1
|
Qin T, Guo L, Wang X, Zhou G, Liu L, Zhang Z, Ding G. Repetitive transcranial magnetic stimulation ameliorates cognitive deficits in mice with radiation-induced brain injury by attenuating microglial pyroptosis and promoting neurogenesis via BDNF pathway. Cell Commun Signal 2024; 22:216. [PMID: 38570868 PMCID: PMC10988892 DOI: 10.1186/s12964-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1β were upregulated. CONCLUSION Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.
Collapse
Affiliation(s)
- Tongzhou Qin
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Xing Wang
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guiqiang Zhou
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
- Department of occupational & environmental health, School of Public Health, Weifang Medical University, Weifang, 261021, China
| | - Liyuan Liu
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhaowen Zhang
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guirong Ding
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
2
|
Petrović A, Madić V, Stojanović G, Zlatanović I, Zlatković B, Vasiljević P, Đorđević L. Antidiabetic effects of polyherbal mixture made of Centaurium erythraea, Cichorium intybus and Potentilla erecta. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117032. [PMID: 37582477 DOI: 10.1016/j.jep.2023.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The polyherbal mixture made of Centaurium erythraea aerial parts and Cichorium intybus roots and Potentilla erecta rhizomes has been used for centuries to treat both the primary and secondary complications of diabetes. AIM OF THE STUDY As a continuation of our search for the most effective herbal mixture used as an ethnopharmacological remedy for diabetes, this study aimed to compare the in vitro biological activities of this polyherbal mixture and its individual ingredients, and, most importantly, to validate the ethnopharmacological value of the herbal mixture through evaluation of its phytochemical composition, its potential in vivo toxicity and its effect on diabetes complications. MATERIALS AND METHODS Phytochemical analysis was performed using HPLC-UV. Antioxidant activity was estimated via the DPPH test. Potential cytotoxicity/anticytotoxicity was assessed using an in vitro RBCs antihemolytic assay and an in vivo sub-chronic oral toxicity method. Antidiabetic activity was evaluated using an in vitro α-amylase inhibition assay and in vivo using a chemically induced diabetic rat model. RESULTS The HPLC-UV analysis revealed the presence of p-hydroxybenzoic acid, p-hydroxybenzoic acid derivative, catechin, five catechin derivatives, epicatechin, isoquercetin, hyperoside, rutin, four quercetin derivatives, caffeic acid, and four caffeic acid derivatives in the polyherbal mixture decoction. Treatment with the decoction has shown no toxic effects. The antioxidant and cytoprotective activities of the polyherbal mixture were higher than the reference's ones. Its antidiabetic activity was high in both in vitro and in vivo studies. Fourteen days of treatment with the decoction (15 g/kg) completely normalized blood glucose levels of diabetic animals, while treatments with insulin and glimepiride only slightly lowered glycemic values. In addition, lipid status of treated animals as well as levels of serum AST, ALT, ALP, creatinine, urea and MDA were completely normalized. In addition, the polyherbal mixture completely restored the histopathological changes of the liver, kidneys and all four Cornu ammonis regions of the hippocampus. CONCLUSIONS The polyherbal mixture was effective in the prevention of both primary and secondary diabetic complications such as hyperlipidemia, increased lipid peroxidation, non-alcoholic fatty liver disease, nephropathy and neurodegeneration.
Collapse
Affiliation(s)
- Aleksandra Petrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Višnja Madić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Gordana Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ivana Zlatanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Bojan Zlatković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ljubiša Đorđević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
3
|
Xie JY, Wang ZX, Liu WY, Liu HW, Li D, Sang YF, Yang Z, Gao JM, Yan XT. Hyperelatolides A-D, Antineuroinflammatory Constituents with Unusual Carbon Skeletons from Hypericum elatoides. JOURNAL OF NATURAL PRODUCTS 2023; 86:1910-1918. [PMID: 37530709 DOI: 10.1021/acs.jnatprod.3c00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Four new δ- and γ-lactone derivatives, hyperelatolides A-D (1-4, respectively), were discovered from the aerial portions of Hypericum elatoides R. Keller. Their structures were elucidated by analysis of NMR spectra, HRESIMS, quantum chemical calculations of NMR and ECD spectra, and X-ray crystallographic data. Hyperelatolides A (1) and B (2) represent the first examples of δ-lactone derivatives characterized by a (Z)-(5,5-dimethyl-2-(2-oxopropyl)cyclohexylidene)methyl moiety and a benzoyloxy group attached to the β- and γ-positions of the δ-lactone core, respectively, while hyperelatolides C (3) and D (4) are unprecedented γ-lactone derivatives featuring substituents similar to those of 1 and 2. All compounds were tested for their inhibitory effects on NO production in LPS-activated BV-2 cells. Lactones 1 and 2 exhibited considerable antineuroinflammatory activity, with IC50 values of 5.74 ± 0.27 and 7.35 ± 0.26 μM, respectively. Moreover, the mechanistic study revealed that lactone 1 significantly suppressed nuclear factor kappa B signaling and downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced cells, which may contribute to its antineuroinflammatory activity.
