1
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Liao Z, Zeng X, Guo X, Shi Q, Tang Z, Li P, Chen C, Chen M, Chen J, Xu J, Cai Y. Targeting the aryl hydrocarbon receptor with FICZ regulates IL-2 and immune infiltration to alleviate Hashimoto's thyroiditis in mice. Eur J Pharmacol 2024; 973:176588. [PMID: 38621508 DOI: 10.1016/j.ejphar.2024.176588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Hashimoto's thyroiditis (HT) is the most frequent autoimmune disorder. Growing work points to the involvement of aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, in the regulation of immune homeostasis. However, the roles of AhR and its ligands in HT remains unclear. In this study, we leveraged public human database analyses to postulate that the AhR expression was predominantly in thyroid follicular cells, correlating significantly with the thyroid infiltration levels of multiple immune cells in HT patients. Using a thyroglobulin-induced HT mouse model and in vitro thyroid follicular epithelial cell cultures, we found a significant downregulation of AhR expression in thyrocytes both in vivo and in vitro. Conversely, activating AhR by FICZ, a natural AhR ligand, mitigated inflammation and apoptosis in thyrocytes in vitro and conferred protection against HT in mice. RNA sequencing (RNA-seq) of thyroid tissues indicated that AhR activation moderated HT-associated immune or inflammatory signatures. Further, immunoinfiltration analysis indicated that AhR activation regulated immune cell infiltration in the thyroid of HT mice, such as suppressing cytotoxic CD8+ T cell infiltration and promoting anti-inflammatory M2 macrophage polarization. Concomitantly, the expression levels of interleukin-2 (IL-2), a lymphokine that downregulates immune responses, were typically decreased in HT but restored upon AhR activation. In silico validation substantiated the binding interaction between AhR and IL-2. In conclusion, targeting the AhR with FICZ regulates IL-2 and immune infiltration to alleviate experimental HT, shedding new light on the therapeutic intervention of this prevalent disease.
Collapse
Affiliation(s)
- Zhengzheng Liao
- Department of Pharmacy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xianzhong Zeng
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, 341000, People's Republic of China
| | - Xiaoling Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qing Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ziyun Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ping Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Cuiyun Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Mengxia Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China.
| | - Yaojun Cai
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
3
|
Marafini I, Monteleone I, Laudisi F, Monteleone G. Aryl Hydrocarbon Receptor Signalling in the Control of Gut Inflammation. Int J Mol Sci 2024; 25:4527. [PMID: 38674118 PMCID: PMC11050475 DOI: 10.3390/ijms25084527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR), a transcription factor activated by many natural and synthetic ligands, represents an important mediator of the interplay between the environment and the host's immune responses. In a healthy gut, AHR activation promotes tolerogenic signals, which help maintain mucosal homeostasis. AHR expression is defective in the inflamed gut of patients with inflammatory bowel diseases (IBD), where decreased AHR signaling is supposed to contribute to amplifying the gut tissue's destructive immune-inflammatory responses. We here review the evidence supporting the role of AHR in controlling the "physiological" intestinal inflammation and summarize the data about the therapeutic effects of AHR activators, both in preclinical mouse models of colitis and in patients with IBD.
