1
|
Alshetaili AS, Almohizea S, Anwer MK, Riadi Y. Novel embelin-loaded transniosomes for topical delivery: comprehensive exploration of in vitro, ex vivo and dermatokinetic assessment for anti-cancer activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:315-328. [PMID: 39205514 DOI: 10.1002/jsfa.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND This study systematically designed and optimised a transniosomal formulation containing embelin for skin cancer management. The transniosomes were developed using a rotary evaporation method and then optimised using a Box-Behnken design. RESULTS The optimized embelin-loaded transniosomes (Opt-EMB-TNs) exhibited a vesicle size of 149.01 nm, polydispersity index of 0.184, a zeta potential of -21.14 mV, an entrapment efficiency of 75.6 ± 0.65%, drug loading of 3.36 ± 0.03% and drug release of 80.88 ± 2.55%. The antioxidant potential of Opt-EMB-TNs was found to be 88.54% when compared to standard ascorbic acid. Dermatokinetic studies showed a greater drug deposition in targeted skin areas with Opt-EMB-TN gel compared to the embelin conventional gel (EMB-CF gel). In addition, the penetration depth study of the skin sample revealed that the transniosomal gel containing rhodamine B dye exhibited higher penetration than that of the rhodamine B dye containing hydroalcoholic solution. The efficacy of Opt-EMB-TNs for skin cancer was confirmed by cytotoxicity assay against the B16F10 melanoma cell line. CONCLUSION The study concluded that the Opt-EMB-TN gel formulation is a promising and effective topical treatment for skin cancer, demonstrating significant potential for further development and clinical application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abdullah S Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salman Almohizea
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Vihal S, Pundir S, Rathore C, Ranjan Lal U, Gupta G, Kumar Singh S, Dua K, Kumar Chellappan D, Negi P. Nigella sativa Oil-loaded Ethanolic Vesicular Gel for Imiquimod-induced Plaque Psoriasis: Physicochemical Characterization, Rheological Studies, and In vivo Efficacy. Curr Drug Deliv 2025; 22:80-91. [PMID: 38956909 DOI: 10.2174/0115672018246645231019131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 07/04/2024]
Abstract
BACKGROUND The therapeutic effect of NS oil in mild to moderate psoriasis is limited owing to low play load of thymoquinone (<15 %w/w), irritation, dripping, low viscosity and thus, less contact time on the lesions. AIMS This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity. OBJECTIVE The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity. METHODS The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model. RESULTS A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08 mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1 nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil). CONCLUSION It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.
Collapse
Affiliation(s)
- Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Charul Rathore
- Department of Pharma Sciences, Chandigarh University, Mohali, Punjab 140413, India
| | - Uma Ranjan Lal
- Ayurvet Limited, Katha, Baddi, Himachal Pradesh 173205, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
3
|
Chaurasiya M, Kumar G, Paul S, Verma SS, Rawal RK. Natural product-loaded lipid-based nanocarriers for skin cancer treatment: An overview. Life Sci 2024; 357:123043. [PMID: 39233200 DOI: 10.1016/j.lfs.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The skin is essential for body protection and regulating physiological processes. It is the largest organ and serves as the first-line barrier against UV radiation, harmful substances, and infections. Skin cancer is considered the most prevalent type of cancer worldwide, while melanoma skin cancer is having high mortality rates. Skin cancer, including melanoma and non-melanoma forms, is primarily caused by prolonged exposure to UV sunlight and pollution. Currently, treatments for skin cancer include surgery, chemotherapy, and radiotherapy. However, several factors hinder the effectiveness of these treatments, such as low efficacy, the necessity for high concentrations of active components to achieve a therapeutic effect, and poor drug permeation into the stratum corneum or lesions. Additionally, low bioavailability at the target site necessitates high doses, leading to skin irritation and further obstructing drug absorption through the stratum corneum. To overcome these challenges, recent research focuses on developing a medication delivery system based on nanotechnology as an alternative to this traditional approach. Nano-drug delivery systems have demonstrated great promise in treating skin cancer by providing a more effective means of delivering drugs with better stability and drug absorption. An overview of various lipid-based nanocarriers is given in this review article that are utilized to carry natural compounds to treat skin cancer.
Collapse
Affiliation(s)
- Mithilesh Chaurasiya
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gaurav Kumar
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Smita Paul
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Shweta Singh Verma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Ravindra K Rawal
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Moussa AY, Abbas H, Zewail M, Gaafar PME, Ibrahim N. Green preparation and evaluation of the anti-psoriatic activity of vesicular elastic nanocarriers of kojic acid from Aspergillus oryzae N12: Repurposing of a dermo-cosmetic lead. Arch Pharm (Weinheim) 2024; 357:e2400410. [PMID: 39180243 DOI: 10.1002/ardp.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Psoriasis is a skin disorder characterized by impaired epidermal differentiation that is regularly treated by systemic drugs with undesirable side effects. Based on its anti-inflammatory, antiproliferative and anti-melanoma attributes, the fungal metabolite kojic acid represents an attractive candidate for anti-psoriatic research. The present work aims to investigate an efficient topical bio-friendly vesicular system loaded with kojic acid isolated from Aspergillus oryzae as an alternative way for the management of psoriasis to avoid systemic toxicity. Kojic acid-loaded spanlastics were prepared by ethanol injection technique, employing span 60 along with brij 35 and cremophor rh40 as edge activators, with the complete in vitro characterization of the developed nanoplatform. The selected formulation displayed a spherical morphology, an optimum particle size of 234.2 ± 1.65 nm, high entrapment efficiency (87.4% ± 0.84%) and significant sustained drug release compared with the drug solution. In vivo studies highlighted the superior relief of psoriasis symptoms and the ability to maintain healthy skin with the least changes in mRNA expression of inflammatory cytokines, achieved by the developed nanoplatform compared to kojic acid solution. Moreover, the in vivo histopathological studies confirmed the safety of the topically applied spanlastics. In addition, the molecular mechanism was approached through in vitro assessment of cathepsin S and PDE-4 inhibitory activities and in silico investigation of kojic acid docking in several anti-psoriatic drug targets. Our results suggest that a topically applied vesicular system loaded with kojic acid could lead to an expansion in the dermo-cosmetic use of kojic acid as a natural bio-friendly alternative for systemic anti-psoriatic drugs.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Khalil LM, El-Refaie WM, Elnaggar YS, Abdelkader H, Al Fatease A, Abdallah OY. Non-invasive caffeinated-nanovesicles as adipocytes-targeted therapy for cellulite and localized fats. Int J Pharm X 2024; 7:100236. [PMID: 38524143 PMCID: PMC10958479 DOI: 10.1016/j.ijpx.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Caffeine (CAF) is a non-selective adenosine A1 receptor antagonist which predominates in fat cells. When CAF binds to adenosine receptors, it increases cyclic adenosine monophosphate; inhibiting adipogenesis and inducing fat lipolysis. Resveratrol (RSV) is an antioxidant polyphenol possessing different anti-obesity mechanisms. Topical application of both hydrophilic CAF and lipophilic RSV is limited. This study aimed to develop novel caffeinated-resveratrol bilosomes (CRB) and caffeine-bilosomes (CB) that could non-invasively target and deposit in fat cells. RSV bilosomes (RB) were prepared as a non-targeted system for comparison. CRB showed nanosize (364.1 nm ±6.5 nm) and high entrapment for both active compounds. Rats treated topically with CRB revealed a significant decrease (P = 0.039) in body weight. Histological analysis of the excised skin demonstrated a reduction in the subcutaneous fatty layer thickness and a decrease in the size of connective tissue-imbedded fat cells. Kidney histological examination of RB-treated rats showed subcapsular tubular epithelial cells with cytoplasmic vacuolation. This reflects a systemic effect of RSV from the non-targeted RB compared to CRB, which had a targeting effect on the adipose tissue. In conclusion, CAF in CRB significantly enhanced RSV deposition in adipose tissue and assisted its local-acting effect for managing obesity and cellulite.
