1
|
Pang Y, Zhang L, Zhong Z, Yang N, Zheng Y, Ding W. Nobiletin restores HFD-induced enteric nerve injury by regulating enteric glial activation and the GDNF/AKT/FOXO3a/P21 pathway. Mol Med 2024; 30:113. [PMID: 39095693 PMCID: PMC11297793 DOI: 10.1186/s10020-024-00841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, β-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, β-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.
Collapse
Affiliation(s)
- Yueshan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
- The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Li Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Zhuoting Zhong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yali Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
2
|
Sanjay, Sood R, Jaiswal V, Kang SU, Park M, Lee HJ. Nobiletin regulates intracellular Ca 2+ levels via IP 3R and ameliorates neuroinflammation in Aβ42-induced astrocytes. Redox Biol 2024; 73:103197. [PMID: 38781730 PMCID: PMC11145555 DOI: 10.1016/j.redox.2024.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Astrocytes are the major glial cells in the human brain and provide crucial metabolic and trophic support to neurons. The amyloid-β peptide (Aβ) alter the morphological and functional properties of astrocytes and induce inflammation and calcium dysregulation, contributing to Alzheimer's disease (AD) pathology. Recent studies highlight the role of Toll-like receptor (TLR) 4/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in inflammation. Reactive oxygen species (ROS) generated due to Aβ, induce apoptosis in the brain cells worsening AD progression. Astrocytic cell surface receptors, such as purinergic receptors (P2Y1 and P2Y2), metabotropic glutamate receptor (mGLUR)5, α7 nicotinic acetylcholine receptor (α7nAChR), and N-methyl-d-aspartate receptors (NMDARs), have been suggested to interact with inositol trisphosphate receptor (IP3R) on the endoplasmic reticulum (ER) to induce Ca2+ movement from ER to cytoplasm, causing Ca2+ dysregulation. We found that the citrus flavonoid nobiletin (NOB) protected primary astrocytes from Aβ42-induced cytotoxicity and inhibited TLR4/NF-κB signaling in Aβ42-induced primary rat astrocytes. NOB was found to regulate Aβ42-induced ROS levels through Keap1-Nrf2 pathway. The receptors P2Y1, P2Y2, mGLUR5, α7nAChR, and NMDARs induced intracellular Ca2+ levels by activating IP3R and NOB regulated them, thereby regulating intracellular Ca2+ levels. Molecular docking analysis revealed a possible interaction between NOB and IP3R in IP3R regulation. Furthermore, RNA sequencing revealed various NOB-mediated biological signaling pathways, such as the AD-presenilin, AD-amyloid secretase, and Wnt signaling pathway, suggesting possible neuroprotective roles of NOB. To conclude, NOB is a promising therapeutic agent for AD and works by modulating AD pathology at various levels in Aβ42-induced primary rat astrocytes.
Collapse
Affiliation(s)
- Sanjay
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Rachit Sood
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea; Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Varun Jaiswal
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea; Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Miey Park
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea; Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea; Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
3
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Pang Y, Xiong J, Wu Y, Ding W. A review on recent advances on nobiletin in central and peripheral nervous system diseases. Eur J Med Res 2023; 28:485. [PMID: 37932838 PMCID: PMC10626649 DOI: 10.1186/s40001-023-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
In recent years, the role of nobiletin in neuronal disorders has received extensive attention. However, the study of nobiletin in the peripheral nervous system is limited. Nobiletin, as a compound with high fat solubility, high bioavailability and low toxicity, has been extensively studied. Accumulating scientific evidence has shown that nobiletin has a variety of biological functions in the nervous system, such as inhibiting the expression of inflammatory factors, reducing the neurotoxic response, improving the antioxidant capacity, promoting the survival of nerve cells, promoting axon growth, reducing blood‒brain barrier permeability, reducing brain oedema, promoting cAMP response element binding protein expression, improving memory, and promoting mild depolarization of nerve cell mitochondria to improve antioxidative stress capacity. Accumulating studies have shown that nobiletin also protects enteric nervous system, spinal cord and sciatic nerve. To explore the new therapeutic potential of nobiletin in the nervous system, recent and relevant research progress is reviewed in this article. This will provide a new research idea for nobiletin in the nervous system.
Collapse
Affiliation(s)
- Yueshan Pang
- Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Juan Xiong
- Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, 637000, China
| | - You Wu
- Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
5
|
Lin WS, Cheng WC, Ho PY, Ho CT, Pan MH. Regulation of Xenobiotic-Metabolizing Enzymes by 5-Demethylnobiletin and Nobiletin to Mitigate Benzo[a]pyrene-Induced DNA Damage In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14604-14614. [PMID: 37610775 DOI: 10.1021/acs.jafc.3c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a genotoxic polycyclic aromatic hydrocarbon that is metabolized by cytochrome P450 family 1 enzymes (CYP 1s) and can bind to DNA to form DNA adducts, leading to DNA damage and increased colorectal cancer risk. Previous studies have shown polymethoxyflavones to have a high potential for anticancer effects by regulating CYP 1s, especially nobiletin (NBT) and 5-demethylnobiletin (5-DMNB). However, the effects of NBT and 5-DMNB on B[a]P metabolism remain unclear. Therefore, this study aimed to clarify the effects of NBT and 5-DMNB on B[a]P-induced DNA damage in vitro and in vivo. In NCM460 cells, 5-DMNB and NBT appeared to reduce the metabolic conversion of B[a]P by regulating the aryl hydrocarbon receptor (AhR)/CYP 1s signaling pathway. This process protected NCM460 cells from B[a]P's cytotoxic effects by decreasing DNA damage and suppressing B[a]P diol-epoxide-DNA adduct formation. In BALB/c mice, 5-DMNB and NBT also protected against B[a]P-induced DNA damage. Altogether, these findings indicate that 5-DMNB and NBT attenuate B[a]P-induced DNA damage by modulating biotransformation, highlighting their chemopreventive potential against B[a]P-induced carcinogenesis. Therefore, 5-DMNB and NBT are promising agents for colorectal cancer chemoprevention in the future.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
6
|
Cui B, Wu D, Zhou B, Zhu K, Pei Y, Li B, Liang H. Hydrogel-based encapsulation strategy for nobiletin stabilization. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Nobiletin protects enteric nerves and ameliorates disordered bowel motility in diet-induced obese mice via increasing Trem2 expression. Biochem Biophys Res Commun 2022; 635:19-29. [DOI: 10.1016/j.bbrc.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022]
|
8
|
Zhang W, Zhang L, Wang WJ, Ma S, Wang M, Yao M, Li R, Li WW, Zhao X, Hu D, Ding Y, Wang J. Network pharmacology and in vitro experimental verification to explore the mechanism of Sanhua decoction in the treatment of ischaemic stroke. PHARMACEUTICAL BIOLOGY 2022; 60:119-130. [PMID: 34985385 PMCID: PMC8741256 DOI: 10.1080/13880209.2021.2019281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Stroke is an illness with high morbidity, disability and mortality that presents a major clinical challenge. Sanhua decoction (SHD) has been widely used to treat ischaemic stroke in the clinic. However, the potential mechanism of SHD remains unknown. OBJECTIVE To elucidate the multitarget mechanism of SHD in ischaemic stroke through network pharmacology and bioinformatics analyses. MATERIALS AND METHODS Network pharmacology and experimental validation approach was used to investigate the bioactive ingredients, critical targets and potential mechanisms of SHD against ischaemic stroke. Four herbal names of SHD, 'ischemic stroke' or 'stroke' was used as a keyword to search the relevant databases. SH-SY5Y cells were treated with various concentrations of SHD (12.5, 25, 50 or 100 μg/mL) for 4 h, exposed to oxygen and glucose deprivation (OGD) for 1 h, then reoxygenation for 24 h. The cell viability was detected by MTT, the lactate dehydrogenase (LDH) was evaluated by ELISA, and protein expression was detected by western blots. RESULTS SHD treatment increased the survival rate from 65.9 ± 4.3 to 85.56 ± 5.7%. The median effective dose (ED50) was 47.1 μg/mL, the LDH decreased from 288.0 ± 12.0 to 122.8 ± 9.1 U/L and the cell apoptosis rate decreased from 33.6 ± 1.8 to 16.3 ± 1.2%. Western blot analysis revealed that SHD increased the levels of p-PI3k, p-Akt and p-CREB1, and decreased the expression of TNF-α and IL-6. DISCUSSION AND CONCLUSIONS This study suggests that SHD protects against cerebral ischaemic injury via regulation of the PI3K/Akt/CREB1 and TNF pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen jun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruili Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei wei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xian Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongmei Hu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Yi Ding Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an710032, Shaanxi Province, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- CONTACT Jingwen Wang
| |
Collapse
|
9
|
Abstract
Cancer resistance to therapy is a big issue in cancer therapy. Tumours may develop some mechanisms to reduce the induction of cell death, thus stimulating tumour growth. Cancer cells may show a low expression and activity of tumour suppressor genes and a low response to anti-tumour immunity. These mutations can increase the resistance of cancer cells to programmed cell death mechanisms such as apoptosis, ferroptosis, pyroptosis, autophagic cell death, and some others. The upregulation of some mediators and transcription factors such as Akt, nuclear factor of κB, signal transducer and activator of transcription 3, Bcl-2, and others can inhibit cell death in cancer cells. Using adjuvants to induce the killing of cancer cells is an interesting strategy in cancer therapy. Nobiletin (NOB) is a herbal-derived agent with fascinating anti-cancer properties. It has been shown to induce the generation of endogenous ROS by cancer cells, leading to damage to critical macromolecules and finally cell death. NOB may induce the activity of p53 and pro-apoptosis mediators, and also inhibit the expression and nuclear translocation of anti-apoptosis mediators. In addition, NOB may induce cancer cell killing by modulating other mechanisms that are involved in programmed cell death mechanisms. This review aims to discuss the cellular and molecular mechanisms of the programmed cell death in cancer by NOB via modulating different types of cell death in cancer.
