1
|
Althobaiti SA. Boosting impacts of Acacia nilotica against hepatic toxicity induced by gentamicin: biochemical, anti-inflammatory and immunohistochemical study. Toxicol Res (Camb) 2024; 13:tfae141. [PMID: 39233845 PMCID: PMC11368662 DOI: 10.1093/toxres/tfae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
It seems that gentamicin's toxicity to the liver is caused by reactive oxygen species production. The antioxidant and anti-inflammatory properties of Acacia nilotica extract (AN) have been demonstrated in recent studies. This research focused on how AN's extract affected gentamicin-induced liver damage in rats. Twenty-four Wister rats of male type were divided into four groups: first group received saline as a control, second group received AN (5%) for fifteen days, group three received daily intraperitoneal injections of gentamicin (100 mg/kg) for fifteen days, and group four, as mentioned in groups 2 and 3, also received gentamicin injections and AN extraction (5%) for fifteen days. In order to conduct biochemical analysis, serum was extracted. Histopathology, immunohistochemistry analyses for hepatic toxicity were all performed on the collected tissue samples. Serum levels of ALT, AST, total bilirubin, and GGT were all elevated after using gentamicin. The inflammatory cytokines)IL-1, TNF-α and IL-6(, all were increased in gentamycin-injected group. There were showing deformity of bile duct, hepatocellular necrosis and infiltration of inflammatory cells congestion of portal vein, and hepatic sinusoids besides fibrosis of portal area (white arrows), hypertrophy in gentamycin-injected group compared to AN plus gentamycin administered rats. There were upregulation in the immunoreactivity of COX-2, IFNkB and TGF-beta1 (TGF-β1) in gentamycin intoxicated rats. When gentamicin and AN were administered together, hepatic biomarkers, inflammatory cytokines, histological, and immunohistochemical markers were all ameliorated by AN administration.
Collapse
Affiliation(s)
- Saed A Althobaiti
- Department of Biology, Turabah University College, Taif University, P.O. Box 11099, Turabah, Taif, Saudi Arabia
| |
Collapse
|
2
|
Bolat I, Terim–Kapakin KA, Apaydin Yildirim B, Manavoğlu Kirman E. Protective effect of Helichrysum plicatum on head shock protein inflammation and apoptosis in Gentamicin induced nephrotoxicity. REVISTA CIENTÍFICA DE LA FACULTAD DE CIENCIAS VETERINARIAS 2024; XXXIV:1-9. [DOI: 10.52973/rcfcv-e34388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic the most common used in the treatment of infectious diseases in humans and animals. However, GM causes damage to many tissues and organs in the body, especially the kidneys. Helichrysum plicatum (Hp), native to the Balkans and Anatolia, is a plant used in various diseases such as diabetes, liver and kidney damage. In this study, Male Spraque Dawley rats (n=36 and 200–250 g) were randomly divided into 6 experimental groups: Group 1: Control; received normal saline (intraperitoneally –i.p.–), Group 2: Hp (100 mg·kg–1 day i.p.), Group 3: Hp (200 mg·kg–1 day i.p.), Group 4: GM (80 mg·kg–1 day i.p.), Group 5: GM 80 + Hp 100 (mg·kg–1 day i.p.), and Group 6: GM 80 + Hp 200 (mg·kg–1 day i.p.). Then kidney tissue samples were collected for evaluations. All of our results showed that Hp (100 mg·kg–1 day) reduced the levels of pro–inflammatory cytokines such as IL–8, IL–6, and TNF– while increasing the level of anti–inflammatory cytokine IL–10. It was also observed that Hp reduced the expressions of the caspase3, NOS and Heat shock proteins such as Hsp27 and Hsp70. With this study, we have shown that Hp probably due to its chemical properties has a protective effect against GM induced nephrototoxicity by reducing the values stated above to normal values.
Collapse
Affiliation(s)
- Ismail Bolat
- Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
| | | | - Betul Apaydin Yildirim
- Atatürk University, Faculty of Veterinary Medicine, Departments of Biochemistry. Erzurum, Türkiye
| | - Esra Manavoğlu Kirman
- Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
| |
Collapse
|
3
|
Althobaiti SA, Qahl SH, Toufig H, Almalki DA, Nasir O, Soliman MM. Protective impacts of Artemisia annua against hepatic toxicity induced by gentamicin. Toxicol Res (Camb) 2024; 13:tfad121. [PMID: 38162595 PMCID: PMC10753289 DOI: 10.1093/toxres/tfad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
The current study aimed to investigate the ameliorative effects of Artemisia annua (RA) extract on hepatic toxicity induced by gentamicin injection mice. Sixteen mice were divided into four groups; the control group received saline, the second group received 1% A. annua (RA) extract, third group injected 80 mg/kg gentamicin (GEN) intraperitoneally. The protective group treated with a combination of GEN and A. annua. All mice were treated for consecutive 15 days. Results confirmed that hepatic biomarkers (GPT, GCT, GOT, IL-6 and IL-1β), all were altered after gentamycin injection. The histological analysis confirmed that gentamycin injected mice showed portal vein congestion, micro and macro steatosis, and nuclear pyknosis of hepatocytes. The protective group showed intact central vein with less microsteatosis of some hepatocytes. Immunochemistry analysis confirmed that the immunoreactivity of COX-2 gene showed negative impact in examined groups. Unlike, NF-κB gene exhibited diffuse positive expression in the gentamicin group. TGF-β1 immunoreactivity was mild positive in control and highly upregulated in gentamicin treated mice, all were normalized after RA administration. In conclusion, RA showed a beneficial impact against gentamycin induced hepatic toxicity at cellular and biochemical levels by regulating proteins and inflammatory markers associated with liver activity.
