1
|
Luna Lazo RE, Stelmach Alves FM, Domingos EL, de Fatima Cobre A, Farago PV, Cruz L, Tasca T, Pontarolo R, Ferreira LM. Advances in soft nanoparticle-based platforms for human and veterinary trichomoniasis therapy: A scoping review. Eur J Pharm Biopharm 2025:114638. [PMID: 39832718 DOI: 10.1016/j.ejpb.2025.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
This scoping review focuses on drug delivery systems based on soft materials designed for the administration of drugs with anti-Trichomonas vaginalis activity. It primarily examines their use in addressing human trichomoniasis, exploring their physicochemical characteristics, in vitro and in vivo evaluation and identifying existing challenges and gaps. Given the economic burden and the One Health approach, formulations developed aiming at treating animal infections - cattle and poultry - were also discussed. The review involved searching electronic databases, such as PubMed, Scopus, and Web of Science, to find studies published until May 2024; out of the 103 articles retrieved, 18 fulfilled the eligibility criteria. This study investigated soft-nanoparticle formulations, including polymericand lipid-based systems, and their incorporation into suitable formulations for topical application, including hydrogels and polymeric films. Additionally, the discussion covered toxicology and highlighted the knowledge gaps related to the potential use of these formulations in humans. Anti-trichomonas soft nano-based formulations emerge as promising candidates for treating gynecological and animal infections. In conclusion, further preclinical testing is necessary, as none of the formulations have progressed to human clinical trials and have only been evaluated in animal models.
Collapse
Affiliation(s)
- Raul Edison Luna Lazo
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Fernando Miguel Stelmach Alves
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Eric Luiz Domingos
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Alexandre de Fatima Cobre
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Paulo Vitor Farago
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roberto Pontarolo
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Luana Mota Ferreira
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Toader C, Radoi MP, Covlea CA, Covache-Busuioc RA, Ilie MM, Glavan LA, Corlatescu AD, Costin HP, Gica MD, Dobrin N. Cerebral Aneurysm: Filling the Gap Between Pathophysiology and Nanocarriers. Int J Mol Sci 2024; 25:11874. [PMID: 39595942 PMCID: PMC11593836 DOI: 10.3390/ijms252211874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Intracranial aneurysms, characterized by abnormal dilations of cerebral arteries, pose significant health risks due to their potential to rupture, leading to subarachnoid hemorrhage with high mortality and morbidity rates. This paper aim is to explore the innovative application of nanoparticles in treating intracranial aneurysms, offering a promising avenue for enhancing current therapeutic strategies. We took into consideration the pathophysiology of cerebral aneurysms, focusing on the role of hemodynamic stress, endothelial dysfunction, and inflammation in their development and progression. By comparing cerebral aneurysms with other types, such as aortic aneurysms, we identify pathophysiological similarities and differences that could guide the adaptation of treatment approaches. The review highlights the potential of nanoparticles to improve drug delivery, targeting, and efficacy while minimizing side effects. We discuss various nanocarriers, including liposomes and polymeric nanoparticles, and their roles in overcoming biological barriers and enhancing therapeutic outcomes. Additionally, we discuss the potential of specific compounds, such as Edaravone and Tanshinone IIA, when used in conjunction with nanocarriers, to provide neuroprotective and anti-inflammatory benefits. By extrapolating insights from studies on aortic aneurysms, new research directions and therapeutic strategies for cerebral aneurysms are proposed. This interdisciplinary approach underscores the potential of nanoparticles to positively influence the management of intracranial aneurysms, paving the way for personalized treatment options that could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Christian-Adelin Covlea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Milena Monica Ilie
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Horia-Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Maria-Daria Gica
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | | |
Collapse
|
3
|
Chauhan S, Tomar RS. Unveiling the molecular networks underlying cellular impairment in Saccharomyces cerevisiae: investigating the effects of magnesium oxide nanoparticles on cell wall integrity and endoplasmic reticulum stress response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30149-30162. [PMID: 38602634 DOI: 10.1007/s11356-024-33265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Nanoparticles, particularly magnesium oxide nanoparticles (MgO-NPs), are increasingly utilized in various fields, yet their potential impact on cellular systems remains a topic of concern. This study aimed to comprehensively investigate the molecular mechanisms underlying MgO-NP-induced cellular impairment in Saccharomyces cerevisiae, with a focus on cell wall integrity, endoplasmic reticulum (ER) stress response, mitochondrial function, lipid metabolism, autophagy, and epigenetic alterations. MgO-NPs were synthesized through a chemical reduction method, characterized for morphology, size distribution, and elemental composition. Concentration-dependent toxicity assays were conducted to evaluate the inhibitory effect on yeast growth, accompanied by propidium iodide (PI) staining to assess membrane damage. Intracellular reactive oxygen species (ROS) accumulation was measured, and chitin synthesis, indicative of cell wall perturbation, was examined along with the expression of chitin synthesis genes. Mitochondrial function was assessed through Psd1 localization, and ER structure was analyzed using dsRed-HDEL marker. The unfolded protein response (UPR) pathway activation was monitored, and lipid droplet formation and autophagy induction were investigated. Results demonstrated a dose-dependent inhibition of yeast growth by MgO-NPs, with concomitant membrane damage and ROS accumulation. Cell wall perturbation was evidenced by increased chitin synthesis and upregulation of chitin synthesis genes. MgO-NPs impaired mitochondrial function, disrupted ER structure, and activated the UPR pathway. Lipid droplet formation and autophagy were induced, indicating cellular stress responses. Additionally, MgO-NPs exhibited differential cytotoxicity on histone mutant strains, implicating specific histone residues in cellular response to nanoparticle stress. Immunoblotting revealed alterations in histone posttranslational modifications, particularly enhanced methylation of H3K4me. This study provides comprehensive insights into the multifaceted effects of MgO-NPs on S. cerevisiae, elucidating key molecular pathways involved in nanoparticle-induced cellular impairment. Understanding these mechanisms is crucial for assessing nanoparticle toxicity and developing strategies for safer nanoparticle applications.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India.