Collapse
|
10
|
Zheng M, Zhou M, Chen M, Lu Y, Shi D, Wang J, Liu C. Neuroprotective Effect of Daidzein Extracted From Pueraria lobate Radix in a Stroke Model Via the Akt/mTOR/BDNF Channel. Front Pharmacol 2022; 12:772485. [PMID: 35095491 PMCID: PMC8795828 DOI: 10.3389/fphar.2021.772485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
Daidzein is a plant isoflavonoid primarily isolated from Pueraria lobate Radix as the dry root of P. lobata (Wild.) Ohwi, have long been used as nutraceutical and medicinal herb in China. Despite the report that daidzein can prevent neuronal damage and improve outcome in experimental stroke, the mechanisms of this neuroprotective action have been not fully elucidated. The aim of this study was to determine whether the daidzein elicits beneficial actions in a stroke model, namely, cerebral ischemia/reperfusion (I/R) injury, and to reveal the underlying neuroprotective mechanisms associated with the regulation of Akt/mTOR/BDNF signal pathway. The results showed that I/R, daidzein treatment significantly improved neurological deficits, infarct volume, and brain edema at 20 and 30 mg/kg, respectively. Meanwhile, it was found out that the pretreatment with daidzein at 20 and 30 mg/kg evidently improved striatal dopamine and its metabolite levels. In addition, daidzein treatment reduced the cleaved Caspase-3 level but enhanced the phosphorylation of Akt, BAD and mTOR. Moreover, daidzein at 30 mg/kg treatment enhanced the expression of BDNF and CREB significantly. This protective effect of daidzein was ameliorated by inhibiting the PI3K/Akt/mTOR signaling pathway using LY294002. To sum up, our results demonstrated that daidzein could protect animals against ischemic damage through the regulation of the Akt/mTOR/BDNF channel, and the present study may facilitate the therapeutic research of stroke.
Collapse
Affiliation(s)
- Meizhu Zheng
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Mi Zhou
- College of Life Science, Changchun Normal University, Changchun, China
| | - Minghui Chen
- College of Life Science, Changchun Normal University, Changchun, China
| | - Yao Lu
- College of Life Science, Changchun Normal University, Changchun, China
| | - Dongfang Shi
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Jing Wang
- College of Life Science, Changchun Normal University, Changchun, China
| | - Chunming Liu
- The Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
11
|
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914:174660. [PMID: 34863710 DOI: 10.1016/j.ejphar.2021.174660] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidences suggest that inflammation plays a key role in the pathogenesis of stroke, a devastating disease second only to cardiac ischemia as a cause of death worldwide. Microglia are the first non-neuronal cells on the scene during the innate immune response to acute ischemic stroke. Microglia respond to acute brain injury by activating and developing classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotypes. M1 microglia produce pro-inflammatory cytokines to exacerbate neural death, astrocyte apoptosis, and blood brain barrier (BBB) disruption, while M2 microglia play the opposite role. NF-κB, a central regulator of the inflammatory response, was responsible for microglia M1 and M2 polarization. NF-κB p65 and p50 form a heterodimer to initiate a pro-inflammatory cytokine response, which enhances M1 activation and impair M2 response of microglia. TLR4, expressed on the surface of microglia, plays an important role in activating NF-κB, ultimately causing the M1 response of microglia. Therefore, modulation of microglial phenotypes via TLR4/NF-κB signaling pathway may be a promising therapeutic approach for ischemic stroke. Dietary (poly)phenols are present in various foods, which have shown promising protective effects on ischemic stroke. In vivo studies strongly suggest that many (poly)phenols have a pronounced impact on ischemic stroke, as demonstrated by lower neuroinflammation. Thus, this review focuses on the anti-inflammatory properties of dietary (poly)phenols and discusses their effects on the polarization of microglia through modulating TLR4/NF-κB signaling pathway in the ischemic stroke.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jieying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
12
|
The Influence of Mitochondrial-DNA-Driven Inflammation Pathways on Macrophage Polarization: A New Perspective for Targeted Immunometabolic Therapy in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 23:ijms23010135. [PMID: 35008558 PMCID: PMC8745401 DOI: 10.3390/ijms23010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia-reperfusion injury is related to inflammation driven by free mitochondrial DNA. At the same time, the pro-inflammatory activation of macrophages, that is, polarization in the M1 direction, aggravates the cycle of inflammatory damage. They promote each other and eventually transform macrophages/microglia into neurotoxic macrophages by improving macrophage glycolysis, transforming arginine metabolism, and controlling fatty acid synthesis. Therefore, we propose targeting the mtDNA-driven inflammatory response while controlling the metabolic state of macrophages in brain tissue to reduce the possibility of cerebral ischemia-reperfusion injury.
