1
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
2
|
Pinheiro CG, Motta BP, Oliveira JO, Cardoso FN, Figueiredo ID, Machado RTA, da Silva PB, Chorilli M, Brunetti IL, Baviera AM. Bixin Combined with Metformin Ameliorates Insulin Resistance and Antioxidant Defenses in Obese Mice. Pharmaceuticals (Basel) 2024; 17:1202. [PMID: 39338363 PMCID: PMC11434661 DOI: 10.3390/ph17091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Bixin (C25H30O4; 394.51 g/mol) is the main apocarotenoid found in annatto seeds. It has a 25-carbon open chain structure with a methyl ester group and carboxylic acid. Bixin increases the expression of antioxidant enzymes, which may be interesting for counteracting oxidative stress. This study investigated whether bixin-rich annatto extract combined with metformin was able to improve the disturbances observed in high-fat diet (HFD)-induced obesity in mice, with an emphasis on markers of oxidative damage and antioxidant defenses. HFD-fed mice were treated for 8 weeks with metformin (50 mg/kg) plus bixin-rich annatto extract (5.5 and 11 mg/kg). This study assessed glucose tolerance, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma, fluorescent AGEs (advanced glycation end products), TBARSs (thiobarbituric acid-reactive substances), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver and kidneys. Treatment with bixin plus metformin decreased body weight gain, improved insulin sensitivity, and decreased AGEs and TBARSs in the plasma, liver, and kidneys. Bixin plus metformin increased the activities of PON-1, SOD, CAT, and GSH-Px. Bixin combined with metformin improved the endogenous antioxidant defenses in the obese mice, showing that this combined therapy may have the potential to contrast the metabolic complications resulting from oxidative stress.
Collapse
Affiliation(s)
- Camila Graça Pinheiro
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Bruno Pereira Motta
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Juliana Oriel Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Felipe Nunes Cardoso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Rachel Temperani Amaral Machado
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Patrícia Bento da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| |
Collapse
|
3
|
Patil SS, khulbe P, Nitalikar MM, Das K, B.P. M, Alshehri S, Khormi AMS, Almalki MEM, Hussain SA, Rabbani SI, Asdaq SMB. Development of topical silver nano gel formulation of Bixin: Characterization, and evaluation of anticancer activity. Saudi Pharm J 2024; 32:102125. [PMID: 38933714 PMCID: PMC11201344 DOI: 10.1016/j.jsps.2024.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Objective Skin cancer refers to the pathological condition characterized by the proliferation of atypical skin cells in an uncontrolled manner. Plant-based products such as bixin although show promising anticancer properties, but maintaining their stability in a formulation is a difficult task. The objective of the research is to formulate a silver nanoparticle gel preparation of bixin and evaluate its anticancer properties. Methods The extract from Bixa orellana seed was prepared by hot extraction technique to isolate the active ingredient, bixin. A green synthesis approach was utilized for preparing the silver nanoparticle gel of bixin (BOAgNPs). Characterization of silver nanoparticles was done using FTIR, scanning electron microscopy, compatibility study, homogeneity testing, pH evaluation, and drug content determination. The in-vitro anticancer activity was performed using cell lines (B16F10) and in-vivo by chemical carcinogen (7,12-dimethylbenz (a) anthracene) in mice. Results The BOAgNPs-loaded topical gel was found to be homogeneous (clear orange color) and pH-compatible (pH ≈ 6.66) with the skin. The characterization studies indicated the presence of all functional groups in the formulation. An optimized batch of bixin-nano gel showed about 60% inhibitory effects on B16F10 cell lines (in-vitro activity) when equated with a reference drug, 5-fluorouracil. The in-vivo anticancer study suggested suppression of tumorigenesis and promotion of the healing process with bixin-nano gel application on the skin. Conclusion The results suggested the promising anticancer property of bixin when formulated in silver nanoparticle gel. The preparation of silver particles nano gel with bixin might provide an effective alternative option for treating skin cancers, provided more research complements the findings of the present study.
Collapse
Affiliation(s)
- Swapnil S. Patil
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University Jaipur, 302017 Rajasthan, India
| | - Preeti khulbe
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University Jaipur, 302017 Rajasthan, India
| | | | - Kuntal Das
- Mallige College of Pharmacy, #71, Silvepura, Chikkabanavara Post, Bangalore 560090, India
| | - Mallikarjuna B.P.
- MB School of Pharmaceutical Sciences (Erstwhile Sree Vidyanikethan College of Pharmacy), Mohan Babu University, Tirupati, Andhra Pradesh, 517102, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | | | | | - Syed Arif Hussain
- Department of Respiratory Care, College of Applied Sciences, AlMaarefa University, Dariyah 13713, Riyadh, Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 51452 Buraydah, Saudi Arabia
| | | |
Collapse
|
4
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
5
|
Shadisvaaran S, Chin KY, Mohd-Said S, Leong XF. Therapeutic potential of bixin on inflammation: a mini review. Front Nutr 2023; 10:1209248. [PMID: 37781110 PMCID: PMC10534043 DOI: 10.3389/fnut.2023.1209248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic inflammation is the underlying mechanism for many diseases. Thus, inflammatory signaling pathways are valuable targets for new treatment modalities. Natural products have gained interest as a potential source of bioactive compounds which provide health benefits in combating inflammatory-related diseases. Recent reports have linked the medicinal values of Bixa orellana L. with its anti-inflammatory activities. Therefore, this review aims to examine the therapeutic potential of bixin, a major bioactive constituent found in the seeds of B. orellana, on inflammatory-related diseases based on existing in vitro and in vivo evidence. Additionally, the anti-inflammatory mechanism of bixin via signaling pathways is explored and possible toxic effects are addressed. The findings suggest that bixin may ameliorate inflammation via inhibition of toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and thioredoxin-interacting protein/NOD-like receptor protein 3 (TXNIP/NLRP3) inflammasome mechanisms. More well-planned clinical studies should be performed to verify its effectiveness and safety profile.