Collapse
Affiliation(s)
- Saed A Althobaiti
- Department of Biology, Taif University, Turabah University College, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Safa H Qahl
- Department of Biological Science, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hind Toufig
- Department of Surgery, College of Medicine, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| | - Daklallah A Almalki
- Department of Biology, Faculty of Sciences and Arts (Qelwah), Al-Baha University, Al-Baha 65528, Saudi Arabia
| | - Omaima Nasir
- Department of Biology, Taif University, Turabah University College, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Taif University, Turabah University College, Taif 21995, Saudi Arabia
| |
Collapse
|
4
|
Singh D, Khan MA, Siddique HR. Unveiling the therapeutic promise of natural products in alleviating drug-induced liver injury: Present advancements and future prospects. Phytother Res 2024; 38:22-41. [PMID: 37775996 DOI: 10.1002/ptr.8022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Drug-induced liver injury (DILI) refers to adverse reactions to small chemical compounds, biological agents, and medical products. These reactions can manifest as acute or chronic damage to the liver. From 1997 to 2016, eight drugs, including troglitazone, nefazodone, and lumiracoxib, were removed from the market due to their liver-damaging effects, which can cause diseases. We aimed to review the recent research on natural products and their bioactive components as hepatoprotective agents in mitigating DILI. Recent articles were fetched via searching the PubMed, PMC, Google Scholar, and Web of Science electronic databases from 2010 to January 2023 using relevant keywords such as "natural products," "acetaminophen," "antibiotics," "paracetamol," "DILI," "hepatoprotective," "drug-induced liver injury," "liver failure," and "mitigation." The studies reveal that the antituberculosis drug (acetaminophen) is the most frequent cause of DILI, and natural products have been largely explored in alleviating acetaminophen-induced liver injury. They exert significant hepatoprotective effects by preventing mitochondrial dysfunction and inflammation, inhibiting oxidative/nitrative stress, and macromolecular damage. Due to the bioavailability and dietary nature, using natural products alone or as an adjuvant with existing drugs is promising. To advance DILI management, it is crucial to conduct well-designed randomized clinical trials to evaluate natural products' efficacy and develop new molecules clinically. However, natural products are a promising solution for remedying drug-induced hepatotoxicity and lowering the risk of DILI.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Kumar S, Chhabra V, Shenoy S, Daksh R, Ravichandiran V, Swamy RS, Kumar N. Role of Flavonoids in Modulation of Mitochondria Dynamics during Oxidative Stress. Mini Rev Med Chem 2024; 24:908-919. [PMID: 37861054 DOI: 10.2174/0113895575259219230920093214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Flavonoids are a widespread category of naturally occurring polyphenols distinguished by the flavan nucleus in plant-based foods and beverages, known for their various health benefits. Studies have suggested that consuming 150-500 mg of flavonoids daily is beneficial for health. Recent studies suggest that flavonoids are involved in maintaining mitochondrial activity and preventing impairment of mitochondrial dynamics by oxidative stress. OBJECTIVE This review emphasized the significance of studying the impact of flavonoids on mitochondrial dynamics, oxidative stress, and inflammatory response. METHODS This review analysed and summarised the findings related to the impact of flavonoids on mitochondria from publicly available search engines namely Pubmed, Scopus, and Web of Science. DESCRIPTION Any disruption in mitochondrial dynamics can contribute to cellular dysfunction and diseases, including cancer, cardiac conditions, and neurodegeneration. Flavonoids have been shown to modulate mitochondrial dynamics by regulating protein expression involved in fission and fusion events. Furthermore, flavonoids exhibit potent antioxidant properties by lowering the production of ROS and boosting the performance of antioxidant enzymes. Persistent inflammation is a characteristic of many different disorders. This is because flavonoids also alter the inflammatory response by controlling the expression of numerous cytokines and chemokines involved in the inflammatory process. Flavonoids exhibit an impressive array of significant health effects, making them an effective therapeutic agent for managing various disorders. Further this review summarised available mechanisms underlying flavonoids' actions on mitochondrial dynamics and oxidative stress to recognize the optimal dose and duration of flavonoid intake for therapeutic purposes. CONCLUSION This review may provide a solid foundation for developing targeted therapeutic interventions utilizing flavonoids, ultimately benefiting individuals afflicted with various disorders.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| |
Collapse
|
6
|
Kusumawati AH, Garmana AN, Elfahmi E, Mauludin R. Pharmacological studies of the genus rice (Oryza L.): a literature review. BRAZ J BIOL 2023; 83:e272205. [PMID: 37585929 DOI: 10.1590/1519-6984.272205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/04/2023] [Indexed: 08/18/2023] Open
Abstract
Rice (Oryza L.) is an essential food for more than 50 percent of the world's population and is the world's second-largest grain crop. Pigmented rice comes in various colors, such as black, red, brown, and green. Anthocyanins, like cyanidin-3-O-glucoside and peonidin-3-O-glucoside, are the primary color pigments in colored rice, whereas proanthocyanidins and flavan-3-ol oligosaccharides, with catechins as the central synthesis unit, are found in brown rice. This review article's aim is to give information and a summary of rice activities, research methods, also mechanisms of action (Oryza L.). Intake of pigmented rice was already associated with a number of health benefits, including antioxidant activity, anticancer, antitumor, antidiabetic activity, and a reduced risk of cardiovascular disease. Rice contains several bioactive compounds, such as γ-oryzanol, phenolic acid, anthocyanins, proanthocyanidins, flavonoids, carotenoids, and phytosterols, which have been widely studied and shown to have several pharmacological activities. The use of current herbal compounds is rapidly increasing, including the practice of pharmacological disease prevention and treatment. Herbal remedies have entered the international market as a result of research into plant biopharmaceuticals and nutraceuticals. Through a variety of pharmacological activities, it is clear that Oryza L. is a popular herb. As a result, additional research on Oryza L. can be conducted to investigate more recent and comprehensive pharmacological effectiveness, to provide information and an overview of Rice (Oryza L.) activities, research methods, and mechanisms of action. Several natural substances are characterized by low water solubility, low stability, and sensitivity to light and oxygen, and the potential for poor absorption of the active substances requires modification of the formulation. To improve the effectiveness of pharmacologically active substances originating from natural ingredients, drug delivery systems that use lipid-based formulations can be considered innovations.