Collapse
|
13
|
Zhao L, Tan S, Liao Q, Li X, Ke T, Li S. The neuroprotective effect and RNA-sequence analysis of postconditioning on the ischemic stroke with diabetes mellitus tree shrew model. Brain Behav 2021; 11:e2354. [PMID: 34559467 PMCID: PMC8613421 DOI: 10.1002/brb3.2354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Patients with comorbidity of ischemic stroke (IS) and diabetes mellitus (DM) show poor neurological functional recovery, and ischemic postconditioning (IPOC) should be considered a powerful neuroprotective method for IS. However, whether it should be introduced for patients with IS and DM remains controversial. This study established a DM with IS (DMIS) tree shrew model, which was intervened by IPOC to assess its neuroprotective effects and also to analyze the relevant mechanism by RNA-sequence and bioinformatics analysis. METHODS Fifty-four tree shrews were randomly divided into a sham operation control group, a DMIS group, and an IPOC group (DMIS model), with 18 tree shrews per group. Triphenyl tetrazolium chloride (TTC), hematoxylin-eosin (HE) staining, transmission electron microscopy (TEM), and RNA-sequence analysis were performed to assess the IPOC effect. RESULTS IPOC reduced infarct size and reduced nerve cell injury in IS tree shrews with DM. RNA-seq analysis showed that IPOC significantly increased the expression of the homeobox protein SIX3, while downregulating the expression of HLA class II histocompatibility antigens DQ beta 1 chain, CAS1 domain-containing protein 1, and cytokine receptor-like factor 2. The most downregulated signaling pathways include the NF-κB signaling pathway, TNF signaling pathway, and Fc gamma R-mediated phagocytosis. CONCLUSIONS IPOCs have a neuroprotective effect in a DMIS animal model that reduces infarct size and nerve cell injury. This mechanism might be related to reducing inflammation and stress responses that decreases the activity of TNF and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ling Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Shufen Tan
- Department of Gynecologic OncologyThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Qiwei Liao
- Department of CardiologyThe Yan‐an Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xia Li
- Department of PathophysiologyKunming Medical UniversityKunmingChina
| | - Tingyu Ke
- Department of EndocrinologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Shuqing Li
- Department of PathophysiologyKunming Medical UniversityKunmingChina
| |
Collapse
|
14
|
Zhang M, Liu J, Zhang R, Liang Z, Ding S, Yu H, Shan Y. Nobiletin, a hexamethoxyflavonoid from citrus pomace, attenuates G1 cell cycle arrest and apoptosis in hypoxia-induced human trophoblast cells of JEG-3 and BeWo via regulating the p53 signaling pathway. Food Nutr Res 2021; 65:5649. [PMID: 34650395 PMCID: PMC8494266 DOI: 10.29219/fnr.v65.5649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/11/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background Hypoxia is associated with abnormal cell apoptosis in trophoblast cells, which causes fetal growth restriction and related placental pathologies. Few effective methods for the prevention and treatment of placenta-related diseases exist. Natural products and functional foods have always been a rich source of potential anti-apoptotic drugs. Nobiletin (NOB), a hexamethoxyflavonoid derived from the citrus pomace, shows an anti-apoptotic activity, which is a non-toxic constituent of dietary phytochemicals approved by the Food and Drug Administration. However, their effects on hypoxia-induced human trophoblast cells have not been fully studied. Objective The aim of this study was to investigate the protective effects of NOB on hypoxia-induced apoptosis of human trophoblast JEG-3 and BeWo cells, and their underlying mechanisms. Design First, the protective effect of NOB on hypoxia-induced apoptosis of JEG-3 and BeWo cells was studied. Cell viability and membrane integrity were determined by CCK-8 assay and lactate dehydrogenase activity, respectively. Real Time Quantitative PCR (RT-qPCR) and Western blot analysis were used to detect the mRNA and protein levels of HIF1α. Propidium iodide (PI)-labeled flow cytometry was used to detect cell cycle distribution. Cell apoptosis was detected by flow cytometry with Annexin V-FITC and PI double staining, and the expression of apoptosis marker protein cl-PARP was detected by Western blot analysis. Then, the molecular mechanism of NOB against apoptosis was investigated. Computer molecular docking and dynamics were used to simulate the interaction between NOB and p53 protein, and this interaction was verified in vitro by Ultraviolet and visible spectrum (UV-visible spectroscopy), fluorescence spectroscopy and circular dichroism. Furthermore, the changes in the expression of p53 signaling pathway genes and proteins were detected by RT-qPCR and Western blot analysis, respectively. Results Hypoxia treatment resulted in a decreased cell viability and cell membrane integrity in JEG-3 and BeWo cell lines, and an increased expression of HIF1α, cell cycle arrest in the G1 phase, and massive cell apoptosis, which were alleviated after NOB treatment. Molecular docking and dynamics simulations found that NOB spontaneously bonded to human p53 protein, leading to the change of protein conformation. The intermolecular interaction between NOB and human p53 protein was further confirmed by UV-visible spectroscopy, fluorescence spectroscopy and circular dichroism. After the treatment of 100 μM NOB, a down-regulation of mRNA and protein levels of p53 and p21 and an up-regulation of BCL2/BAX mRNA and protein ratio were observed in JEG-3 cells; however, there was also a down-regulation of mRNA and protein levels observed for p53 and p21 in BeWo cells after the treatment of NOB. The BCL2/BAX ratio of BeWo cells did not change after the treatment of 100 μM NOB. Conclusion NOB attenuated hypoxia-induced apoptosis in JEG-3 and BeWo cell lines and might be a potential functional ingredient to prevent pregnancy-related diseases caused by hypoxia-induced apoptosis. These findings would also suggest the exploration and utilization of citrus resources, and the development of citrus industry.
Collapse
Affiliation(s)
- Mengling Zhang
- Longping Branch Graduate School, Hunan University, Changsha, Hunan Province, China.,School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.,Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan Province, China.,Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, Hunan Province, China
| | - Jian Liu
- Longping Branch Graduate School, Hunan University, Changsha, Hunan Province, China.,Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan Province, China.,Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, Hunan Province, China
| | - Rui Zhang
- School of Medical Humanity, Peking University, Beijing, China
| | - Zengenni Liang
- Longping Branch Graduate School, Hunan University, Changsha, Hunan Province, China.,Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan Province, China.,Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, Hunan Province, China
| | - Shenghua Ding
- Longping Branch Graduate School, Hunan University, Changsha, Hunan Province, China.,Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan Province, China.,Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, Hunan Province, China
| | - Huanling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Shan
- Longping Branch Graduate School, Hunan University, Changsha, Hunan Province, China.,Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan Province, China.,Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, Hunan Province, China
| |
Collapse
|
15
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
16
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
17
|
Liu Z, Gao Z, Zeng L, Liang Z, Zheng D, Wu X. Nobiletin ameliorates cardiac impairment and alleviates cardiac remodeling after acute myocardial infarction in rats via JNK regulation. Pharmacol Res Perspect 2021; 9:e00728. [PMID: 33660406 PMCID: PMC7931132 DOI: 10.1002/prp2.728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
Nobiletin was found to protect against acute myocardial infarction (AMI)-induced cardiac function decline and myocardial remodeling, although the dose-effect relationship and underlying pathways remained unclear. In the current research, different doses of Nobiletin (7.5, 15 and 30 mg/kg/day) were administered to AMI rat model for 21 days. Survival rate, echocardiography, and histological analysis were assessed in vivo. In addition, MTT assay, flow cytometry, and Western blotting were conducted to explore Nobiletin's cytotoxicity and antiapoptotic effect on H9C2 cells. Mechanistically, the activation of MAPK effectors and p38 in vivo was studied. The results showed medium- and high-dose Nobiletin could significantly improve survival rate and cardiac function and reduce the area of infarction and cardiac fibrosis. Medium dose showed the best protection on cardiac functions, whereas high dose showed the best protective effect on cellular apoptosis and histological changes. JNK activation was significantly inhibited by Nobiletin in vivo, which could help to explain the partial contribution of autophagy to AMI-induced apoptosis and the discrepancy on dose-effect relationships. Together, our study suggested that JNK inhibition plays an important role in Nobiletin-induced antiapoptotic effect in myocardial infarction, and medium-dose Nobiletin demonstrated the strongest effect in vivo.