Collapse
Affiliation(s)
- Irene Marafini
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Federica Laudisi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Giovanni Monteleone
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
4
|
Wang J, Zhu N, Su X, Yang R. Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett 2024; 582:216582. [PMID: 38065401 DOI: 10.1016/j.canlet.2023.216582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Tumor cells can evade immune surveillance by expressing immune checkpoint molecule ligands, resulting in effective immune cell inactivation. Immune checkpoint blockades (ICBs) have dramatically improved survival of patients with multiple types of cancers. However, responses to ICB immunotherapy are heterogeneous with lower patient response rates. The advances have established that the gut microbiota can be as a promising target to overcome resistance to ICB immunotherapy. Furthermore, some bacterial species have shown to promote improved responses to ICBs. However, gut microbiota is critical in maintaining gut and systemic immune homeostasis. It not only promotes differentiation and function of immunosuppressive immune cells but also inhibits inflammatory cells via gut microbiota derived products such as short chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, which play an important role in tumor immunity. Since the gut microbiota can either inhibit or enhance immune against tumor, it should be a double-edged sword in ICBs against tumor. In this review, we discuss the effects of gut microbiota on immune cells and also tumor cells, especially enhances of gut microbiota on ICB immunotherapy. These discussions can hopefully promote the development of ICB immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
6
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
7
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023; 12:cells12050793. [PMID: 36899929 PMCID: PMC10000530 DOI: 10.3390/cells12050793] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, viruses and phages, inhabits the gastrointestinal tract. This commensal microbiota can contribute to the regulation of host immune response and homeostasis. Alterations of the gut microbiota have been found in many immune-related diseases. The metabolites generated by specific microorganisms in the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, not only affect genetic and epigenetic regulation but also impact metabolism in the immune cells, including immunosuppressive and inflammatory cells. The immunosuppressive cells (such as tolerogenic macrophages (tMacs), tolerogenic dendritic cells (tDCs), myeloid-derived suppressive cells (MDSCs), regulatory T cells (Tregs), regulatory B cells (Breg) and innate lymphocytes (ILCs)) and inflammatory cells (such as inflammatory Macs (iMacs), DCs, CD4 T helper (Th)1, CD4Th2, Th17, natural killer (NK) T cells, NK cells and neutrophils) can express different receptors for SCFAs, Trp and BA metabolites from different microorganisms. Activation of these receptors not only promotes the differentiation and function of immunosuppressive cells but also inhibits inflammatory cells, causing the reprogramming of the local and systemic immune system to maintain the homeostasis of the individuals. We here will summarize the recent advances in understanding the metabolism of SCFAs, Trp and BA in the gut microbiota and the effects of SCFAs, Trp and BA metabolites on gut and systemic immune homeostasis, especially on the differentiation and functions of the immune cells.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ningning Zhu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
8
|
Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites 2022; 12:metabo12090834. [PMID: 36144238 PMCID: PMC9505266 DOI: 10.3390/metabo12090834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The trillions of commensal microorganisms comprising the gut microbiota have received growing attention owing to their impact on host physiology. Recent advances in our understandings of the host–microbiota crosstalk support a pivotal role of microbiota-derived metabolites in various physiological processes, as they serve as messengers in the complex dialogue between commensals and host immune and endocrine cells. In this review, we highlight the importance of tryptophan-derived metabolites in host physiology, and summarize the recent findings on the role of tryptophan catabolites in preserving intestinal homeostasis and fine-tuning immune and metabolic responses. Furthermore, we discuss the latest evidence on the effects of microbial tryptophan catabolites, describe their mechanisms of action, and discuss how perturbations of microbial tryptophan metabolism may affect the course of intestinal and extraintestinal disorders, including inflammatory bowel diseases, metabolic disorders, chronic kidney diseases, and cardiovascular diseases.
Collapse
|
9
|
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells 2022; 11:2296. [PMID: 35892593 PMCID: PMC9330295 DOI: 10.3390/cells11152296] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
Abstract
Tryptophan is an essential amino acid from dietary proteins. It can be metabolized into different metabolites in both the gut microbiota and tissue cells. Tryptophan metabolites such as indole-3-lactate (ILA), indole-3-acrylate (IAC), indole-3-propionate (IPA), indole-3-aldehyde (IAID), indoleacetic acid (IAA), indole-3-acetaldehyde and Kyn can be produced by intestinal microorganisms through direct Trp transformation and also, partly, the kynurenine (Kyn) pathway. These metabolites play a critical role in maintaining the homeostasis of the gut and systematic immunity and also potentially affect the occurrence and development of diseases such as inflammatory bowel diseases, tumors, obesity and metabolic syndrome, diseases in the nervous system, infectious diseases, vascular inflammation and cardiovascular diseases and hepatic fibrosis. They can not only promote the differentiation and function of anti-inflammatory macrophages, Treg cells, CD4+CD8αα+ regulatory cells, IL-10+ and/or IL-35+B regulatory cells but also IL-22-producing innate lymphoid cells 3 (ILC3), which are involved in maintaining the gut mucosal homeostasis. These findings have important consequences in the immunotherapy against tumor and other immune-associated diseases. We will summarize here the recent advances in understanding the generation and regulation of tryptophan metabolites in the gut microbiota, the role of gut microbiota-derived tryptophan metabolites in different immune cells, the occurrence and development of diseases and immunotherapy against immune-associated diseases.