Collapse
Affiliation(s)
- A H Kusumawati
- Bandung Institute of Technology, School of Pharmacy, Bandung, West Java, Indonesia
- Buana Perjuangan Karawang University, Faculty of Pharmacy, Karawang, West Java, Indonesia
| | - A N Garmana
- Bandung Institute of Technology, School of Pharmacy, Bandung, West Java, Indonesia
| | - E Elfahmi
- Bandung Institute of Technology, School of Pharmacy, Bandung, West Java, Indonesia
| | - R Mauludin
- Bandung Institute of Technology, School of Pharmacy, Bandung, West Java, Indonesia
| |
Collapse
|
7
|
Thongnak L, Jaruan O, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Jaikumkao K, Sriyotai W, Mahatheeranont S, Lungkaphin A. Resistant starch from black rice, Oryza sativa L. var. ameliorates renal inflammation, fibrosis and injury in insulin resistant rats. Phytother Res 2023; 37:935-948. [PMID: 36379906 DOI: 10.1002/ptr.7675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
It has recently been reported that black rice (BR) extract has anti-obesity, anti-diabetic, and anti-osteoporosis effects. It has been shown to reduce obese-related kidney dysfunction in animal models. This study aimed to investigate the effect of resistant starch from BR (RS) on renal inflammation, oxidative stress, and apoptosis in obese insulin resistant rats. Male Wistar rats were divided into six groups: normal diet (ND), ND treated with 150 mg of RS (NDRS150), high-fat (HF) diet, HF treated with 100 and 150 mg of RS (HFRS100), (HFRS150), and HF treated with metformin as a positive control. Insulin resistance was shown in the HF rats by glucose intolerance, increased insulin, total area under the curve of glucose and homeostasis model assessment of insulin resistance and dyslipidemia. The resulting metabolic disturbance in the HF rats caused renal inflammation, fibrosis and apoptosis progressing to kidney injury and dysfunction. Prebiotic RS including anthocyanin from BR at doses of 100 and 150 mg ameliorated insulin resistance, dyslipidemia and liver injury. Treatment with RS reduced TGF-β fibrotic and apoptotic pathways by inhibition of NF-κB and inflammatory cytokines which potentially restore kidney damage and dysfunction. In conclusion, prebiotic RS from BR ameliorated obesity induced renal injury and dysfunction by attenuating inflammatory, fibrotic, and apoptotic pathways in insulin resistant rats induced by HF.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Onanong Jaruan
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Woraprapa Sriyotai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Khalil HE, Abdelwahab MF, Emeka PM, Badger-Emeka LI, Ahmed ASF, Anter AF, Abdel Hafez SMN, AlYahya KA, Ibrahim HIM, Thirugnanasambantham K, Matsunami K, Ibrahim Selim AH. Brassica oleracea L. var. botrytis Leaf Extract Alleviates Gentamicin-Induced Hepatorenal Injury in Rats—Possible Modulation of IL-1β and NF-κB Activity Assisted with Computational Approach. Life (Basel) 2022; 12:life12091370. [PMID: 36143406 PMCID: PMC9504091 DOI: 10.3390/life12091370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Recently, crop byproducts are considered a hot topic and can be converted into beneficial products. Cauliflower is well-known for its protective effects against oxidative stress-induced damage. The current study aimed to investigate the chemical profile and the ameliorative effects of cauliflower leaf extract (CL) on gentamicin-induced renal and hepatic injuries in rats. Methods: Cauliflower leaf was extracted with methanol to give the total methanol extract (TME) followed by the determination of total phenolic contents (TPC). Rats were divided into five groups; Group I was assigned as the control group, while the other groups were injected with gentamicin for ten days. Group II was given distilled water. Rats in groups III and IV were treated with oral CL (200 mg/kg and 400 mg/kg, respectively). Group V received L-cysteine (as a positive control). The functions of the kidneys and liver; oxidative stress and morphological and apoptotic changes of renal and hepatic tissues were assessed. Results: The TME was subjected to chromatographic techniques to yield ferulic acid, vanillic acid, p-coumaric acid and quercetin. TPC was 72.31 mg GAE/g of dried extract. CL treatment dose-dependently ameliorated gentamicin-induced impaired kidney and liver functions and improved the histopathological appearance of both organs. It also reduced gentamicin-induced oxidative stress. CL demonstrated downregulation of mRNA and protein expressions of IL-1β and NF-κB compared to nontreated rats. In silico interaction of the isolated compounds with amino acid residues of IL-1β and NF-κB might explain the current findings. Conclusion: Taken together, this study raises the waste-to-wealth potential of cauliflower to mitigate gentamicin-induced hepatorenal injury and convert the waste agromaterials into valuable products.