Collapse
Affiliation(s)
- Zumei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
- Department of Central LaboratoryGuangdong Second Provincial General HospitalGuangzhouGuangdongPR China
| | - Zhimin Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Lihuan Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Zhenye Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Dechong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauPR China
| | - Xiaoqian Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| |
Collapse
|
18
|
Matsuzaki K, Ohizumi Y. Beneficial Effects of Citrus-Derived Polymethoxylated Flavones for Central Nervous System Disorders. Nutrients 2021; 13:E145. [PMID: 33406641 PMCID: PMC7824236 DOI: 10.3390/nu13010145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The number of patients with central nervous system disorders is increasing. Despite diligent laboratory and clinical research over the past 30 years, most pharmacologic options for the prevention and long-term treatment of central nervous system disorders and neurodegenerative disorders have been unsuccessful. Therefore, the development of drugs and/or functional foods to prevent the onset of neurodegenerative disorders is highly expected. Several reports have shown that polymethoxylated flavones (PMFs) derived from citrus fruit, such as nobiletin, tangeretin, and 3,3',4',5,6,7,8-heptamethoxyflavone, are promising molecules for the prevention of neurodegenerative and neurological disorders. In various animal models, PMFs have been shown to have a neuroprotective effect and improve cognitive dysfunction with regard to neurological disorders by exerting favorable effects against their pathological features, including oxidative stress, neuroinflammation, neurodegeneration, and synaptic dysfunction as well as its related mechanisms. In this review, we describe the profitable and ameliorating effects of citrus-derived PMFs on cognitive impairment and neural dysfunction in various rat and murine models or in several models of central nervous system disorders and identify their mechanisms of action.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| |
Collapse
|
19
|
Nie Y, Li S, Yan T, Ma Y, Ni C, Wang H, Zheng H. Propofol Attenuates Isoflurane-Induced Neurotoxicity and Cognitive Impairment in Fetal and Offspring Mice. Anesth Analg 2020; 131:1616-1625. [PMID: 33079886 DOI: 10.1213/ane.0000000000004955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Anesthesia in pregnant rodents causes neurotoxicity in fetal and offspring rodents. However, the underlying mechanisms and targeted treatments remain largely to be determined. Isoflurane and propofol are among commonly used anesthetics. Thus, we set out to investigate whether propofol can mitigate the isoflurane-induced neurotoxicity in mice. METHODS Pregnant C57BL/6 mice at gestational day 15 (G15) were randomly assigned to 4 groups: control, isoflurane, propofol, and isoflurane plus propofol. Levels of interleukin (IL)-6 and poly-ADP ribose polymerase (PARP) fragment were measured in the brains of G15 embryos, and levels of postsynaptic density (PSD)-95 and synaptophysin were determined in the hippocampal tissues of postnatal day 31 (P31) offspring using Western blotting and immunohistochemical staining. Learning and memory functions in P31 offspring were determined using a Morris water maze test. RESULTS Isoflurane anesthesia in pregnant mice at G15 significantly increased brain IL-6 (222.6% ± 36.45% vs 100.5% ± 3.43%, P < .0001) and PARP fragment (384.2% ± 50.87% vs 99.59% ± 3.25%, P < .0001) levels in fetal mice and reduced brain PSD-95 (30.76% ± 2.03% vs 100.8% ± 2.25%, P < .0001) and synaptophysin levels in cornu ammonis (CA) 1 region (57.08% ± 4.90% vs 100.6% ± 2.20%, P < .0001) and dentate gyrus (DG; 56.47% ± 3.76% vs 99.76% ± 1.09%, P < .0001) in P31 offspring. Isoflurane anesthesia also impaired cognitive function in offspring at P31. Propofol significantly mitigated isoflurane-induced increases in brain IL-6 (117.5% ± 10.37% vs 222.6% ± 36.45%, P < .0001) and PARP fragment (205.1% ± 35.99% vs 384.2% ± 50.87%, P < .0001) levels in fetal mice, as well as reductions in PSD-95 (49.79% ± 3.43% vs 30.76% ± 2.03%, P < .0001) and synaptophysin levels in CA1 region (85.57% ± 2.97% vs 57.08% ± 4.90%, P < .0001) and DG (85.05% ± 1.87% vs 56.47% ± 3.76%, P < .0001) in hippocampus of P31 offspring. Finally, propofol attenuated isoflurane-induced cognitive impairment in offspring. CONCLUSIONS These findings suggest that gestational isoflurane exposure in mice induces neuroinflammation and apoptosis in embryos and causes cognitive impairment in offspring. Propofol can attenuate these isoflurane-induced detrimental effects.
Collapse
Affiliation(s)
- Yangyang Nie
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuai Li
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yan
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Liu B, Deng Q, Zhang L, Zhu W. Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway. Mol Med Rep 2020; 22:4655-4662. [PMID: 33173956 PMCID: PMC7646848 DOI: 10.3892/mmr.2020.11554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated that nobiletin (NOB) displays anti-oxidative and anti-apoptotic efficacies against multiple pathological insults. However, the potential effects of NOB on the injury caused by ischemia and reperfusion (I/R) in the kidney remain undetermined. In the present study, I/R injury was elicited by right kidney removal and left renal pedicel clamping for 45 min, followed by reperfusion for 24 h. NOB was added at the start of reperfusion. Histological examination, detection of biomarkers in plasma, and measurement of apoptosis induced by endoplasmic reticulum stress (ERS) were used to evaluate renal injury. Additionally, the PI3K/AKT inhibitor LY294002 was also used in mechanistic experiments. NOB pre-treatment significantly reduced renal damage caused by I/R injury, as indicated by decreased serum levels of creatine, blood urea nitrogen and tubular injury scores. Furthermore, NOB inhibited elevated ERS-associated apoptosis, as evidenced by reduced apoptotic rates and ERS-related signaling molecules (such as, C/EBP homologous protein, caspase-12 and glucose-regulated protein of 78 kDa). NOB increased phosphorylation of proteins in the PI3K/AKT pathway. The inhibition of PI3K/AKT signaling with pharmacological inhibitors could reverse the beneficial effects of NOB during renal I/R insult. In conclusion, NOB pre-treatment may alleviate I/R injury in the kidney by inhibiting reactive oxygen species production and ERS-induced apoptosis, partly through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Quanhong Deng
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Lei Zhang
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Wen Zhu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
21
|
Li C, Liu K, Liu S, Aerqin Q, Wu X. Role of Ginkgolides in the Inflammatory Immune Response of Neurological Diseases: A Review of Current Literatures. Front Syst Neurosci 2020; 14:45. [PMID: 32848639 PMCID: PMC7411855 DOI: 10.3389/fnsys.2020.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
The inflammatory immune response (IIR) is a physiological or excessive systemic response, induced by inflammatory immune cells according to changes in the internal and external environments. An excessive IIR is the pathological basis for the generation and development of neurological diseases. Ginkgolides are one of the important medicinal ingredients in Ginkgo biloba. Many studies have verified that ginkgolides have anti-platelet-activating, anti-apoptotic, anti-oxidative, neurotrophic, and neuroimmunomodulatory effects. Inflammatory immunomodulation is mediated by inhibition of the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. They also inhibit the platelet-activating factor (PAF)-mediated signal transduction to attenuate the inflammatory response. Herein, we reviewed the studies on the roles of ginkgolides in inflammatory immunomodulation and suggested its potential role in novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Chunrong Li
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Kangding Liu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Qiaolifan Aerqin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiujuan Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
22
|
Fang X, Li Y, Zheng Y, Wang Y, Feng S, Miao M. Ethanol extracts from Ilex pubescens promotes cerebral ischemic tolerance via modulation of TLR4-MyD88/TRIF signaling pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112680. [PMID: 32084554 DOI: 10.1016/j.jep.2020.112680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pubescent Holly Root is the dry root of Ilex pubescens Hook. et Arn. It is clinically using in the treatment for stroke and coronary artery disease. It remains unclear whether the ethanol extracts of Ilex pubescens(IPEE) treatment can promote cerebral ischemic tolerance (CIT) and exert endogenous neuroprotective effects and thus to alleviate the nerve injury caused by the subsequent persistent cerebral ischemic attacks. AIM OF THE STUDY To investigate the effects of IPEE on CIT and its underlying molecular mechanisms. MATERIALS AND METHODS Adult male Wistar rats were used in the present study. The bilateral common carotid arteries were blocked for 10 min followed a subsequent reperfusion to create the cerebral ischemic preconditioning (CIP); After 3 days post CIP, rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R)-injury. Rats were continuously fed with IPEE for 5 days throughout the experiment period at the dose of 100 mg/kg and 200 mg/kg, respectively. Then, the brain infarct volume, histopathology, neurological deficits, and the gene/protein expression related with the TLR4-MyD88/TRIF signaling pathway were evaluated after 24 h of MCAO/R experiment. RESULTS IPEE pretreatment significantly reduced the cerebral infarct volume, the neurological deficit scores, and the plasma level of neuron specific enolase (NSE) at the dose of 100 mg/kg. Meanwhile, IPEE pretreatment significantly decreased the levels of inflammatory cytokines including TNF-α, IL-6, MCP-1, MIP-1α and RANTES, while it increased the levels of anti-inflammatory cytokines, such as IL-10 and TGF-β, when compared with the group with CIP treatment alone. Moreover, the effect of IPEE treatment on CIT was in a dose-dependent manner, showing as a better effect in the group pretreated with IPEE with the dose of 100 mg/kg than that in group pretreated with IPEE with the dose of 200 mg/kg. In addition, IPEE pretreatment significantly inhibited the expressions of MyD88 mRNA and the protein expression of COX-2 and NF-κBp65, while it strengthened the expressions of TRIF mRNA and protein. The effects of IPEE pretreatment on the expression of these genes were better than that in the group treated with CIP alone. CONCLUSIONS The present study demonstrates that IPEE pretreatment can enhance cerebral ischemic tolerance with a underlying mechanism involved in the toll-like receptor 4 (TLR4) signaling pathway through inhibiting the production of proteins or cytokines in the downstream of MyD88 and activating TRIF dependent anti-inflammatory pathways.