Collapse
Affiliation(s)
- Jin-Yan Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zi-Xuan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Wu-Yang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Han-Wu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yi-Fan Sang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zhi Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Xi-Tao Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| |
Collapse
|
4
|
Kandilarov I, Gardjeva P, Georgieva-Kotetarova M, Zlatanova H, Vilmosh N, Kostadinova I, Katsarova M, Atliev K, Dimitrova S. Effect of Plant Extracts Combinations on TNF-α, IL-6 and IL-10 Levels in Serum of Rats Exposed to Acute and Chronic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3049. [PMID: 37687297 PMCID: PMC10490550 DOI: 10.3390/plants12173049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Oxydative stress, anxiety and depression are associated with changes in cytokine levels. Natural products, including individual and combined plant extracts, have the potential to be used in the treatment of neuropsychiatric disorders. The goal of this study is to investigate the effects of two combined plant extracts, rich in flavonoids, on the levels of the cytokines TNF-α, IL-6, and IL-10 in rats subjected to models of acute cold stress and chronic unpredictable stress. The study utilized common medicinal plants such as Valeriana officinalis, Melissa officinalis, Crataegus monogyna, Hypericum perforatum, and Serratula coronata, which were combined in two unique combinations-Antistress I and Antistress II. The compositions of the used extracts were determined by HPLC methods. Pro- and anti-inflammatory cytokines in rats' serum were measured with Enzyme-linked immunosorbent assay. The results from the acute stress model revealed that the individual extract of Crataegus monogyna decreased levels of TNF-α, while Serratula coronata, Hypericum perforatum, and Valeriana officinalis effectively reduced IL-6 levels. Both combinations, Antistress I and Antistress II, were effective in reducing TNF-α and IL-6 levels, with Antistress II also increasing IL-10 levels. In the chronic stress model, Hypericum perforatum extract decreased the levels of the pro-inflammatory cytokines TNF-α and IL-6, whereas extracts of Serratula coronata and Valeriana officinalis only reduced TNF-α levels. The two combined extracts, Antistress I and Antistress II, decreased TNF-α and IL-6 levels, while Antistress I also reduced the levels of the anti-inflammatory cytokine IL-10. The combinations of plant extracts used in our experiment have not been previously studied or documented in the available literature. However, based on our own experimental results, we can draw the conclusion that the combinations exhibit a more pronounced effect in reducing cytokine levels compared to the individual plant extracts.
Collapse
Affiliation(s)
- Ilin Kandilarov
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Petya Gardjeva
- Department of Medical Microbiology and Immunology „Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Maria Georgieva-Kotetarova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Hristina Zlatanova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Natalia Vilmosh
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Ivanka Kostadinova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Mariana Katsarova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Kiril Atliev
- Department of Urology and General Medicine, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Stela Dimitrova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Joseph DK, Mat Ludin AF, Ibrahim FW, Ahmadazam A, Che Roos NA, Shahar S, Rajab NF. Effects of aerobic exercise and dietary flavonoids on cognition: a systematic review and meta-analysis. Front Physiol 2023; 14:1216948. [PMID: 37664425 PMCID: PMC10468597 DOI: 10.3389/fphys.2023.1216948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Studies have shown that exercise increases angiogenesis and perfusion in the hippocampus, activates neurogenesis in the dentate gyrus and increases synaptic plasticity, as well as increases the complexity and number of dendritic spines, all of which promote memory function and protect against cognitive decline. Flavonoids are gaining attention as antioxidants in health promotion due to their rich phenolic content, particularly for their modulating role in the treatment of neurodegenerative diseases. Despite this, there has been no comprehensive review of cognitive improvement supplemented with flavonoid and prescribed with exercise or a combination of the two interventions has been conducted. The purpose of this review is to determine whether a combined intervention produces better results when given together than when given separately. Methods: Relevant articles assessing the effect of physical exercise, flavonoid or in combination on cognitive related biomarkers and neurobehavioral assessments within the timeline of January 2011 until June 2023 were searched using three databases; PubMed, PROQUEST and SCOPUS. Results: A total of 705 articles were retrieved and screened, resulting in 108 studies which are in line with the objective of the current study were included in the analysis. Discussion: The selected studies have shown significant desired effect on the chosen biomarkers and neurobehavioral assessments. Systematic Review Registration: identifier: [CRD42021271001].
Collapse
Affiliation(s)
- Daren Kumar Joseph
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arimi Fitri Mat Ludin
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farah Wahida Ibrahim
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amalina Ahmadazam
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Gamage E, Orr R, Travica N, Lane MM, Jacka F, Dissanayaka T, Kim JH, Grosso G, Godos J, Marx W. Polyphenols as novel interventions for depression: exploring the efficacy, mechanisms of action, and implications for future research. Neurosci Biobehav Rev 2023; 151:105225. [PMID: 37164045 DOI: 10.1016/j.neubiorev.2023.105225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Numerous animal and human studies have assessed the relationship between polyphenols and outcomes related to depression. However, no comprehensive synthesis of the main findings has been conducted. The aim of this manuscript was to systematically review the available evidence from animal and human studies on the association and the effects of dietary polyphenols on depression and provide recommendations for future research. We based our review on 163 preclinical animal, 16 observational and 44 intervention articles assessing the relationship between polyphenols and outcomes related to depression. Most animal studies demonstrated that exposure to polyphenols alleviated behaviours reported to be associated with depression. However, human studies are less clear, with some studies reporting and inverse relationship between the intake of some polyphenols, and polyphenol rich foods and depression risk and symptoms, while others reporting no association or effect. Hence, while there has been extensive research conducted in animals and there is some supporting evidence in humans, further human studies are required, particularly in younger and clinical populations.