Collapse
Affiliation(s)
- Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence:
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Lorina I. Badger-Emeka
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Aliaa F. Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Khalid A. AlYahya
- Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa 36363, Saudi Arabia
| | - Hairul-Islam Mohamed Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | |
Collapse
|
9
|
Dong Y, Wu X, Han L, Bian J, He C, El-Omar E, Gong L, Wang M. The Potential Roles of Dietary Anthocyanins in Inhibiting Vascular Endothelial Cell Senescence and Preventing Cardiovascular Diseases. Nutrients 2022; 14:nu14142836. [PMID: 35889793 PMCID: PMC9316990 DOI: 10.3390/nu14142836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of diseases affecting the heart and blood vessels and is the leading cause of morbidity and mortality worldwide. Increasingly more evidence has shown that the senescence of vascular endothelial cells is the key to endothelial dysfunction and cardiovascular diseases. Anthocyanin is a type of water-soluble polyphenol pigment and secondary metabolite of plant-based food widely existing in fruits and vegetables. The gut microbiome is involved in the metabolism of anthocyanins and mediates the biological activities of anthocyanins and their metabolites, while anthocyanins also regulate the growth of specific bacteria in the microbiota and promote the proliferation of healthy anaerobic flora. Accumulating studies have shown that anthocyanins have antioxidant, anti-inflammatory, and anti-aging effects. Many animal and in vitro experiments have also proven that anthocyanins have protective effects on cardiovascular-disease-related dysfunction. However, the molecular mechanism of anthocyanin in eliminating aging endothelial cells and preventing cardiovascular diseases is very complex and is not fully understood. In this systematic review, we summarize the metabolism and activities of anthocyanins, as well as their effects on scavenging senescent cells and cardioprotection.
Collapse
Affiliation(s)
- Yonghui Dong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Xue Wu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia;
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
10
|
Chemical Composition and Valorization of Broccoli Leaf By-Products (Brassica oleracea L. Variety: Italica) to Ameliorate Reno-Hepatic Toxicity Induced by Gentamicin in Rats. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Broccoli (Brassica oleracea) is reported to possess antioxidant activity that could potentially prevent oxidative damage to tissues caused by many diseases. In the present study, we investigated the preventive effect of broccoli leaf by-product extract (BL) on gentamicin-induced renal and hepatic injury by measuring tissue antioxidant activities and morphological apoptotic changes. Broccoli leaf was thoroughly extracted with 70% methanol to yield the total methanol extract (TME). The total phenolic content (TPC) was determined. Thirty male rats were divided into five groups (six animals/group). Group I received phosphate-buffered saline orally, while group II was treated with gentamicin (100 mg/kg i.p. intraperitoneal) for ten days. Group III and group IV animals were given BL (200 mg/kg and 400 mg/kg, respectively) plus gentamicin treatment. Group V received L-cysteine (1 mmole/kg) plus gentamicin. Antioxidant and biochemical parameters, such as transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP), creatinine, and urea, and mRNA expression levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and nuclear factor kappa B (NFkB) were determined in various groups, along with the quantification of inflammatory and apoptotic cells in hepatic and renal tissues. Malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) levels were determined in liver and renal samples. Histopathological studies of the liver and kidneys were also carried out. The TME was subjected to various and repeated techniques of chromatography to yield caffeic acid, gallic acid, and methyl gallate. The TPC was 6.47 mg Gallic Acid Equivalent/g of dry extract. Gentamicin increased the levels of serum AST, ALT, ALP, creatinine, and urea. The MDA and GSH contents and theactivity levels of the antioxidant enzyme SOD decreased in liver and kidney samples with gentamicin administration. BL administration dose-dependently prevented the alteration in biochemical parameters and was supported by low levels of tubular and glomerular injuries induced by gentamicin. This study valorizes the potential of BL as a preventive candidate in cases of gentamicin-induced liver and kidney toxicity and recommends further clinical studies using BL to validate its utilization for human consumption and as a source of phenolics for nutraceutical and pharmaceutical purposes.
Collapse
|
11
|
Elgazzar D, Aboubakr M, Bayoumi H, Ibrahim AN, Sorour SM, El-Hewaity M, Elsayed AM, Shehata SA, Bayoumi KA, Alsieni M, Behery M, Abdelrahaman D, Ibrahim SF, Abdeen A. Tigecycline and Gentamicin-Combined Treatment Enhances Renal Damage: Oxidative Stress, Inflammatory Reaction, and Apoptosis Interplay. Pharmaceuticals (Basel) 2022; 15:ph15060736. [PMID: 35745655 PMCID: PMC9228782 DOI: 10.3390/ph15060736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Although the combination of antibiotics is generally well-tolerated, they may have nephrotoxic effects. This study investigated whether tigecycline (TG) and gentamicin (GM) co-administration could accelerate renal damage. Male Wistar rats were randomly divided into six experimental groups: the control, TG7 (tigecycline, 7 mg/kg), TG14 (tigecycline, 14 mg/kg), GM (gentamicin, 80 mg/kg), TG7+GM, and TG14+GM groups. The combination of TG and GM evoked renal damage seen by the disruption of kidney function tests. The perturbation of renal tissue was mainly confounded to the TG and GM-induced oxidative damage, which was exhibited by marked increases in renal MDA (malondialdehyde) along with a drastic reduction in GSH (reduced-glutathione) content and CAT (catalase) activity compared to their individual treatments. More obvious apoptotic events and inflammation were also revealed by elevating the annexin-V and interleukin-6 (IL-6) levels, aside from the upregulation of renal PCNA (proliferating cell nuclear antigen) expression in the TG and GM concurrent treatment. The principal component analysis indicated that creatinine, urea, annexin-V, IL-6, and MDA all played a role in discriminating the TG and GM combined toxicity. Oxidative stress, inflammatory response, and apoptosis were the key mechanisms involved in this potentiated toxicity.