Collapse
Affiliation(s)
- Xiaoyan Fang
- Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, China.
| | - Yujie Li
- Pharmacology Laboratory, School of Basic Medical Medicine, Henan University of Chinese Medicine, China.
| | - Yan Zheng
- Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, China.
| | - Yanzhi Wang
- Department of Pharmacochemistry, School of Pharmacy, Henan University of Chinese Medicine, China.
| | - Suxiang Feng
- Department of Analytical Chemistry, School of Pharmacy, Henan University of Chinese Medicine, China.
| | - Mingsan Miao
- Department of Graduate School, Henan University of Chinese Medicine, China.
| |
Collapse
|
23
|
Zi C, Zhang C, Yang Y, Ma J. Penehyclidine hydrochloride protects against anoxia/reoxygenation injury in cardiomyocytes through ATP-sensitive potassium channels, and the Akt/GSK-3β and Akt/mTOR signaling pathways. Cell Biol Int 2020; 44:1353-1362. [PMID: 32125033 DOI: 10.1002/cbin.11329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022]
Abstract
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)-induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP-sensitive K+ (KATP) channel blocker 5-hydroxydecanoate (5-HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit-8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm ), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt-C), Bax, Bcl-2, cleaved caspase-3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK-3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R-induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt-C release into cytoplasm, and maintenance of ΔΨm . Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK-3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5-HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK-3β and Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Congna Zi
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China.,Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chunlei Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| |
Collapse
|
24
|
The Effects of 5,6,7,8,3',4'-Hexamethoxyflavone on Apoptosis of Cultured Human Choriocarcinoma Trophoblast Cells. Molecules 2020; 25:molecules25040946. [PMID: 32093273 PMCID: PMC7070474 DOI: 10.3390/molecules25040946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/14/2023] Open
Abstract
5,6,7,8,3,4′-Hexamethoxyflavone, also called nobiletin (NOB), widely found in the citrus peel, is one of the main byproducts in citrus processing. NOB is considered safe, but its safety for women during pregnancy is unknown. Therefore, the effect of NOB on apoptosis in human choriocarcinoma trophoblast cells (BeWo cells) was evaluated. Cells were divided into four groups and cultured with different concentrations of NOB (0, 10, 33, and 100 μM) for 12, 24, 36, and 48 h respectively. Cell viability was detected by CCK-8 assay, cell morphology was detected by a Cell Imaging Multi-Mode Reader, and cell cycle and apoptosis were detected by flow cytometry. Cleaved PARP level, the expressions of B cell lymphoma 2 (BCL2) family proteins, and p53 pathway proteins were detected by Western blot. The results showed that after 48 h of cell culture, the cell viability was decreased significantly, but apoptosis was significantly increased. Compared to the cells without NOB treatment, the cells treated with NOB at 10 or 33 μΜ showed no significant differences in the number of suspended cells or late apoptosis rate, except the increase of cell viability. Treatment of NOB at the concentration of 100 μM improved cell viability, attenuated apoptosis, decreased suspended cells, and did not alter the G1 phase arrest, compared with the non-NOB-treated group after 48 h of culturing. The 100 μΜ NOB treatment increased the levels of BCL2 and BCLXL, and decreased p53 accumulation in BeWo cells at 48 h, but had no effect on the expression of BAX, BAK, BAD, p21, and G1 phase arrest. These findings provide evidence that NOB (10, 33, and 100 μΜ) was safe for BeWo cells. NOB at the concentration of 100 μΜ could attenuate apoptosis in BeWo cells, which might be helpful to prevent pregnancy-related diseases caused by apoptosis.
Collapse
|
25
|
Hu Z, Hu J, Ren F, Xu H, Tan M, Wang Q, Ren J. Nobiletin, a novel inhibitor, inhibits HBsAg production and hepatitis B virus replication. Biochem Biophys Res Commun 2020; 523:802-808. [PMID: 31954513 DOI: 10.1016/j.bbrc.2019.12.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a serious problem due to its extensive worldwide distribution and poor prognosis including cirrhosis and/or hepatocellular carcinoma. The hepatitis B surface antigen(HBsAg) is a vital serum marker in HBV infection and a major obstacle for effective and subsequently virus clearance. However, Current anti-HBV drugs, such as nucleos(t)ide analogs (NA) and PegIFN, do not meet ideal result of sustained HBsAg loss (defined as functional cure). Therefore, there is an urgent need to identify a new compound targeting HBsAg. In this study, nobiletin was screened out from 1500 compounds due to its low cytotoxicity and high antiviral activity. The effect of nobiletin on HBV was determined in HepG2.2.15 and HepG2-NTCP cells. Furthermore, the antiviral capability of nobiletin was also verified in vivo. Unlike entecavir (ETV) therapy, which reduced HBV DNA but do not lead to an effective reduction in HBsAg, nobiletin significantly reduced the level of HBsAg as well as lowered HBV DNA in vivo and in vitro. Meanwhile, combination of nobiletin and ETV led to broad reductions of both HBV DNA and HBsAg level. This study may shed light on the development of a novel class of anti-HBV agents.
Collapse
Affiliation(s)
- Zhongwen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jieli Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongyan Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, Zhong Y, Xiong X, Gu L. Meisoindigo Protects Against Focal Cerebral Ischemia-Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation and Regulating Microglia/Macrophage Polarization via TLR4/NF-κB Signaling Pathway. Front Cell Neurosci 2019; 13:553. [PMID: 31920554 PMCID: PMC6930809 DOI: 10.3389/fncel.2019.00553] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke is a devastating disease with long-term disability. However, the pathogenesis is unclear and treatments are limited. Meisoindigo, a second-generation derivative of indirubin, has general water solubility and is well-tolerated. Previous studies have shown that meisoindigo reduces inflammation by inhibiting leukocyte chemotaxis and migration. In the present study, we investigated the hypothesis that meisoindigo was also protective against ischemic stroke, then evaluated its underlying mechanisms. In vivo, adult male C57BL/6J wild-type mice were used to produce a middle cerebral artery occlusion (MCAO) stroke model. On day three after reperfusion, obvious improvement in neurological scores, infarct volume reduction and cerebral edema amelioration were observed in meisoindigo treatment. Moreover, immunofluorescence staining and western-blot showed that the expression of NLRP3 inflammasome and its associated proteins in neurons and microglia was inhibited by meisoindigo. The effects of Meisoindigo on NLRP3 inflammasome inactivation and increased the M2 phenotype of microglia/macrophage through shifting from a M1 phenotype, which was possibly mediated by inhibition of TLR4/NF-κB. Furthermore, we verified the inhibitory effect of meisoindigo on TLR4/NF-κB signaling pathway, and found that meisoindigo treatment could significantly suppressed the expression of TLR4/NF-κB pathway-associated proteins in a dose-dependent manner, meanwhile, which resulted in downregulation of HMGB1 and IL-1β. Next, we established an in vitro oxygen glucose deprivation/Reperfusion (OGD/R) model in HT-22 and BV2 cells to simulate ischemic conditions. Cytotoxicity assay showed that meisoindigo substantially improved relative cell vitality and in HT-22 and BV2 cells following OGD/R in vitro. After suffering OGD/R, the TLR4/NF-κB pathway was activated, the expression of NLRP3 inflammasome-associated proteins and M1 microglia/macrophage were increased, but meisoindigo could inhibit above changes in both HT-22 and BV2 cells. Additionally, though lipopolysaccharide stimulated the activation of TLR4 signaling in OGD/R models, meisoindigo co-treatment markedly reversed the upregulation of TLR4 and following activation of NLRP3 inflammasome and polarization of M1 microglia/macrophages mediated by TLR4. Overall, we demonstrate for the first time that meisoindigo post-treatment alleviates brain damage induced by ischemic stroke in vivo and in vitro experiments through blocking activation of the NLRP3 inflammasome and regulating the polarization of microglia/macrophages via inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Jin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baixin Ye
- Department of Hematopathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinchen Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Nobiletin enhances the survival of random pattern skin flaps: Involvement of enhancing angiogenesis and inhibiting oxidative stress. Int Immunopharmacol 2019; 78:106010. [PMID: 31806568 DOI: 10.1016/j.intimp.2019.106010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 12/17/2022]
Abstract
Random-pattern flap necrosis is a serious challenge for plastic surgeons. Nobiletin (NOB) is a polymethoxylated flavonoid extracted from citrus fruits reported to have antioxidant, anti-inflammatory and anti-apoptotic effects. Our experiment evaluated the impact of NOB on the viability of random flaps. Thirty six male "McFarlane flap" rat models were separated into two equal groups: a control group and an experimental group treated with 10 mg/kg of NOB. After 7 days, the range of necrosis was calculated, and a histological analysis was performed on tissue specimens. Immunohistochemical staining, lead oxide-gelatin angiography, and a Laser Doppler perfusion imager were used to assess angiogenesis and measure oxidative stress, as indicated by superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. The average survival area of flap was greater in the NOB-treated group than that in the control group. The NOB-treated group mitigated oxidative stress via augmented SOD, reduced MDA, and enhanced vascular endothelial growth factor (VEGF) expression. Hematoxylin and eosin staining indicated that NOB increased blood flow and had anti-inflammatory effects. Our findings revealed that NOB improved random skin flap survival.