Collapse
Affiliation(s)
- Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Rebecca Orr
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Melissa M Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Thusharika Dissanayaka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Jee H Kim
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| |
Collapse
|
7
|
García-Gutiérrez MS, Navarro D, Austrich-Olivares A, Manzanares J. Unveiling behavioral and molecular neuroadaptations related to the antidepressant action of cannabidiol in the unpredictable chronic mild stress model. Front Pharmacol 2023; 14:1171646. [PMID: 37144214 PMCID: PMC10151764 DOI: 10.3389/fphar.2023.1171646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: This study aims to further characterize cannabidiol's pharmacological and molecular profile as an antidepressant. Methods: Effects of cannabidiol (CBD), alone or combined with sertraline (STR), were evaluated in male CD1 mice (n = 48) exposed to an unpredictable chronic mild stress (UCMS) procedure. Once the model was established (4 weeks), mice received CBD (20 mg·kg-1, i.p.), STR (10 mg·kg-1, p.o.) or its combination for 28 days. The efficacy of CBD was evaluated using the light-dark box (LDB), elevated plus maze (EPM), tail suspension (TS), sucrose consumption (SC) and novel object recognition (NOR) tests. Gene expression changes in the serotonin transporter, 5-HT1A and 5-HT2A receptors, BDNF, VGlut1 and PPARdelta, were evaluated in the dorsal raphe, hippocampus (Hipp) and amygdala by real-time PCR. Besides, BDNF, NeuN and caspase-3 immunoreactivity were assessed in the Hipp. Results: CBD exerted anxiolytic and antidepressant-like effects at 4 and 7 days of treatment in the LDB and TS tests, respectively. In contrast, STR required 14 days of treatment to show efficacy. CBD improved cognitive impairment and anhedonia more significantly than STR. CBD plus STR showed a similar effect than CBD in the LBD, TST and EPM. However, a worse outcome was observed in the NOR and SI tests. CBD modulates all molecular disturbances induced by UCMS, whereas STR and the combination could not restore 5-HT1A, BDNF and PPARdelta in the Hipp. Discussion: These results pointed out CBD as a potential new antidepressant with faster action and efficiency than STR. Particular attention should be given to the combination of CBD with current SSRI since it appears to produce a negative impact on treatment.
Collapse
Affiliation(s)
- María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- *Correspondence: Jorge Manzanares,
| |
Collapse
|
8
|
Jiang C, Wang H, Qi J, Li J, He Q, Wang C, Gao Y. Antidepressant effects of cherry leaf decoction on a chronic unpredictable mild stress rat model based on the Glu/GABA-Gln metabolic loop. Metab Brain Dis 2022; 37:2883-2901. [PMID: 36181653 DOI: 10.1007/s11011-022-01081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/04/2022] [Indexed: 01/10/2023]
Abstract
Cherry leaves (Prunus pseudocerasus Lindl. [Rosaceae]), a traditional Chinese herbal medicine, can regulate the factors closely related to depression including inflammatory cytokines, oxidative stress and blood glucose level. However, the antidepressant effects of cherry leaves and underlying neuromodulatory mechanisms remain relatively have not been elucidated explicitly. The present study investigated the antidepressant effects of cherry leaf decoction (CLD). The underlying neuromodulatory mechanism was explored by examining the glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop. The chronic unpredictable mild stress (CUMS) rodent model was used in this study. The main flavonoids components of CLD were identified using high-performance liquid chromatography (HPLC). The antidepressant effects of CLD were assessed throughout behavioural tests including the bodyweight, sucrose preference test (SPT), forced swimming test (FPT) and tail suspension test (TST). Moreover, The baseline levels of serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were quantified. The expression of proteins integrally involved in the Glu/GABA-Gln metabolic loop were observed and quantified by Western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. This study found that CLD ameliorated depressive-like behaviours induced by CUMS. The increase of serum ACTH and CORT baseline levels induced by CUMS was also reversed after CLD intervention. Furthermore, CUMS reduced the expression of GAD65, GAD67, GLT-1, GS and GABAA and increased NMDAR1 levels in the rat hippocampus, which was normalized by CLD treatment. The findings demonstrated that CLD could ameliorate the depression-like behaviours induced by CUMS, potentially through the inhibition of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and the regulation of Glu/GABA-Gln metabolic loop.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Hua Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Jiaying Qi
- Department of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Jinghan Li
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Qianqian He
- Department of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Chaonan Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China.
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China.
- Hebei Key Laboratory of Chinese Medicine Research On Cardio-Cerebrovascular Disease, Shijiazhuang, 050200, Hebei, People's Republic of China.