Collapse
Affiliation(s)
- Lobna M. Khalil
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Wessam M. El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S.R. Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia
| | - Ossama Y. Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Liu J, Zhou L, Cong H, Hu J, Tang J. Resveratrol-loaded microemulsion based thermosensitive hydrogel for potential topical treatment of the vaginal inflammation. J Drug Target 2024; 32:404-412. [PMID: 38288679 DOI: 10.1080/1061186x.2024.2310879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Vaginal inflammation is a prevalent gynecological condition. If left untreated, it can potentially spread to the urinary and reproductive systems. METHODS In this study, we propose a resveratrol-loaded microemulsion-based thermosensitive hydrogel (Res-Me-Tsgel) and compare it with a chitosan hydrogel-based Res-Me-Cogel. We characterized the different characters of Res-Me-Tsgel. The safety of Res-Me-Tsgel was also evaluated in vitro and in vivo. Finally, we measured the retention of Res in the vagina after drug administration. RESULTS The Res-Me-Tsgel we prepared is a transparent liquid solution at room temperature that rapidly forms a gel at 37oC. Compared to Res solution and Res-Me, both Res-Me-Cogel and Res-Me-Tsgel demonstrate superior sustained release properties. Both in vitro and in vivo studies confirm the excellent biosafety profile of Res-Me-Cogel and Res-Me-Tsgel. Vaginal administration of these formulations in rats results in prolonged retention of resveratrol within the vagina. Notably, due to its improved flow into vaginal folds after administration, the retention of Resveratrol was approximately three times higher for the Res-Me-Tsgel group compared to the Res-Me-Cogel group at 24 h post-administration. Overall, these findings highlight the potential application of Res-Me-Tsgel as an effective means for vaginal inflammation. CONCLUSIONS We developed a novel micromulsion based thermosensitive hydrogel for the delivery of Res. The sustained release of Res and favorable vaginal retention from Res-Me-Tsgel make them promise as a potential candidate for local intravaginal therapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Liuqi Zhou
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Huijing Cong
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Hu
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingling Tang
- School of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Silva GC, Rodrigues RAF, Bottoli CBG. In vitro diffusion of plant phenolics through the skin: A review update. Int J Cosmet Sci 2024; 46:239-261. [PMID: 38083814 DOI: 10.1111/ics.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Excessive skin exposure to deleterious environmental variables results in inflammation as well as molecular and cellular impairments that compromise its functionality, aesthetic qualities, and overall well-being. The implementation of topical administration of antioxidants and other compounds as a method for preventing or reversing damage is a rational approach. Numerous phenolic compounds derived from plants have demonstrated capabilities such as scavenging free radicals and promoting tissue healing. However, the primary obstacle lies in effectively delivering these compounds to the specific place on the skin, and accurately forecasting their diffusion through the skin can assist in determining the most effective tactics. Hence, this article provides a comprehensive analysis of recent literature pertaining to the in vitro skin diffusion characteristics of plant phenolics. The aim is to gain a deeper understanding of their behaviour when present in various forms such as solutions, suspensions, and formulations. METHOD The data on plant extracts and isolated plant phenolic compounds in vitro skin diffusion assays published over the last six years were compiled and discussed. RESULTS Even though the gold standard Franz diffusion cell is the most commonly used in the assessment of in vitro plant phenolic skin diffusion profiles, a plethora of skin models and assay conditions are reported for a variety of compounds and extracts in different vehicles. CONCLUSION The presence of numerous models and vehicles poses a challenge in creating correlations among the existing data on plant phenolic compounds. However, it is possible to draw some general conclusions regarding molecular, vehicle, and skin characteristics based on the gathered information.
Collapse
Affiliation(s)
- Gisláine C Silva
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brazil
| | - Rodney A F Rodrigues
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Paulínia, Brazil
| | - Carla B G Bottoli
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brazil
| |
Collapse
|
8
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|
10
|
Zakaria MY, Abd El-Halim SM, Beshay BY, Zaki I, Abourehab MA. 'Poly phenolic phytoceutical loaded nano-bilosomes for enhanced caco-2 cell permeability and SARS-CoV 2 antiviral activity': in-vitro and insilico studies. Drug Deliv 2023; 30:2162157. [PMID: 36587813 PMCID: PMC9809390 DOI: 10.1080/10717544.2022.2162157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) predisposed to the emergence of worldwide catastrophe that impels the evolution of safe and effective therapeutic system. Polyphenols as resveratrol (RSV) exhibit a well evidenced antiviral activity. Unfortunately, like most phenolic nutraceuticals, RSV suffers from restrained solubility and massive degradation in GIT and liver which in turn prohibit its clinical use. Herein, PEGylated bilosomes (PBs) contain PEGylated edge activator along with the traditional components as (Span 60, cholesterol and bile salts) were proposed to boost both permeability and bioavailability of RSV. The investigation of the prominent effect of the diverse variables on the characteristics of the vesicles and picking of the optimum formula were conducted via construction of 23 factorial experiment. The appraisal of the formulae was conducted on the basis of entrapment efficiency percent (EE%), particle size (PS) and zeta potential (ZP). In addition, the spherical shaped optimal formula (F5) exhibited EE% of 86.1 ± 2.9%, PS of 228.9 ± 8.5 nm, and ZP of -39.8 ± 1.3 mV. The sorted optimum formula (F5) exhibited superior dissolution behaviors, and boosted Caco-2 cells cellular uptake by a round 4.7 folds relative to RSV dispersion. In addition, F5 demonstrated a complete in vitro suppression of SARS-CoV-2 at a concentration 0.48 μg/ml with 6.6 times enhancement in antiviral activity relative to RSV dispersion. The accomplished molecular modeling heavily provided proof for the possible interactions of resveratrol with the key residues of the SARS-CoV2 Mpro enzyme. Finally, F5 could be proposed as a promising oral panel of RSV for curation from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mohamed Y. Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr, Egypt,CONTACT Mohamed Y. Zakaria ; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, Egypt
| | - Botros Y. Beshay
- Pharmaceutical Sciences (Pharmaceutical Chemistry) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed A.S Abourehab
- Department of Pharmaceutics Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabi
| |
Collapse
|
11
|
Alsaidan OA, Zafar A, Al-Ruwaili RH, Yasir M, Alzarea SI, Alsaidan AA, Singh L, Khalid M. Niosomes gel of apigenin to improve the topical delivery: development, optimization, ex vivo permeation, antioxidant study, and in vivo evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:604-617. [PMID: 37910394 DOI: 10.1080/21691401.2023.2274526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Niosomes (NS) are the promising and novel carrier of the drug for effective transdermal delivery. Apigenin (AN) is a natural bioactive compound and has various pharmacological activities. AN is poorly water soluble which directly affects therapeutic efficacy. The aim of this research work was to develop the AN-NS gel to improve transdermal delivery. The thin-film hydration method was used for the development of AN-NS. The optimized AN-NS (AN-NS2) has a vesicle size of 272.56 ± 12.49 nm, PDI is 0.249, zeta potential is -38.7 mV, and entrapment efficiency of 86.19 ± 1.51%. The FTIR spectra of the AN-NS2 depicted that AN encapsulated in the NS matrix. AN-NS2 formulation was successfully incorporated into chitosan gel and evaluated. The optimized AN-NS2 gel (AN-NS2G4) has 2110 ± 14cps of viscosity, 10.40 ± 0.21g.cm/sec of spreadability, and 99.65 ± 0.53% of drug content. AN-NS2G4 displayed significantly (p < 0.05) higher AN released (67.64 ± 3.03%) than pure AN-gel (37.31 ± 2.87%). AN-NS2G4 showed the Korsmeyer Peppas release model. AN-NS2G4 displayed significantly (p < 0.05) higher antioxidant activity (90.72%) than pure AN (64.53%) at 300 µg/ml. AN-NS2G4 displayed significantly (p < 0.05) higher % inhibition of swelling than pane AN-gel in carrageenin-induced paw oedema in rats. The finding concluded that niosomes-laden gel is a good carrier of drugs to improve transdermal delivery and therapeutic efficacy.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Rayan Hamood Al-Ruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Aseel Awad Alsaidan
