were lower than those of WT mice. Hematoxylin and eosin staining revealed a smaller lipid droplet size in the adipose tissues, lower lipid accumulation in the hepatocytes, and larger beta cell area in the pancreas of NAG-1 Tg mice than in those of WT mice. Immunohistochemical analysis revealed downregulated expression of cleaved caspase-3, an apoptosis marker, in the beta cells of NAG-1 Tg mice. Adiponectin and leptin mRNA levels were upregulated and downregulated in NAG-1 Tg mice, respectively. Additionally, the expression of IRS1/PI3K/AKT signaling pathway components, especially Foxo1, which regulates gluconeogenesis in the muscle and white adipose tissue, was downregulated in NAG-1 Tg mice. Furthermore, NAG-1 overexpression promoted the expression of As160 in both muscles and adipocytes, and the mRNA levels of the NLRP3 pathway members were downregulated in NAG-1 Tg mice. Our findings suggest that NAG-1 expression alleviates diabetes in mice.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jaehak Lee
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ilju Kim
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Thomas Eling
- National Institute of Environmental Health Science, 111 TW Alexander Dr. Research Triangle Park, NC, 27709, USA
| | - Seung Yeon Oh
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, 08826, South Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
39
|
Michalkova R, Mirossay L, Gazdova M, Kello M, Mojzis J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers (Basel) 2021; 13:cancers13112730. [PMID: 34073042 PMCID: PMC8198114 DOI: 10.3390/cancers13112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite the important progress in cancer treatment in the past decades, the mortality rates in some types of cancer have not significantly decreased. Therefore, the search for novel anticancer drugs has become a topic of great interest. Chalcones, precursors of flavonoid synthesis in plants, have been documented as natural compounds with pleiotropic biological effects including antiproliferative/anticancer activity. This article focuses on the knowledge on molecular mechanisms of antiproliferative action of chalcones and draws attention to this group of natural compounds that may be of importance in the treatment of cancer disease. Abstract Although great progress has been made in the treatment of cancer, the search for new promising molecules with antitumor activity is still one of the greatest challenges in the fight against cancer due to the increasing number of new cases each year. Chalcones (1,3-diphenyl-2-propen-1-one), the precursors of flavonoid synthesis in higher plants, possess a wide spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer. A plethora of molecular mechanisms of action have been documented, including induction of apoptosis, autophagy, or other types of cell death, cell cycle changes, and modulation of several signaling pathways associated with cell survival or death. In addition, blockade of several steps of angiogenesis and proteasome inhibition has also been documented. This review summarizes the basic molecular mechanisms related to the antiproliferative effects of chalcones, focusing on research articles from the years January 2015–February 2021.
Collapse
|
40
|
The Newly Synthetized Chalcone L1 Is Involved in the Cell Growth Inhibition, Induction of Apoptosis and Suppression of Epithelial-to-Mesenchymal Transition of HeLa Cells. Molecules 2021; 26:molecules26051356. [PMID: 33802621 PMCID: PMC7961543 DOI: 10.3390/molecules26051356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-β1 (TGF-β) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.