| |
Collapse
|
9
|
Song A, Wu Z, Zhao W, Shi W, Cheng R, Jiang J, Ni Z, Qu H, Qiaolongbatu X, Fan G, Lou Y. The Role and Mechanism of Hyperoside against Depression-like Behavior in Mice via the NLRP1 Inflammasome. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121749. [PMID: 36556951 PMCID: PMC9788057 DOI: 10.3390/medicina58121749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Hypericum perforatum (HP) is widely used for depressive therapy. Nevertheless, the antidepressant effect and potential mechanism of hyperoside (Hyp), the main active component of HP, have not been determined. MATERIALS AND METHODS We performed ultra-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry (UPLC-Q-TOF-MS/MS) technology to analyze the components in HP. Using data mining and network pharmacology methods, combined with Cytoscape v3.7.1 and other software, the active components, drug-disease targets, and key pathways of HP in the treatment of depression were evaluated. Finally, the antidepressant effects of Hyp and the mechanism involved were verified in chronic-stress-induced mice. RESULTS We identified 12 compounds from HP. Hyp, isoquercetin, and quercetin are the main active components of HP. The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), the Analysis Platform, DrugBank, and other databases were analyzed using data mining, and the results show that the active components of HP and depression are linked to targets such as TNF-, IL-2, TLR4, and so on. A potential signaling pathway that was most relevant to the antidepressant effects of Hyp is the C-type lectin receptor signaling pathway. Furthermore, the antidepressant effects of Hyp were examined, and it is verified for the first time that Hyp significantly alleviated depressive-like behaviors in chronic-stress-induced mice, which may be mediated by inhibiting the NLRP1 inflammasome through the CXCL1/CXCR2/BDNF signaling pathway. CONCLUSION Hyp is one of the main active components of HP, and Hyp has antidepressant effects through the NLRP1 inflammasome, which may be connected with the CXCL1/CXCR2/BDNF signaling pathway.
Collapse
Affiliation(s)
- Aoqi Song
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqing Shi
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Ru Cheng
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jingjing Jiang
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhuojun Ni
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Qu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
- Correspondence: (G.F.); (Y.L.)
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Correspondence: (G.F.); (Y.L.)
| |
Collapse
|
10
|
Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192509. [PMID: 36235373 PMCID: PMC9573133 DOI: 10.3390/plants11192509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica. These plant species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and their secondary metabolites previously shown, and the in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, and hepatoprotective activities, as well as the acetylcholinesterase and monoamine oxidase inhibitory activities. We conducted a systematic bibliographic search according to the Cochrane Collaboration guidelines to answer the question: "What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?" We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different Hypericum plant species as sources for these natural products. Phloroglucinols, acylphloroglucinols, xanthones, and benzophenones were the main chemical classes identified. The selective cytotoxicity against tumor cells, cell protection, anti-inflammatory, antimicrobial, antidepressant, anti-Alzheimer's, and adipogenesis-inhibition biological activities are described. Acylphloroglucinols were the most frequent compounds with anticancer and cell-protection mechanisms. To date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological activities.
Collapse
|
11
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Hyperoside improves learning and memory deficits by amyloid β1-42 in mice through regulating synaptic calcium-permeable AMPA receptors. Eur J Pharmacol 2022; 931:175188. [DOI: 10.1016/j.ejphar.2022.175188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
|
13
|
Jia L, Jian L, Shi J, Manshu Z, Yajie J, Yuhong W. Protective effects of Zuogui Jiangtang Jieyu Formula on hippocampal neurons in rats of diabetes complicated with depression via the TRP/KYN metabolic pathway. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
14
|
Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: A Review of Its Structure, Synthesis, Pharmacology, Pharmacokinetics and Toxicity. Molecules 2022; 27:molecules27093009. [PMID: 35566359 PMCID: PMC9101560 DOI: 10.3390/molecules27093009] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Hyperoside is an active ingredient in plants, such as Hypericum monogynum in Hypericaceae, Crataegus pinnatifida in Rosaceae and Polygonum aviculare in Polygonaceae. Its pharmacologic effects include preventing cancer and protecting the brain, neurons, heart, kidneys, lung, blood vessels, bones, joints and liver, among others. Pharmacokinetic analysis of hyperoside has revealed that it mainly accumulates in the kidney. However, long-term application of high-dose hyperoside should be avoided in clinical practice because of its renal toxicity. This review summarises the structure, synthesis, pharmacology, pharmacokinetics and toxicity of hyperoside.
Collapse
Affiliation(s)
- Sijin Xu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Shuaipeng Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Wenxin Xia
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| |
Collapse
|
15
|
Zhang M, Bai X. Shugan Jieyu Capsule in Post-Stroke Depression Treatment: From Molecules to Systems. Front Pharmacol 2022; 13:821270. [PMID: 35140618 PMCID: PMC8818889 DOI: 10.3389/fphar.2022.821270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 01/04/2023] Open
Abstract
Post-stroke depression (PSD) is the most common non-cognitive neuropsychiatric complication after stroke, and about a third of patients with stroke have depression. Although a great deal of effort has been made to treat PSD, the efficacy thereof has not been satisfactory, due to the complex pathological mechanism underlying PSD. In Traditional Chinese Medicine (TCM) theory, PSD is considered to be a combination of “stroke” and “Yu Zheng.” The holistic, multi-drug, and multi-objective nature of TCM is consistent with the treatment concept of systems medicine for PSD. TCM has a very long history of being used to treat depression, and various TCM prescriptions have been clinically proven to be effective in improving depression. Among the numerous prescriptions for treating depression, Shugan Jieyu capsule (SG) is one of the classic prescriptions. Additionally, clinical studies have increasingly confirmed that using SG alone or in combination with Western medicine can significantly improve the psychiatric symptoms of PSD patients. Here, we reviewed the mechanism of antidepressant action of SG and its targets in PSD pathologic systems. This review provides further insights into the pharmacological mechanism, drug interaction, and clinical application of TCM prescriptions, as well as a basis for the development of new drugs to treat PSD.