- Department of Family and Community Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| |
Collapse
|
12
|
Preparation and Characterization of Patch Loaded with Clarithromycin Nanovesicles for Transdermal Drug Delivery. J Funct Biomater 2023; 14:jfb14020057. [PMID: 36826856 PMCID: PMC9964574 DOI: 10.3390/jfb14020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Clarithromycin (CLR), categorized as a Biopharmaceutical Classification System class II drug, has several gastrointestinal tract side effects and an extremely unpalatable bitter taste. The current study aimed to design transdermal patch-embedded CLR niosomes to overcome the aforementioned CLR-related challenges. Various niosomal formulations were successfully fabricated and characterized for their morphology, size, in vitro release, and antimicrobial efficacy. Subsequently, the CLR niosomes were loaded into transdermal patches using the solvent casting method. The polydispersity index of the niosomes ranged from 0.005 to 0.360, indicating the uniformity of the niosomes. The encapsulating efficiency (EE)% varied from 12 to 86%. The optimal Chol: surfactant ratio for drug release was found to be 0.5:1. In addition, the encapsulation of CLR into niosomal nanovesicles did not reduce the antibacterial activity of the CLR. The niosomal patch had a significantly higher permeability coefficient of CLR than the conventional patch. In addition to that, a shear-thinning behavior was observed in the niosomal gels before loading them into a niosomal patch. The flux (Jss) of the niosomal patch was significantly higher than the conventional patch by more than 200 times. In conclusion, niosome-based transdermal patches could be a promising method for the transdermal drug delivery of class II drugs and drugs experiencing GIT side effects.
Collapse
|
13
|
Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: optimization, characterization, pharmacokinetic, and hepatotoxicity studies. Drug Deliv Transl Res 2023; 13:292-307. [PMID: 35831776 PMCID: PMC9726673 DOI: 10.1007/s13346-022-01193-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Thymoquinone (TQ) is an antioxidant, anti-inflammatory, and hepatoprotective compound obtained from the black seed oil of Nigella sativa. However, high hydrophobicity, instability at higher pH levels, photosensitivity, and low oral bioavailability hinder its delivery to the target tissues. A self-nanoemulsifying drug delivery system (SNEDDS) was fabricated using the microemulsification technique to address these issues. Its physicochemical properties, thermodynamic stability studies, drug release kinetics, in vivo pharmacokinetics, and hepatoprotective activity were evaluated. The droplet size was in the nano-range (< 90 nm). Zeta potential was measured to be -11.35 mV, signifying the high stability of the oil droplets. In vivo pharmacokinetic evaluation showed a fourfold increase in the bioavailability of TQ-SNEDDS over pure TQ. Furthermore, in a PCM-induced animal model, TQ-SNEDDS demonstrated significant (p < 0.05) hepatoprotective activity compared to pure TQ and silymarin. Reduction in liver biomarker enzymes and histopathological examinations of liver sections further supported the results. In this study, SNEDDS was demonstrated to be an improved oral delivery method for TQ, since it potentiates hepatotoxicity and enhances bioavailability.
Collapse
|
14
|
Zakaria MY, Zaki I, Alhomrani M, Alamri AS, Abdulaziz O, Abourehab MAS. Boosting the anti MERS-CoV activity and oral bioavailability of resveratrol via PEG-stabilized emulsomal nano-carrier: Factorial design, in-vitro and in-vivo assessments. Drug Deliv 2022; 29:3155-3167. [PMID: 36168279 PMCID: PMC9543103 DOI: 10.1080/10717544.2022.2126028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RSV) is a phytoceutical polyphenolic compound exhibiting a well evidenced wide range of therapeutic activities. Unfortunately, its diminished aqueous solubility and extensive metabolism in gastro intestinal tract (GIT) and liver prohibit its biological activity and systemic availability. Herein the conducted study PEG stabilized emulsomes (PEMLs) were customized to enclose RSV aiming to boost its biological availability and antiviral activity. PEGylating the vesicles not only grant the promoted steric stability of the system but also being beneficial in exaggerating the intestinal permeability and extending the period of circulation of the drug, hence its targeted clinical use. The Investigation of the influence of predetermined variables on the physical characterization of formulae (entrapment efficiency EE%, particle size PS and zeta potential ZP) was implemented utilizing Design Expert® software. (F4) with desirability value (0.772), picked to be the optimal formula, which is fabricated utilizing 35 mg compritol as the lipidic core and 60 mg 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-Mpeg-2000). The dominance of the F4 relative to RSV dispersion was affirmed by the data acquired from ex-vivo and pharmacokinetic studies. In addition, F4 exhibited significant lower EC50 value (0.0127 µg/mL) relative to that of RSV dispersion(0.338 µg/mL) by around 26 times denoting the capability of the formulation to boost the antiviral activity. To a great extent, F4 was able to significantly suppress the inflammatory response and oxidative stress resulted from MERS-CoV infection on comparison with RSV dispersion. Finally, the potentiality of PEMLs as nano-panel with boosted both antiviral and oral bioavailability for RSV could be deduced based on the outcomes mentioned herein.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabi.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
15
|
Hegarty DM, Carroll JR, Nguyen D, Halls VS, Robbins DI, Price TJ, Dussor G, Aicher SA. Resveratrol increases tear production and ocular pain after corneal abrasion in male, but not female, rats using a photorefractive keratectomy model. Exp Eye Res 2022; 225:109281. [PMID: 36265575 DOI: 10.1016/j.exer.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 12/29/2022]
Abstract
Photorefractive keratectomy (PRK) is an alternative to LASIK and can cause intense acute pain that is often not relieved by standard treatments. To assess potential therapeutics for this type of acute pain, appropriate preclinical models are needed. We describe a preclinical corneal abrasion rat model that simulates the initial stages of PRK surgery and demonstrates similar pain and tear dysfunction as seen clinically. We used both behavioral and homeostatic assays to determine the therapeutic potential of resveratrol on pain and tear production. Studies were conducted in male and female Sprague-Dawley rats. Heptanol was applied to one eye and the superficial corneal epithelium was removed, mimicking the abrasion used in PRK. Spontaneous pain was assessed with orbital tightening (OT) scores for 7 days. Topical resveratrol increased OT scores sex-specifically in abraded males, but not females, at 72 h and 1 week after abrasion. Resveratrol increased tear production in abraded males, with no effect in abraded females. There was no correlation between OT score at 1 week and tear production measurements, demonstrating no relationship between spontaneous ocular pain and tear dysfunction in this model. These findings demonstrate the usefulness of our corneal abrasion preclinical PRK model for the assessment of ocular pain therapeutics and indicate that topical resveratrol may not be useful for managing PRK-induced pain.