Collapse
Affiliation(s)
- Saminathan Shadisvaaran
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Shahida Mohd-Said
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Xin-Fang Leong
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Varghese R, Buragohain T, Banerjee I, Mukherjee R, Penshanwar SN, Agasti S, Ramamoorthy S. The apocarotenoid production in microbial biofactories: An overview. J Biotechnol 2023; 374:5-16. [PMID: 37499877 DOI: 10.1016/j.jbiotec.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Carotenoids are a vast group of natural pigments that come in a variety of colors ranging from red to orange. Apocarotenoids are derived from these carotenoids, which are hormones, pigments, retinoids, and volatiles employed in the textiles, cosmetics, pharmaceutical, and food industries. Due to the high commercial value and poor natural host abundance, they are significantly undersupplied. Microbes like Saccharomyces cerevisiae and Escherichia coli act as heterologous hosts for apocarotenoid production. This article briefly reviews categories of apocarotenoids, their biosynthetic pathway commencing from the MVA and MEP, its significance, the tool enzymes for apocarotenoid biosynthesis like CCDs, their biotechnological production in microbial factories, and future perspectives.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tinamoni Buragohain
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ishani Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rishyani Mukherjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Shraddha Naresh Penshanwar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Swapna Agasti
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Mamdouh Hashiesh H, Sheikh A, Meeran MFN, Saraswathiamma D, Jha NK, Sadek B, Adeghate E, Tariq S, Al Marzooqi S, Ojha S. β-Caryophyllene, a Dietary Phytocannabinoid, Alleviates Diabetic Cardiomyopathy in Mice by Inhibiting Oxidative Stress and Inflammation Activating Cannabinoid Type-2 Receptors. ACS Pharmacol Transl Sci 2023; 6:1129-1142. [PMID: 37588762 PMCID: PMC10425997 DOI: 10.1021/acsptsci.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 08/18/2023]
Abstract
Diabetes mellitus (DM) and its associated complications are considered one of the major health risks globally. Among numerous complications, diabetic cardiomyopathy (DCM) is characterized by increased accumulation of lipids and reduced glucose utilization following abnormal lipid metabolism in the myocardium along with oxidative stress, myocardial fibrosis, and inflammation that eventually result in cardiac dysfunction. The abnormal metabolism of lipids plays a fundamental role in cardiac lipotoxicity following the occurrence and development of DCM. Recently, it has been revealed that cannabinoid type-2 (CB2) receptors, an essential component of the endocannabinoid system, play a crucial role in the pathogenesis of obesity, hyperlipidemia, and DM. Provided the role of CB2R in regulating the glucolipid metabolic dysfunction and its antioxidant as well as anti-inflammatory activities, we carried out the current study to investigate the protective effects of a selective CB2R agonist, β-caryophyllene (BCP), a natural dietary cannabinoid in the murine model of DCM and elucidated the underlying pharmacological and molecular mechanisms. Mice were fed a high-fat diet for 4 weeks followed by a single intraperitoneal injection of streptozotocin (100 mg/kg) to induce the model of DCM. BCP (50 mg/kg body weight) was given orally for 12 weeks. AM630, a CB2R antagonist, was given 30 min before BCP treatment to demonstrate the CB2R-dependent mechanism of BCP. DCM mice exhibited hyperglycemia, increased serum lactate dehydrogenase, impaired cardiac function, and hypertrophy. In addition, DCM mice showed alternations in serum lipids and increased oxidative stress concomitant to reduced antioxidant defenses and enhanced cardiac lipid accumulation in the diabetic heart. DCM mice also exhibited activation of TLR4/NF-κB/MAPK signaling and triggered the production of inflammatory cytokines and inflammatory enzyme mediators. However, treatment with BCP exerted remarkable protective effects by favorable modulation of the biochemical and molecular parameters, which were altered in DCM mice. Interestingly, pretreatment with AM630 abrogated the protective effects of BCP in DCM mice. Taken together, the findings of the present study demonstrate that BCP possesses the capability to mitigate the progression of DCM by inhibition of lipotoxicity-mediated cardiac oxidative stress and inflammation and favorable modulation of TLR4/NF-κB/MAPK signaling pathways mediating the CB2R-dependent mechanism.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Azimullah Sheikh
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Dhanya Saraswathiamma
- Department
of Pathology, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Niraj Kumar Jha
- Department
of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Bassem Sadek
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department
of Anatomy, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Saeed Tariq
- Department
of Anatomy, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Saeeda Al Marzooqi
- Department
of Pathology, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Shreesh Ojha
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
- Zayed Bin
Sultan Center for Health Sciences, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Enayati A, Rezaei A, Falsafi SR, Rostamabadi H, Malekjani N, Akhavan-Mahdavi S, Kharazmi MS, Jafari SM. Bixin-loaded colloidal nanodelivery systems, techniques and applications. Food Chem 2023; 412:135479. [PMID: 36709686 DOI: 10.1016/j.foodchem.2023.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Bixin is the cis-carotenoid from the seed of achiote tree or annatto. It is an approved liposoluble apocarotenoid by FDA as colorant and additive in the food industry. Nonetheless, bixin is unstable in the presence of oxygen, light, high pHs (alkali) and heat; thereby reducing its bioavailability/bioactivity, and also, with a low solubility in water. Some biopolymeric (e.g., nanofibers, nanogels, and nanotubes) and lipid-based nanocarriers (nanoliposomes, niosomes, hexosomes, nanoemulsions, solid-lipid nanoparticles, and nanostructured lipid carriers) have been introduced for bixin. Thus, this review focuses on the updated information regarding bixin-loaded nanodelivery platforms. Moreover, it provides a comprehensive review of bioavailability, physicochemical properties, and applications of nanoencapsulated-bixin as an additive, its release rate and safety issues. These findings will bring potential strategies for the usage of nanocarriers in managing bixin defaults to improve its broad application in various industries.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Sahar Akhavan-Mahdavi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
9
|
Kapoor L, Udhaya Kumar S, De S, Vijayakumar S, Kapoor N, Ashok Kumar SK, Priya Doss C G, Ramamoorthy S. Multispectroscopic, virtual and in vivo insights into the photoaging defense mediated by the natural food colorant bixin. Food Funct 2023; 14:319-334. [PMID: 36503930 DOI: 10.1039/d2fo02338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An upsurge in early onset of photoaging due to repeated skin exposure to environmental stressors such as UV radiation is a challenge for pharmaceutical and cosmeceutical divisions. Current reports indicate severe side effects because of chemical or synthetic inhibitors of matrix metalloproteases (MMPs) in anti-skin aging cosmeceuticals. We evaluated the adequacy of bixin, a well-known FDA certified food additive, as a scavenger of free radicals and its inhibitory mechanism of action on MMP1, collagenase, elastase, and hyaluronidase. The anti-skin aging potential of bixin was evaluated by several biotechnological tools in silico, in vitro and in vivo. Molecular docking and simulation dynamics studies gave a virtual insight into the robust binding interaction between bixin and skin aging-related enzymes. Absorbance and fluorescence studies, enzyme inhibition assays, enzyme kinetics and in vitro bioassays of human dermal fibroblast (HDF) cells highlighted bixin's role as a potent antioxidant and inhibitor of skin aging-related enzymes. Furthermore, in vivo protocols were carried out to study the impact of bixin administration on UVA induced photoaging in C57BL/6 mice skin. Here, we uncover the UVA shielding effect of bixin and its efficacy as a novel anti-photoaging agent. Furthermore, the findings of this study provide a strong foundation to explore the pharmaceutical applications of bixin in several other biochemical pathways linked to MMP1, collagenase, elastase, and hyaluronidase.
Collapse
Affiliation(s)
- Leepica Kapoor
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - S Udhaya Kumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan
| | - Sujithra Vijayakumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore 632004, Tamil Nadu, India.,Non Communicable Disease Unit and Implementation Science Lab, The Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - S K Ashok Kumar
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Coutinho-Wolino KS, Almeida PP, Mafra D, Stockler-Pinto MB. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: pathways involved and future perspectives. Nutr Res 2022; 107:96-116. [PMID: 36209684 DOI: 10.1016/j.nutres.2022.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with the development and progression of several noncommunicable diseases, such as diabetes, cardiovascular disease, chronic kidney disease, cancer, and nonalcoholic fatty liver disease. Evidence suggests that pattern recognition receptors that identify pathogen-associated molecular patterns and danger-associated molecular patterns are crucial in chronic inflammation. Among the pattern recognition receptors, Toll-like receptor 4 (TLR4) stimulates several inflammatory pathway agonists, such as nuclear factor-κB, interferon regulator factor 3, and nod-like receptor pyrin domain containing 3 pathways, which consequently trigger the expression of pro-inflammatory biomarkers, increasing the risk of noncommunicable disease development and progression. Studies have focused on the antagonistic potential of bioactive compounds, following the concept of food as a medicine, in which nutritional strategies may mitigate inflammation via TLR4 modulation. Thus, this review discusses preclinical evidence concerning bioactive compounds from fruit, vegetable, spice, and herb extracts (curcumin, resveratrol, catechin, cinnamaldehyde, emodin, ginsenosides, quercetin, allicin, and caffeine) that may regulate the TLR4 pathway and reduce the inflammatory response. Bioactive compounds can inhibit TLR4-mediated inflammation through gut microbiota modulation, improvement of intestinal permeability, inhibition of lipopolysaccharide-TLR4 binding, and decreasing TLR4 expression by modulation of microRNAs and antioxidant pathways. The responses directly mitigated inflammation, especially nuclear factor-κB activation and inflammatory cytokines release. These findings should be considered for further clinical studies on inflammation-mediated diseases.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Patricia P Almeida
- Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil; Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
11
|
Epidemiological role of plant pigment bixin in adipaging: In vivo pilot study. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022. [DOI: 10.1016/j.cegh.2022.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Figueiredo-Junior AT, Valença SS, Finotelli PV, dos Anjos FDF, de Brito-Gitirana L, Takiya CM, Lanzetti M. Treatment with Bixin-Loaded Polymeric Nanoparticles Prevents Cigarette Smoke-Induced Acute Lung Inflammation and Oxidative Stress in Mice. Antioxidants (Basel) 2022; 11:antiox11071293. [PMID: 35883784 PMCID: PMC9311961 DOI: 10.3390/antiox11071293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
The use of annatto pigments has been evaluated as a therapeutic strategy in animal models of several health disorders. Beneficial effects were generally attributed to the inhibition of oxidative stress. Bixin is the main pigment present in annatto seeds and has emerged as an important scavenger of reactive oxygen (ROS) and nitrogen species (RNS). However, this carotenoid is highly hydrophobic, affecting its therapeutic applicability. Therefore, bixin represents an attractive target for nanotechnology to improve its pharmacokinetic parameters. In this study, we prepared bixin nanoparticles (npBX) and evaluated if they could prevent pulmonary inflammation and oxidative stress induced by cigarette smoke (CS). C57BL/6 mice were exposed to CS and treated daily (by gavage) with different concentrations of npBX (6, 12 and 18%) or blank nanoparticles (npBL, 18%). The negative control group was sham smoked and received 18% npBL. On day 6, the animals were euthanized, and bronchoalveolar lavage fluid (BALF), as well as lungs, were collected for analysis. CS exposure led to an increase in ROS and nitrite production, which was absent in animals treated with npBX. In addition, npBX treatment significantly reduced leukocyte numbers and TNF-α levels in the BALF of CS-exposed mice, and it strongly inhibited CS-induced increases in MDA and PNK in lung homogenates. Interestingly, npBX protective effects against oxidative stress seemed not to act via Nrf2 activation in the CS + npBX 18% group. In conclusion, npBX prevented oxidative stress and acute lung inflammation in a murine model of CS-induced acute lung inflammation.