| |
Collapse
|
4
|
Saraswat I, Goel A. Cervical Cancer Therapeutics: An In-depth Significance of Herbal and Chemical Approaches of Nanoparticles. Anticancer Agents Med Chem 2024; 24:627-636. [PMID: 38299417 DOI: 10.2174/0118715206289468240130051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Cervical cancer emerges as a prominent health issue, demanding attention on a global level for women's well-being, which frequently calls for more specialized and efficient treatment alternatives. Traditional therapies may have limited tumour targeting and adverse side effects. Recent breakthroughs have induced a transformative shift in the strategies employed against cervical cancer. biocompatible herbal nanoparticles and metallic particles made of gold, silver, and iron have become promising friends in the effort to fight against this serious disease and understand the possibility of these nanoparticles for targeted medication administration. this review article delves into the latest advancements in cervical cancer research. The safety and fabrication of these nanomaterials and their remarkable efficacy against cervical tumour spots are addressed. This review study, in short, provides an extensive introduction to the fascinating field of metallic and herbal nanoparticles in cervical cancer treatment. The information that has been examined points to a bright future in which women with cervical cancer may experience fewer side effects, more effective therapy, and an improved quality of life. This review holds promise and has the potential to fundamentally reshape the future of cervical cancer treatment by addressing urgent issues and unmet needs in the field.
Collapse
Affiliation(s)
- Istuti Saraswat
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
5
|
Namuga C, Ocan M, Kinengyere AA, Richard S, Namisango E, Muwonge H, Kirabira JB, Lawrence M, Obuku EA. Efficacy of nano encapsulated herbal extracts in the treatment of induced wounds in animal models: a systematic review protocol. Syst Rev 2023; 12:215. [PMID: 37968731 PMCID: PMC10652619 DOI: 10.1186/s13643-023-02370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Wounds inflict pain and affect human health causing high expenditure on treatment and management. Herbal crude extracts are used in traditional medicine as a treatment for wounds and other illnesses. However, the progress in the use of plants has been deterred due to their poor solubility and poor bioavailability requiring administration at high doses. It has been established that nanoencapsulation of herbal products in nanocarriers (size 1 nm to 100 nm) such as nanofibers, nanoparticles, nanospheres, and nanoliposomes greatly improves their efficacy. Due to their small and large surface area, nanocarriers are more biologically active, improve bioavailability, protect the drug from deterioration, and release it to the targeted site in a sustainable manner. AIM The review aims to collate and appraise evidence on the efficacy of nano encapsulated herbal extracts in the treatment of induced wounds in animal models. METHODS The review will be protocol-driven and conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis for Protocols (PRISMA-P) and protocol guidelines for systematic review and meta-analysis for animal intervention studies. The final review will be conducted and reported with reference to PRISMA 2020 statement. Studies will be searched in Pub Med, ProQuest, Web of Science, Medline Ovid, EMBASE, and Google Scholar. The PRISMA flow criteria will be followed in screening the articles for inclusion. Data extraction form will be designed in Excel spreadsheet 2013 and data extracted based on the primary and secondary outcomes. Risk of bias assessment will be done using SYRCLE's risk of bias tool for animal studies. Data analysis will be done using narrative and quantitative synthesis. EXPECTED RESULTS We hope to make meaningful comparisons between the effectiveness of the herb-loaded nanomaterials and other interventions (controls) in the selected studies, based on the primary and secondary outcome measures. We expect that these findings to inform clinical practice on whether preclinical studies show enough quality evidence on the efficacy and safety of herbal-loaded nanomaterials that can be translated into clinical trials and further research. SYSTEMIC REVIEW REGISTRATION PROSPERO 330330. The protocol was submitted on the 11th of May 2022.
Collapse
Affiliation(s)
- Catherine Namuga
- Department of Polymer, Textile and Industrial Engineering, Busitema University, Tororo, P. O. Box 256, Uganda.
- Department of Mechanical Engineering, Makerere University, College of Engineering, Design, Art and Technology, Kampala, P.O. Box 7072, Uganda.