Collapse
Affiliation(s)
- Deborah M Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Dennis Nguyen
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Victoria S Halls
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Theodore J Price
- Ted's Brain Science, Inc., Dallas, TX, 75252, USA; School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gregory Dussor
- Ted's Brain Science, Inc., Dallas, TX, 75252, USA; School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
16
|
Khalil LM, Abdallah OY, Elnaggar YS, El-Refaie WM. Novel dermal nanobilosomes with promising browning effect of adipose tissue for management of obesity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Yasamineh S, Yasamineh P, Ghafouri Kalajahi H, Gholizadeh O, Yekanipour Z, Afkhami H, Eslami M, Hossein Kheirkhah A, Taghizadeh M, Yazdani Y, Dadashpour M. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm 2022; 624:121878. [PMID: 35636629 DOI: 10.1016/j.ijpharm.2022.121878] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The buildup of nonionic surfactants in the aqueous environment produces niosomes. The usage of niosomes is becoming increasingly frequent due to their sustainability, low cost of components and assembly, large-scale manufacture, and, finally, easy maintenance of the niosomes to the other. Because of their nonionic characteristics, niosomes play a critical role in medication delivery systems. Controlled release and targeted distribution of niosomes to treat cancer, infectious illnesses, and other disorders are one of their most important properties. Niosomes can also be injected by ocular and transdermal routes, which are less common than oral and parenteral administration. Using niosomes to manufacture biotechnology goods and novel vaccines is one of the most exciting research fields today. The molecular structure of niosomes, the physicochemical characteristics of nonionic surfactants in their formulation, the influence of external stimuli on niosomes, the many methods of niosomes administration, and their diverse therapeutic qualities are all explored in this study.
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Omid Gholizadeh
- Department of Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Yekanipour
- Department of Microbiology, Marand Branch, Islamic Azad University, Marand, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Hossein Kheirkhah
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Milad Taghizadeh
- Department of Laboratory Sciences, Faculty of Paramedical, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
18
|
Nidhi P, Dev K, Negi P, Sourirajan A. Development and evaluation of hydrogel formulation comprising essential oil of Mentha longifolia L. for oral candidiasis. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Nakmode D, Bhavana V, Thakor P, Madan J, Singh PK, Singh SB, Rosenholm JM, Bansal KK, Mehra NK. Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development. Pharmaceutics 2022; 14:pharmaceutics14040831. [PMID: 35456665 PMCID: PMC9025782 DOI: 10.3390/pharmaceutics14040831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Poor aqueous solubility of drugs is still a foremost challenge in pharmaceutical product development. The use of lipids in designing formulations provides an opportunity to enhance the aqueous solubility and consequently bioavailability of drugs. Pre-dissolution of drugs in lipids, surfactants, or mixtures of lipid excipients and surfactants eliminate the dissolution/dissolving step, which is likely to be the rate-limiting factor for oral absorption of poorly water-soluble drugs. In this review, we exhaustively summarize the lipids excipients in relation to their classification, absorption mechanisms, and lipid-based product development. Methodologies utilized for the preparation of solid and semi-solid lipid formulations, applications, phase behaviour, and regulatory perspective of lipid excipients are discussed.
Collapse
Affiliation(s)
- Deepa Nakmode
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pankaj Kumar Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (K.K.B.); (N.K.M.)
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
- Correspondence: (K.K.B.); (N.K.M.)
| |
Collapse
|
20
|
Chopra H, Bibi S, Islam F, Ahmad SU, Olawale OA, Alhumaydhi FA, Marzouki R, Baig AA, Emran TB. Emerging Trends in the Delivery of Resveratrol by Nanostructures: Applications of Nanotechnology in Life Sciences. JOURNAL OF NANOMATERIALS 2022; 2022:1-17. [DOI: 10.1155/2022/3083728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Resveratrol (RES) is a stilbene group of natural polyphenolic compounds in trees, peanuts, and grapes. RES is revealed with anticancer, antioxidant, anti-inflammatory, and cardioprotective effects. Though it is proven with prominent therapeutic activity, low aqueous solubility, poor bioavailability, and short half-life had hindered its use to exploit the potential. Also, the first-pass metabolism and undergoing enterohepatic recirculation are obscure in the minds of researchers for their in vitro studies. Many approaches have been investigated and shown promising results in manipulating their physicochemical properties to break this barrier. Nanocarriers are one of them to reduce the first-pass metabolism and to overcome other hurdles. This article reviews and highlights such encapsulation technologies. Nanoencapsulated RES improves in vitro antioxidant effect, and this review also highlights the new strategies and the concept behind how resveratrol can be handled and implemented with better therapeutic efficacy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | | | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Riadh Marzouki
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
21
|
Azelaic acid and Melaleuca alternifolia essential oil co-loaded vesicular carrier for combinational therapy of acne. Ther Deliv 2021; 13:13-29. [PMID: 34842461 DOI: 10.4155/tde-2021-0059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Azelaic acid (AzA), a comedolytic, antibacterial, anti-inflammatory anti-melanogenic agent, prescribed against acne vulgaris is safe on skin. Its combination with another widely used anti-acne agent, tea tree oil (EO) whose delivery is limited by volatility, instability and lipophilicity constraints was attempted. Method: Solvent injection was used to prepare AzA-EO integrated ethosomes. Result: Ethosomes were transformed into carbopol hydrogel, which exhibited pseudo-plastic properties with appreciable firmness, work of shear, stickiness and work of adhesion. The hydrogel showed better permeation and retention characteristics vis-a-vis commercial formulation (AzidermTM), when evaluated in Wistar rat skin. Further, ethosome hydrogel composite was better tolerated with no side effects. Conclusion: The findings suggests that the aforementioned strategy could be a potential treatment used for acne management.