Collapse
Affiliation(s)
- Alexsandro Tavares Figueiredo-Junior
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Samuel Santos Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Priscilla Vanessa Finotelli
- Departamento de Produtos Naturais e Alimentos da Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Francisca de Fátima dos Anjos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Lycia de Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Christina Maeda Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Manuella Lanzetti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
- Correspondence:
| |
Collapse
|
13
|
The Beneficial Effects of Chinese Herbal Monomers on Ameliorating Diabetic Cardiomyopathy via Nrf2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3959390. [PMID: 35656019 PMCID: PMC9155920 DOI: 10.1155/2022/3959390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 12/05/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the main factor responsible for poor prognosis and survival in patients with diabetes. The highly complex pathogenesis of DCM involves multiple signaling pathways, including nuclear factor-κB (NF-κB) signaling pathway, adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, phosphatidylinositol 3-kinase-protein kinase B (Akt) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-β (TGF-β) signaling pathway. Nuclear factor erythroid-2-related factor 2 (Nrf2) seems essential to the amelioration of the progression of DCM, not only through counterbalancing oxidative stress, but also through interacting with other signaling pathways to combat inflammation, the disorder in energy homeostasis and insulin signaling, and fibrosis. It has been evidenced that Chinese herbal monomers could attenuate DCM through the crosstalk of Nrf2 with other signaling pathways. This article has summarized the pathogenesis of DCM (especially in oxidative stress), the beneficial effects of ameliorating DCM via the Nrf2 signaling pathway and its crosstalk, and examples of Chinese herbal monomers. It will facilitate pharmacological research and development to promote the utilization of traditional Chinese medicine in DCM.
Collapse
|
14
|
Houël E, Ginouves M, Azas N, Bourreau E, Eparvier V, Hutter S, Knittel-Obrecht A, Jahn-Oyac A, Prévot G, Villa P, Vonthron-Sénécheau C, Odonne G. Treating leishmaniasis in Amazonia, part 2: Multi-target evaluation of widely used plants to understand medicinal practices. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115054. [PMID: 35131338 DOI: 10.1016/j.jep.2022.115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leishmaniasis are widely distributed among tropical and subtropical countries, and remains a crucial health issue in Amazonia. Indigenous groups across Amazonia have developed abundant knowledge about medicinal plants related to this pathology. AIM OF THE STUDY We intent to explore the weight of different pharmacological activities driving taxa selection for medicinal use in Amazonian communities. Our hypothesis is that specific activity against Leishmania parasites is only one factor along other (anti-inflammatory, wound healing, immunomodulating, antimicrobial) activities. MATERIALS AND METHODS The twelve most widespread plant species used against leishmaniasis in Amazonia, according to their cultural and biogeographical importance determined through a wide bibliographical survey (475 use reports), were selected for this study. Plant extracts were prepared to mimic their traditional preparations. Antiparasitic activity was evaluated against promastigotes of reference and clinical New-World strains of Leishmania (L. guyanensis, L. braziliensis and L. amazonensis) and L. amazonensis intracellular amastigotes. We concurrently assessed the extracts immunomodulatory properties on PHA-stimulated human PBMCs and RAW264.7 cells, and on L. guyanensis antigens-stimulated PBMCs obtained from Leishmania-infected patients, as well as antifungal activity and wound healing properties (human keratinocyte migration assay) of the selected extracts. The cytotoxicity of the extracts against various cell lines (HFF1, THP-1, HepG2, PBMCs, RAW264.7 and HaCaT cells) was also considered. The biological activity pattern of the extracts was represented through PCA analysis, and a correlation matrix was calculated. RESULTS Spondias mombin L. bark and Anacardium occidentale L. stem and leaves extracts displayed high anti-promatigotes activity, with IC50 ≤ 32 μg/mL against L. guyanensis promastigotes for S. mombin and IC50 of 67 and 47 μg/mL against L. braziliensis and L. guyanensis promastigotes, respectively, for A. occidentale. In addition to the antiparasitic effect, antifungal activity measured against C. albicans and T. rubrum (MIC in the 16-64 μg/mL range) was observed. However, in the case of Leishmania amastigotes, the most active species were Bixa orellana L. (seeds), Chelonantus alatus (Aubl.) Pulle (leaves), Jacaranda copaia (Aubl.) D. Don. (leaves) and Plantago major L. (leaves) with IC50 < 20 μg/mL and infection rates of 14-25% compared to the control. Concerning immunomodulatory activity, P. major and B. orellana were highlighted as the most potent species for the wider range of cytokines in all tested conditions despite overall contrasting results depending on the model. Most of the species led to moderate to low cytotoxic extracts except for C. alatus, which exhibited strong cytotoxic activity in almost all models. None of the tested extracts displayed wound healing properties. CONCLUSIONS We highlighted pharmacologically active extracts either on the parasite or on associated pathophysiological aspects, thus supporting the hypothesis that antiparasitic activities are not the only biological factor useful for antileishmanial evaluation. This result should however be supplemented by in vivo studies, and attracts once again the attention on the importance of the choice of biological models for an ethnophamacologically consistent study. Moreover, plant cultural importance, ecological status and availability were discussed in relation with biological results, thus contributing to link ethnobotany, medical anthropology and biology.
Collapse
Affiliation(s)
- Emeline Houël
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, 97300, Cayenne, France.
| | - Marine Ginouves
- TBIP, Université de Guyane, 97300, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Eliane Bourreau
- Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP6010, 97306, Cayenne Cedex, French Guiana
| | - Véronique Eparvier
- CNRS - Institut de Chimie des Substances Naturelles, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Adeline Knittel-Obrecht
- Plate-forme de Chimie Biologique Intégrative de Strasbourg UAR 3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412, Illkirch Cedex, France
| | - Arnaud Jahn-Oyac
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, 97300, Cayenne, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, 97300, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Pascal Villa
- Plate-forme de Chimie Biologique Intégrative de Strasbourg UAR 3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412, Illkirch Cedex, France
| | - Catherine Vonthron-Sénécheau
- Laboratoire d'Innovation Thérapeutique UMR 7200 CNRS - Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Guillaume Odonne
- Laboratoire Ecologie, évolution, interactions des systèmes amazoniens (LEEISA), CNRS, Université de Guyane, IFREMER, 97300, Cayenne, French Guiana
| |
Collapse
|
15
|
Oliveira WQD, Sousa PHMD, Pastore GM. Olfactory and gustatory disorders caused by COVID-19: How to regain the pleasure of eating? Trends Food Sci Technol 2022; 122:104-109. [PMID: 35039714 PMCID: PMC8755554 DOI: 10.1016/j.tifs.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Background Recently, anosmia and ageusia (and their variations) have been reported as frequent symptoms of COVID-19. Olfactory and gustatory stimuli are essential in the perception and pleasure of eating. Disorders in sensory perception may influence appetite and the intake of necessary nutrients when recovering from COVID-19. In this short commentary, taste and smell disorders were reported and correlated for the first time with food science. Scope and approach The objective of this short commentary is to report that taste and smell disorders resulted from COVID-19 may impact eating pleasure and nutrition. It also points out important technologies and trends that can be considered and improved in future studies. Key findings and conclusions Firmer food textures can stimulate the trigeminal nerve, and more vibrant colors are able to increase the modulation of brain metabolism, stimulating pleasure. Allied to this, encapsulation technology enables the production of new food formulations, producing agonist and antagonist agents to trigger or block specific sensations. Therefore, opportunities and innovations in the food industry are wide and multidisciplinary discussions are needed.