Collapse
|
16
|
Fan H, Li Y, Sun M, Xiao W, Song L, Wang Q, Zhang B, Yu J, Jin X, Ma C, Chai Z. Hyperoside Reduces Rotenone-induced Neuronal Injury by Suppressing Autophagy. Neurochem Res 2021; 46:3149-3158. [PMID: 34415495 DOI: 10.1007/s11064-021-03404-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023]
Abstract
Hyperoside has a variety of pharmacological activities, including anti-liver injury, anti-depression, anti-inflammatory, and anti-cancer activities. However, the effect of hyperoside on Parkinson's disease (PD) is still unclear. Therefore, we tried to study the therapeutic effect and mechanism of hyperoside on PD in vivo and in vitro models. Rotenone was used to induce PD rat model and SH-SY5Y cell injury model, and hyperoside was used for intervention. Immunohistochemistry, animal behavior assays, TUNEL and Western blot were constructed to observe the protective effect and related mechanisms of hyperoside in vivo. Cell counting kit-8 (CCK-8), flow cytometry, Rh123 staining and Western blot were used for in vitro assays. Rapamycin (RAP) pretreatment was used in rescue experiments to verify the relationship between hyperoside and autophagy in rotenone-induced SH-SY5Y cells. Hyperoside promoted the number of tyrosine hydroxylase (TH)-positive cells, improved the behavioral defects of rats, and inhibited cell apoptosis in vivo. Different concentrations of hyperoside had no significant effect on SH-SY5Y cell viability, but dramatically reversed the rotenone-induced decrease in cell viability, increased apoptosis and loss of cell mitochondrial membrane potential in vitro. Additionally, hyperoside reversed the regulation of rotenone on the Beclin1, LC3II, Bax, cleaved caspase 3, Cyc and Bcl-2 expressions in rat SNpc tissues and SH-SY5Y cells, while promoted the regulation of rotenone on the P62 and α-synuclcin. Furthermore, RAP reversed the effect of hyperoside on rotenone-induced SH-SY5Y cells. Hyperoside may play a neuroprotective effect in rotenone-induced PD rat model and SH-SY5Y cell model by affecting autophagy.
Collapse
Affiliation(s)
- Huijie Fan
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Yanrong Li
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Mengying Sun
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Wushuai Xiao
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Lijuan Song
- Neurobiology Research Center, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Bo Zhang
- Health Commission of Shanxi Province, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Xiaoming Jin
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indiana University, Bloomington, USA
| | - Cungen Ma
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Zhi Chai
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China.
| |
Collapse
|
17
|
Zhao M, Dai Y, Li P, Wang J, Ma T, Xu S. Inhibition of NLRP3 inflammasome activation and pyroptosis with the ethyl acetate fraction of Bungeanum ameliorated cognitive dysfunction in aged mice. Food Funct 2021; 12:10443-10458. [PMID: 34231604 DOI: 10.1039/d1fo00876e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zanthoxylum bungeanum Maxim (Rutaceae), a medicinal herb and foodstuff, has previously been demonstrated as useful for the potential prevention of age-related cognitive dysfunction. However, the mechanisms and material basis remain elusively understood. The prevention of cognitive impairment by four fractions of Z. bungeanum was evaluated in d-galactose-induced aging mice, including petroleum ether (PE), methylene chloride (DCM), ethyl acetate (EA), and n-butanol (N-BAI). The results showed that mice treated with EA and N-BAI had significantly alleviated d-galactose-induced memory deficit. In addition, EA could clearly protect neurons from cell death, alleviate oxidative damage and inhibit the activation of microglia in aging mice. Our data also showed that the activation of the NLRP3 inflammasome, the expression of pyroptosis-related proteins, and the release of IL-1β and IL-18 could be remarkably inhibited by the EA fraction in aging mice and LPS/ATP-induced BV-2 microglial cells. Besides, the chemical composition of an active EA fraction was qualitatively analyzed by using HPLC-MS/MS. Thirty-four compounds were tentatively identified based on their retention times, accurate mass, and MS/MS spectra. Moreover, eighteen reference compounds were analyzed by HPLC-MS/MS and their contents of EA were determined. The work demonstrated that the ethyl acetate fraction of Bungeanum ameliorated cognitive deficits, and its effects may be related to ameliorating oxidative stress and suppressing the NLRP3 inflammasome pathway and GSDMD-mediated pyroptosis in aging mice.
Collapse
Affiliation(s)
- Meihuan Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China and School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Ping Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jie Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Tengyun Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. and Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| |
Collapse
|
18
|
Effects of quercetin on the alterations of serum elements in chronic unpredictable mild stress-induced depressed rats. Biometals 2021; 34:589-602. [PMID: 33745087 DOI: 10.1007/s10534-021-00298-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/06/2021] [Indexed: 12/24/2022]
Abstract
Depression is a common and serious psychiatric disorder, but current conventional antidepressants have limited efficacy and significant side effects. Thus, better antidepressants are urgently needed. This study aimed to investigate the antidepressant-like effects and potential mechanism of quercetin by evaluating the changes of serum elements in chronic unpredictable mild stress (CUMS) rats. Based on the results of the sucrose preference test (SPT), 96 rats were randomly assigned to six groups: control, different dosages of quercetin (10 and 50 mg/kg·bw, respectively), depressed, and different dosages quercetin plus depressed groups. After 8 weeks of CUMS modeling, rat serum was collected. Fifteen elements in serum were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and related enzyme indicators, antioxidant indicators, and inflammatory cytokines were detected to further explore the potential mechanism. Besides, the accuracy and precision of the method were evaluated. The results showed that the levels of iron (Fe), copper (Cu), and calcium (Ca) in serum significantly increased (p ≤ 0.001), while the levels of magnesium (Mg), zinc (Zn), selenium (Se), and cobalt (Co) significantly decreased (p ≤ 0.001) in depressed group compared with the control group. The levels of the remaining eight elements did not change significantly. When high-dose quercetin was administered to depressed rats, the levels of the above seven elements significantly restored (p ≤ 0.001). This study suggests that quercetin (50 mg/kg·bw) has a regulatory effect on serum elements in CUMS rats, which may be mediated by reducing oxidative stress, inhibiting inflammation, and regulating a variety of neurotransmitter systems.