Collapse
|
22
|
Hydrogel composite containing azelaic acid and tea tree essential oil as a therapeutic strategy for Propionibacterium and testosterone-induced acne. Drug Deliv Transl Res 2021; 12:2501-2517. [PMID: 34782995 PMCID: PMC9458693 DOI: 10.1007/s13346-021-01092-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/03/2022]
Abstract
Azelaic acid (AzA) is a USFDA bioactive prescribed against acne vulgaris. It possesses delivery challenges like poor aqueous solubility, low skin-penetrability, and dose-dependent side effects, which could be overcome by its synergistic combination with tea tree oil (TTO) as a microemulsion (ME)-based hydrogel composite. AzA-TTO ME was prepared to employ pseudo-ternary phase diagram construction. The best AzA-TTO ME was of uniform size (polydispersity index < 0.7), nano-range (~357.4 ± 2% nm), transmittance (> 90%), and negative zeta potential (−1.42 ± 0.25% mV) values. ME hydrogel composite with optimum rheological and textural attributes showed better permeation, retention, and skin-compliant characteristics, vis-a-vis marketed formulation (Aziderm™) when evaluated in Wistar rat skin. In vitro antibacterial efficacy in bacterial strains, i.e., Staphylococcus aureus, Propionibacterium acne, and Staphylococcus epidermidis, was evaluated employing agar well plate diffusion and broth dilution assay. ME hydrogel has shown an increase in zone of inhibition by two folds and a decrease in minimum inhibitory concentration (MIC) by eightfold against P. acnes vis-a-vis AzA. Finally, ME hydrogel composite exhibited a better reduction in the papule density (93.75 ± 1.64%) in comparison to Aziderm™ 72.69 ± 4.67%) on acne as developed in rats by inducing testosterone. Thus, the developed AzA-TTO ME hydrogel composite promises an efficacious and comparatively safer drug delivery system for the topical therapy of acne vulgaris.
Collapse
|
23
|
El-Zaafarany GM, Nasr M. Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases. Pharm Dev Technol 2021; 26:1136-1157. [PMID: 34751091 DOI: 10.1080/10837450.2021.2004606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dermatological products constitute a big segment of the pharmaceutical market. From conventional products to more advanced ones, a wide variety of dosage forms have been developed till current date. A representative of the advanced delivery means is carrier-based systems, which can load large number of drugs for treatment of dermatological diseases, or simply for cosmeceutical purposes. To make them more favorable for topical delivery, further incorporation of these carriers in a topical vehicle, such as gels or creams is made. Therefore in this review article, an overview is compiled of the most commonly encountered novel carrier based topical delivery systems; namely lipid based (nanoemulsions, microemulsions, solid lipid nanoparticles [SLNs] and nanostructured lipid carriers [NLCs]), and vesicular carriers (non-deformable, such as liposomes, niosomes, emulsomes and cerosomes, and deformable, such as transfersomes, ethosomes, transethosomes, and penetration enhancer vesicles), with special emphasis on those loaded in a secondary gel vehicle. A special focus was made on the commonly encountered dermatological diseases, such as bacterial and fungal infections, psoriasis, dermatitis, eczema, vitiligo, oxidative damage, aging, alopecia, and skin cancer.
Collapse
Affiliation(s)
- Ghada M El-Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Selvi SS, Hasköylü ME, Genç S, Toksoy Öner E. Synthesis and characterization of levan hydrogels and their use for resveratrol release. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211055725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Considering the need for systematic studies on levan based hydrogels to widen their use in drug delivery systems and biomedical applications, this study is mainly focused on the synthesis and comprehensive characterization as well as drug release properties of hydrogels based on Halomonas levan (HL) and its chemical derivatives. For this, hydrolyzed and phosphonated HL derivatives were chemically synthesized and then cross-linked with 1,4-Butanediol diglycidyl ether (BDDE) and the obtained hydrogels were characterized in terms of their swelling, adhesivity, and rheological properties. Both native and phosphonated HL hydrogels retained their rigid gel like structure with increasing shear stress levels and tack test analysis showed superior adhesive properties of the phosphonated HL hydrogels. Moreover, hydrogels were loaded with resveratrol and entrapment and release studies as well as cell culture studies with human keratinocytes were performed. Biocompatible and adhesive features of the hydrogels confirmed their suitability for tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Sinem Selvin Selvi
- IBSB—Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Merve Erginer Hasköylü
- IBSB—Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Seval Genç
- Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB—Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
25
|
Elgewelly MA, Elmasry SM, Sayed NSE, Abbas H. Resveratrol-Loaded Vesicular Elastic Nanocarriers Gel in Imiquimod-Induced Psoriasis Treatment: In Vitro and In Vivo Evaluation. J Pharm Sci 2021; 111:417-431. [PMID: 34461114 DOI: 10.1016/j.xphs.2021.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
This work aimed to develop a new efficient approach for safe treatment of psoriasis. To achieve that, resveratrol-loaded spanlastics(F1-F12) were prepared and evaluated by complete in vitro characterization. The two optimal formulations (F10 and F11) had their particle size in the nano range with high entrapment efficiency and sustainable drug release. These two formulae were incorporated in carbopol 934 gel formulations (G1-G8) with different concentrations of drug and carbopol 934 polymer. G1 and G5 (1% w/w Carbopol 934 gel and 0.1% resveratrol) showed 40.13% ± 2.017% and 73.76% ± 2.46%,8 hours drug release, respectively. Their pH was accepted and non-irritant. At a shear stress of 500 s-1, G1 and G5 showed a reasonable viscosity of 1048.5 ± 2.12 cps and 954 ± 2.15 cps, respectively. In the in vivo psoriasis study, mice treated by G5 gel showed significant improvement of erythema and scaling compared to positive control group and they maintained healthy skin as shown in histopathological observations. Moreover, this group showed the least changes in mRNA expression of inflammatory cytokines. Concisely, our results suggest that selected carbopol gel of resveratrol-loaded spanlastics could maximize resveratrol topical anti-psoriatic effect.
Collapse
Affiliation(s)
| | - Soha M Elmasry
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Egypt
| | - Nesrine S El Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Egypt.
| |
Collapse
|
26
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
27
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
28
|
Machado ND, Gutiérrez G, Matos M, Fernández MA. Preservation of the Antioxidant Capacity of Resveratrol via Encapsulation in Niosomes. Foods 2021; 10:988. [PMID: 33946473 PMCID: PMC8147147 DOI: 10.3390/foods10050988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenol which produces several benefits to human health, being the trans-isomer the most bioactive. However, its systemic absorption is limited due to its low water solubility, that reduces the oral bioavailability, and its chemical instability (owing to the trans-cis RSV isomer conversion upon light irradiation). Thus, encapsulation of this bioactive compound is required to protect it from destructive environmental conditions. Here, trans-RSV was encapsulated in food grade nanovesicles formed by Tween 80 and Span 80, with or without the addition of dodecanol (Dod) as membrane stabilizer. The size and shape of niosomes were evaluated by microscopy (TEM) and light scattering. RSV was successfully encapsulated in the vesicular systems (49-57%). The effect of Dod in the membrane bilayer was evaluated on the RSV in vitro release experiments under simulated gastrointestinal conditions. The total antioxidant capacity of the encapsulated polyphenol was measured using radicals' assays (DPPH and ABTS). The niosomes were able to maintain almost the total antioxidant capacity of encapsulated RSV, also preserved the ~85% of trans-RSV, thus offering considerable protection against high energy irradiation. These results make these systems suitable for different applications, particularly for photosensitive compounds.