| | - Moses Ocan
- Department of Pharmacology, Makerere University College of Health Sciences, School of Biomedical Sciences, P.O. Box 7072, Kampala, Uganda
- Department of Medicine, Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Alison A Kinengyere
- Department of Medicine, Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- Albert Cook Library, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Ssenono Richard
- Department of Medicine, Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- Infectious Diseases Institute, Makerere University, P. O. Box 22418, Kampala, Uganda
| | - Eve Namisango
- Department of Medicine, Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- Clinical Epidemiology Unit, Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Haruna Muwonge
- Department of Physiology, Makerere University, College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- Department of Physiology, Habib Medical School, Islamic University in Uganda (IUIU), P.O Box 7689, Kampala, Uganda
| | - John Baptist Kirabira
- Department of Mechanical Engineering, Makerere University, College of Engineering, Design, Art and Technology, Kampala, P.O. Box 7072, Uganda
| | - Mugisha Lawrence
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Ekwaro A Obuku
- Department of Medicine, Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| |
Collapse
|
6
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
7
|
What function of nanoparticles is the primary factor for their hyper-toxicity? Adv Colloid Interface Sci 2023; 314:102881. [PMID: 36934512 DOI: 10.1016/j.cis.2023.102881] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Nanomaterials have applications in environmental protection, hygiene, medicine, agriculture, and the food industry due to their enhanced bio-efficacy/toxicity as science and technology have progressed, notably nanotechnology. The extension in the use of nanoparticles in day-to-day products and their excellent efficacy raises worries about safety concerns associated with their use. Therefore, to understand their safety concerns and find the remedy, it is imperative to understand the rationales for their enhanced toxicity at low concentrations to minimize their potential side effects. The worldwide literature quotes different nanoparticle functions responsible for their enhanced bio-efficacy/ toxicity. Since the literature on the comparative toxicity study of nanoparticles of different shapes and sizes having different other physic-chemical properties like surface areas, surface charge, solubility, etc., evident that the nanoparticle's toxicity is not followed the fashion according to their shape, size, surface area, surface charge, solubility, and other Physico-chemical properties. It raises the question then what function of nanoparticle is the primary factor for their hyper toxicity. Why do non-spherical and large-sized nanoparticles show the same or higher toxicity to the same or different cell line or test organism instead of having lower surface area, surface charge, larger size, etc., than their corresponding spherical and smaller-sized nanoparticles? Are these factors a secondary, not primary, factor for nanoparticles hyper-toxicity? If so, what function of nanoparticles is the primary function for their hyper-toxicity? Therefore, in this article, literature related to the comparative toxicity of nanoparticles was thoroughly studied, and a hypothesis is put forth to address the aforesaid question, that the number of atoms/ions/ molecules per nanoparticles is the primary function of nanoparticles toxicity.
Collapse
|
8
|
Mishra S, Jayronia S, Tyagi LK, Kohli K. Targeted Delivery Strategies of Herbal-Based Nanogels: Advancements and Applications. Curr Drug Targets 2023; 24:1260-1270. [PMID: 37953621 DOI: 10.2174/0113894501275800231103063853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023]
Abstract
The objective of this review is to thoroughly investigate herbal nano gels as a promising drug delivery approach for the management of various chronic and acute disorders. Herbal nano gels are a novel and promising drug delivery technique, offering special benefits for better therapeutic efficacy. This review offers a comprehensive analysis of the herbal nano gels with a particular emphasis on their evaluation concerning conventional dosage forms, polymer selection criteria, drug release mechanisms, and applications. The comparison study demonstrates that herbal nano gels have different benefits over conventional dose forms. In the areas of oral administration for improved bioavailability and targeted delivery to the gastrointestinal tract, topical drug delivery for dermatological conditions, and targeted delivery strategies for the site-specific treatment of cancer, inflammatory diseases, and infections, they demonstrate encouraging results in transdermal drug delivery for systemic absorption. A promising platform for improved medication delivery and therapeutic effectiveness is provided by herbal nanogels. Understanding drug release mechanisms further contributes to the controlled and sustained delivery of herbal therapeutics. Some of the patents are discussed and the comparative analysis showcases their superiority over conventional dosage forms, and the polymer selection criteria ensure the design of efficient and optimized formulations. Herbal-based nano gels have become a potential approach for improving drug administration. They provide several advantages such as better stability, targeted delivery, and controlled release of therapeutic components. Herbal nano gels are a promising therapeutic approach with the ability to combat a wide range of conditions like cancer, wound healing and also improve patient compliance.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Sonali Jayronia
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Lalit Kumar Tyagi
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| |
Collapse
|
9
|
Sun C, Hu K, Mu D, Wang Z, Yu X. The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities. Microorganisms 2022; 10:microorganisms10102080. [PMID: 36296356 PMCID: PMC9609405 DOI: 10.3390/microorganisms10102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, as an emerging material, nanomaterials have rapidly expanded from laboratories to large-scale industrial productions. Along with people's productive activities, these nanomaterials can enter the natural environment of soil, water and atmosphere through various ways. At present, a large number of reports have proved that nanomaterials have certain toxic effects on bacteria, algae, plants, invertebrates, mammalian cell lines and mammals in these environments, but people still know little about the ecotoxicology of nanomaterials. Most relevant studies focus on the responses of model strains to nanomaterials in pure culture conditions, but these results do not fully represent the response of microbial communities to nanomaterials in natural environments. Over the years, the effect of nanomaterials infiltrated into the natural environment on the microbial communities has become a popular topic in the field of nano-ecological environment research. It was found that under different environmental conditions, nanomaterials have various effects on the microbial communities. The medium; the coexisting pollutants in the environment and the structure, particle size and surface modification of nanomaterials may cause changes in the structure and function of microbial communities. This paper systematically summarizes the impacts of different nanomaterials on microbial communities in various environments, which can provide a reference for us to evaluate the impacts of nanomaterials released into the environment on the microecology and has certain guiding significance for strengthening the emission control of nanomaterials pollutants.