Collapse
Affiliation(s)
- Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Jia L, Wu G, Alonso S, Zhao C, Lemenze A, Lam YY, Zhao L, Edelblum KL. A transmissible γδ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection. Mucosal Immunol 2022; 15:772-782. [PMID: 35589986 PMCID: PMC9262869 DOI: 10.1038/s41385-022-00522-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) serve as a first line of defense against luminal microbes. Although the presence of an intact microbiota is dispensable for γδ IEL development, several microbial factors contribute to the maintenance of this sentinel population. However, whether specific commensals influence population of the γδ IEL compartment under homeostatic conditions has yet to be determined. We identified a novel γδ IEL hyperproliferative phenotype that arises early in life and is characterized by expansion of multiple Vγ subsets. Horizontal transfer of this hyperproliferative phenotype to mice harboring a phenotypically normal γδ IEL compartment was prevented following antibiotic treatment, thus demonstrating that the microbiota is both necessary and sufficient for the observed increase in γδ IELs. Further, we identified two guilds of small intestinal or fecal bacteria represented by 12 amplicon sequence variants (ASV) that are strongly associated with γδ IEL expansion. Using intravital microscopy, we find that hyperproliferative γδ IELs also exhibit increased migratory behavior leading to enhanced protection against bacterial infection. These findings reveal that transfer of a specific group of commensals can regulate γδ IEL homeostasis and immune surveillance, which may provide a novel means to reinforce the epithelial barrier.
Collapse
Affiliation(s)
- Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Guojun Wu
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Sara Alonso
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Cuiping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Yan Y. Lam
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ,Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Liping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ,Correspondence: Karen Edelblum, 205 South Orange Ave, Cancer Center G1228, Newark, NJ 07103, tel: 973-972-3071,
| |
Collapse
|
11
|
Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clin Rev Allergy Immunol 2021; 59:382-390. [PMID: 32279195 DOI: 10.1007/s12016-020-08789-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is widely expressed in immune and non-immune cells of the gut and its activation has been correlated to the outcome of inflammatory bowel diseases (IBD). In ulcerative colitis and Crohn's disease, there is an excessive chronic inflammation with massive accumulation of leukocytes in the gut, in an attempt to constrain the invasion of pathogenic microorganisms on the damaged organ. Accordingly, it is known that dietary components, xenobiotics, and some chemicals or metabolites can activate AHR and induce the modulation of inflammatory responses. In fact, the AHR triggering by specific ligands during inflammatory conditions results in decreased IFNγ, IL-6, IL-12, TNF, IL-7, and IL-17, along with reduced microbial translocation and fibrosis in the gut. Moreover, upon AHR activation, there are increased regulatory mechanisms such as IL-10, IL-22, prostaglandin E2, and Foxp3, besides the production of anti-microbial peptides and epithelial repair. Most interestingly, commensal bacteria or their metabolites may also activate this receptor, thus contributing to the restoration of gut normobiosis and homeostasis. In line with that, Lactobacillus reuteri, Lactobacillus bulgaricus, or microbial products such as tryptophan metabolites, indole-3-pyruvic acid, urolithin A, short-chain fatty acids, dihydroxyquinoline, and others may regulate the inflammation by mechanisms dependent on AHR activation. Hence, here we discussed the potential modulatory role of AHR on intestinal inflammation, focused on the reestablishment of homeostasis through the receptor triggering by microbial metabolites. Finally, the development of AHR-based therapies derived from bacteria products could represent an important future alternative for controlling IBD.