Collapse
Affiliation(s)
- Noelia D. Machado
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina;
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Córdoba X5000HUA, Argentina
| | - Gemma Gutiérrez
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (G.G.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - María Matos
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (G.G.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Mariana A. Fernández
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina;
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Córdoba X5000HUA, Argentina
| |
Collapse
|
29
|
Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur J Pharm Biopharm 2021; 163:223-239. [PMID: 33864904 DOI: 10.1016/j.ejpb.2021.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
In the present study, combinatorial nanostructured lipid carrier gel of 5-fluorouracil and resveratrol was formulated, optimized and characterized to enhance permeation in between epidermis and dermis layers of the skin to obtain a synergistic effect against skin cancer. After extensive trials, a newly modified emulsiosonication method was developed and additionally, for the first time, stability studies were done in the beginning to optimize formulation technique, which exhibited two major benefits simultaneously; first, it provided best-optimized technique for preparation of combinatorial lipid-nanosystem, and secondly, it also demonstrated a detailed report card of durability of formulations. In vitro release study showed a significantly improved, slow and prolonged release of drugs from the optimized lipid-nanosystem (***p < 0.05), which followed non-Fickian Higuchi kinetics. Besides, mechanism of skin permeation enhancement study, dermatokinetic assessment, and depth analysis of optimized formulation on skin exhibited improved permeation and well distribution of drugs up to the dermis layer of skin. Moreover, combinatorial linogel possessed significantly greater efficacy (**p < 0.01) on the A431 cell line, as compared to the conventional formulation. Thus, findings revealed that modified method of preparation for dual drug-loaded lipid-nanosystem lead to the production of a stable formulation that also improved the retention of both 5-fluorouracil and resveratrol in between the epidermis and dermis region of skin thereby helping in the management and treatment of skin cancer.
Collapse
|
30
|
Bhat M, Pukale S, Singh S, Mittal A, Chitkara D. Nano-enabled topical delivery of anti-psoriatic small molecules. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Sabry S, El hakim Ramadan A, Abd elghany M, Okda T, Hasan A. Formulation, characterization, and evaluation of the anti-tumor activity of nanosized galangin loaded niosomes on chemically induced hepatocellular carcinoma in rats. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Nigro F, Cerqueira Pinto CDS, dos Santos EP, Mansur CRE. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fiammetta Nigro
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Claudia Regina Elias Mansur
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Designing of bentonite based nanocomposite hydrogel for the adsorptive removal and controlled release of ampicillin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Singh G. Resveratrol: nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine (Lond) 2020; 15:2801-2817. [PMID: 33191840 DOI: 10.2217/nnm-2020-0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a polyphenolic compound existing in trees, peanuts and grapes and exhibits a broad spectrum of promising therapeutic activities, but it is unclear whether this entity targets the sites of action after oral administration. In vivo applicability of resveratrol has limited success so far, mainly due to its incompetent systemic delivery resulting from its low water solubility, poor bioavailability and short biological half-life. First-pass metabolism and presence of enterohepatic recirculation create doubt on the biological application of high doses typically used for in vitro trials. To augment bioavailability, absorption and uptake of resveratrol by cellular internalization, countless approaches have been implemented which involve the use of nanocarriers. Nanocarriers are a well-known delivery system used to reduce first-pass hepatic metabolism, overcome enterohepatic recirculation and accelerate the absorption of drugs via lymphatic pathways.
Collapse
|
36
|
Anjum F, Zakir F, Verma D, Aqil M, Singh M, Jain P, Mirza MA, Anwer MK, Iqbal Z. Exploration of Nanoethosomal Transgel of Naproxen Sodium for the Treatment of Arthritis. Curr Drug Deliv 2020; 17:885-897. [PMID: 32713340 DOI: 10.2174/1567201817666200724170203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The present work aimed to develop an ethosomal gel of naproxen sodium for the amelioration of rheumatoid arthritis. OBJECTIVE In the present work, we have explored the potential of ethosomes to deliver naproxen into deeper skin strata. Further, the anti-inflammatory efficacy of naproxen ethosomal formulation was assessed using the carrageenan-induced rat paw edema model. METHODS Naproxen sodium nanoethosomes were prepared using different proportions of lipoid S100 (50mg-200mg), ethanol (20-50%) and water, and were further characterized on the basis of vesicle morphology, entrapment efficiency, zeta potential, in-vitro drug release and ex-vivo permeation studies. RESULTS The optimized ethosomal formulation was found to have 129 ± 0.01 nm particle size, 0.295 Polydispersity Index (PDI), -3.29 mV zeta potential, 88% entrapment efficiency and 96.573% drug release in 24 hours. TEM and SEM analysis of the optimized formulation showed slightly smooth spherical structures. The Confocal laser scanning microscopy showed that ethosomes could easily infiltrate into deeper dermal layers (upto 104.9μm) whereas the hydroalcoholic solution of the drug could penetrate up to 74.9μm. Further, the optimized ethosomal formulation was incorporated into 1% carbopol 934 gel base and optimized wherein the transdermal flux was found to be approximately 10 times more than the hydroethanolic solution. Also, the in-vivo pharmacodynamic study of the optimized ethosomal gel exhibited a higher percentage inhibition of swelling paw edema than marketed diclofenac gel. CONCLUSION The ethosomal gel was successfully developed and has shown the potential to be a good option for the replacement of conventional therapies of rheumatoid arthritis.
Collapse
Affiliation(s)
- Farzana Anjum
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Foziyah Zakir
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Devina Verma
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Manvi Singh
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Jain
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj,11942, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, Nanoformulation Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
37
|
Rezaeiroshan A, Saeedi M, Morteza-Semnani K, Akbari J, Gahsemi M, Nokhodchi A. Development of trans-Ferulic acid niosome: An optimization and an in-vivo study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Ghasemiyeh P, Mohammadi-Samani S. Potential of Nanoparticles as Permeation Enhancers and Targeted Delivery Options for Skin: Advantages and Disadvantages. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3271-3289. [PMID: 32848366 PMCID: PMC7429187 DOI: 10.2147/dddt.s264648] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The topical route of administration has many advantages for the treatment of various skin disorders as well as cosmeceutical purposes. This route bypasses hepatic first-pass effect and systemic availability of many pharmaceuticals is limited to skin organelles such as hair follicles and so could avoid unwanted adverse reactions and increase the localized therapeutic effect. Despite such attributed advantages of the topical route, the most important challenge is skin barrier characteristics that should be overcome to obtain dermal or trans-dermal drug delivery. Different approaches have been recruited to overcome this barrier. In this review, different types of nanoparticles for skin permeation enhancement and targeted delivery to skin organelles are discussed. The potential mechanisms of each nanocarrier in permeation enhancement and dermal delivery are considered and finally, the most important advantages and disadvantages of each group are summarized.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Machado ND, Fernández MA, Díaz DD. Recent Strategies in Resveratrol Delivery Systems. Chempluschem 2020; 84:951-973. [PMID: 31943987 DOI: 10.1002/cplu.201900267] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Indexed: 12/31/2022]
Abstract
Resveratrol, a natural polyphenolic stilbenoid widely found in grapes and wines, displays beneficial properties such as cardio-protective, antioxidant and anti-inflammatory activities. Trans-resveratrol (RSV) is the most bioactive and more abundant stereoisomer found in nature. Despite the positive properties of RSV, there are various factors that limit its effectiveness, including low aqueous solubility, low oral bioavailability and chemical instability. During the last years, an increasing number of strategies such as nano and micro encapsulation have been developed in order to overcome these limitations and enhance the use of RSV in nutritional and pharmaceutical applications. This Review summarizes the advances and main properties of several RSV carriers and delivery systems reported during the last 5 years.