Collapse
|
19
|
Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci 2021; 25:1774-1784. [PMID: 33722183 DOI: 10.1080/1028415x.2021.1901047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Literature findings have instituted the role of hyperglycemia-induced oxidative stress and inflammation in the pathogenesis of cognitive derangement in diabetes mellitus (DM). Hyperoside (HYP) is a flavanone glycoside reported to possess diverse pharmacological benefits such as antioxidant and anti-inflammatory properties. The study explored whether HYP could mitigate DM-induced cognitive dysfunction and further elucidate on potential molecular mechanism in rats. METHODS Streptozotocin/high-fat diet-induced diabetic rats were treated orally with HYP (50, 200 and 400 mg/kg/day) for six consecutive weeks. The blood glucose and serum insulin levels, Morris water maze test, intraperitoneal glucose tolerance test, and brain acetylcholinesterase (AChE) activity were determined. The brain expression of inflammatory nuclear factor-kappa B (NF-κB), tumour necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), as well as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total antioxidant capacity (TAC), malondialdehyde (MDA), lipid profile and caspase-3 activity were estimated. RESULTS DM evoked hyperlipidemia, hypoinsulinemia, cognitive dysfunction by markedly increased AChE and reduction in learning and memory capacity. Brain activities of SOD and CAT, and levels of TAC and GSH were considerably depressed, whereas levels of IL-1β, IL-6, TNF-α, NF-κB, caspase-3 and MDA were prominently increased. Interestingly, the HYP treatment dose-dependently abrogated the altered cognitive and biochemical parameters. DISCUSSION The results suggested that hyperoside prevents DM-induced cognitive dysfunction, neuroinflammation and oxidative stress via antioxidant, anti-inflammatory and antiapoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Xiao Chen
- Second Department of Encephalopathy, Xi'an Encephalopathy Hospital of Traditional Chinese Medicine, Xi'an, People's Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, Anhui, People's Republic of China
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | |
Collapse
|
20
|
Cai Y, Zheng Q, Sun R, Wu J, Li X, Liu R. Recent progress in the study of Artemisiae Scopariae Herba (Yin Chen), a promising medicinal herb for liver diseases. Biomed Pharmacother 2020; 130:110513. [DOI: 10.1016/j.biopha.2020.110513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
|
21
|
Qi XC, Li B, Wu WL, Liu HC, Jiang YP. Protective effect of hyperoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:377-383. [PMID: 31903787 DOI: 10.1080/21691401.2019.1709851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress can induce apoptosis and decrease activities of osteoblasts. Hyperoside (HYP) is a potent antioxidant derived from Chinese herb. This study aims to evaluate the protective effects provided by HYP to osteoblastic MC3T3-E1 cells. MC3T3-E1 cells were pre-treated with HYP for 24 h before being treated with 0.3 mM hydrogen peroxide (H2O2) for 24 h. Cell viability, flow cytometric analysis and mRNA expression of alkaline phosphatase (ALP), collagen I (COL-I) and osteocalcin (OCN) in MC3T3-E1 cells were examined. We next examined apoptosis-related and mitogen-activated protein kinase (MAPK) related proteins in HYP and H2O2 groups. HYP over the dose of 40 μmol/L could obviously increase the MC3T3-E1 cell viability at 24 h and 48 h (p < .05). HYP significantly (p < .05) increased mRNA expression of ALP, COL-I and OCN than H2O2 group. Moreover, HYP decreased the apoptosis rate and apoptosis-related proteins that induced by H2O2. In addition, HYP decreased the production of phosphorylated Jun N-terminal kinase (JNK) and p38 levels of osteoblastic MC3T3-E1 cells induced by H2O2. These results demonstrated that the protective effect provided by HYP to osteoblastic MC3T3-E1 cells was mediated, at least in part, via inhibition of MAPK signalling pathway and oxidative damage of the cells.