Collapse
Affiliation(s)
- Dina Elgazzar
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (D.E.); (A.A.)
| | - Mohamed Aboubakr
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Heba Bayoumi
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Amany N. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (A.N.I.); (S.M.S.)
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (A.N.I.); (S.M.S.)
| | - Mohamed El-Hewaity
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum 32514, Egypt;
| | - Abulmaaty M. Elsayed
- Anatomy and Histology Department, Faculty of Medicine, Mutah University, Mutah 61710, Jordan;
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Khaled A. Bayoumi
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt;
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah 21442, Saudi Arabia
| | - Mohammed Alsieni
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21442, Saudi Arabia;
| | - Maged Behery
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Doaa Abdelrahaman
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (D.A.); (S.F.I.)
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (D.A.); (S.F.I.)
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
- Center of Excellence for Screening of Environmental Contaminants (CESEC), Benha University, Toukh 13736, Egypt
- Correspondence: (D.E.); (A.A.)
| |
Collapse
|
12
|
Bulboacă AE, Porfire AS, Rus V, Nicula CA, Bulboacă CA, Bolboacă SD. Protective Effect of Liposomal Epigallocatechin-Gallate in Experimental Gentamicin-Induced Hepatotoxicity. Antioxidants (Basel) 2022; 11:412. [PMID: 35204293 PMCID: PMC8869534 DOI: 10.3390/antiox11020412&set/a 900137139+983262882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Our study aimed to assess the effect of liposomal epigallocatechin-gallate (LEGCG) compared with epigallocatechin-gallate (EGCG) solution on hepatic toxicity induced by gentamicin (G) administration in rats. Five groups were evaluated, a control group (no G administration) and four groups that received G (1 mL, i.p, 80 mg/kg b.w. (body weight/day), for 7 days) to which we associated daily administration 30 min before G of EGCG (G-EGCG, 2.5 mg/0.1 kg b.w.), LEGCG (G-LEGCG, 2.5 mg/0.1 kg b.w.) or silymarin (100 mg/kg b.w./day). The nitro-oxidative stress (NOx), catalase (CAT), TNF-α, transaminases, creatinine, urea, metalloproteinase (MMP) 2 and 9, and liver histopathological changes were evaluated. LEGCG exhibited better efficacy than EGCG, improving the oxidant/antioxidant balance (p = 0.0125 for NOx and 0.0032 for CAT), TNF-α (p < 0.0001), MMP-2 (p < 0.0001), aminotransferases (p = 0.0001 for AST and 0.0136 for ALT), creatinine (p < 0.0001), urea (p = 0.0006) and histopathologic liver changes induced by gentamicin. Our study demonstrated the beneficial effect of EGCG with superior results of the liposomal formulation for hepatoprotection in experimental hepatic toxicity induced by gentamicin.
Collapse
Affiliation(s)
- Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, 400375 Cluj-Napoca, Romania;
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Corneliu Angelo Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
13
|
Protective Effect of Liposomal Epigallocatechin-Gallate in Experimental Gentamicin-Induced Hepatotoxicity. Antioxidants (Basel) 2022; 11:antiox11020412. [PMID: 35204293 PMCID: PMC8869534 DOI: 10.3390/antiox11020412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Our study aimed to assess the effect of liposomal epigallocatechin-gallate (LEGCG) compared with epigallocatechin-gallate (EGCG) solution on hepatic toxicity induced by gentamicin (G) administration in rats. Five groups were evaluated, a control group (no G administration) and four groups that received G (1 mL, i.p, 80 mg/kg b.w. (body weight/day), for 7 days) to which we associated daily administration 30 min before G of EGCG (G-EGCG, 2.5 mg/0.1 kg b.w.), LEGCG (G-LEGCG, 2.5 mg/0.1 kg b.w.) or silymarin (100 mg/kg b.w./day). The nitro-oxidative stress (NOx), catalase (CAT), TNF-α, transaminases, creatinine, urea, metalloproteinase (MMP) 2 and 9, and liver histopathological changes were evaluated. LEGCG exhibited better efficacy than EGCG, improving the oxidant/antioxidant balance (p = 0.0125 for NOx and 0.0032 for CAT), TNF-α (p < 0.0001), MMP-2 (p < 0.0001), aminotransferases (p = 0.0001 for AST and 0.0136 for ALT), creatinine (p < 0.0001), urea (p = 0.0006) and histopathologic liver changes induced by gentamicin. Our study demonstrated the beneficial effect of EGCG with superior results of the liposomal formulation for hepatoprotection in experimental hepatic toxicity induced by gentamicin.