Collapse
|
41
|
Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113635. [PMID: 33246112 DOI: 10.1016/j.jep.2020.113635] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/25/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been commonly used in traditional Chinese medicine for treatment of gastric, liver, and respiratory disease conditions for more than two thousand years. It is a major component of several Chinese patent medicines certificated by National Medical Products Administration that possess great anticancer activities. AIM OF THE STUDY To comprehensively summarize the anticancer activities of licorice flavonoids, explain the underlying molecular mechanisms, and assess their therapeutic potentials and side-effects. METHODS PubMed, Research Gate, Web of Science, Google Scholar, academic journals, and Science Direct were used as information sources, with the key words of "anticancer", "licorice", "flavonoids", and their combinations, mainly from 2000 to 2019. RESULTS Sixteen licorice flavonoids are found to possess anticancer activities. These flavonoids inhibit cancer cells through blocking cell cycle and regulating multiple signaling pathways. The major pathways targeted by licorice flavonoids include: the MAPK pathway, PI3K/AKT pathway, NF-κB pathway, death receptor - dependent extrinsic signaling pathway, and mitochondrial apoptotic pathway. CONCLUSION Licorice flavonoids are a group of versatile molecules that have pleiotropic effects on cell growth, survival and cell signaling. Many of the flavonoids possess inhibitory activities toward cancer cell growth and hence have a great therapeutic potential in cancer treatment. However, additional preclinical studies are still needed to assess their in vivo efficacy and possible toxicities. It is also imperative to evaluate the effects of licorice flavonoids on the metabolism of other drugs and explore the potential synergistic mechanism.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
42
|
Siqueira EDS, Concato VM, Tomiotto-Pellissier F, Silva TF, Bortoleti BTDS, Gonçalves MD, Costa IN, Junior WAV, Pavanelli WR, Panis C, Mantovani MS, Miranda-Sapla MM, Conchon-Costa I. Trans-chalcone induces death by autophagy mediated by p53 up-regulation and β-catenin down-regulation on human hepatocellular carcinoma HuH7.5 cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153373. [PMID: 33096451 DOI: 10.1016/j.phymed.2020.153373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is extremely aggressive and presents low rates of response to the available chemotherapeutic agents. Many studies have focused on the search for alternative low-cost natural compounds with antiproliferative potential that selectively respond to liver cancer cells. PURPOSE This study assessed the in vitro direct action of trans-chalcone (TC) on cells of the human HCC HuH7.5 cell line. METHODS We subjected the HuH7.5 tumor cells to TC treatment at increasing concentrations (12.5-100 µM) for 24 and 48 h. Cell viability was verified through MTT and 50% inhibitory concentration of cells (IC50 23.66 µM) was determined within 48 h. We quantified trypan blue proliferation and light microscopy, ROS production, mitochondrial depolarization and autophagy, cell cycle analysis, and apoptosis using Muse® cell analyzer and immunocytochemical markings of p53 and β-catenin. RESULTS Data showed an effective dose- and time-dependent TC-cytotoxic action at low micromolar concentrations without causing toxicity to non-cancerous cells, such as erythrocytes. TC-treatment caused mitochondrial membrane damage and cell cycle G0/G1 phase arrest, increasing the presence of the p53 protein and decreasing β-catenin, in addition, to inducing cell death by autophagy. Additionally, TC decreased the metastatic capacity of HuH7.5, which affected the migration/invasion of this type of cell. CONCLUSION In vitro TC activity in the human HCC HuH7.5 tumor cell line is shown to be a potential molecule to develop new therapies to repair the p53 pathway and prevent the overexpression of Wnt/β-catenin tumor development inducing autophagy cell death and decreasing metastatic capacity of HuH7.5 cell line.
Collapse
Affiliation(s)
- Elaine da Silva Siqueira
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil.
| | - Vírgínia Márcia Concato
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil; Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, State University of Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | | | - Wander Rogério Pavanelli
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | - Carolina Panis
- Laboratory of Tumor of Biology, State University of West Paraná, Francisco Beltrão, Paraná, Brazil
| | | | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunopathology of Neglected Diseases and Cancer, State University of Londrina - UEL. Rodovia Celso Garcia Cid Campus Zip Code 86057-970, Post Box 10.011. Londrina, PR, Brazil
| |
Collapse
|
43
|
Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
44
|
Gong S, Maegawa S, Yang Y, Gopalakrishnan V, Zheng G, Cheng D. Licochalcone A is a Natural Selective Inhibitor of Arginine Methyltransferase 6. Biochem J 2020; 478:BCJ20200411. [PMID: 33245113 PMCID: PMC7850898 DOI: 10.1042/bcj20200411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Arginine methylation is a post-translational modification that is implicated in multiple biological functions including transcriptional regulation. The expression of protein arginine methyltransferases (PRMT) has been shown to be upregulated in various cancers. PRMTs have emerged as attractive targets for the development of new cancer therapies. Here, we describe the identification of a natural compound, licochalcone A, as a novel, reversible and selective inhibitor of PRMT6. Since expression of PRMT6 is upregulated in human breast cancers and is associated with oncogenesis, we used the human breast cancer cell line system to study the effect of licochalcone A treatment on PRMT6 activity, cell viability, cell cycle, and apoptosis. We demonstrated that licochalcone A is a non-S-adenosyl L-methionine (SAM) binding site competitive inhibitor of PRMT6. In MCF-7 cells, it inhibited PRMT6-dependent methylation of histone H3 at arginine 2 (H3R2), which resulted in a significant repression of estrogen receptor activity. Licochalcone A exhibited cytotoxicity towards human MCF-7 breast cancer cells, but not MCF-10A human breast epithelial cells, by upregulating p53 expression and blocking cell cycle progression at G2/M, followed by apoptosis. Thus, licochalcone A has potential for further development as a therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Shinji Maegawa