Collapse
Affiliation(s)
- Xin-Chun Qi
- Department of Orthopedics, People's Hospital of Yiyuan County, Yiyuan, China
| | - Bo Li
- Department of Orthopaedics, Central Hospital of Xinwen Mining Group CO., LTD, Xinwen, China
| | - Wen-Liang Wu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Chun Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yun-Peng Jiang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
22
|
Kwon SH, Lee SR, Park YJ, Ra M, Lee Y, Pang C, Kim KH. Suppression of 6-Hydroxydopamine-Induced Oxidative Stress by Hyperoside Via Activation of Nrf2/HO-1 Signaling in Dopaminergic Neurons. Int J Mol Sci 2019; 20:ijms20235832. [PMID: 31757050 PMCID: PMC6929192 DOI: 10.3390/ijms20235832] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
In our ongoing research to discover natural products with neuroprotective effects, hyperoside (quercetin 3-O-galactoside) was isolated from Acer tegmentosum, which has been used in Korean traditional medicine to treat liver-related disorders. Here, we demonstrated that hyperoside protects cultured dopaminergic neurons from death via reactive oxygen species (ROS)-dependent mechanisms, although other relevant mechanisms of hyperoside activity remain largely uncharacterized. For the first time, we investigated the neuroprotective effects of hyperoside on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in neurons, and the possible underlying mechanisms. Hyperoside significantly ameliorated the loss of neuronal cell viability, lactate dehydrogenase release, excessive ROS accumulation and mitochondrial membrane potential dysfunction associated with 6-OHDA-induced neurotoxicity. Furthermore, hyperoside treatment activated the nuclear erythroid 2-related factor 2 (Nrf2), an upstream molecule of heme oxygenase-1 (HO-1). Hyperoside also induced the expression of HO-1, an antioxidant response gene. Remarkably, we found that the neuroprotective effects of hyperoside were weakened by an Nrf2 small interfering RNA, which blocked the ability of hyperoside to inhibit neuronal death, indicating the vital role of HO-1. Overall, we show that hyperoside, via the induction of Nrf2-dependent HO-1 activation, suppresses neuronal death caused by 6-OHDA-induced oxidative stress. Moreover, Nrf2-dependent HO-1 signaling activation represents a potential preventive and therapeutic target in Parkinson's disease management.
Collapse
Affiliation(s)
- Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.;
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.R.L.); (Y.J.P.)
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.R.L.); (Y.J.P.)
| | - Moonjin Ra
- Hongcheon Institute of Medicinal Herb, 101 Yeonbongri, Hongcheon 25142, Korea; (M.R.); (Y.L.)
| | - Yongjun Lee
- Hongcheon Institute of Medicinal Herb, 101 Yeonbongri, Hongcheon 25142, Korea; (M.R.); (Y.L.)
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- SKKU Advanced Institute of Nanotechnology Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (C.P.); (K.H.K.); Tel.: +82-31-290-7341 (C.P.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.R.L.); (Y.J.P.)
- Correspondence: (C.P.); (K.H.K.); Tel.: +82-31-290-7341 (C.P.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
23
|
Nutritional psychoneuroimmunology: Is the inflammasome a critical convergence point for stress and nutritional dysregulation? Curr Opin Behav Sci 2019; 28:20-24. [PMID: 31667204 DOI: 10.1016/j.cobeha.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Psychoneuroimmunology (PNI) aims to elucidate mechanisms by which the immune system can influence behavior. Given the complexity of the brain, studies using inbred rodents have shed critical insight into the presumed vagaries of the human condition. This is particularly true for stress modeling where adverse stimuli, conditions and/or interactions elicit patterned behavioral reactions that can translate across species. As example, sickness behaviors are as easily recognized in mice as they are in humans, and a family pet. Recently, nutrition has gained prominence as a regulator of brain function. Once perceived as mostly a peripheral player, except when manifest at extremes like starvation or gluttony, nutritional and/or metabolic stress is now recognized as a worrisome contributor to poor mental health especially in those who suffer from food insecurity or overnutrition. In this review, we will explore emerging areas of rodent research that demonstrate the impact of nutritional status on the stressed brain. Our overall goal is to implicate inflammasome activation as a critical convergence point for stress and nutritional dysregulation. In doing so, we will present results from studies focused on macronutrient, micronutrient and dietary bioactives so as to encourage innovative investigation into the emerging field of nutritional PNI.
Collapse
|
24
|
Wang GW, Cao J, Wang XQ. Effects of ethanol extract from Bidens pilosa L. on spontaneous activity, learning and memory in aged rats. Exp Gerontol 2019; 125:110651. [PMID: 31295527 DOI: 10.1016/j.exger.2019.110651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bidens pilosa L., a herbal medicine, is rich in flavonoids, but its anti-aging effect on neurocognitive functions is not well understood. In the present study, we investigated the effects of ethanol extract from Bidens pilosa L. (EEBP) on spontaneous activity, learning and memory in aged rats. METHODS Forty aged (21.90 ± 0.22 months) and 10 young (10 weeks) adult male Sprague-Dawley rats were divided into 5 groups, which were respectively treated orally with 0 mg/kg (young and aged control), 25 mg/kg, 50 mg/kg and 100 mg/kg of EEBP for 30 days consecutively. Then, the animals were examined with open-field, passive avoidance and Morris water maze tasks. RESULTS In the open-field task, compared with the aged control, the EEBP animals exhibited more rearing (50 mg/kg, P < 0.01) and urination (50 mg/kg, P < 0.01), but less defecation (P < 0.05). In the passive avoidance task, the retention latencies were longer than those in the training phase in all other groups (P < 0.01) except the aged control (P > 0.05). Compared with the young control, the retention latency of the aged control decreased (P < 0.01), but that of the EEBP animals increased again (P < 0.05 vs. aged control). In the Morris water maze, the EEBP animals had shorter latency (100 mg/kg) and had more crossing times (25 mg/kg) in seeking the platform position (P < 0.05, vs. aged control). CONCLUSION The results suggested that EEBP could affect the spontaneous activity and improve memory in aged animals and could have potential advantages for cognition improvement in aged populations.