Collapse
Affiliation(s)
- Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Paulo Henrique Machado De Sousa
- Department of Food Technology, Federal University of Ceará, Av. Mister Hull, 2977, Pici University Campus, Fortaleza, Ceará, ZIP 60356-000, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
16
|
Bixin Prevents Colorectal Cancer Development through AMPK-Activated Endoplasmic Reticulum Stress. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9329151. [PMID: 35252457 PMCID: PMC8894005 DOI: 10.1155/2022/9329151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Chemicals isolated from natural products have been broadly applied in the treatment of colorectal cancer (CRC). Bixin, an apocarotenoid from the seeds of Bixa orellana, exerts multiple pharmacological properties, including neuroprotective, anti-inflammatory, cardioprotective, and antitumor effects; yet, the therapeutic effects of Bixin on CRC are still unknown. Here, we described that Bixin treatment significantly inhibited the proliferation and motility of two CRC cell lines (CaCO2 and SW480) in vitro and in vivo. In addition, Bixin administration has sensitized CRC cells to TNF-related apoptosis-inducing ligand- (TRAIL-) induced cell apoptosis. Moreover, we showed that Bixin treatment initiated the activation of PERK/eIF-2α signal in CaCO2 and SW480 cells, leading to endoplasmic reticulum stress-associated apoptosis. Pharmacological inhibition of AMP-activated protein kinase (AMPK) abrogated the Bixin-induced activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF-2α) pathway, as well as reversed the inhibitory effects of Bixin on CRC development. In conclusion, this study indicated that Bixin treatment inhibits the progression of CRC through activating the AMPK/PERK/eIF-2α pathway, providing a novel potential strategy for clinical prevention of CRC.
Collapse
|
17
|
Yuan J, Yin X, Jiang H. Inhibition of Toll-like Receptor-4 expression for amelioration of myocardial injury in diabetes: A meta-analysis. Clinics (Sao Paulo) 2022; 77:100137. [PMID: 36434877 PMCID: PMC9700273 DOI: 10.1016/j.clinsp.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To understand the relationship between the inhibition of Toll-Like Receptor-4 (TLR4) expression levels and diabetic myocardial injury, studies on TLR4 and diabetic myocardial injury in the China National Knowledge Internet (CNKI), WanFang database, VIP Database, PubMed, The Cochrane Library, Web of Science, and other databases were explored (retrieval details: November 2020). A meta-analysis of the selected literature was performed using the RevMan 5.4 software to detect publication bias using funnel plots and conduct a sensitivity analysis. Nine publications were finally included in this study, of which six included data on Heart Weight/Body Weight (HW/BW) indexes, and five included data on Left Ventricular Systolic Pressure (LVSP) and Left Ventricular End-Diastolic Pressure (LVEDP) indices. The meta-analysis showed that HW/BW was significantly reduced after the suppression of TLR4 expression (Standardized Mean Difference [SMD = 1.9], 95% CI between 0.59 and 3.21, p = 0.004), LVSP was significantly improved (SMD = -2.39, 95% CI between -4.32 and -0.46, p = 0.02), and LVEDP was significantly reduced (SMD = 2.88, 95% CI between 1.05 and 4.71, p = 0.002). The TLR4 signaling pathway plays an essential role in the pathogenesis of Diabetic Cardiomyopathy (DCM). Inhibition of TLR4 expression can improve the degree of cardiac impairment. TLR4 may become a new target for the treatment of DCM, and the use of TLR4 inhibitors may prove to be a novel strategy for therapeutic research.
Collapse
Affiliation(s)
- Jinxin Yuan
- The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Xingwen Yin
- The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Hua Jiang
- The Second Affiliated Hospital of Dalian Medical University, Liaoning, China.
| |
Collapse
|
18
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:961-972. [DOI: 10.1093/jpp/rgac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
|
19
|
Zhu Y, Sun D, Liu H, Sun L, Jie J, Luo J, Peng L, Song L. Bixin protects mice against bronchial asthma though modulating PI3K/Akt pathway. Int Immunopharmacol 2021; 101:108266. [PMID: 34678694 DOI: 10.1016/j.intimp.2021.108266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence has implicated the potential of natural compounds in treatment of asthma. Bixin is a natural food coloring isolated from the seeds of Bixa Orellana, which possesses anti-tumor, anti-inflammatory and antioxidative properties. Nevertheless, its therapeutic effect in asthma has not been elucidated. Our present study demonstrated that administration of Bixin suppressed allergic airway inflammation and reversed glucocorticoids resistance, as well as alleviated airway remodeling and airway hyperresponsiveness (AHR) in asthmatic mice. In vitro studies showed that Bixin treatment could inhibit the development of epithelial-mesenchymal transition (EMT) mediated by transforming growth factor beta (TGF-β) signaling. Importantly, Bixin antagonized activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway both in vitro and in vivo. Above all, our findings reveal that Bixin functions as a potent antagonist of PI3K/Akt signaling to protect against allergic asthma, highlighting a novel strategy for asthma treatment based on natural products.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Han Liu
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Linzi Sun
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Jing Jie
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| | - Liping Peng
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| | - Lei Song
- Department of Respiratory Medicine, Center For Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| |
Collapse
|
20
|
Gómez-Linton DR, Navarro-Ocaña A, Román-Guerrero A, Alavez S, Pinzón-López L, Mendoza-Espinoza JA, Pérez-Flores LJ. Environmentally friendly achiote seed extracts with higher δ-tocotrienol content have higher in vitro and in vivo antioxidant activity than the conventional extract. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:2579-2588. [PMID: 34194094 DOI: 10.1007/s13197-020-04764-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 01/04/2023]
Abstract
Achiote (Bixa orellana) is highly appreciated as a condiment and as the main source of bixin and tocotrienols, both having antioxidant properties. To explore the possibility of maximizing the antioxidant activity of achiote seed extracts using clean methodologies, the use of sonication and green solvents were tested. Ethyl lactate, isopropyl acetate, and ethanol combined with probe sonication produced the best results, obtaining similar bixin contents but higher δ-tocotrienol contents, as well as significantly higher in vitro and in vivo antioxidant activity compared with the maceration method extract, requiring low energy and saving time and solvents. The probe-sonicated achiote extract with the highest δ-tocotrienol content was better at increasing the Caenorhabditis elegans resistance to oxidative stress than the extract obtained through maceration. This is the first report about the effect of sonication combined with green solvents on the bixin and δ-tocotrienol content in achiote seed extracts and its relevance on the in vitro and in vivo antioxidant activity.
Collapse
Affiliation(s)
- Darío R Gómez-Linton
- Programa de Doctorado en Biotecnología, Universidad Autónoma Metropolitana-I, 09340 Iztapalapa, Ciudad de México, México
| | - Arturo Navarro-Ocaña
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-I, 09340 Iztapalapa, Ciudad de México, México
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-L, 52006 Lerma de Villada, Estado de México México
| | | | | | - Laura J Pérez-Flores
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-I, 09340 Iztapalapa, Ciudad de México, México
| |
Collapse
|
21
|
Gasparin AT, Rosa ES, Jesus CHA, Guiloski IC, da Silva de Assis HC, Beltrame OC, Dittrich RL, Pacheco SDG, Zanoveli JM, da Cunha JM. Bixin attenuates mechanical allodynia, anxious and depressive-like behaviors associated with experimental diabetes counteracting oxidative stress and glycated hemoglobin. Brain Res 2021; 1767:147557. [PMID: 34107278 DOI: 10.1016/j.brainres.2021.147557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, depression, and anxiety are common comorbidities in diabetic patients, whose pathophysiology involves hyperglycemia-induced increased oxidative stress. Bixin (BIX), an apocarotenoid extracted from the seeds of Bixa orellana, has been used in traditional medicine to treat diabetes and has been recognized by its antioxidant profile. We aimed to investigate the effect of the BIX over the mechanical allodynia, depressive, and anxious-like behaviors associated with experimental diabetes, along with its involved mechanisms. Streptozotocin-induced diabetic rats were treated for 17 days (starting 14 days after diabetes induction) with the corresponding vehicle, BIX (10, 30 or 90 mg/kg; p.o), or INS (6 IU; s.c.). Mechanical allodynia, depressive, and anxious-like behavior were assessed by electronic Von Frey, forced swimming, and elevated plus-maze tests, respectively. Locomotor activity was assessed by the open field test. Blood glycated hemoglobin (HbA1) and the levels of lipid peroxidation (LPO) and reduced glutathione (GSH) were evaluated on the hippocampus, pre-frontal cortex, lumbar spinal cord, and sciatic nerve. Diabetic animals developed mechanical allodynia, depressive and anxious-like behavior, increased plasma HbA1, increased LPO, and decreased GSH levels in tissues analyzed. Repeated BIX-treatment (at all tested doses) significantly attenuated mechanical allodynia, the depressive (30 and 90 mg/kg) and, anxious-like behaviors (all doses) in diabetic rats, without changing the locomotor performance. BIX (at all tested doses) restored the oxidative parameters in tissues analyzed and reduced the plasma HbA1. Thereby, bixin may represent an alternative for the treatment of comorbidities associated with diabetes, counteracting oxidative stress and plasma HbA1.