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Yanwen Yang
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Vidya Gopalakrishnan
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
- Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, U.S.A
| | - Donghang Cheng
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| |
Collapse
|
45
|
Yu C, Zhang J, Wang T. Star anise essential oil:chemical compounds, antifungal and antioxidant activities: a review. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1813213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- CaiYun Yu
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| | - JingFei Zhang
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| | - Tian Wang
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| |
Collapse
|
46
|
de Freitas KS, Squarisi IS, Acésio NO, Nicolella HD, Ozelin SD, Reis Santos de Melo M, Guissone APP, Fernandes G, Silva LM, da Silva Filho AA, Tavares DC. Licochalcone A, a licorice flavonoid: antioxidant, cytotoxic, genotoxic, and chemopreventive potential. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:673-686. [PMID: 32886024 DOI: 10.1080/15287394.2020.1813228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UNLABELLED Licochalcone A (LicoA) is a flavonoid derived from Glycyrrhiza spp. plants. The present study aimed to investigate the antioxidant, cytotoxic, genotoxic, and chemopreventive effects of LicoA in in vitro and in vivo systems. The results showed that LicoA (197.1 μM) scavenged 77.92% of free radicals. Concentrations of 147.75 µM or higher LicoA produced cytotoxicity in Chinese hamster ovary (CHO) fibroblasts. LicoA treatments of 4.43 to 10.34 µM did not exert genotoxic activity, but at 11.8 µM significantly lowered nuclear division indexes, compared to negative control, revealing cytotoxicity. Lower concentrations (1.85 to 7.39 µM) exhibited protective activity against chromosomal damage induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in CHO cells. LicoA exerted no marked influence on DXR-induced genotoxicity in mouse erythrocytes, but reduced pre-neoplastic lesions induced by 1,2-dimethylhydrazine (DMH) in rat colon at 3.12 to 50 mg/kg b.w. Biochemical markers and body weight indicated no apparent toxicity. These findings contribute to better understanding the mechanisms underlying LicoA-initiated activity as a promising chemopreventive compound. ABBREVIATIONS AC, aberrant crypts; ACF, aberrant crypt foci; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BOD, biochemical oxygen demand; CHO, Chinese hamster ovary fibroblast; DMH, 1,2-dimethylhydrazine; DMSO, dimethyl sulfoxide; DPPH, 2,2-diphenyl-1-picrylhydrazyl; DXR, doxorubicin hydrochloride; EDTA, ethylenediaminetetraacetic acid; GA, gallic acid; LicoA, licochalcone A; MMS, methyl methanesulfonate; MNBC, micronucleated binucleated cells; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; XTT, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide.
Collapse
Affiliation(s)
| | - Iara Silva Squarisi
- Laboratório de Mutagênese, Universidade De Franca , Franca, São Paulo, Brazil
| | | | | | - Saulo Duarte Ozelin
- Laboratório de Mutagênese, Universidade De Franca , Franca, São Paulo, Brazil
| | | | | | - Gabriela Fernandes
- Laboratório de Mutagênese, Universidade De Franca , Franca, São Paulo, Brazil
| | - Lívia Mara Silva
- Faculdade De Farmácia, Departamento De Ciências Farmacêuticas, Universidade Federal De Juiz De Fora , Juiz De Fora, Minas Gerais, Brazil
| | - Ademar Alves da Silva Filho
- Faculdade De Farmácia, Departamento De Ciências Farmacêuticas, Universidade Federal De Juiz De Fora , Juiz De Fora, Minas Gerais, Brazil
| | | |
Collapse
|
47
|
Salazar Mercado SA, Quintero Caleño JD, Rojas Suárez JP. Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. CHEMOSPHERE 2020; 249:126193. [PMID: 32086064 DOI: 10.1016/j.chemosphere.2020.126193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Propanil can produce methemoglobinemia, hemolytic anemia, hepatotoxicity, metabolic disorder and nephrotoxicity. It also has a genotoxic effect, although it is not listed as a carcinogen and it continues to be applied excessively throughout the world. Consequently, in this study the cytogenotoxic effect of propanil was evaluated, using apical root cells of Allium cepa and Lens culinaris. In which, L. culinaris seeds and A. cepa bulbs were subjected to 6 treatments with propanil (2, 4, 6, 8, 10 and 12 mg L-1) and to distilled water as control treatment. Subsequently, the root growth was measured every 24 h for 3 days. Next, the mitotic index and cellular anomalies were determined. Whereby, decreased root development was observed in all treatments. Likewise, greater inhibition of mitosis was evidenced in L. culinaris compared to A. cepa. In addition, chromosomal abnormalities, such as nucleus absence, sticky chromosomes in metaphase and binucleated cells, were present in most of the treatments. Thus, the presence of micronuclei and the results of L. culinaris, indicate the high cytogenotoxicity of propanil and the feasibility of this species as bioindicator.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Department of Biology, Universidad Francisco de Paula Santander, Avenida Gran Colombia No. 12E-96B Colsag, San José de Cúcuta, Colombia.