Collapse
Affiliation(s)
- Chunshui Sun
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Ke Hu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Dashuai Mu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Zhijun Wang
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiuxia Yu
- College of Marine Science, Shandong University, Weihai 264209, China
- Correspondence:
| |
Collapse
|
10
|
Kaur J, Anwer MK, Sartaj A, Panda BP, Ali A, Zafar A, Kumar V, Gilani SJ, Kala C, Taleuzzaman M. ZnO Nanoparticles of Rubia cordifolia Extract Formulation Developed and Optimized with QbD Application, Considering Ex Vivo Skin Permeation, Antimicrobial and Antioxidant Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041450. [PMID: 35209242 PMCID: PMC8878222 DOI: 10.3390/molecules27041450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box-Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer-Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Ali Sartaj
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif-21944, Saudi Arabia;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al-Jouf 72341, Saudi Arabia; or
| | - Vinay Kumar
- Department of Pharmacology, KIET School of Pharmacy, Delhi-NCR, Meerut Road (NH-58), Ghaziabad 201206, India;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342802, India;
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342802, India
- Correspondence: ; Tel.: +91-725-1892-850
| |
Collapse
|
11
|
Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022; 8:gels8020097. [PMID: 35200478 PMCID: PMC8872030 DOI: 10.3390/gels8020097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study examined the most recent advancements in nanogel production and drug delivery. Phytochemistry is a discipline of chemistry that studies herbal compounds. Herbal substances have aided in the development of innovative remedies for a wide range of illnesses. Several of these compounds are forbidden from being used in medications due to broad medical characteristics and pharmacokinetics. A variety of new technical approaches have been investigated to ameliorate herbal discoveries in the pharmaceutical sector. The article focuses on the historical data for herb-related nanogels that are used to treat a variety of disorders with great patient compliance, delivery rate, and efficacy. Stimulus-responsive nanogels such as temperature responsive and pH-responsive systems are also discussed. Nanogel formulations, which have been hailed as promising targets for drug delivery systems, have the ability to alter the profile of a drug, genotype, protein, peptide, oligosaccharide, or immunogenic substance, as well as its ability to cross biological barriers, biodistribution, and pharmacokinetics, improving efficacy, safety, and patient cooperation.
Collapse
|
12
|
Tong Q, Li T, Jiang L, Wang Z, Qian Y. Nanoparticle, a promising therapeutic strategy for the treatment of infective endocarditis. Anatol J Cardiol 2022; 26:90-99. [PMID: 35190356 PMCID: PMC8878918 DOI: 10.5152/anatoljcardiol.2021.867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 07/30/2023] Open
Abstract
Infective endocarditis (IE) has been recognized as a biofilm-related disease caused by pathogenic microorganisms, such as bacteria and fungi that invade and damage the heart valves and endocardium. There are many difficulties and challenges in the antimicrobial treatment of IE, including multi-drug resistant pathogens, large dose of drug administration with following side effects, and poor prognosis. For the past few years, the development of nanotechnology has promoted the use of nanoparticles as antimicrobial nano-pharmaceuticals or novel drug delivery systems (NDDS) in antimicrobial therapy for chronic infections and biofilm-related infectious disease as these molecules exhibit several advantages. Therefore, nanoparticles have a potential role to play in solving problems in the treatment of IE, including improving antimicrobial activity, increasing drug bioavailability, minimizing frequency of drug administration, and preventing side effects. In this article, we review the latest advances in nanoparticles against drug-resistant bacteria in biofilm and recommends nanoparticles as an alternative strategy to the antibiotic treatment of IE.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Tao Li
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Lu Jiang
- Department of Cardiovascular Surgery, Sichuan Provincial People's University of Electronic Science and Technology of China; Chengdu-China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| |
Collapse
|
13
|
Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals (Basel) 2022; 15:ph15010101. [PMID: 35056157 PMCID: PMC8777838 DOI: 10.3390/ph15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease associated with anatomical changes in the inner retina. Despite tremendous advances in clinical care, there is currently no cure for AMD. This review aims to evaluate the published literature on the therapeutic roles of natural antioxidants in AMD. A literature search of PubMed, Web of Science and Google Scholar for peer-reviewed articles published between 1 January 2011 and 31 October 2021 was undertaken. A total of 82 preclinical and 18 clinical studies were eligible for inclusion in this review. We identified active compounds, carotenoids, extracts and polysaccharides, flavonoids, formulations, vitamins and whole foods with potential therapeutic roles in AMD. We evaluated the integral cellular signaling pathways including the activation of antioxidant pathways and angiogenesis pathways orchestrating their mode of action. In conclusion, we examined the therapeutic roles of natural antioxidants in AMD which warrant further study for application in clinical practice. Our current understanding is that natural antioxidants have the potential to improve or halt the progression of AMD, and tailoring therapeutics to the specific disease stages may be the key to preventing irreversible vision loss.
Collapse
|
14
|
Lim CL, Raju CS, Mahboob T, Kayesth S, Gupta KK, Jain GK, Dhobi M, Nawaz M, Wilairatana P, de Lourdes Pereira M, Patra JK, Paul AK, Rahmatullah M, Nissapatorn V. Precision and Advanced Nano-Phytopharmaceuticals for Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:238. [PMID: 35055257 PMCID: PMC8778544 DOI: 10.3390/nano12020238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Phytopharmaceuticals have been widely used globally since ancient times and acknowledged by healthcare professionals and patients for their superior therapeutic value and fewer side-effects compared to modern medicines. However, phytopharmaceuticals need a scientific and methodical approach to deliver their components and thereby improve patient compliance and treatment adherence. Dose reduction, improved bioavailability, receptor selective binding, and targeted delivery of phytopharmaceuticals can be likely achieved by molding them into specific nano-formulations. In recent decades, nanotechnology-based phytopharmaceuticals have emerged as potential therapeutic candidates for the treatment of various communicable and non-communicable diseases. Nanotechnology combined with phytopharmaceuticals broadens the therapeutic perspective and overcomes problems associated with plant medicine. The current review highlights the therapeutic application of various nano-phytopharmaceuticals in neurological, cardiovascular, pulmonary, and gastro-intestinal disorders. We conclude that nano-phytopharmaceuticals emerge as promising therapeutics for many pathological conditions with good compliance and higher acceptance.
Collapse
Affiliation(s)
- Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chandramathi S. Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Tooba Mahboob
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sunil Kayesth
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India;
| | - Kamal K. Gupta
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India;
| | - Gaurav Kumar Jain
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India; (G.K.J.); (M.D.)