Collapse
Affiliation(s)
- Alexia Thamara Gasparin
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Evelize Stacoviaki Rosa
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Carlos Henrique Alves Jesus
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Laboratory of Toxicology, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | | | - Olair Carlos Beltrame
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Federal University of Paraná, 80035-050 Curitiba, PR, Brazil
| | - Rosângela Locatelli Dittrich
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Federal University of Paraná, 80035-050 Curitiba, PR, Brazil
| | | | - Janaina Menezes Zanoveli
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Joice Maria da Cunha
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil.
| |
Collapse
|
22
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
23
|
Wang S, Yang Y, Luo D, Zhai L, Bai Y, Wei W, Sun Q, Jia L. Bisphenol A increases TLR4-mediated inflammatory response by up-regulation of autophagy-related protein in lung of adolescent mice. CHEMOSPHERE 2021; 268:128837. [PMID: 33187652 DOI: 10.1016/j.chemosphere.2020.128837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
In previous studies we found that bisphenol A (BPA) aggravated OVA-induced lung inflammation. The aim of this research was to determine whether BPA exposure alone also induced inflammatory response in the lungs, which mechanism was associated with TLR4/NF-κB signaling pathway and the activation of mTOR-mediated autophagy. Female C57BL/6 mice aged 4 weeks were randomly divided into three groups (10/group): control group, 0.1 and 0.2 μg mL-1 BPA groups. BPA induced the pathological changes in the lung and increased the levels of cytokines and inflammatory cells, as well as affected autophagy related proteins expression. In addition, the RAW264.7 cell culture experiment was conducted in order to confirm the role of autophagy. We found that BPA can enhance autophagy flux by enhancing autophagosome formation. It was further confirmed the details of the mechanism of action with chloroquine (CQ, a compound that inhibits the fusion of autophagosomes and lysosomes) intervention. The inhibition of autophagy led to down-regulation of expression levels associated with inflammation. This research results indicated that BPA induced inflammatory response in vitro and in vivo, and its mechanism may be related to TLR4/NF-κB signaling pathway and the activation of mTOR-mediated autophagy. After autophagy was suppressed, the inflammatory response also weakened. Our findings provide a new perspective into the mechanisms underlying inflammatory responses induced by the environmental exposure. These findings indicate that therapeutic strategies targeting autophagy may provide a new method for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yilong Yang
- Department of Social Medicine, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Dan Luo
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
24
|
Gómez-Linton DR, Alavez S, Navarro-Ocaña A, Román-Guerrero A, Pinzón-López L, Pérez-Flores LJ. Achiote (Bixa orellana) Lipophilic Extract, Bixin, and δ-tocotrienol Effects on Lifespan and Stress Resistance in Caenorhabditis elegans. PLANTA MEDICA 2021; 87:368-374. [PMID: 33124008 DOI: 10.1055/a-1266-6674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The onset of many degenerative diseases related to aging has been associated with a decrease in the activity of antistress systems, and pharmacological interventions increasing stress resistance could be effective to prevent the development of such diseases. Achiote is a valuable source of carotenoid and tocotrienols, which have antioxidant activity. In this work, we explore the capacity of an achiote seed extract and its main compounds to modulate the lifespan and antistress responses on Caenorhabditis elegans, as well as the mechanisms involved in these effects. Achiote lipophilic extract, bixin, and δ-tocotrienol were applied on nematodes to carry out lifespan, stress resistance, and fertility assays. The achiote seed extract increased the median and maximum lifespan up to 35% and 27% and increased resistance against oxidative and thermal stresses without adverse effects on fertility. The beneficial effects were mimicked by a bixin+δ-tocotrienol mixture. All the effects on lifespan and stress resistance were independent of caloric restriction but dependent on the insulin/insulin growth factor-1 pathway. This study could provide insights for further research on a new beneficial use of this important crop in health and nutraceutical applications beyond its use as a source of natural pigments.
Collapse
Affiliation(s)
- Darío R Gómez-Linton
- Programa de Doctorado en Biotecnología, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-L, Lerma de Villada, Estado de México, México
| | - Arturo Navarro-Ocaña
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| | | | - Laura J Pérez-Flores
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| |
Collapse
|
25
|
Tao S, Yang Y, Li J, Wang H, Ma Y. Bixin Attenuates High-Fat Diet-Caused Liver Steatosis and Inflammatory Injury through Nrf2/PPAR α Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6610124. [PMID: 33603948 PMCID: PMC7872754 DOI: 10.1155/2021/6610124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is the most common liver disease worldwide. Hepatic steatosis and oxidative stress are the main characteristics of NAFLD (nonalcoholic fatty liver disease), which also affect its prognosis. Bixin acts as novel Nrf2 (NF-E2 p45-related factor 2) activator with the cytoprotection against oxidative stress and inflammation; this study mainly focused on the mechanism of Nrf2 activation by bixin and explored its potential feasibilities in long-term high-fat diet- (HFD-) caused hepatic steatosis and inflammatory response in vitro and in vivo. Bixin was found to activate Nrf2 signals by the modification of critical Keap1 (Kelch-like ECH-associated protein 1) cystine and competitive interaction with Keap1 with upregulating P62 mRNA and protein expression. In human liver cells exposed to FFA (free fatty acid), bixin displayed a pronounced cytoprotective activity with upregulation of Nrf2-mediated gene expression, such as PPARα and its targets related with fatty acid oxidation. In HFD-fed mice, systemic administration of bixin attenuated lipid accumulation, decreased oxidant inflammatory damage in the liver, and reduced circulating lipid levels through Nrf2. Different from most of other established inducers, bixin activated Nrf2 signals through two different mechanisms with safe administration for protection of oxidant inflammatory damage and attenuation of lipid accumulation in the in vivo long-term HFD-fed mice. Bixin represents a prototype Nrf2 activator that displays cytoprotective activity upon system administration targeting hepatic steatosis and oxidant inflammation originating from long-term HFD-fed mice. And bixin-based Nrf2-directed systemic intervention may also provide therapeutic benefit in protecting other organs in the process of metabolic syndrome.