Collapse
Affiliation(s)
- Noelia D Machado
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Química Orgánica, Ciudad Universitaria, X5000HUA, Cordoba, Argentina.,Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Ciudad Universitaria, X5000HUA, Cordoba, Argentina
| | - Mariana A Fernández
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Química Orgánica, Ciudad Universitaria, X5000HUA, Cordoba, Argentina.,Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Ciudad Universitaria, X5000HUA, Cordoba, Argentina
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg, Universitätstrasse. 31, 93040, Regensburg, Germany.,Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
40
|
Wang Z, Liu L, Xiang S, Jiang C, Wu W, Ruan S, Du Q, Chen T, Xue Y, Chen H, Weng L, Zhu H, Shen Q, Liu Q. Formulation and Characterization of a 3D-Printed Cryptotanshinone-Loaded Niosomal Hydrogel for Topical Therapy of Acne. AAPS PharmSciTech 2020; 21:159. [PMID: 32476076 DOI: 10.1208/s12249-020-01677-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cryptotanshinone (CPT) is an efficacious acne treatment, while niosomal hydrogel is a known effective topical drug delivery system that produces a minimal amount of irritation. Three-dimensional (3D) printing technologies have the potential to improve the field of personalized acne treatment. Therefore, this study endeavored to develop a 3D-printed niosomal hydrogel (3DP-NH) containing CPT as a topical delivery system for acne therapy. Specifically, CPT-loaded niosomes were prepared using a reverse phase evaporation method, and the formulation was optimized using a response surface methodology. In vitro characterization showed that optimized CPT-loaded niosomes were below 150 nm in size with an entrapment efficiency of between 67 and 71%. The CPT-loaded niosomes were added in a dropwise manner into the hydrogel to formulate CPT-loaded niosomal hydrogel (CPT-NH), which was then printed as 3DP-CPT-NH with specific drug dose, shape, and size using an extrusion-based 3D printer. The in vitro release behavior of 3DP-CPT-NH was found to follow the Korsmeyer-Peppas model. Permeation and deposition experiments showed significantly higher rates of transdermal flux, Q24, and CPT deposition (p < 0.05) compared with 3D-printed CPT-loaded conventional hydrogel (3DP-CPT-CH), which did not contain niosomes. In vivo anti-acne activity evaluated through an acne rat model revealed that 3DP-CPT-NH exhibited a greater anti-acne effect with no skin irritation. Enhanced skin hydration, wide inter-corneocyte gaps in the stratum corneum and a disturbed lipid arrangement may contribute towards the enhanced penetration properties of CPT. Collectively, this study demonstrated that 3DP-CPT-NH is a promising topical drug delivery system for personalized acne treatments.
Collapse
|
41
|
Choi YJ. Shedding Light on the Effects of Calorie Restriction and its Mimetics on Skin Biology. Nutrients 2020; 12:nu12051529. [PMID: 32456324 PMCID: PMC7284700 DOI: 10.3390/nu12051529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
During the aging process of an organism, the skin gradually loses its structural and functional characteristics. The skin becomes more fragile and vulnerable to damage, which may contribute to age-related diseases and even death. Skin aging is aggravated by the fact that the skin is in direct contact with extrinsic factors, such as ultraviolet irradiation. While calorie restriction (CR) is the most effective intervention to extend the lifespan of organisms and prevent age-related disorders, its effects on cutaneous aging and disorders are poorly understood. This review discusses the effects of CR and its alternative dietary intake on skin biology, with a focus on skin aging. CR structurally and functionally affects most of the skin and has been reported to rescue both age-related and photo-induced changes. The anti-inflammatory, anti-oxidative, stem cell maintenance, and metabolic activities of CR contribute to its beneficial effects on the skin. To the best of the author’s knowledge, the effects of fasting or a specific nutrient-restricted diet on skin aging have not been evaluated; these strategies offer benefits in wound healing and inflammatory skin diseases. In addition, well-known CR mimetics, including resveratrol, metformin, rapamycin, and peroxisome proliferator-activated receptor agonists, show CR-like prevention against skin aging. An overview of the role of CR in skin biology will provide valuable insights that would eventually lead to improvements in skin health.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| |
Collapse
|
42
|
Tawfeek HM, Abdellatif AA, Abdel-Aleem JA, Hassan YA, Fathalla D. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101540] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Gandhi H, Rathore C, Dua K, Vihal S, Tambuwala MM, Negi P. Efficacy of resveratrol encapsulated microsponges delivered by pectin based matrix tablets in rats with acetic acid-induced ulcerative colitis. Drug Dev Ind Pharm 2020; 46:365-375. [PMID: 32041433 DOI: 10.1080/03639045.2020.1724127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives: The objective of the present work to encapsulate the resveratrol (RES) inside the chitosan-based microsponges, employing the systematic optimization by 33 Box-Behnken design for the colonic targeting.Significance: Enhanced therapeutic efficacy of RES-loaded microsponges and matrix tablets, vis-a-vis pureRES for ulcerative colitis.Methods: RES-loaded microsponges were prepared employing the systematic optimization by 33 Box-Behnken design for the colonic targeting. The best-optimizedRES-loaded microsponge was compressed in the form of a tablet, employing pectin as a matrix-forming material. The encapsulation of RES inside microsponge was confirmed by XRD, DSC and FT-IR. Further, both RES-loaded microsponges and matrix tablets were evaluated for in vitro release kinetics and further evaluated for in vivo ulcerative colitis animal model.Results: Optimization experiments was obtained as the high value of r2 (particle size = 0.9999; %EE = 0.9652; %CDR = 0.9469) inferred excellent goodness of fit. SEM revealed nearly spherical and porous nature of RES-loaded microsponges. The in vitro release kinetic showed zero-order release for RES-loaded microsponges and Korsmeyer-Peppas model for matrix tablets. The pharmacodynamic studies, in ulcerative colitis rat model, indicated better therapeutic efficacy of drug-loaded microsponges and matrix tablets, vis-a-vis pure RES. Thus, the present study advocates the potential of RES based microsponges delivered by pectin based matrix tablet, in the treatment of various colonic disorders.Conclusion: The present study proved that RES-loaded microsponges and matrix tablets based on chitosan and pectin can be the ideal delivery system for colonic delivery of RES.
Collapse
Affiliation(s)
- Himanshu Gandhi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Charul Rathore
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, Australia
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, United Kingdom
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
44
|
Rathore C, Upadhyay N, Kaundal R, Dwivedi RP, Rahatekar S, John A, Dua K, Tambuwala MM, Jain S, Chaudari D, Negi P. Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructs. Expert Opin Drug Deliv 2020; 17:237-253. [PMID: 32003249 DOI: 10.1080/17425247.2020.1716728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: The poor biopharmaceutical properties of thymoquinone (TQ) obstruct its development as a hepatoprotective agent. To surmount the delivery challenges of TQ, phospholipid nanoconstructs (PNCs) were constructed.Method: PNCs were constructed employing microemulsification technique and systematic optimization by three-factor three level Box-Behnken design.Result: Optimized PNC composition exhibited nano size (<100 nm), spherical morphology, within acceptable range of polydispersity index (0.55), high drug entrapment efficiency (>90%), controlled drug release pattern, and neutral surface charge (zeta potential of -0.65 mV). After oral administration of a single dose of PNC, it showed a relative bioavailability of 386.03% vis-à-vis plain TQ suspension. Further, TQ-loaded PNC demonstrated significant enhanced hepato-protective effect vis-à-vis pure TQ suspension and silymarin, as evidenced by reduction in the ALP, ALT, AST, bilirubin, and albumin level and ratified by histopathological analysis.Conclusion: TQ-loaded PNCs can be efficient nano-platforms for the management of hepatic disorders and promising drug delivery systems to enhance oral bioavailability of this hydrophobic molecule.