Collapse
|
14
|
Protective Effect of Liposomal Epigallocatechin-Gallate in Experimental Gentamicin-Induced Hepatotoxicity. Antioxidants (Basel) 2022. [DOI: 10.3390/antiox11020412
expr 847787495 + 893919512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Our study aimed to assess the effect of liposomal epigallocatechin-gallate (LEGCG) compared with epigallocatechin-gallate (EGCG) solution on hepatic toxicity induced by gentamicin (G) administration in rats. Five groups were evaluated, a control group (no G administration) and four groups that received G (1 mL, i.p, 80 mg/kg b.w. (body weight/day), for 7 days) to which we associated daily administration 30 min before G of EGCG (G-EGCG, 2.5 mg/0.1 kg b.w.), LEGCG (G-LEGCG, 2.5 mg/0.1 kg b.w.) or silymarin (100 mg/kg b.w./day). The nitro-oxidative stress (NOx), catalase (CAT), TNF-α, transaminases, creatinine, urea, metalloproteinase (MMP) 2 and 9, and liver histopathological changes were evaluated. LEGCG exhibited better efficacy than EGCG, improving the oxidant/antioxidant balance (p = 0.0125 for NOx and 0.0032 for CAT), TNF-α (p < 0.0001), MMP-2 (p < 0.0001), aminotransferases (p = 0.0001 for AST and 0.0136 for ALT), creatinine (p < 0.0001), urea (p = 0.0006) and histopathologic liver changes induced by gentamicin. Our study demonstrated the beneficial effect of EGCG with superior results of the liposomal formulation for hepatoprotection in experimental hepatic toxicity induced by gentamicin.
Collapse
|
15
|
Optimization the extraction of anthocyanins from blueberry residue by dual-aqueous phase method and cell damage protection study. Food Sci Biotechnol 2021; 30:1709-1719. [PMID: 34925945 DOI: 10.1007/s10068-021-00994-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Blueberry residue is usually discarded as waste, but has a high anthocyanins content. The extraction method of anthocyanins from blueberry residue with ultrasonic assisted dual-aqueous phase system was optimized. In terms of the principle of central group and design (CCD) experimental design, three-factor and five-level response surface analysis was adopted to optimize the extraction conditions with the extraction rate of anthocyanins. The optimum extraction rate of anthocyanin was 12.372 ± 0.078 mg/g. Anthocyanin extract could protect the pBR322 DNA oxidative damage induced by Fenton reagent, increase the superoxide dismutase(SOD) and glutathione peroxidase (GSH-Px) enzyme activities, and decrease the H2O2-induced cell apoptosis of human normal liver cell (LO2 cell). The study indicates that the extraction rate of anthocyanin was increased by optimized ultrasonic assisted dual-aqueous phase system. The anthocyanin extract could protect DNA and LO2 cell from oxidative damage.
Collapse
|
16
|
Ren Z, Huo Y, Zhang Q, Chen S, Lv H, Peng L, Wei H, Wan C. Protective Effect of Lactiplantibacillus plantarum 1201 Combined with Galactooligosaccharide on Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Nutrients 2021; 13:nu13124441. [PMID: 34959993 PMCID: PMC8706614 DOI: 10.3390/nu13124441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Acute liver injury (ALI) has a high mortality rate of approximately 20–40%, and it is imperative to find complementary and alternative drugs for treating ALI. A carbon tetrachloride (CCl4)-induced ALI mouse model was established to explore whether dietary intervention can alleviate ALI in mice. Intestinal flora, intestinal integrity, biomarkers of hepatic function, systemic inflammation, autophagy, and apoptosis signals were detected through a real-time PCR, hematoxylin-eosin staining, 16S rRNA gene sequencing, and so on. The results showed that Lactiplantibacillus plantarum 1201 had a strongly antioxidant ability, and galactooligosaccharide (GOS) could boost its growth. Based on these findings, the combination of L. plantarum 1201 and GOS, the synbiotic, was applied to prevent CCl4-induced ALI in mice. The current research proved that GOS promoted the intestinal colonization of L. plantarum 1201, and the synbiotic improved the antioxidant capacity of the host, regulated the intestinal flora, repaired the intestinal barrier, inhibited the activation of the MAPK/NF-κB pathway, and then inhibited the apoptosis and autophagy pathways, relieving inflammation and liver oxidation; thereby, the ALI of mice was alleviated. These results suggest that synbiotics may become a new research direction for liver-protecting drugs.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (Q.Z.); (S.C.); (H.L.); (L.P.); (H.W.)
| | - Yalan Huo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave, West Lafayette, IN 47907, USA;
| | - Qimeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (Q.Z.); (S.C.); (H.L.); (L.P.); (H.W.)
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (Q.Z.); (S.C.); (H.L.); (L.P.); (H.W.)
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (Q.Z.); (S.C.); (H.L.); (L.P.); (H.W.)
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (Q.Z.); (S.C.); (H.L.); (L.P.); (H.W.)