Collapse
Affiliation(s)
- Shasha Tao
- Chongqing University Central Hospital & Chongqing Emergency Medical Center, No. 1 Jiankang Road, Yuzhong District, Chongqing 400014, China
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Hongyan Wang
- Chongqing University Central Hospital & Chongqing Emergency Medical Center, No. 1 Jiankang Road, Yuzhong District, Chongqing 400014, China
| | - Yu Ma
- Chongqing University Central Hospital & Chongqing Emergency Medical Center, No. 1 Jiankang Road, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
26
|
Ma JQ, Zhang YJ, Tian ZK, Liu CM. Bixin attenuates carbon tetrachloride induced oxidative stress, inflammation and fibrosis in kidney by regulating the Nrf2/TLR4/MyD88 and PPAR-γ/TGF-β1/Smad3 pathway. Int Immunopharmacol 2021; 90:107117. [PMID: 33162346 DOI: 10.1016/j.intimp.2020.107117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Bixin, an natural carotenoid extracted from the seeds of the Bixa orellana has been shown to possess numerous important pharmacological activities. The present study was aimed to investigate the mechanisms of Bixin on carbon tetrachloride (CCl4)-induced kidney inflammation, fibrosis and oxidative stress in mice. Our results showed that Bixin improved renal damage by decreasing the serum levels of creatinine, urea, uric acid and alleviating kidney fibrosis. Bixin ameliorated CCl4-induced inflammation in kidneys by reducing the levels of TNF-α and IL-1β. Bixin suppressed oxidative stress by decreasing the MDA level and increasing the activation of SOD, CAT and GPx. Furthermore, Bixin increased the levels of PPAR-γ, NQO1, HO-1 and the nuclear translocation of Nrf2 in the kidneys of mice. Bixin supplementation inhibited the activation of TLR4, MyD88, NF-κB, TGF-β and Smad3. Thus, this study demonstrated that Bixin possesses anti-oxidant, anti-inflammatory and anti-fibrosis properties through regulating the Nrf2/TLR4/MyD88 and PPAR-γ/TGF-β1/Smad3 pathways.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- School of Chemistry Engineering, Sichuan University of Science and Engineering, No. 180, Huixing Road, 643000 Zigong City, Sichuan Province, PR China.
| | - Yu-Jia Zhang
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| | - Zhi-Kai Tian
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
27
|
Yu Y, Wu DM, Li J, Deng SH, Liu T, Zhang T, He M, Zhao YY, Xu Y. Bixin Attenuates Experimental Autoimmune Encephalomyelitis by Suppressing TXNIP/NLRP3 Inflammasome Activity and Activating NRF2 Signaling. Front Immunol 2020; 11:593368. [PMID: 33362775 PMCID: PMC7756000 DOI: 10.3389/fimmu.2020.593368] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS), an autoimmune and degenerative disease, is characterized by demyelination and chronic neuroinflammation. Bixin is a carotenoid isolated from the seeds of Bixa orellana that exhibits various potent pharmacological activities, including antioxidant, anti-inflammatory, and anti-tumor properties. However, the effects of bixin on MS have not yet been examined. To evaluate the effects and underlying molecular mechanisms of bixin on MS, experimental autoimmune encephalomyelitis (EAE) was established in C57BL/6 mice, which were treated via intragastric administration of bixin solutions. To evaluate the molecular mechanisms of bixin, quantitative reverse-transcription PCR, western blot, immunohistochemistry, flow cytometry, and enzyme-linked immunosorbent assay analyses were performed. We found that bixin significantly improved the symptoms and pathology in EAE mice, reduced the release of inflammatory cytokines TNF-α, IL-6, IL-8, IL-17, and IFN-γ, and increased the expression of the anti-inflammatory cytokine IL-10. And bixin reduced the proportion of Th1 and Th17 cells in the spleen and CNS, and suppressed microglia aggregation, and TXNIP/NLRP3 inflammasome activity by scavenging excessive reactive oxygen species (ROS) in EAE mice. Furthermore, bixin inhibited inflammation and oxidative stress via activating nuclear factor erythroid 2-related factor 2 (NRF2), and its downstream genes in EAE mice, meanwhile, these effects were suppressed upon treatment with an NRF2 inhibitor, ML385. Bixin prevented neuroinflammation and demyelination in EAE mice primarily by scavenging ROS through activation of the NRF2 signaling pathway. Taken together, our results indicate that bixin is a promising therapeutic candidate for treatment of MS.
Collapse
MESH Headings
- Animals
- Carotenoids/chemistry
- Carotenoids/pharmacology
- Carrier Proteins/metabolism
- Cytokines/metabolism
- Demyelinating Diseases/drug therapy
- Demyelinating Diseases/etiology
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammasomes/metabolism
- Lymphocyte Count
- Mice
- NF-E2-Related Factor 2/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Oxidative Stress/drug effects
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thioredoxins/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Xu
- Clinical Medical College, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, China
| |
Collapse
|
28
|
Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113177. [PMID: 32768637 DOI: 10.1016/j.jep.2020.113177] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus remains the most lethal metabolic disease of contemporaneous times and despite the therapeutic arsenal currently available, research on new antidiabetic agents remains a priority. In recent years, the revitalization of Thai Traditional Medicine (TTM) became a clear priority for the Thai government, and many efforts have been undertaken to accelerate research on herbal medicines and their use in medical services in various hospitals. Additionally, and particularly in rural areas, treatment of diabetes and associated symptomatology frequently relies on herbal preparations recommended by practitioners of TTM. In the current work, medicinal plants used in Thailand for treating diabetes, as well as their hypoglycaemic pharmacological evidences and potential therapeutic use for diabetes-related complications were reviewed. MATERIALS AND METHODS Ethnopharmacological information on the plant materials used in TTM for diabetes treatment was collected through literature search in a range of scientific databases using the search terms: diabetes, folk medicine, Thailand medicinal plants, traditional medicine. Information regarding scientific evidence on the antidiabetic effects of surveyed species was obtained considering not only the most common taxonomic designation, but also taxonomic synonyms, and including the keywords 'diabetes' and 'hypoglycaemic effect'. RESULTS A total of 183 species known to be used for diabetes management in TTM were reviewed, with 30% of them still lacking experimental evidences to support claims regarding the mechanisms and phytochemicals underlying their antidiabetic properties. Moreover, a total of 46 bioactives displaying effective antidiabetic effects have been isolated from 24 species, their underlying mechanism(s) of action being fully or partially disclosed. CONCLUSIONS We deliver the most extensive survey dealing with the ethnomedicinal knowledge of Thai medicinal plants utilized on diabetes management. We are certain that the current review will spark further research on Thai plants for the development of new standardized phytomedicines through drug discovery programmes.
Collapse
Affiliation(s)
- Catarina Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Ngam Wong Wang Road, Chatuchak, Bangkok, 10900, Thailand.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
29
|
Bixin loaded on polymeric nanoparticles: synthesis, characterization, and antioxidant applications in a biological system. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01555-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Li J, Yang Y, Wei S, Chen L, Xue L, Tian H, Tao S. Bixin Confers Prevention against Ureteral Obstruction-Caused Renal Interstitial Fibrosis through Activation of the Nuclear Factor Erythroid-2-Related Factor2 Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8321-8329. [PMID: 32706966 DOI: 10.1021/acs.jafc.0c03674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bixin is a natural carotenoid isolated from the seeds of Bixa orellana, with numerous important pharmacological activities, including antioxidant and antifibrotic effects. The nuclear factor erythroid-2-related factor2 (Nrf2) signaling pathway induced by bixin is involved in the process. Excessive reactive oxygen species generation in tubular cells contributes to kidney interstitial fibrosis. The potential therapeutic strategy for bixin in alleviating kidney fibrosis remains largely unclear. In this study, we used unilateral ureteral obstruction (UUO) to establish a renal fibrotic model. Dramatic oxidative DNA damage occurs in kidneys, especially in tubular cells after UUO. In cultured tubular cells, bixin could induce Nrf2 signaling activation by suppressing Nrf2 ubiquitination and increasing its protein stability. Transforming growth factor beta 1-induced epithelial-to-mesenchymal transition (EMT) and extracellular matrix production were suppressed by bixin, and blockade of Nrf2 activation by small interfering RNA could largely reverse the protective effect of bixin. In vivo studies showed that administration of bixin induces Nrf2 signaling activation in tubular cells and markedly attenuates partial EMT of tubular cells and kidney interstitial fibrosis after subjecting to UUO. Together, this study implies that bixin may protect against kidney interstitial fibrosis through stimulating Nrf2 activation in renal tubular cells.