Collapse
Affiliation(s)
- Larissa Pernomian
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Murillo Duarte-Silva
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
12
|
Gasaly N, de Vos P, Hermoso MA. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Front Immunol 2021; 12:658354. [PMID: 34122415 PMCID: PMC8187770 DOI: 10.3389/fimmu.2021.658354] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The diverse and dynamic microbial community of the human gastrointestinal tract plays a vital role in health, with gut microbiota supporting the development and function of the gut immune barrier. Crosstalk between microbiota-gut epithelium and the gut immune system determine the individual health status, and any crosstalk disturbance may lead to chronic intestinal conditions, such as inflammatory bowel diseases (IBD) and celiac disease. Microbiota-derived metabolites are crucial mediators of host-microbial interactions. Some beneficially affect host physiology such as short-chain fatty acids (SCFAs) and secondary bile acids. Also, tryptophan catabolites determine immune responses, such as through binding to the aryl hydrocarbon receptor (AhR). AhR is abundantly present at mucosal surfaces and when activated enhances intestinal epithelial barrier function as well as regulatory immune responses. Exogenous diet-derived indoles (tryptophan) are a major source of endogenous AhR ligand precursors and together with SCFAs and secondary bile acids regulate inflammation by lowering stress in epithelium and gut immunity, and in IBD, AhR expression is downregulated together with tryptophan metabolites. Here, we present an overview of host microbiota-epithelium- gut immunity crosstalk and review how microbial-derived metabolites contribute to host immune homeostasis. Also, we discuss the therapeutic potential of bacterial catabolites for IBD and celiac disease and how essential dietary components such as dietary fibers and bacterial tryptophan catabolites may contribute to intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Barroso A, Mahler JV, Fonseca-Castro PH, Quintana FJ. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol 2021; 18:259-268. [PMID: 33408340 PMCID: PMC8027889 DOI: 10.1038/s41423-020-00585-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified as the receptor for dioxin. Almost half a century after its discovery, AHR is now recognized as a receptor for multiple physiological ligands, with important roles in health and disease. In this review, we discuss the role of AHR in the gut-brain axis and its potential value as a therapeutic target for immune-mediated diseases.
Collapse
Affiliation(s)
- Andreia Barroso
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - João Vitor Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro Henrique Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
Yang SL, Tan HX, Niu TT, Li DJ, Wang HY, Li MQ. Kynurenine promotes the cytotoxicity of NK cells through aryl hydrocarbon receptor in early pregnancy. J Reprod Immunol 2021; 143:103270. [PMID: 33421663 DOI: 10.1016/j.jri.2020.103270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/25/2020] [Accepted: 12/27/2020] [Indexed: 12/31/2022]
Abstract
During early pregnancy, decidual NK (dNK) cells play indispensable roles in many processes including the decidualization, the implantation, and the maintenance of immune tolerance. Abnormal cytotoxic activity of NK cells can cause recurrent spontaneous abortion (RSA), while the regulatory mechanism of NK cytotoxicity remains to be unclear. In this study, we found that kynurenine in decidua and villus was in a comparable level between patients with RSA and normal pregnancy women. However, the aryl hydrocarbon receptor (AhR) in decidual NK cells was significantly increased in RSA. Compared with AhR- NK cells, cytotoxic activity-related molecules (NKP30, NKP46, NKG2D, perforin, granzyme B and IFN-γ) was highly expressed in both AhR+ peripheral and decidual NK cells, and kynurenine stimulation promoted the expression of killer receptors and the cytoplasmic granules in an AhR-dependent manner. Stimulation with TNF-α, IL-β and LPS upregulated the AhR expression in dNK cells in vitro. These results indicate that kyn/AhR signal enhances the cytotoxicity of NK cells, and increased expression of AhR may be an induction factor of RSA.
Collapse
Affiliation(s)
- Shao-Liang Yang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Hai-Xia Tan
- Department of Obstetrics and Gynecology, Zhangye People's Hospital of HeXi College, Zhangye, Gansu, 734000, People's Republic of China
| | - Tian-Tian Niu
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hai-Yan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
15
|
Rannug A. How the AHR Became Important in Intestinal Homeostasis-A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. Int J Mol Sci 2020; 21:ijms21165681. [PMID: 32784381 PMCID: PMC7461111 DOI: 10.3390/ijms21165681] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ever since the 1970s, when profound immunosuppression caused by exogenous dioxin-like compounds was first observed, the involvement of the aryl hydrocarbon receptor (AHR) in immunomodulation has been the focus of considerable research interest. Today it is established that activation of this receptor by its high-affinity endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ), plays important physiological roles in maintaining epithelial barriers. In the gut lumen, the small amounts of FICZ that are produced from L-tryptophan by microbes are normally degraded rapidly by the inducible cytochrome P4501A1 (CYP1A1) enzyme. This review describes how when the metabolic clearance of FICZ is attenuated by inhibition of CYP1A1, this compound passes through the intestinal epithelium to immune cells in the lamina propria. FICZ, the level of which is thus modulated by this autoregulatory loop involving FICZ itself, the AHR and CYP1A1, plays a central role in maintaining gut homeostasis by potently up-regulating the expression of interleukin 22 (IL-22) by group 3 innate lymphoid cells (ILC3s). IL-22 stimulates various epithelial cells to produce antimicrobial peptides and mucus, thereby both strengthening the epithelial barrier against pathogenic microbes and promoting colonization by beneficial bacteria. Dietary phytochemicals stimulate this process by inhibiting CYP1A1 and causing changes in the composition of the intestinal microbiota. The activity of CYP1A1 can be increased by other microbial products, including the short-chain fatty acids, thereby accelerating clearance of FICZ. In particular, butyrate enhances both the level of the AHR and CYP1A1 activity by stimulating histone acetylation, a process involved in the daily cycle of the FICZ/AHR/CYP1A1 feedback loop. It is now of key interest to examine the potential involvement of FICZ, a major physiological activator of the AHR, in inflammatory disorders and autoimmunity.