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (Q.Z.); (S.C.); (H.L.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (Q.Z.); (S.C.); (H.L.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Correspondence: ; Tel.: +86-791-8833-4578; Fax: +86-791-8833-3708
| |
Collapse
|
17
|
Hao X, Guan R, Huang H, Yang K, Wang L, Wu Y. Anti-inflammatory activity of cyanidin-3-O-glucoside and cyanidin-3-O-glucoside liposomes in THP-1 macrophages. Food Sci Nutr 2021; 9:6480-6491. [PMID: 34925779 PMCID: PMC8645709 DOI: 10.1002/fsn3.2554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a kind of water-soluble pigment widely existing in many plants. It has strong antioxidant and anti-inflammatory activities. However, C3G cannot exist stably for a long time because of the phenolic hydroxyl groups in its structure. Liposome technology could improve the stability and bioavailability of compounds. Based on our previous studies, C3G liposomes prepared by ethanol injection method have a certain stability in two weeks of storage. In this study, THP-1 macrophages treated with C3G and C3G liposomes can reduce the levels of inflammatory-related factors, such as tumor necrosis factor-a (TNF-a), interleukin (IL)-1β, IL-6, and IL-8, stimulated by lipopolysaccharide (LPS). Further studies showed that the LPS induction could increase the level of phosphorylated nuclear transcription factor NF-κB and phosphorylated IkBa, while C3G and C3G liposomes could inhibit the expression of phosphorylated proteins. Moreover, C3G and C3G liposomes could protect macrophages from apoptosis. In conclusion, C3G prepared by liposome technology exhibits anti-inflammatory activity, which provides a theoretical basis for the food industry to study functional food.
Collapse
Affiliation(s)
- Xuefang Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and QuarantineChina Jiliang UniversityHangzhouChina
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and QuarantineChina Jiliang UniversityHangzhouChina
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhouChina
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and QuarantineChina Jiliang UniversityHangzhouChina
| | - Kai Yang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhouChina
| | - Lina Wang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhouChina
| | - Yuanfeng Wu
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| |
Collapse
|
18
|
Tongkaew P, Purong D, Ngoh S, Phongnarisorn B, Aydin E. Acute Effect of Riceberry Waffle Intake on Postprandial Glycemic Response in Healthy Subjects. Foods 2021; 10:2937. [PMID: 34945488 PMCID: PMC8701308 DOI: 10.3390/foods10122937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Gluten-free products have been developed due to increasing consumer demand. The improvement of the sensory quality and nutritional value of these products may support functional food development and provide health benefits. The purpose of this study was to develop a gluten-free waffle formulation with Riceberry rice flour by replacing the sucrose with maltitol and palm sugar powder. Evaluations of the sensory acceptability of these products and the blood glucose levels of healthy volunteers after consuming Riceberry and wheat flour waffles were carried out. The glycemic responses of the volunteers to the Riceberry and wheat flour waffles at 0, 15, 30, 45, 60, 90, 120, 150, and 180 min were monitored. In addition, the glycemic index of the products was calculated. The finding revealed that replacing sugar with 50% (w/w of total sugar) palm sugar powder and 50% maltitol was the most acceptable formulation that received the highest acceptability scores in terms of overall acceptability and texture. The blood glucose levels of both Riceberry waffle and wheat flour were not significantly different. The glycemic index of Riceberry waffle and wheat flour waffle were 94.73 ± 7.60 and 91.96 ± 6.93, respectively. Therefore, Riceberry waffle could be used as an alternative gluten-free product for celiac patients, but not for diabetic patients.
Collapse
Affiliation(s)
- Patthamawadee Tongkaew
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University Pattani Campus, Pattani 94000, Thailand; (D.P.); (S.N.)
| | - Deeyana Purong
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University Pattani Campus, Pattani 94000, Thailand; (D.P.); (S.N.)
| | - Suraida Ngoh
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University Pattani Campus, Pattani 94000, Thailand; (D.P.); (S.N.)
| | - Benjapor Phongnarisorn
- Department of Food Technology, Faculty of Agricultural Technology, Phuket Rajabhat University, Phuket 83000, Thailand;
| | - Ebru Aydin
- Department of Food Engineering, Suleyman Demirel University, Isparta 32260, Turkey;
| |
Collapse
|
19
|
Ding W, Liu H, Qin Z, Liu M, Zheng M, Cai D, Liu J. Dietary Antioxidant Anthocyanins Mitigate Type II Diabetes through Improving the Disorder of Glycometabolism and Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13350-13363. [PMID: 34730960 DOI: 10.1021/acs.jafc.1c05630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insulin resistance (IR) is one of the pathological reasons for type II diabetes mellitus (T2DM). Therefore, it is important to prevent the body from developing T2DM by improving IR and maintaining glucose homeostasis. Anthocyanins (ACNs) are water-soluble pigments and are widely distributed in natural products. This article summarizes research on the bioavailability and metabolism of ACNs. Moreover, we further elaborate on how ACNs reduce IR and hyperglycemia during the development of T2DM based on studies over the past 20 years. Many studies have demonstrated that ACNs are small molecules that target the pancreatic, liver, muscle, and adipose tissues, preventing IR and hyperglycemia. However, the molecular mechanisms are still unclear. Therefore, we envision whether the molecular mechanism of reducing T2DM by ACNs could be more deeply investigated.