Collapse
Affiliation(s)
- Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Shuhui Wei
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ling Chen
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
31
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
32
|
Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol Res 2019; 152:104602. [PMID: 31846761 DOI: 10.1016/j.phrs.2019.104602] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Diabesity is the combination of type 2 diabetes and obesity characterized by chronic low-grade inflammation. The Wnt signaling act as an evolutionary pathway playing crucial role in regulating cellular homeostasis and energy balance from hypothalamus to metabolic organs. Aberrant activity of certain appendages in the canonical and non-canonical Wnt system deregulates metabolism and leads to adipose tissue expansion, this key event initiates metabolic stress causing metaflammation and obesity. Metaflammation induced obesity initiates abnormal development of adipocytes mediating through the non-canonical Wnt signaling inhibition of canonical Wnt pathway to fan the flames of adipogenesis. Moreover, activation of toll like receptor (TLR)-4 signaling in metabolic stress invites immune cells to release pro-inflammatory cytokines for recruitment of macrophages in adipose tissues, further causes polarization of macrophages into M1(classically activated) and M2 (alternatively activated) subtypes. These events end with chronic low-grade inflammation which interferes with insulin signaling in metabolic tissues to develop type 2 diabetes. However, there is a dearth in understanding the exact mechanism of Wnt-TLR axis during diabesity. This review dissects the molecular facets of Wnt and TLRs that modulates cellular components during diabesity and provides current progress, challenges and alternative therapeutic strategies at preclinical and clinical level.
Collapse
|
33
|
Lin R, Jia Y, Wu F, Meng Y, Sun Q, Jia L. Combined Exposure to Fructose and Bisphenol A Exacerbates Abnormal Lipid Metabolism in Liver of Developmental Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214152. [PMID: 31661889 PMCID: PMC6862621 DOI: 10.3390/ijerph16214152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate whether combined exposure to fructose and bisphenol A (BPA) has a synergistic effect on abnormal lipid metabolism in the liver of developmental male rats and its possible mechanism. Fifty weaned male Wistar rats were divided into five groups: the control, 13% fructose, 20% fructose, 1 µg/mL BPA, and 13% fructose + 1 µg/mL BPA (combined exposure). Rats were exposed to fructose and/or BPA through drinking water for eight weeks. Genes or proteins regulating lipid metabolism include sterol regulatory element binding protein 1 (SREBP1), adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), zinc α 2 glycoprotein (ZAG) and estrogen receptor α (ERα), and the expression of proteins regulating inflammatory response, such as TLR4 and NF-κB, were determined. Serum total cholesterol (T-CHO), triglyceride (TG), low, high density lipoprotein cholesterol (LDL-C, HDL-C), blood glucose, insulin, IL-17 and TNF-α levels were also measured. Liver tissue morphology was observed by H&E staining. The results showed that the levels of gene and protein catalyzing lipogenesis were increased (SREBP1, ACC1 and FAS), while those catalyzing lipolysis were decreased (ATGL, HSL and ZAG), accompanied by dyslipidemia, insulin resistance and hepatic fat accumulation, and there were higher expression of TLR4 and NF-κB protein and lower expression of ERα protein in liver, and increased serum IL-17 and TNF-α levels in fructose and/or BPA exposed rats compared with controls. Moreover, the above indicators were more serious in combined exposure group than in single exposure group. Therefore, abnormal lipid metabolism in the liver of developmental rats could be exacerbated by combined exposed to fructose and BPA.
Collapse
Affiliation(s)
- Ren Lin
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yue Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Fengjuan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yuan Meng
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
34
|
Sudirman S, Lai CS, Yan YL, Yeh HI, Kong ZL. Histological evidence of chitosan-encapsulated curcumin suppresses heart and kidney damages on streptozotocin-induced type-1 diabetes in mice model. Sci Rep 2019; 9:15233. [PMID: 31645652 PMCID: PMC6811681 DOI: 10.1038/s41598-019-51821-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023] Open
Abstract
High blood glucose in diabetic patients often causes cardiovascular diseases (CVDs) that threats to human life. Curcumin (Cur) is known as an antioxidant agent, possesses anti-inflammatory activity, and prevents CVDs. However, the clinical application of curcumin was limited due to its low bioavailability. This study aimed to investigate the ameliorative effects of chitosan-encapsulated curcumin (CEC) on heart and kidney damages in streptozotocin-induced type-1 diabetes C57BL/6 mice model. The results showed that Cur- and CEC-treatments downregulated the blood sugar and total cholesterol level as well as enhanced insulin secretion. However, blood pressure, triglycerides content, and very low-density lipoprotein-cholesterol content were not changed. Histochemistry analysis revealed that both curcumin and chitosan-encapsulated curcumin ameliorated cell hypertrophy and nucleus enlargement in the left ventricular of heart and reduced fibrosis in the kidney, especially after the chitosan-encapsulated curcumin treatment. Our study suggested that chitosan can effectively enhance the protective effect of curcumin on the heart and kidney damages in type-1 diabetes mice model.
Collapse
Affiliation(s)
- Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Yi-Ling Yan
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City, 202, Taiwan.
| |
Collapse
|
35
|
Wang J, Zhu H, Huang L, Zhu X, Sha J, Li G, Ma G, Zhang W, Gu M, Guo Y. Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways. Exp Mol Pathol 2019; 111:104296. [PMID: 31449784 DOI: 10.1016/j.yexmp.2019.104296] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise. METHODS The relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2-/- mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2-/- + UUO, Nrf2-/- + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed. RESULTS The Nrf2-/- + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2-/- + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2-/- + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2-/- + UUO group. CONCLUSIONS The results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Haobo Zhu
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Liqu Huang
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaojiang Zhu
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jintong Sha
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Guogen Li
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Geng Ma
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Yunfei Guo
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
36
|
Cheng J, Liu Q, Hu N, Zheng F, Zhang X, Ni Y, Liu J. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene 2019; 709:1-7. [DOI: 10.1016/j.gene.2019.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/03/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
|
37
|
Short-Term Bixin Supplementation of Healthy Subjects Decreases the Susceptibility of LDL to Cu 2+-Induced Oxidation Ex Vivo. J Nutr Metab 2019; 2019:9407069. [PMID: 30944740 PMCID: PMC6421732 DOI: 10.1155/2019/9407069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/26/2019] [Indexed: 01/24/2023] Open
Abstract
Lycopene-based medications and supplements have been developed to prevent atherosclerosis, primarily because of their ability to decrease low-density lipoprotein (LDL) oxidation. Bixin and norbixin are carotenoids found in the seeds of annatto (Bixa orellana) and are colorants widely used by the food industry. Some studies have already demonstrated that these compounds have antioxidant and antiatherogenic potential in vitro and in animal models, but there is no evidence supporting the effects of their long-term or short-term consumption by humans. The aim of this study was to evaluate the effects of short-term intake of annatto carotenoids on biochemical and oxidative stress biomarkers as well as on the susceptibility of LDL oxidation in healthy individuals, using lycopene as a positive control. The effect of daily supplementation (0.05 mg/kg of body weight (b.w.)) with bixin, norbixin, lycopene, or placebo for 7 days was evaluated in a randomized, controlled crossover study in 16 healthy volunteers (8 men and 8 women). The susceptibility of LDL to Cu2+-induced oxidation ex vivo, biochemical parameters, and oxidative stress biomarkers were evaluated. No treatment affected biochemical parameters or most oxidative stress biomarkers. However, bixin reduced the oxidation rate of the LDL lipid moiety (−275%, p < 0.1) and nitric oxide metabolites (NOx) (−460%, p < 0.1), compared to the placebo group. Moreover, we observed that the changes in these parameters were positively associated, supporting the hypothesis that bixin decreases the susceptibility of LDL to Cu2+-induced oxidation by decreasing NOx levels, probably by downregulating the inducible nitric oxide synthase.
Collapse
|
38
|
Wang W, Wu L, Du X, Zhang F, Ullah SH, Lei T, Li D, Yan X. Anti-Toll-like receptor 2 antibody inhibits nuclear factor kappa B activation and attenuates cardiac damage in high-fat-feeding rats. Acta Biochim Biophys Sin (Shanghai) 2019; 51:347-355. [PMID: 30877771 DOI: 10.1093/abbs/gmz009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
Long-time consumption of high-fat food is a direct cause of cardiovascular diseases, and high-fat-related inflammation plays an important role in it. Toll-like receptors (TLRs), especially TLR2 and TLR4, play important roles in high-fat-related inflammation. However, the impact of TLR2 on high-fat-associated cardiovascular complications is still unknown. In this study, we try to investigate the relationship between TLR2 and high-fat-related cardiac injury. SD rats were allocated to either a control group which were fed with normal diet or a high-fat group which were fed with high-fat diet for 5 months. At the last month, rats fed with high-fat diet were intraperitoneally injected with control normal mouse IgG or anti-TLR2 antibody. Heart tissues were collected for further analysis. RT-qPCR and western blot analysis results revealed that TLR2 expression was increased in the heart tissues from rats fed with high-fat diet and anti-TLR2 antibody had no effect on TLR2 expression. However, anti-TLR2 antibody alleviated masson staining area, levels of TGF-β1 and Collagen I mRNA, and decreased TUNEL-positive myocardial cells and caspase-3 activity, suggesting that anti-TLR2 antibody protected cardiac cells against high-fat-induced cardiac fibrosis and cell apoptosis. By using immunohistochemistry, RT-qPCR and ELISA, we found that anti-TLR2 antibody blocked NF-κB activation, inhibited the expression of inflammatory factors such as TNF-α, IL-1β, IL-6 and IL-18 in the heart tissues from rats fed with high-fat diet. These results hinted that anti-TLR2 antibody might exert its protective effect via inhibition of the TLR2/NF-κB/inflammation pathway. Our findings suggest that anti-TLR2 antibody has a preventive function against high-fat-induced deleterious effects in the heart, and anti-TLR2 antibody may be used as an attractive therapeutic option for high-fat-induced cardiac injury.