Collapse
Affiliation(s)
- Gong-Wu Wang
- School of Life Sciences and School of Physical Education, Yunnan Normal University, Kunming 650500, China; Engineering Research Center of Sustainable Development and Utilization of Biomass, MOE, Kunming 650500, China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
| | - Jun Cao
- School of Agriculture and Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming 650504, China
| | - Xiao-Qin Wang
- School of Life Sciences and School of Physical Education, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
25
|
Orzelska-Górka J, Szewczyk K, Gawrońska-Grzywacz M, Kędzierska E, Głowacka E, Herbet M, Dudka J, Biała G. Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice. Neurochem Int 2019; 128:206-214. [PMID: 31077758 DOI: 10.1016/j.neuint.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
We have recently demonstrated that the hydroethanolic extracts of Impatiens glandulifera Royle (Balsaminaceae) have antianxiety effect in mice. The present study was aimed to investigate an antidepressant activity of hyperoside (HYP) and protocatechuic acid (PCA), two polyphenols isolated from the aerial parts of this plant, using the forced swimming test (FST) and tail suspension test (TST) in mice. The implication of the monoaminergic system in this effect was assessed and brain-derived neurotrophic factor (BDNF) expression was measured. At doses 1.875, 3.75 and 7.5 mg/kg, HYP and PCA significantly reduced immobility in the FST and TST, without affecting locomotor activity of mice. Pretreatment with p-chlorophenylalanine (PCPA 100 mg/kg, a serotonin synthesis inhibitor) or α-methyl-DL-tyrosine (AMPT 100 mg/kg, a catecholamine synthesis inhibitor) was able to prevent antidepressant-like effect of HYP and PCA (3.75 mg/kg). Sub-effective doses of fluoxetine (5 mg/kg) or reboxetine (2 mg/kg) were capable of potentiating the effect of a sub-effective dose of HYP (0.94 mg/kg) in the FST. Co-administration of sub-effective dose of PCA (0.94 mg/kg) and reboxetine (2 mg/kg) resulted in reducing immobility in the FST. The antidepressant-like effect of HYP and PCA was also prevented by the administration of sulpiride (50 mg/kg), a D2 antagonist. In addition, HYP (3.75 and 7.5 mg/kg) and PCA (7.5 mg/kg) improved the expression of hippocampal BDNF of mice subjected to TST. Altogether, our findings suggest that HYP and PCA exert antidepressant-like effects in mice, which was possibly mediated by monoaminergic system and the upregulation of BDNF level.
Collapse
Affiliation(s)
- Jolanta Orzelska-Górka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland.
| | - Katarzyna Szewczyk
- Chair and Department of Pharmaceutical Botany, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Ewa Kędzierska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland
| | - Ewelina Głowacka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland
| |
Collapse
|
26
|
da Costa Cordeiro BMP, de Lima Santos ND, Ferreira MRA, de Araújo LCC, Junior ARC, da Conceição Santos AD, de Oliveira AP, da Silva AG, da Silva Falcão EP, dos Santos Correia MT, da Silva Almeida JRG, da Silva LCN, Soares LAL, Napoleão TH, da Silva MV, Paiva PMG. Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. Altern Ther Health Med 2018; 18:284. [PMID: 30340567 PMCID: PMC6194709 DOI: 10.1186/s12906-018-2350-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Background Spondias tuberosa is a plant that produces a fruit crop with high economic relevance at Brazilian Caatinga. Its roots and leaves are used in folk medicine. Methods Chemical composition of a hexane extract from S. tuberosa leaves was evaluated by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and 1H nuclear magnetic resonance (NMR). Antioxidant potential was investigated by DPPH and ABTS assays. Antifungal action on Candida species was evaluated determining the minimal inhibitory concentration (MIC50) and putative mechanisms were determined by flow cytometry analysis. In addition, hemolytic activity on human erythrocytes was assessed and the concentration required to promote 50% hemolysis (EC50) was determined. Results Phytochemical analysis by TLC showed the presence of flavonoids, hydrolysable tannins, saponins and terpenes. The HPLC profile of the extract suggested the presence of gallic acid (0.28 ± 0.01 g%) and hyperoside (1.27 ± 0.01 g%). The representative 1H NMR spectrum showed saturated and unsaturated fatty acids among the main components. The extract showed weak and moderate antioxidant activity in DPPH (IC50: 234.00 μg/mL) and ABTS (IC50: 123.33 μg/mL) assays, respectively. It was able to inhibit the growth of C. albicans and C. glabrata with MIC50 of 2.0 and 0.078 mg/mL, respectively. The treatment of C. glabrata cells with the extract increased levels of mitochondrial superoxide anion, caused hyperpolarization of mitochondrial membrane, and compromised the lysosomal membrane. Weak hemolytic activity (EC50: 740.8 μg/mL) was detected. Conclusion The results demonstrate the pharmacological potential of the extract as antioxidant and antifungal agent, aggregating biotechnological value to this plant and stimulating its conservation.
Collapse
|
27
|
Ye S, Yang R, Xiong Q, Yang Y, Zhou L, Gong Y, Li C, Ding Z, Ye G, Xiong Z. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats. Biochem Biophys Res Commun 2018; 498:1078-1084. [PMID: 29555470 DOI: 10.1016/j.bbrc.2018.03.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory.
Collapse
Affiliation(s)
- Shunjie Ye
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China; 2013 Grade Student of Traditional Chinese Medicine, Medical College, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Qiuju Xiong
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Youhua Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Lianying Zhou
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Yeli Gong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Changlei Li
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Zhenhan Ding
- Department of Pharmacy, HuiZhou First Hospital, Guangdong, 516003, China
| | - Guohai Ye
- 2013 Grade Student of Traditional Chinese Medicine, Medical College, Jianghan University, Wuhan 430056, China
| | - Zhe Xiong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China.
| |
Collapse
|