Collapse
|
28
|
Propofol weakens hypoxia-aroused apoptosis and autophagy via elevating microRNA-137 in neurocytes. Exp Mol Pathol 2019; 112:104327. [PMID: 31678238 DOI: 10.1016/j.yexmp.2019.104327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hypoxia was proven to cause brain cell apoptosis and autophagy. Herein, we tested the influences of propofol, a commonly used intravenous sedative hypnotic drug, on apoptosis and autophagy aroused by hypoxia stimulation in PC-12 and HT-22 cells. METHODS Followed by hypoxia and/or propofol treatment, cell viability of PC-12 and HT-22 cells, apoptosis and autophagy, along with microRNA-137 (miR-137) expression were measured, respectively. Then, miR-137 inhibitor was transfected to silence miR-137. Whether miR-137 took part in the impacts of propofol on hypoxia-exposed cells was explored. Finally, the activities of PI3K/AKT/mTOR and ERK pathways were measured. RESULTS Hypoxia stimulation aroused cell apoptosis and elevated cell autophagy in PC-12 and HT-22 cells. Propofol weakened the apoptosis and autophagy of PC-12 and HT-22 cells aroused by hypoxia. Moreover, propofol elevated the miR-137 level in PC-12 and HT-22 cells. Silencing miR-137 declined the influences of propofol on hypoxia-induced injuries. Besides, propofol promoted PI3K/AKT/mTOR and ERK pathways activation in hypoxia-exposed cells through raising miR-137. CONCLUSION Propofol weakened hypoxia-aroused apoptosis and autophagy of PC-12 and HT-22 cells might be through raising miR-137 level and thereby promoting PI3K/AKT/mTOR and ERK pathways activation.
Collapse
|
29
|
Zhang BF, Jiang H, Chen J, Guo X, Li Y, Hu Q, Yang S. Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PI3K/AKT signal pathway. Int Immunopharmacol 2019; 73:98-107. [PMID: 31082728 DOI: 10.1016/j.intimp.2019.04.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Nobiletin is a natural polymethoxylated flavone that confers antioxidative, anti-inflammatory and anti-apoptotic efficacies. However, the potential benefits of nobiletin preconditioning on myocardial ischemia and reperfusion injury (MIRI) remains largely unknown. METHODS MIRI was induced by ligation of the left anterior descending coronary artery and reperfusion. Pre-treatment with nobiletin, with or without PI3K/AKT inhibitor LY294002, was performed at the onset of reperfusion. Histological analyses, apoptotic evaluation, plasma biomarkers of myocardial injury, echocardiographic evaluation of cardiac function and myocardial levels of endoplasmic reticulum stress (ERS)-related molecules were observed. RESULTS Nobiletin pre-treatment significantly deceased the infract size and number of apoptotic cells in the myocardium of MIRI rats, as determined by Terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Moreover, the plasma levels of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) also markedly decreased. In addition, pre-treatment with nobiletin restored the impaired cardiac systolic function, as evidenced by echocardiographic evaluation results. Importantly, pre-treatment with nobiletin significantly downregulated the myocardial mRNA and protein levels of ERS-related signal molecules, including GRP78, CHOP and caspase-12, but upregulated the levels of p-PI3K and p-AKT. Interestingly, co-treatment with LY294002 significantly abolished the benefits of nobiletin pre-treatment on cardiac function, myocardial apoptosis, cardiomyocyte injuries, and changes in myocardial levels of ERS-related signaling molecules. CONCLUSION Nobiletin pre-treatment may alleviate MIRI probably via the attenuation of PI3K/AKT-mediated ERS-related myocardial apoptosis.
Collapse
Affiliation(s)
- Bo-Fang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Xin Guo
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 43000, Hubei Province, China
| | - Yue Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
30
|
Wu D, Wang X, Wang S, Li B, Liang H. Nanoparticle Encapsulation Strategy: Leveraging Plant Exine Capsules Used as Secondary Capping for Oral Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8168-8176. [PMID: 31268318 DOI: 10.1021/acs.jafc.9b02003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Protein-based nanoparticles (NPs) with favorable properties including enhanced absorptivity and low toxicity still suffer a major challenge for rapid nutraceutical or drug release after oral administration. Hence, we introduced a secondary encapsulation for unstable factor to attain a controlled-release effect in a gastrointestinal environment. In this work, assembled nanoparticles engineered by nobiletin (NOB), zein, and tannin acid (TA) were first reported for drug delivery systems. The TA added was capable of obtaining further assembly to stabilize nobiletin in comparison with NOB-loaded zein NPs only. Sunflower pollens (SPGs) were selected as carriers for further oral delivery, while zein was chosen as a coating material for capping SPGs absolutely. As a result, the NOB/zein/TA NPs (NZT NPs) obtained had a stable size of 100 nm after 48 h. Besides, they could improve the chemical stability of NOB for at least 120 days at 4 °C compared with zein NPs (ZT NPs). Owing to the secondary capping by SPGs, the final system was able to release selectively via an oral route, that is, achieving no release in a gastric environment and slow release in an intestine environment. Generally, our research proposed a secondary protection model to prevent drug-loaded NPs from resolving after oral administration, which provided a new perspective for nutraceutical or drug encapsulation and controlled-release delivery.
Collapse
Affiliation(s)
- Di Wu
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietolog y, Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Xinyi Wang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietolog y, Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Shishuai Wang
- College of Culinary and Food Engineering , Wuhan Business University , Wuhan 430056 , China
| | - Bin Li
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietolog y, Huazhong Agricultural University , Ministry of Education, Wuhan , China
- Functional Food Engineering & Technology Research Center of Hubei Province , Wuhan , China
| | - Hongshan Liang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Dietolog y, Huazhong Agricultural University , Ministry of Education, Wuhan , China
| |
Collapse
|
31
|
Zhu P, Yang M, He H, Kuang Z, Liang M, Lin A, Liang S, Wen Q, Cheng Z, Sun C. Curcumin attenuates hypoxia/reoxygenation‑induced cardiomyocyte injury by downregulating Notch signaling. Mol Med Rep 2019; 20:1541-1550. [PMID: 31257466 PMCID: PMC6625400 DOI: 10.3892/mmr.2019.10371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Recovery of the blood supply is the most effective treatment against ischemic heart disease; however, it is also a major cause of myocardial ischemia/reperfusion injury in clinical therapy. Curcumin has been reported to possess beneficial effects against hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury by regulating cell proliferation, apoptosis and antioxidant enzyme activity. The aim of the present study was to investigate the molecular mechanisms underlying the effects of curcumin on H/R-injured cardiomyocytes. H9C2 cardiomyocytes were pretreated with curcumin, and then cultured under H/R conditions. The viability of H9C2 cells was measured using a Cell Counting kit-8 assay, and the levels of intracellular lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) were measured to assess cell injury. Levels of reactive oxygen species (ROS) and apoptosis were evaluated by flow cytometry. The expression levels of Notch intracellular domain (NICD) and numerous downstream genes were analyzed via reverse transcription-quantitative polymerase chain reaction and western blotting. The results revealed that curcumin protected H9C2 cells against H/R-induced injury, reversing the H/R-induced increases in LDH and MDA levels, and decreases in SOD levels. ROS levels in H/R-induced cells were also significantly downregulated by curcumin treatment (P<0.01), and the apoptotic rate was significantly decreased from 15.13% in the H/R group to 7.7% in the H/R + curcumin group (P<0.01). The expression levels of NICD, hairy and enhancer of split (Hes)-1, Hes-5 and hairy/enhancer-of-split related with YRPW motif protein 1 (Hey-1) were significantly decreased in H/R-treated cells following curcumin treatment. Treatment with Jagged1 attenuated the effects of curcumin on cell viability, ROS levels and apoptosis; the Notch pathway was also reactivated. The present study indicated that there was a role for the Notch pathway in the protective effects of curcumin against H/R-induced cardiomyocyte injury, suggesting that downregulation of the Notch pathway may alleviate H/R-induced injury in H9C2 cells.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Manli Yang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Hao He
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Zhibin Kuang
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Mu Liang
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Anxiao Lin
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Song Liang
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Qiyun Wen
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Zhiqin Cheng
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519100, P.R. China
| | - Chaofeng Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
32
|
Liu D, Xu L, Zhang X, Shi C, Qiao S, Ma Z, Yuan J. Snapshot: Implications for mTOR in Aging-related Ischemia/Reperfusion Injury. Aging Dis 2019; 10:116-133. [PMID: 30705773 PMCID: PMC6345330 DOI: 10.14336/ad.2018.0501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
Aging may aggravate the damage and dysfunction of different components of multiorgan and thus increasing multiorgan ischemia/reperfusion (IR) injury. IR injury occurs in many organs and tissues, which is a major cause of morbidity and mortality worldwide. The kinase mammalian target of rapamycin (mTOR), an atypical serine/threonine protein kinase, involves in the pathophysiological process of IR injury. In this review, we first briefly introduce the molecular features of mTOR, the association between mTOR and aging, and especially its role on autophagy. Special focus is placed on the roles of mTOR during ischemic and IR injury. We then clarify the association between mTOR and conditioning phenomena. Following this background, we expand our discussion to potential future directions of research in this area. Collectively, information reviewed herein will serve as a comprehensive reference for the actions of mTOR in IR injury and may be significant for the design of future research and increase the potential of mTOR as a therapeutic target.