Collapse
Affiliation(s)
- Agneta Rannug
- Karolinska Institutet, Institute of Environmental Medicine, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Ma H, Qiu Y, Yang H. Intestinal intraepithelial lymphocytes: Maintainers of intestinal immune tolerance and regulators of intestinal immunity. J Leukoc Biol 2020; 109:339-347. [PMID: 32678936 PMCID: PMC7891415 DOI: 10.1002/jlb.3ru0220-111] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Intestinal immune tolerance is essential for the immune system, as it prevents abnormal immune responses to large quantities of antigens from the intestinal lumen, such as antigens from commensal microorganisms, and avoids self‐injury. Intestinal intraepithelial lymphocytes (IELs), a special group of mucosal T lymphocytes, play a significant role in intestinal immune tolerance. To accomplish this, IELs exhibit a high threshold of activation and low reactivity to most antigens from the intestinal lumen. In particular, CD8αα+TCRαβ+ IELs, TCRγδ+ IELs, and CD4+CD8αα+ IELs show great potential for maintaining intestinal immune tolerance and regulating intestinal immunity. However, if the intestinal microenvironment becomes abnormal or intestinal tolerance is broken, IELs may be activated abnormally and become pathogenic.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 2019; 19:184-197. [PMID: 30718831 DOI: 10.1038/s41577-019-0125-8] [Citation(s) in RCA: 682] [Impact Index Per Article: 136.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The environment, diet, microbiota and body's metabolism shape complex biological processes in health and disease. However, our understanding of the molecular pathways involved in these processes is still limited. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that integrates environmental, dietary, microbial and metabolic cues to control complex transcriptional programmes in a ligand-specific, cell-type-specific and context-specific manner. In this Review, we summarize our current knowledge of AHR and the transcriptional programmes it controls in the immune system. Finally, we discuss the role of AHR in autoimmune and neoplastic diseases of the central nervous system, with a special focus on the gut immune system, the gut-brain axis and the therapeutic potential of targeting AHR in neurological disorders.
Collapse
|
18
|
Aryl hydrocarbon receptor activation alleviates dextran sodium sulfate-induced colitis through enhancing the differentiation of goblet cells. Biochem Biophys Res Commun 2019; 514:180-186. [PMID: 31029423 DOI: 10.1016/j.bbrc.2019.04.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The intestinal inflammation induces disruption of the intestinal barrier function and leads to bacteria invasion. Accumulating evidences revealed that the aryl hydrocarbon receptor (AhR) plays a vital role in maintaining the intestinal barrier function. However, the precise mechanism remains to be unclear. METHODS Adult C57BL/6J mice were randomly divided into three groups: Sham, DSS and DSS + 6-formylindolo (3, 2-b) carbazole (FICZ)group. The colons and epithelial cell were harvested for histological examination, pro-inflammatory cytokines detection, bacterial load analysis, immunohistochemistry and Muc2 protein analysis. Under physiological condition, AhRKO model and FICZ treatment were used to evaluate the roles of AhR in the differentiation of goblet cells and the expression of Muc2 in mice. In vitro, we used HT29 mol to research the signaling pathway. RESULTS AhR activation by FICZ could increase the Muc2 expression and the number of goblet cells and reduce bacterial infiltration to ameliorate DSS-induced Colitis. Under physiological conditions, the treatment of FICZ promote the differentiation of goblet cell and the expression of Muc2 and inhibit the notch-signaling. Genetic deletion of AhR led to the loss of goblet cells and the decrease of Muc2 expression and enhance the notch-signaling. In HT29 cells, the differentiation of goblet cell meditated by AhR can be abolished by the inhibitor of AhR, pErk1/2 and knocking-down AhR. CONCLUSION FICZ promoted the differentiation of goblet cell through AhR-pErk1/2 signaling pathway and ameliorate DSS-induced Colitis.