Collapse
Affiliation(s)
- Wanzheng Wang
- Department of Pathology, Medical College of Xi’an Jiaotong University, Xi’an, China
- The Hanjiang River Hospital Affiliated of Xi’an Medical University, Hanzhong, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Sayyed Hanif Ullah
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Ting Lei
- The Hanjiang River Hospital Affiliated of Xi’an Medical University, Hanzhong, China
| | - Dongming Li
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xiaofei Yan
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
39
|
Abstract
Apocarotenoids are cleavage products of C40 isoprenoid pigments, named carotenoids, synthesized exclusively by plants and microorganisms. The colors of flowers and fruits and the photosynthetic process are examples of the biological properties conferred by carotenoids to these organisms. Mammals do not synthesize carotenoids but obtain them from foods of plant origin. Apocarotenoids are generated upon enzymatic and nonenzymatic cleavage of the parent compounds both in plants and in the tissues of mammals that have ingested carotenoid-containing foods. The best-characterized apocarotenoids are retinoids (vitamin A and its derivatives), generated upon central oxidative cleavage of provitamin A carotenoids, mainly β-carotene. In addition to the well-known biological actions of vitamin A, it is becoming apparent that nonretinoid apocarotenoids also have the potential to regulate a broad spectrum of critical cellular functions, thus influencing mammalian health. This review discusses the current knowledge about the generation and biological activities of nonretinoid apocarotenoids in mammals.
Collapse
Affiliation(s)
- Earl H Harrison
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Loredana Quadro
- Department of Food Science; Rutgers Center for Lipid Research; and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, USA;
| |
Collapse
|
40
|
Rojo de la Vega M, Zhang DD, Wondrak GT. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin. Front Pharmacol 2018; 9:287. [PMID: 29636694 PMCID: PMC5880955 DOI: 10.3389/fphar.2018.00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana). Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/- )]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA)-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
41
|
Xue L, Zhang H, Zhang J, Li B, Zhang Z, Tao S. Bixin protects against particle-induced long-term lung injury in an NRF2-dependent manner. Toxicol Res (Camb) 2018; 7:258-270. [PMID: 30090580 PMCID: PMC6060687 DOI: 10.1039/c7tx00304h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/10/2018] [Indexed: 01/07/2023] Open
Abstract
Scope: Particle-induced lung injury is a kind of comprehensive pulmonary disease with not only inflammation but also fibrosis. Bixin is a natural compound that is widely used as a food additive. Our previous studies demonstrated that bixin could alleviate inflammation in ventilation-induced acute lung injury as well as UV-exposure caused skin damage. But whether it could depress silica-induced long-term comprehensive lung injury and the mechanism of bixin in this protection have not yet been studied. Methods: A murine SiO2-induced long-term comprehensive lung injury model was established through silica intratracheal instillation. To elucidate the effects and mechanisms of bixin in silica-induced pulmonary inflammation and fibrosis, we treated mice with bixin following silica instillation. Results: Bixin treatment attenuated the accumulation of inflammatory cells which significantly ameliorated pathological inflammation and fibrotic development in the lungs. In addition, intraperitoneal (i.p.) injection of bixin in mice led to the upregulation of the NRF2 response in the lungs. Since alveolar macrophage activation plays a vital role in the initiation and progression of this injury, the mechanism was further studied in the THP-1 macrophage cells. Bixin activated NRF2 signals via blocking KEAP1 mediated ubiquitylation and degradation of NRF2. Conclusions: Our work has brought insights into exploring anti-particle-induced lung injury activities in the daily consumption of natural products. In addition, our study also inspires the discovery of new beneficial effects of bixin and its application in the treatment of other inflammatory diseases.
Collapse
Affiliation(s)
- Lian Xue
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-656883323
| | - Hong Zhang
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-656883323
| | - Jie Zhang
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-656883323
| | - Bingyan Li
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Zengli Zhang
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-656883323
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; ; Tel: +86-0512-65698540
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-656883323
| |
Collapse
|
42
|
Rojo de la Vega M, Krajisnik A, Zhang DD, Wondrak GT. Targeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin. Nutrients 2017; 9:nu9121371. [PMID: 29258247 PMCID: PMC5748821 DOI: 10.3390/nu9121371] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/10/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
The transcription factor NRF2 (nuclear factor-E2-related factor 2) orchestrates major cellular defense mechanisms including phase-II detoxification, inflammatory signaling, DNA repair, and antioxidant response. Recent studies strongly suggest a protective role of NRF2-mediated gene expression in the suppression of cutaneous photodamage induced by solar UV (ultraviolet) radiation. The apocarotenoid bixin, a Food and Drug Administration (FDA)-approved natural food colorant (referred to as ‘annatto’) originates from the seeds of the achiote tree native to tropical America, consumed by humans since ancient times. Use of achiote preparations for skin protection against environmental insult and for enhanced wound healing has long been documented. We have recently reported that (i) bixin is a potent canonical activator of the NRF2-dependent cytoprotective response in human skin keratinocytes; that (ii) systemic administration of bixin activates NRF2 with protective effects against solar UV-induced skin damage; and that (iii) bixin-induced suppression of photodamage is observable in Nrf2+/+ but not in Nrf2−/− SKH-1 mice confirming the NRF2-dependence of bixin-induced antioxidant and anti-inflammatory effects. In addition, bixin displays molecular activities as sacrificial antioxidant, excited state quencher, PPAR (peroxisome proliferator-activated receptor) α/γ agonist, and TLR (Toll-like receptor) 4/NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) antagonist, all of which might be relevant to the enhancement of skin barrier function and environmental stress protection. Potential skin photoprotection and photochemoprevention benefits provided by topical application or dietary consumption of this ethno-pharmacologically validated phytochemical originating from the Americas deserves further preclinical and clinical examination.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Andrea Krajisnik
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
43
|
Zhang L, Mao Y, Pan J, Wang S, Chen L, Xiang J. Bamboo leaf extract ameliorates cardiac fibrosis possibly via alleviating inflammation, oxidative stress and apoptosis. Biomed Pharmacother 2017; 95:808-817. [DOI: 10.1016/j.biopha.2017.08.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022] Open
|
44
|
Williams LJ, Nye BG, Wende AR. Diabetes-Related Cardiac Dysfunction. Endocrinol Metab (Seoul) 2017; 32:171-179. [PMID: 28685508 PMCID: PMC5503861 DOI: 10.3803/enm.2017.32.2.171] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/31/2017] [Accepted: 06/12/2017] [Indexed: 01/20/2023] Open
Abstract
The proposal that diabetes plays a role in the development of heart failure is supported by the increased risk associated with this disease, even after correcting for all other known risk factors. However, the precise mechanisms contributing to the condition referred to as diabetic cardiomyopathy have remained elusive, as does defining the disease itself. Decades of study have defined numerous potential factors that each contribute to disease susceptibility, progression, and severity. Many recent detailed reviews have been published on mechanisms involving insulin resistance, dysregulation of microRNAs, and increased reactive oxygen species, as well as causes including both modifiable and non-modifiable risk factors. As such, the focus of the current review is to highlight aspects of each of these topics and to provide specific examples of recent advances in each area.
Collapse
Affiliation(s)
- Lamario J Williams
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brenna G Nye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|