Collapse
Affiliation(s)
- C Rathore
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - N Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - R Kaundal
- Icahn School of Medicine, Mount Sinai, Hospital and Healthcare, New York, NY, USA
| | - R P Dwivedi
- School of Electrical and Computer Science Engineering, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | | | - A John
- Laboratory of Materials Science, Institute of Chemistry of Natural Resource, University of Talca, Talca, Chile
| | - K Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, UK
| | - S Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Centre for Pharmaceutical Nanotechnology, Punjab, India
| | - D Chaudari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Centre for Pharmaceutical Nanotechnology, Punjab, India
| | - P Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
45
|
Negi P, Sharma I, Hemrajani C, Rathore C, Bisht A, Raza K, Katare OP. Thymoquinone-loaded lipid vesicles: a promising nanomedicine for psoriasis. Altern Ther Health Med 2019; 19:334. [PMID: 31771651 PMCID: PMC6880584 DOI: 10.1186/s12906-019-2675-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022]
Abstract
Background Psoriasis, a recurrent, chronic inflammatory disorder of skin, is a common problem in middle age and elderly people. Thymoquinone (TQ), a lipid soluble benzoquinone is the major active ingredient of volatile oil of Nigella sativa (NS), possesses good anti-psoriatic activity. However, its hydrophobicity, poor aqueous solubility, and photosensitive nature obstructs its development. Therefore, in the present research work, ethosomal vesicles (EVs) loaded with TQ were assessed for its anti-psoriatic potential employing mouse-tail model. Methods TQ-loaded EVs were prepared by cold method, and characterized for various essential attributes, viz. particle size, morphology, percent drug entrapment, flexibility, rheological and textural analysis, and skin absorption. The optimized formulation was finally evaluated for anti-psoriatic activity on Swiss albino mice employing mouse-tail model for psoriasis. Results The spherical shaped vesicles were in the nanosize range, and had high flexibility. The EVs incorporated hydrogel was rheologically acceptable and resulted in substantial TQ retention in the skin layers. The % anti-psoriatic drug activity was observed to be substantially better in the case of TQ-loaded ethosomal gel vis-à-vis plain TQ, NS extract, and marketed formulation. Conclusions The promising outcomes of the current studies ratify the superiority of TQ-loaded phospholipid-based vesicular systems for the management of psoriasis over other studied test formulations. This study, thus open promising avenues for topical application of TQ in the form of EV hydrogel.
Collapse
|
46
|
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144:18-39. [PMID: 31446046 DOI: 10.1016/j.ejpb.2019.08.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
Abstract
Development of nanocarriers for drug delivery has received considerable attention due to their potential in achieving targeted delivery to the diseased site while sparing the surrounding healthy tissue. Safe and efficient drug delivery has always been a challenge in medicine. During the last decade, a large amount of interest has been drawn on the fabrication of surfactant-based vesicles to improve drug delivery. Niosomes are self-assembled vesicular nano-carriers formed by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules that serve as a versatile drug delivery system with a variety of applications ranging from dermal delivery to brain-targeted delivery. A large number of research articles have been published reporting their fabrication methods and applications in pharmaceutical and cosmetic fields. Niosomes have the same advantages as liposomes, such as the ability to incorporate both hydrophilic and lipophilic compounds. Besides, niosomes can be fabricated with simple methods, require less production cost and are stable over an extended period, thus overcoming the major drawbacks of liposomes. This review provides a comprehensive summary of niosomal research to date, it provides a detailed overview of the formulation components, types of niosomes, effects of components on the formation of niosomes, fabrication and purification methods, physical characterization techniques of niosomes, recent applications in pharmaceutical field such as in oral, ocular, topical, pulmonary, parental and transmucosal drug delivery, and cosmetic applications. Finally, limitations and the future outlook for this delivery system have also been discussed.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Sara Hanning
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - James Falconer
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Level 4, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Michelle Locke
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Department of Plastic and Reconstructive Surgery, Middlemore Hospital, Counties Manukau District Health Board, Private Bag 93311, Otahuhu, Auckland 1640, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
47
|
Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Nemutlu E, Eroğlu İ, Eroğlu H, Kır S. In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:Nanotech products are gaining more attention depending on their advantages for improving drug solubility, maintenance of drug targeting, and attenuation of drug toxicity. In vitro release test is the critical physical parameter to determine the pharmaceutical quality of the product, to monitor formulation design and batch-to-batch variation.Methods:Spectrophotometric and chromatographic methods are mostly used in quantification studies from in vitro release test of nano-drug delivery systems. These techniques have advantages and disadvantages with respect to each other considering dynamic range, selectivity, automation, compatibility with in vitro release media and cost per sample.Results:It is very important to determine the correct kinetic profile of active pharmaceutical substances. At this point, the analytical method used for in vitro release tests has become a very critical parameter to correctly assess the profiles. In this review, we provided an overview of analytical methods applied to the in vitro release assay of various nanopharmaceuticals.Conclusion:This review presents practical direction on analytical method selection for in vitro release test on nanopharmaceuticals. Moreover, precautions on analytical method selection, optimization and validation were discussed.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - İpek Eroğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
49
|
Gan C, Cai K, Qu X, Li H, Wei L, Cheng R. Glucose-based novel gemini surfactants: Surface activities, aggregation properties and a preliminary study as nanocarrier for resveratrol. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Arch Dermatol Res 2019; 311:577-588. [PMID: 31115657 DOI: 10.1007/s00403-019-01930-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/01/2019] [Accepted: 05/04/2019] [Indexed: 01/01/2023]
Abstract
The grape seed extract (GSE) and its main active polyphenol, resveratrol (RES), have shown considerable antioxidant activities, besides possessed protective and therapeutic effects against various skin complications. This paper discusses the favorable effects of RES, GSE and their nanoformulations for dermatological approaches, with specific emphasis on clinical interventions. In this manner, electronic databases including PubMed, Science Direct and Google Scholar were searched. Data were collected from 1980 up to February 2019. The search terms included "Vitis vinifera", "grape", "resveratrol", "skin", "dermatology", and "nanoformulation". To increase the skin permeability of GSE and RES, several innovative nanoformulation such as liposomes, niosomes, solid-lipid nanoparticles, nanostructured lipid carriers, and lipid-core nanocapsule has been evaluated. According to our extensive searches, both RES and GSE have beneficial impacts on skin disorders such as chloasma, acne vulgaris, skin aging, as well as wound and facial redness. More clinical studies with nanoformulation approaches are recommended to achieve conclusive outcomes regarding the efficacy of RES and GSE in the management of skin diseases.
Collapse
|