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India; (G.K.J.); (M.D.)
| | - Muhammad Nawaz
- Department of Nano-Medicine, Institute for Research and Medical Consultations ((IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea;
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Private Bag 26, Hobart, TAS 7001, Australia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
15
|
Woon CK, Hui WK, Abas R, Haron MH, Das S, Lin TS. Natural Product-based Nanomedicine: Recent Advances and Issues for the Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1498-1518. [PMID: 34923947 PMCID: PMC9881085 DOI: 10.2174/1570159x20666211217163540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) affects the elderly and is characterized by progressive neurodegeneration caused by different pathologies. The most significant challenges in treating AD include the inability of medications to reach the brain because of its poor solubility, low bioavailability, and the presence of the blood-brain barrier (BBB). Additionally, current evidence suggests the disruption of BBB plays an important role in the pathogenesis of AD. One of the critical challenges in treating AD is the ineffective treatments and their severe adverse effects. Nanotechnology offers an alternative approach to facilitate the treatment of AD by overcoming the challenges in drug transport across the BBB. Various nanoparticles (NP) loaded with natural products were reported to aid in drug delivery for the treatment of AD. The nano-sized entities of NP are great platforms for incorporating active materials from natural products into formulations that can be delivered effectively to the intended action site without compromising the material's bioactivity. The review highlights the applications of medicinal plants, their derived components, and various nanomedicinebased approaches for the treatment of AD. The combination of medicinal plants and nanotechnology may lead to new theragnostic solutions for the treatment of AD in the future.
Collapse
Affiliation(s)
- Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, 47000 Selangor, Malaysia
| | - Wong Kah Hui
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Muhammad Huzaimi Haron
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, 47000 Selangor, Malaysia
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Sultanate of Oman
| | - Teoh Seong Lin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Islam R, Sun L, Zhang L. Biomedical Applications of Chinese Herb-Synthesized Silver Nanoparticles by Phytonanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2757. [PMID: 34685197 PMCID: PMC8539779 DOI: 10.3390/nano11102757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Recent advances in nanotechnology have opened up new avenues for the controlled synthesis of nanoparticles for biomedical and pharmaceutical applications. Chinese herbal medicine is a natural gift to humanity, and it has long been used as an antibacterial and anticancer agent. This study will highlight recent developments in the phytonanotechnological synthesis of Chinese herbal medicines to utilize their bioactive components in biomedical and therapeutic applications. Biologically synthesized silver nanoparticles (AgNPs) have emerged as a promising alternative to chemical and physical approaches for various biomedical applications. The comprehensive rationale of combinational or synergistic effects of Chinese herb-based AgNPs synthesis was investigated with superior physicochemical and biological properties, and their biomedical applications, including antimicrobial and anticancer activity and wound healing properties. AgNPs can damage the cell ultrastructure by triggering apoptosis, which includes the formation of reactive oxygen species (ROS), DNA disintegration, protein inactivation, and the regulation of various signaling pathways. However, the anticancer mechanism of Chinese herbal medicine-based AgNPs is more complicated due to the potential toxicity of AgNPs. Further in-depth studies are required to address Chinese herbs' various bioactive components and AgNPs as a synergistic approach to combat antimicrobial resistance, therapeutic efficiency of drug delivery, and control and prevention of newly emerged diseases.
Collapse
Affiliation(s)
| | - Leming Sun
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (R.I.); (L.Z.)
| | | |
Collapse
|
17
|
Madaan R, Singla RK, Kumar S, Dubey AK, Kumar D, Sharma P, Bala R, Singla S, Shen B. Bergenin - a biologically active scaffold: Nanotechnological perspectives. Curr Top Med Chem 2021; 22:132-149. [PMID: 34649489 DOI: 10.2174/1568026621666211015092654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Bergenin, 4-O-methyl gallic acid glucoside, is a bioactive compound present in various plants belonging to different families. The present work compiles scattered information on pharmacology, structure activity relationship and nanotechnological aspects of bergenin, collected from various electronic databases such as Sci Finder, PubMed, Google scholar, etc. Bergenin has been reported to exhibit hepatoprotective, anti-inflammatory, anticancer, neuroprotective, antiviral and antimicrobial activities. Molecular docking studies have shown that isocoumarin pharmacophore of bergenin is essential for its bioactivities. Bergenin holds a great potential to be used as lead molecule and also as a therapeutic agent for development of more efficacious and safer semisynthetic derivatives. Nanotechnological concepts can be employed to overcome poor bioavailability of bergenin. Finally, it is concluded that bergenin can be emerged as clinically potential medicine in modern therapeutics.
Collapse
Affiliation(s)
- Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab. India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan. China
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala- Punjab. India
| | - Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu. India
| | - Dinesh Kumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu. India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala- Punjab. India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University Punjab. India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi. India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan. China
| |
Collapse
|
18
|
Lacatusu I, Iordache TA, Mihaila M, Mihaiescu DE, Pop AL, Badea N. Multifaced Role of Dual Herbal Principles Loaded-Lipid Nanocarriers in Providing High Therapeutic Efficacity. Pharmaceutics 2021; 13:pharmaceutics13091511. [PMID: 34575585 PMCID: PMC8465057 DOI: 10.3390/pharmaceutics13091511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Although many phytochemicals have been used in traditional medicine, there is a great need to refresh the health benefits and adjust the shortcomings of herbal medicine. In this research, two herbal principles (Diosgenin and Glycyrrhiza glabra extract) coopted in the Nanostructured Lipid Carriers have been developed for improving the most desirable properties of herbal medicine—antioxidant and anti-inflammatory actions. The contribution of phytochemicals, vegetable oils and of lipid matrices has been highlighted by comparative study of size, stability, entrapment efficiency, morphological characteristics, and thermal behavior. According to the in vitro MTS and RTCA results, the dual herbal-NLCs were no cytotoxic toward endothelial cells at concentrations between 25 and 100 µg/mL. A rapid release of Glycyrrhiza glabra and a motivated delay of Diosgenin was detected by the in vitro release experiments. Dual herbal-NLCs showed an elevated ability to annihilate long-life cationic radicals (ABTS•+) and short-life oxygenated radicals (an inhibition of 63.4% ABTS•+, while the ability to capture radical oxygen species reached 96%). The production of pro-inflammatory cytokines was significantly inhibited by the newly herbals-NLC (up to 97.9% inhibition of TNF-α and 62.5% for IL-6). The study may open a new pharmacotherapy horizon; it provides a comprehensive basis for the use of herbal-NLC in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ioana Lacatusu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (T.A.I.); (D.E.M.)