Collapse
|
19
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
20
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
21
|
Ehrlich AK, Pennington JM, Bisson WH, Kolluri SK, Kerkvliet NI. TCDD, FICZ, and Other High Affinity AhR Ligands Dose-Dependently Determine the Fate of CD4+ T Cell Differentiation. Toxicol Sci 2018; 161:310-320. [PMID: 29040756 PMCID: PMC5837604 DOI: 10.1093/toxsci/kfx215] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
FICZ and TCDD, two high-affinity AhR ligands, are reported to have opposite effects on T cell differentiation with TCDD inducing regulatory T cells and FICZ inducing Th17 cells. This dichotomy has been attributed to ligand-intrinsic differences in AhR activation, although differences in sensitivity to metabolism complicate the issue. TCDD is resistant to AhR-induced metabolism and produces sustained AhR activation following a single dose in the μg/kg range, whereas FICZ is rapidly metabolized and AhR activation is transient. Nonetheless, prior studies comparing FICZ with TCDD have generally used the same 10-50 μg/kg dose range, and thus the two ligands would not equivalently activate AhR. We hypothesized that high-affinity AhR ligands can promote CD4+ T cell differentiation into both Th17 cells and Tregs, with fate depending on the extent and duration of AhR activation. We compared the immunosuppressive effects of TCDD and FICZ, along with two other rapidly metabolized ligands (ITE and 11-Cl-BBQ) in an acute alloresponse mouse model. The dose and timing of administration of each ligand was optimized for TCDD-equivalent Cyp1a1 induction. When optimized, all of the ligands suppressed the alloresponse in conjunction with the induction of Foxp3- Tr1 cells on day 2 and the expansion of natural Foxp3+ Tregs on day 10. In contrast, a low dose of FICZ induced transient expression of Cyp1a1 and did not induce Tregs or suppress the alloresponse but enhanced IL-17 production. Interestingly, low doses of the other ligands, including TCDD, also increased IL-17 production on day 10. These findings support the conclusion that the dose and the duration of AhR activation by high-affinity AhR ligands are the primary factors driving the fate of T cell differentiation.
Collapse
Affiliation(s)
- Allison K Ehrlich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
| | - Jamie M Pennington
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
| | - William H Bisson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
| | - Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
22
|
Magnolol, a Natural Polyphenol, Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice. Molecules 2017; 22:molecules22071218. [PMID: 28726741 PMCID: PMC6152296 DOI: 10.3390/molecules22071218] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Magnolol is a lignan with anti-inflammatory activity identified in Magnolia officinalis. Ulcerative colitis (UC), one of the types of inflammatory bowel disease (IBD), is a disease that causes inflammation and ulcers in the colon. To investigate the effect of magnolol in dextran sulfate sodium (DSS)-induced experimental UC model, male C57 mice were treated with 2% DSS drinking water for 5 consecutive days followed by intragastric administration with magnolol (5, 10 and 15 mg/kg) daily for 7 days. The results showed that magnolol significantly attenuated disease activity index, inhibited colonic shortening, reduced colonic lesions and suppressed myeloperoxidase (MPO) activity. Moreover, colonic pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) induced by colitis were dramatically decreased by magnolol. To further unveil the metabolic signatures upon magnolol treatment, mass spectrometry-based metabolomic analysis of the small molecular metabolites in mice serum were performed. Compared with controls, abnormality of serum metabolic phenotypes in DSS-treated mice were effectively reversed by different doses of magnolol. In particular, magnolol treatment effectively elevated the serum levels of tryptophan metabolites including kynurenic acid (KA), 5-hydroxyindoleacetic acid, indoleacetic acid (IAA), indolelactic acid and indoxylsulfuric acid, which are potential aryl hydrocarbon receptor (AHR) ligands to impact colitis. These findings suggest that magnolol exerts anti-inflammatory effect on DSS-induced colitis and its underlying mechanisms are associated with the restoring of tryptophan metabolites that inhibit the colonic inflammation.
Collapse
|