Collapse
Affiliation(s)
- Dong Liu
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Liqun Xu
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.,3Cadet group 3, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China.,4Laboratory Animal Center, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoyan Zhang
- 2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.,3Cadet group 3, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China
| | - Changhong Shi
- 4Laboratory Animal Center, The Fourth Military Medical University, Xi'an 710032, China
| | - Shubin Qiao
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhiqiang Ma
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jiansong Yuan
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
33
|
Bu J, Shi S, Wang HQ, Niu XS, Zhao ZF, Wu WD, Zhang XL, Ma Z, Zhang YJ, Zhang H, Zhu Y. Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway. Neural Regen Res 2019; 14:605-612. [PMID: 30632500 PMCID: PMC6352603 DOI: 10.4103/1673-5374.247465] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acacetin (5,7-dihydroxy-4'-methoxyflavone), a potential neuroprotective agent, has an inhibitory effect on lipopolysaccharide-induced neuroinflammatory reactions. However, whether acacetin has an effect on inflammatory corpuscle 3 (NLRP3) after cerebral ischemia-reperfusion injury has not been fully determined. This study used an improved suture method to establish a cerebral ischemia-reperfusion injury model in C57BL/6 mice. After ischemia with middle cerebral artery occlusion for 1 hour, reperfusion with intraperitoneal injection of 25 mg/kg of acacetin (acacetin group) or an equal volume of saline (0.1 mL/10 g, middle cerebral artery occlusion group) was used to investigate the effect of acacetin on cerebral ischemia-reperfusion injury. Infarct volume and neurological function scores were determined by 2,3,5-triphenyltetrazolium chloride staining and the Zea-Longa scoring method. Compared with the middle cerebral artery occlusion group, neurological function scores and cerebral infarction volumes were significantly reduced in the acacetin group. To understand the effect of acacetin on microglia-mediated inflammatory response after cerebral ischemia-reperfusion injury, immunohistochemistry for the microglia marker calcium adapter protein ionized calcium-binding adaptor molecule 1 (Iba1) was examined in the hippocampus of ischemic brain tissue. In addition, tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in ischemic brain tissue of mice was quantified by enzyme-linked immunosorbent assay. Expression of Iba1, tumor necrosis factor-α, interleukin-1β and interleukin-6 was significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Western blot assay results showed that expression of Toll-like receptor 4, nuclear factor kappa B, NLRP3, procaspase-1, caspase-1, pro-interleukin-1β, and interleukin-1β were significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Our findings indicate that acacetin has a protective effect on cerebral ischemia-reperfusion injury, and its mechanism of action is associated with inhibition of microglia-mediated inflammation and the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Juan Bu
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shen Shi
- Laboratory Animal Research Center, Center for Disease Control and Prevention, Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui-Qin Wang
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Shan Niu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zong-Feng Zhao
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wei-Dong Wu
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Ling Zhang
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhi Ma
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan-Jun Zhang
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui Zhang
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yi Zhu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
34
|
Zhang F, Zhang C. Rnf112 deletion protects brain against intracerebral hemorrhage (ICH) in mice by inhibiting TLR-4/NF-κB pathway. Biochem Biophys Res Commun 2018; 507:43-50. [PMID: 30454900 DOI: 10.1016/j.bbrc.2018.10.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage (ICH) is reported as a common and often fatal type of stroke accompanied with high morbidity and mortality, and it frequently results in long-lasting neurological dysfunctions. However, the pathogenesis that contributes to ICH has not been fully understood. Rnf112, also known as Znf179, is a member of the RING finger protein family. The expression of Rnf112 is abundant in the brain and is modulated during brain progression and development. The study aimed to explore the role of Rnf112 in brain injury after ICH, as well as the underlying molecular mechanisms. The results indicated that ICH led to a significant decrease in Rnf112, which was confirmed in oxyhemoglobin (oxyHb)-incubated astrocytes and microglial cells. Moreover, the Rnf112 knockout (Rnf112-/-) mice and wild type (WT) mice induced by ICH were further employed. Compared to the WT/ICH group, Rnf112-/- mice exhibited accelerated brain injury, as evidenced by the increased brain water contents and neurological deficit scores (NDS). In comparison to WT/ICH group, a remarkable up-regulation in the release of pro-inflammatory cytokines, including tumor necrotic factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β, was observed in perihematoma tissues of Rnf112-/- mice on day 3 post-ICH. The process was along with promoted glial fibrillary acidic protein (GFAP) and Iba1 expression and reduced NeuN levels. Furthermore, ICH-induced increases in toll-like receptor (TLR)-4 and myeloid differentiation primary response protein (MyD88) expression were exacerbated by the loss of Rnf112. The phosphorylated expression of IKKα, inhibitor of NF-κB (IκBα) and nuclear factor-kappa B (NF-κB) induced by ICH in perihematoma tissues of mice was markedly enhanced in Rnf112-/- mice. Rnf112 repression-induced inflammatory response was verified in lipopolysaccharide (LPS)-incubated glial cells. In contrast, over-expressing Rnf112 markedly attenuated ICH-induced brain injury by restraining inflammation via inactivating TLR-4/NF-κB pathway. In summary, our findings suggested that Rnf112 expression was highly involved in the progression of ICH, and targeting Rnf112 signaling might be a promising therapeutic strategy against ICH development.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Internal Neurology, No.215 Hospital of Shaanxi Nuclear Industry, Xianyang 712000, China
| | - Chenhong Zhang
- Department of Internal Neurology, No.215 Hospital of Shaanxi Nuclear Industry, Xianyang 712000, China.
| |
Collapse
|
35
|
Guo X, Cheng M, Ke W, Wang Y, Ji X. MicroRNA‑214 suppresses propofol‑induced neuroapoptosis through activation of phosphoinositide 3‑kinase/protein kinase B signaling by targeting phosphatase and tensin homolog expression. Int J Mol Med 2018; 42:2527-2537. [PMID: 30106086 PMCID: PMC6193586 DOI: 10.3892/ijmm.2018.3814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/31/2018] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to investigate the effects of microRNA (miR)‑214 on neuroapoptosis induced by propofol and the possible mechanism of its anti‑apoptotic effects. Initially, it was observed that miR‑214 expression was upregulated in propofol‑induced neuroapoptosis rats. Next, propofol‑treated nerve cells were transfected with miR‑214 mimics. The results revealed that miR‑214 overexpression induced apoptosis, inhibited cell proliferation, inhibited cyclin D1 protein expression, promoted caspase‑3 activity and B‑cell lymphoma 2‑associated X protein expression, and enhanced the levels of inflammation factors in nerve cells treated with propofol. In addition, miR‑214 overexpression suppressed phosphoinositide 3‑kinase/protein kinase B (PI3K/Akt) signaling by targeting the activation of phosphatase and tensin homolog (PTEN) and nuclear factor‑κB expression in nerve cells treated with propofol. Treatment with a PTEN inhibitor successfully suppressed the PTEN protein expression and decreased the apoptosis of propofol‑treated nerve cells subsequent to miR‑214 overexpression through PI3K/Akt signaling. In conclusion, the present study data revealed that miR‑214 suppressed propofol‑induced neuroapoptosis through the activation of PI3K/Akt signaling by targeting PTEN expression.