| | - Teodora Alexandra Iordache
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (T.A.I.); (D.E.M.)
| | - Mirela Mihaila
- Virology Institute Stefan S. Nicolau, Romanian Academy, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
| | - Dan Eduard Mihaiescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (T.A.I.); (D.E.M.)
| | - Anca Lucia Pop
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
- RD Center, AC Helcor, Victor Babes St., 430082 Baia Mare, Romania
- Correspondence: (A.L.P.); (N.B.)
| | - Nicoleta Badea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (T.A.I.); (D.E.M.)
- Correspondence: (A.L.P.); (N.B.)
| |
Collapse
|
19
|
Al-Ardi MH. Anti-parasitic activity of nano Citrullus colocynthis and nano Capparis spinose against Trichomonas vaginalis in vitro. J Parasit Dis 2021; 45:845-850. [PMID: 34475668 PMCID: PMC8368443 DOI: 10.1007/s12639-021-01371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022] Open
Abstract
The use of plant extracts and the benefit of their unique properties in treating various pathogens is the return to mother nature, and an attempt to overcome the problems of side effects resulting from the use of chemical drugs and the ability of some pathogens to resist these drugs. Nanotechnology has strengthened the ability of drugs to reach the target and reduced the size and amount of dose needed for treatment. Nano-extracts of Citrullus colocynthis and Capparis spinosa at concentrations of (100, 250 and 500) ppm prepared to the treatment Trichomonas vaginalis in vitro at the time (12, 24, 72) h. Results compared with the use of 0.1% of metronidazole (500 mg). The results showed that the concentrations (100, 250, 500) ppm of C. colocynthis had an inhibitory activity for the growth rate (43.77, 69.15, 89.89) at the time (12, 24 and 72) h, respectively. The inhibitory activity of C. spinosa was (43.18, 67.41, 87.04) at the same time and concentration, compared with metronidazole (43.47, 70.40, 87.04) at the same time. Neither plants showed severe effects in hemolysis. From the results, it can be concluded that either plant can be used as an alternative to metronidazole after completing human and animal tests.
Collapse
Affiliation(s)
- Musafer H. Al-Ardi
- The General Directorate for Education\Al-Qadisiyah, Ministry of Education, Al-Qadisiyah, Iraq
| |
Collapse
|
20
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
21
|
Mkhize Z, Seboletswe PS, Paumo HK, Boniface PK, Katata-Seru LM. Enhanced Antioxidant Efficacy of Nano-Encapsulated Protorhus Longifolia Methanol Extract Stabilized with Eudragit. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study describes the synthesis of Protorhus longifolia methanolic leaf extract-loaded Eudragit nanoparticles (NPs) and assessment of their antioxidant activity comparative to the free methanolic extract. The latter was also analyzed for its total phenolic content (TPC) and total flavonoid content (TFC). The extract-loaded NPs were obtained through the emulsification solvent evaporation process and systematically characterized using the dynamic light scattering, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The antioxidant power was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability of plasma (FRAP) in vitro model systems. Screening of the different classes of secondary metabolites was carried out through chemical reaction tests. Identification of the potential antioxidants was performed using the gas chromatography-mass spectrometry (GC-MS) technique and the database of National Institute Standard and Technology (NIST). The characterization techniques showed spherical-like particles having an average size of 150[Formula: see text]nm and zeta potential of [Formula: see text]22[Formula: see text]mV. The percentage of entrapped methanolic extract was determined to be 83%. The antioxidant assay demonstrated that this methodology persuaded an efficient concentration-dependent potential. This study indicates that nanoformulation of the Protorhus longifolia extracts leads to a suitable system for the enhancement of antioxidant activity. The appraisal of other pharmacological activities of the nano-encapsulated Protorhus longifolia methanol extract is under process.