| | | | - Jhan Piero Rojas Suárez
- Department of Civil Constructions, Roads, Transportation, Hydraulics and Fluids, Universidad Francisco de Paula Santander, Cúcuta, Colombia.
| |
Collapse
|
48
|
Megally Abdo NY, Samir EM, Mohareb RM. Synthesis and evaluation of novel 4
H
‐pyrazole and thiophene derivatives derived from chalcone as potential anti‐proliferative agents, Pim‐1 kinase inhibitors, and PAINS. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadia Y. Megally Abdo
- Chemistry Department, Faculty of EducationAlexandria University Alexandria A. R. Egypt
| | - Eman M. Samir
- Department of Organic Chemistry, National Organization for Drug Control & Research (NODCAR), P.O. 29 Cairo A. R. Egypt
| | - Rafat M. Mohareb
- Department of Chemistry, Faculty of ScienceCairo University Cairo A. R. Egypt
| |
Collapse
|
49
|
Licochalcone A-Induced Apoptosis Through the Activation of p38MAPK Pathway Mediated Mitochondrial Pathways of Apoptosis in Human Osteosarcoma Cells In Vitro and In Vivo. Cells 2019; 8:cells8111441. [PMID: 31739642 PMCID: PMC6912226 DOI: 10.3390/cells8111441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Licochalcone A (LicA) is isolated from the roots of Glycyrrhiza glabra and possesses antitumor and anti-invasive activities against several tumor cells. However, the antitumor effects of LicA on human osteosarcoma cells have yet to be demonstrated either in vitro or in vivo. METHODS Cell viability was measured by MTT assay. Apoptosis and mitochondrial dysfunction were detected with Annexin V/PI staining and JC-1 staining by flow cytometry. The expressions of caspase- or mitochondrial-related proteins were demonstrated by western blotting. Antitumor effect of LicA on 143B xenograft mice in vivo. RESULTS LicA could inhibit cell proliferation and induce apoptosis in human osteosarcoma cells, as evidenced by a decrease in cell viability, loss of mitochondrial membrane potentials, and activation of caspases. LicA treatment substantially reduced the expression of Bcl-2 and Mcl-1 and increased the expression of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP, and Bax in HOS and U2OS cells. Moreover, mitochondrial membrane potential and apoptosis suppression mediated by Z-VAD or tauroursodeoxycholic acid significantly reduced LicA-induced mitochondria-dependent apoptosis. The study also determined that LicA treatment induced p38MAPK phosphorylation, but siRNA-p38 or BIRB796 substantially reversed cell viability through the inhibition of mitochondria-dependent apoptosis pathways. Finally, an in vivo study revealed that LicA significantly inhibited 143B xenograft tumor growth. CONCLUSIONS These findings demonstrate that LicA has antitumor activities against human osteosarcoma cells through p38MAPK regulation of mitochondria-mediated intrinsic apoptotic pathways in vitro and in vivo.
Collapse
|
50
|
Yang L, Zhang Y, Yu X. Protective Effect of Obovatol Against MCF-7 Human Breast Adenocarcinoma Cells via Inducing Apoptosis and Cell Cycle Arrest. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.823.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|