Collapse
Affiliation(s)
- Xukeng Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Minghua Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yuting Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xuan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
36
|
Xing M, Jin X, Wang J, Shi Q, Cai J, Xu S. The Antagonistic Effect of Selenium on Lead-Induced Immune Dysfunction via Recovery of Cytokine and Heat Shock Protein Expression in Chicken Neutrophils. Biol Trace Elem Res 2018; 185:162-169. [PMID: 29264824 DOI: 10.1007/s12011-017-1200-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022]
Abstract
Lead (Pb) is a ubiquitous and toxic heavy metal and it can damage the immune system in humans and animals. Many researchers have reported that Selenium (Se) could possess various pharmacological effects in mammals. However, few studies have been carried out to investigate the protective role of Se in birds, especially in chickens. In this study, we investigated the protective effects of Se against Pb-induced inflammatory responses and the expression of heat shock proteins (HSPs) in peripheral blood neutrophils. One hundred eighty Hy-Line brown chickens were randomly divided into the control group (Con group), Se supplementation group (+Se group), Pb supplementation group (+Pb group), and the Se and Pb compound group (Se+Pb group). On the 90th day of the experiment, the peripheral blood was collected to extract neutrophils, and then, the levels of HSPs and cytokines were examined. The results showed that, after Pb treatment, the levels of IL-(1β, 1R, 4, 8, 10, and 12β), TGF-β4, and HSP (27, 40, 60, 70, and 90) mRNA were significantly increased and levels of IL-2 and IFN-γ mRNA were decreased compared with those in the control group. Compared with the control group, the protein levels of HSP60 and HSP70 were also increased in the Pb treatment group. Co-administration of Se (1 mg/kg/day) and Pb resulted in a reversal of the Pb-induced cytokine changes in neutrophils accompanied by a significant decrease in HSPs. Our study demonstrated that Pb could decrease the immune function via changing the expression of cytokines and HSPs in chicken neutrophils, but Se could relieve the toxic effect induced by Pb.
Collapse
Affiliation(s)
- Mengyuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinliang Wang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, 256600, People's Republic of China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
37
|
Song Y, Liu W, Ding Y, Jia Y, Zhao J, Wang F, Bai J, Cheng L, Gao K, Liu M, Yao M, Li L, Zhang Y, Wen A, He L. Salvianolic acid A ameliorates renal ischemia/reperfusion injury by activating Akt/mTOR/4EBP1 signaling pathway. Am J Physiol Renal Physiol 2018; 315:F254-F262. [PMID: 29384417 DOI: 10.1152/ajprenal.00508.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salvianolic acid A (Sal A) has been shown to prevent and treat ischemic cardiovascular, as well as cerebral vascular diseases. However, little is known about Sal A in renal ischemia/reperfusion (I/R) injury. In this study, a renal I/R injury model in rats and a hypoxia/reoxygenation (H/R) model to damage proximal renal tubular cells (HK-2) were used to assess whether Sal A halts the development and progression of renal I/R injury. As compared with vehicle treatment, Sal A significantly attenuated kidney injury after renal I/R injury, accompanied by decreases in plasma creatinine, blood urea nitrogen levels, the number of apoptosis-positive tubular cells, and kidney oxidative stress. Sal A also activated phosphorylated protein kinase B (p-Akt) and phosphorylated-mammalian target of rapamycin (p-mTOR) compared with vehicle-treated I/R injury rats. In H/R-injured HK-2 cells, Sal A can reduce the levels of reactive oxygen species in a dose-related manner. Similar to the results from in vivo experiments, in vitro Sal A also increased the protein expression of phosphorylated-eukaryotic initiation factor 4E binding protein 1 (p-4EBP1) compared with vehicle. Furthermore, the cytoprotective activity of Sal A was inhibited by LY294002 and rapamycin. These findings indicate that Sal A can ameliorate renal I/R injury and promote tubular cell survival partly via the Akt/mTOR/4EBP1pathway. Sal A could be a candidate compound to prevent ischemic tissue damage.
Collapse
Affiliation(s)
- Ying Song
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, Peopleʼs Republic of China
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Weihai Liu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Yanyan Jia
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Jinyi Zhao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Fan Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Juan Bai
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Lianghua Cheng
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Liang Li
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, Peopleʼs Republic of China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Langchong He
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, Peopleʼs Republic of China
| |
Collapse
|
38
|
Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol Sin 2018; 39:998-1011. [PMID: 29022576 DOI: 10.1038/aps.2017.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
Salvianolate lyophilized injection (SLI) and Xueshuantong injection (lyophilized) (XST) are two herbal standardized preparations that have been widely used in China for the treatment of acute cerebral infarction. In this study, we investigated the neuroprotective effects of SLI combined with XST in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Wistar rats were subjected to 1.5 h of MCAO followed by reperfusion for 3 h, then were treated with SLI or XST alone, or with their combinations via tail vein injection daily for 3 d. Edaravone (EDI, 6 mg·kg-1·d-1) was used as a positive control drug, We showed that administration of a combination of 1X1S (XST 100 mg·kg-1·d-1 plus SLI 21 mg·kg-1·d-1) more effectively protected the ischemic brains than SLI or XST used alone. Administration of 1X1S not only significantly decreased neurological deficit scores and infarct volumes and increased regional cerebral blood flow, but also inhibited the activation of both microglia and astrocytes in the hippocampus. Furthermore, administration of 1X1S significantly decreased the levels of MDA and ROS with concomitant increases in the levels of antioxidant activity (SOD, CAT and GSH) in the brain tissues as compared with SLI and XST used alone. Moreover, administration of 1X1S remarkably upregulated the expression of Nrf-2, HO-1 and NQO-1, and downregulated the expression of Keap1 and facilitated the nuclear translocation of Nrf-2 in the brain tissues as compared with XST used alone. Our study demonstrates that a combination of 1X1S effectively protects MCAO/R injury via suppressing oxidative stress and the Nrf-2/Keap1 pathway.
Collapse
|
39
|
Wu X, Zheng D, Qin Y, Liu Z, Zhang G, Zhu X, Zeng L, Liang Z. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochem Biophys Res Commun 2017; 492:262-268. [PMID: 28830813 DOI: 10.1016/j.bbrc.2017.08.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our previous study showed that autophagy flux was impaired with sustained heart ischemia, which exacerbated adverse cardiac remodeling after acute myocardial infarction (AMI). Here we investigated whether Nobiletin, a citrus polymethoxylated flavonoids, could restore the autophagy flux and improve cardiac prognosis after AMI. AMI was induced by ligating left anterior descending (LAD) coronary artery in rats. Nobiletin improved the post-infarct cardiac dysfunction significantly and attenuated adverse cardiac remodeling. Meanwhile, Nobiletin protected H9C2 cells against oxygen glucose deprivation (OGD) in vitro. The impaired autophagy flux due to ischemia was ameliorated after Nobiletin treatment by testing the autophagy substrate, LC3BⅡ and P62 protein level both in vivo and in vitro. GFP-mRFP-LC3 adenovirus transfection also supported that Nobiletin restored the impaired autophagy flux. Specifically, the autophagy flux inhibitor, chloroquine, but not 3 MA, alleviated Nobiletin-mediated protection against OGD. Notably, Nobiletin does not affect the activation of classical upstream autophagy signaling pathways. However, Nobiletin increased the lysosome acidation which also supported that Nobiletin accelerated autophagy flux. Taken together, our findings suggested that Nobiletin restored impaired autophagy flux and protected against acute myocardial infarction, suggesting a potential role of autophagy flux in Nobiletin-mediated myocardial protection.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Dechong Zheng
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Yuyan Qin
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Zumei Liu
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, PR China
| | - Guiping Zhang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Xiaoyan Zhu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Lihuan Zeng
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Zhenye Liang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| |
Collapse
|