Collapse
Affiliation(s)
- Zimbili Mkhize
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Pule Silent Seboletswe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Hugues Kamdem Paumo
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Brazil
| | - Lebogang Maureen Katata-Seru
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| |
Collapse
|
22
|
Amin H, Khan A, Makeen HA, Rashid H, Amin I, Masoodi MH, Khan R, Arafah A, Rehman MU. Nanosized delivery systems for plant-derived therapeutic compounds and their synthetic derivative for cancer therapy. PHYTOMEDICINE 2021:655-675. [DOI: 10.1016/b978-0-12-824109-7.00020-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Nandhini S, Ilango K. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach. Res Pharm Sci 2020; 16:103-117. [PMID: 33953779 PMCID: PMC8074810 DOI: 10.4103/1735-5362.305193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/27/2020] [Accepted: 12/18/2020] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Vasicine is a potential bronchodilator and can be used for the effective management of asthma and bronchitis. It has low absorption in the gastrointestinal tract due to its poor solubility thereby low bioavailability. The objective of this research was to develop a novel drug delivery system of vasaka extract to improve its bioavailability by enhancing the solubility and absorption of vasicine. Experimental approach Vasaka-loaded phytosomes were developed and optimized by thin-layer hydration technique using systematic quality by design approach. Box-Behnken design (32 factorial design) using Design-Expert software was employed to optimize phytosome wherein phosphatidylcholine concentration (X1), stirring temperature (X2), and stirring time (X3) were selected as independent variables. Yield (%), particle size (nm), and entrapment efficiency (%) were evaluated as responses. The optimized phytosome was characterized by studying the surface morphology such as FE-SEM and TEM analysis, thermal characteristics by thermal gravimetric analysis and spectral and diffraction studies by FTIR and XRD analysis and studying the dissolution behaviour of phytosome by in vitro release study. Findings/Results The percentage yield, particle size, and entrapment efficiency values of the phytosomes were found in the range of 30.03-97.03%, 231.0-701.4 nm, and 20.02-95.88% w/w, respectively. The optimized phytosome showed the zeta potential of -23.2 mV exhibited good stability and SEM and TEM analysis revealed the spherical shape and smooth particles with the uniform particle size distribution of phytosomes. The comparative in vitro drug release study of vasaka extract and phytosome revealed the sustained release characteristics of phytosome which reached 68.80% at 8 h compared to vasaka extract reached a maximum of 45.08% at 4 h. Conclusion and implication The results highlighted the importance of optimization of formulation development using quality by design strategy to achieve consistent quality of pharmaceutical products.
Collapse
Affiliation(s)
- Sundaresan Nandhini
- Divison of Pharmacognosy and Phytochemistry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu (Dt), Tamil Nadu, India
| | - Kaliappan Ilango
- Divison of Pharmacognosy and Phytochemistry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu (Dt), Tamil Nadu, India.,Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu (Dt), Tamil Nadu, India
| |
Collapse
|
24
|
Kamel R. Nanotherapeutics as promising approaches to combat fungal infections. Drug Dev Res 2019. [DOI: 10.1002/ddr.21533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rabab Kamel
- Department of Pharmaceutical TechnologyNational Research Centre Cairo Egypt
| |
Collapse
|
25
|
Influence Factors of the Pharmacokinetics of Herbal Resourced Compounds in Clinical Practice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1983780. [PMID: 30949215 PMCID: PMC6425497 DOI: 10.1155/2019/1983780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Herbal medicines have been used to prevent and cure diseases in eastern countries for thousands of years. In recent decades, these phytotherapies are becoming more and more popular in the West. As being nature-derived is the essential attribute of herbal medicines, people believe that taking them for diseases treatment is safe enough and has no side-effects. However, the efficacy of herbal resourced compounds (HRC) depends on the multiple constituents absorbed in the body and their pharmacokinetics. Thus, many factors will influence the clinical practice of HRC, i.e., their absorption, distribution, metabolism, and excretion (ADME). Among these factors, herb-drug interaction has been widely discussed, as these compounds may share the same drug-metabolizing enzymes and drug transporters. Meanwhile there are many other potential factors that can also change the ADME of HRC, including herb pretreatment, herb-herb interactions, pathological status, gender, age of patient, and chemical and physical modification of certain ingredients. With the aim of ensuring the efficacy of HRC and minimizing their clinical risks, this review provides and discusses the influence factors and artificial improvement of the pharmacokinetics of HRC.
Collapse
|
26
|
Liu Y, Liao Y, Wei S, Zhang H, Wang X. Nanoparticles based on sodium alginate and β-conglycinin: Self-assembly and delivery of Phyllanthus urinaria
phenolic compounds. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Liu
- School of Food and Pharmaceutical Engineering; Zhaoqing University; Zhaoqing China
| | - Yunfen Liao
- School of Food and Pharmaceutical Engineering; Zhaoqing University; Zhaoqing China
| | - Shoulian Wei
- School of Environmental and Chemical Engineering; Zhaoqing University; Zhaoqing China
| | | | - Xiaojin Wang
- Zhaoqing Xinghu Pharmaceutical Co., Ltd.; Zhaoqing China
| |
Collapse
|
27
|
Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. Int J Nanomedicine 2018; 13:6109-6121. [PMID: 30349240 PMCID: PMC6188155 DOI: 10.2147/ijn.s178077] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plant bioactive compounds are known for their extensive health benefits and therefore have been used for generations in traditional and modern medicine to improve the health of humans. Processing and storage instabilities of the plant bioactive compounds, however, limit their bioavailability and bioaccessibility and thus lead researchers in search of novel encapsulation systems with enhanced stability, bioavailability, and bioaccessibility of encapsulated plant bioactive compounds. Recently many varieties of encapsulation methods have been used; among them, microfluidization has emerged as a novel method used for the development of delivery systems including solid lipid nanocarriers, nanoemulsions, liposomes, and so on with enhanced stability and bioavailability of encapsulated plant bioactive compounds. Therefore, the nanodelivery systems developed using microfluidization techniques have received much attention from the medical industry for their ability to facilitate controlled delivery with enhanced health benefits in the treatment of various chronic diseases. Many researchers have focused on plant bioactive compound-based delivery systems using microfluidization to enhance the bioavailability and bioaccessibility of encapsulated bioactive compounds in the treatment of various chronic diseases. This review focuses on various nanodelivery systems developed using microfluidization techniques and applications in various chronic disease treatments.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
| | - Govindarajan Karthivashan
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Shin Young Park
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Joonsoo Kim
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Dong-Kug Choi
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| |
Collapse
|
28
|
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16:71. [PMID: 30231877 PMCID: PMC6145203 DOI: 10.1186/s12951-018-0392-8] [Citation(s) in RCA: 2974] [Impact Index Per Article: 424.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, 10326 Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, 10326 Republic of Korea
| | - Leonardo Fernandes Fraceto
- Sao Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, São Paulo Zip Code 18087-180 Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo Zip code 13083-862 Brazil
| | - Estefania Vangelie Ramos Campos
- Sao Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, São Paulo Zip Code 18087-180 Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo Zip code 13083-862 Brazil
| | - Maria del Pilar Rodriguez-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad Leon, Universidad Nacional Autonóma de México (UNAM), Boulevard UNAM No 2011. Predio El Saucillo y El Potrero, 37684 León, Guanajuato Mexico
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad Leon, Universidad Nacional Autonóma de México (UNAM), Boulevard UNAM No 2011. Predio El Saucillo y El Potrero, 37684 León, Guanajuato Mexico
| | | | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP 15385-000 Brazil
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh 211004 India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus-Science, Grenville Building (G102/G107), Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
29
|
Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl Microbiol Biotechnol 2018; 102:6279-6298. [PMID: 29808328 DOI: 10.1007/s00253-018-9101-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
Endophytes are microorganisms that colonize the interior of host plants without causing apparent disease. They have been widely studied for their ability to modulate relationships between plants and biotic/abiotic stresses, often producing valuable secondary metabolites that can affect host physiology. Owing to the advantages of microbial fermentation over plant/cell cultivation and chemical synthesis, endophytic fungi have received significant attention as a mean for secondary metabolite production. This article summarizes currently reported results on plant-endophyte interaction hypotheses and highlights the biotechnological applications of endophytic fungi and their metabolites in agriculture, environment, biomedicine, energy, and biocatalysts. Current bottlenecks in industrial development and commercial applications as well as possible solutions are also discussed.
Collapse
|
30
|
Jogi H, Maheshwari R, Raval N, Kuche K, Tambe V, Mak KK, Pichika MR, Tekade RK. Carbon nanotubes in the delivery of anticancer herbal drugs. Nanomedicine (Lond) 2018; 13:1187-1220. [DOI: 10.2217/nnm-2017-0397] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is estimated to be a significant health problem of the 21st century. The situation gets even tougher when it comes to its treatment using chemotherapy employing synthetic anticancer molecules with numerous side effects. Recently, there has been a paradigm shift toward the adoption of herbal drugs for the treatment of cancer. In this context, a suitable delivery system is principally warranted to deliver these herbal biomolecules specifically at the tumorous site. To achieve this goal, carbon nanotubes (CNTs) have been widely explored to deliver anticancer herbal molecules with improved therapeutic efficacy and safety. This review uniquely expounds the biopharmaceutical, clinical and safety aspects of different anticancer herbal drugs delivered through CNTs with a cross-talk on their outcomes. This review will serve as a one-stop-shop for the readers on various anticancer herbal drugs delivered through CNTs as a futuristic delivery device.
Collapse
Affiliation(s)
- Hardi Jogi
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kaushik Kuche
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kit-Kay Mak
- School of Postgraduate Studies & Research, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| |
Collapse
|
31
|
Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomedicine 2017; 12:8483-8493. [PMID: 29238188 PMCID: PMC5713688 DOI: 10.2147/ijn.s148359] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is still one of the main cancer therapy treatments, but the curative effect of chemotherapy is relatively low, as such the development of a new cancer treatment is highly desirable. The gradual maturation of nanotechnology provides an innovative perspective not only for cancer therapy but also for many other applications. There are a diverse variety of nanoparticles available, and choosing the appropriate carriers according to the demand is the key issue. The performance of nanoparticles is affected by many parameters, mainly size, shape, surface charge, and toxicity. Using nanoparticles as the carriers to realize passive targeting and active targeting can improve the efficacy of chemotherapy drugs significantly, reduce the mortality rate of cancer patients, and improve the quality of life of patients. In recent years, there has been extensive research on nanocarriers. In this review, the effects of several major parameters of nanoparticles on their physical and chemical properties are reviewed, and then the recent progress in the application of several commonly used nanoparticles is presented.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| | - Hua Tang
- Department of Hematology, People's Hospital of Xinghua City, Xinghua City, Jiangsu Province, People's Republic of China
| | - Zefa Liu
- Department of Hematology, People's Hospital of Xinghua City, Xinghua City, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| |
Collapse
|
32
|
Moradkhani MR, Karimi A, Negahdari B, Nadri S, Eatemadi A. Drug anesthesia for children undergoing magnetic resonance imaging: A review. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
33
|
Stem cell, biomaterials and growth factors therapy for hepatocellular carcinoma. Biomed Pharmacother 2017; 88:1046-1053. [PMID: 28192881 DOI: 10.1016/j.biopha.2017.01.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma is an antecedent of liver illnesses, including viral hepatitis, alcohol abuse, or metabolic disease. Transforming growth factor-Beta (TGF-b) plays an important role in creating a favorable microenvironment for tumor cell growth via two major mechanisms: an intrinsic activity as an autocrine growth factor and an extrinsic activity by inducing microenvironment changes. Recently stem cell therapy as also been a promising and potential treatment for liver cancer and in addition signaling pathways like GF/GFR systems, SDF-1α/CXC4 ligand receptor interaction and PI3K/Akt signaling, and cytokines has been identified to regulate cell fate decisions, and can be utilized to positively influence cell therapy outcomes. Thus stem cell-based therapy, together with signaling pathways can become a practical option in regenerative processes for replacing dead hepatocytes cells. Targeted drug delivery systems (TDDS) via biomaterials are presently been explored for cancer therapeutics especially liver cancer as it allows the enhancement of drug concentration in the liver and decrease the dosage and side effects. This review is intended to give a comprehensive summary of available liver cancer therapy using stem cells, growth factor and biomaterials.
Collapse
|