Collapse
Affiliation(s)
- Wei Ding
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Ziqi Qin
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| |
Collapse
|
20
|
Abdeen A, Samir A, Elkomy A, Aboubaker M, Habotta OA, Gaber A, Alsanie WF, Abdullah O, Elnoury HA, Baioumy B, Ibrahim SF, Abdelkader A. The potential antioxidant bioactivity of date palm fruit against gentamicin-mediated hepato-renal injury in male albino rats. Biomed Pharmacother 2021; 143:112154. [PMID: 34649332 DOI: 10.1016/j.biopha.2021.112154] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Gentamicin (GM) is a commonly prescribed antimicrobial drug used for treatment of infections but associated hepatic and renal complications restrict its efficacy. Overproduction of free radicals and inflammation are involved in GM-induced hepato-renal damage. Date palm is renowned to have antioxidant and anti-inflammatory bioactive composites. In this context, the current research was purposed to assess the ameliorative influence of date palm extract (DE) supplementation against GM-induced hepato-renal injury. Gas chromatography-mass spectrometry (GC-MS) was used to detect the bioactive constitutes in DE. The protective action of high and low doses of DE was assessed alongside the GM remediation (80 mg/kg) in rats. GM evoked significant alterations in liver and kidney function biomarkers (aminotransferases, albumin, creatinine, and blood urea). Furthermore, notable elevations in malondialdehyde (MDA) level and increment expression of inducible nitric oxide synthase (iNOS) along with reduction in catalase (CAT) activity were observed in both organs after GM treatment. Oxidative stress was the main modulatory mechanism in GM-induced hepato-renal toxicity. However, DE could mitigate the GM-inflicted liver and kidney damage, in a dose-response pattern, due to its high content of phenolics and flavonoids.
Collapse
Affiliation(s)
- Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Center of Excellence in Screening of Environmental Contaminants (CESEC), Benha University, Toukh 13736, Egypt.
| | - Amira Samir
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Mohamed Aboubaker
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Omnia Abdullah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Heba A Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Samah F Ibrahim
- Clinical Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Afaf Abdelkader
- Center of Excellence in Screening of Environmental Contaminants (CESEC), Benha University, Toukh 13736, Egypt; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| |
Collapse
|
21
|
Settapramote N, Utama-ang N, Petiwathayakorn T, Settakorn K, Svasti S, Srichairatanakool S, Koonyosying P. Antioxidant Effects of Anthocyanin-Rich Riceberry™ Rice Flour Prepared Using Dielectric Barrier Discharge Plasma Technology on Iron-Induced Oxidative Stress in Mice. Molecules 2021; 26:4978. [PMID: 34443567 PMCID: PMC8399969 DOI: 10.3390/molecules26164978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Redox-active iron generates reactive oxygen species that can cause oxidative organ dysfunction. Thus, the anti-oxidative systems in the body and certain dietary antioxidants, such as anthocyanins, are needed to control oxidative stress. We aimed to investigate the effects of dielectric barrier discharge (DBD) plasma technology in the preparation of Riceberry™ rice flour (PRBF) on iron-induced oxidative stress in mice. PRBF using plasma technology was rich in anthocyanins, mainly cyanidine-3-glucoside and peonidine-3-glucoside. PRBF (5 mg AE/mg) lowered WBC numbers in iron dextran (FeDex)-loaded mice and served as evidence of the reversal of erythrocyte superoxide dismutase activity, plasma total antioxidant capacity, and plasma and liver thiobarbituric acid-reactive substances in the loading mice. Consequently, the PRBF treatment was observed to be more effective than NAC treatment. PRBF would be a powerful supplementary and therapeutic antioxidant product that is understood to be more potent than NAC in ameliorating the effects of iron-induced oxidative stress.
Collapse
Affiliation(s)
- Natwalinkhol Settapramote
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.U.-a.)
- Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Agro-Industry, Faculty of Agriculture and Technology, Surin Campus, Rajamangala University of Technology Isan, Surin 32000, Thailand
| | - Niramon Utama-ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.U.-a.)
- Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Touchwin Petiwathayakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Kornvipa Settakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 71300, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| |
Collapse
|
22
|
Laorodphun P, Arjinajarn P, Thongnak L, Promsan S, Swe MT, Thitisut P, Mahatheeranont S, Jaturasitha S, Lungkaphin A. Anthocyanin-rich fraction from black rice, Oryza sativa L. var. indica "Luem Pua," bran extract attenuates kidney injury induced by high-fat diet involving oxidative stress and apoptosis in obese rats. Phytother Res 2021; 35:5189-5202. [PMID: 34327741 DOI: 10.1002/ptr.7188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Obesity is acknowledged as being a world health problem and increases the risk of several chronic diseases including chronic kidney disease. High-fat diet consumption and obesity-related renal disease show a close correlation with increased oxidative stress. Black rice bran extract, (BRE) Oryza sativa L. variety "Luem Pua" contains a high anthocyanin content. This study evaluated the effects of an anthocyanin-rich fraction from BRE on renal function and oxidative stress in obese rats. Male Wistar rats were fed a normal diet (ND) or high-fat diet (HF) for 16 weeks. After this, the rats were given either vehicle (HF), BRE 100 (HF100) or BRE 200 mg/kg/day (HF200) orally for 8 weeks. The HF rats had increased body weight, visceral fat weight, plasma glucose, cholesterol and triglycerides. These parameters were normalized following HF100 administration and showed a decreasing trend with HF200. Serum creatinine and renal cortical MDA were increased in the HF group but these effects were attenuated by BRE. Negative kidney injury and histopathology changes were observed following a HF, but treatment with BRE reversed these deleterious effects. These results suggest that BRE could be used as a food supplement to improve metabolic disturbance and prevent kidney dysfunction in cases of obesity.
Collapse
Affiliation(s)
- Pongrapee Laorodphun
- Graduate Master's Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Phatchawan Arjinajarn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Myat Theingi Swe
- Department of Physiology, University of Medicine 2, Yangon, Myanmar
| | - Pasin Thitisut
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
23
|
Khaksari M, Esmaili S, Abedloo R, Khastar H. Palmatine ameliorates nephrotoxicity and hepatotoxicity induced by gentamicin in rats. Arch Physiol Biochem 2021; 127:273-278. [PMID: 31241354 DOI: 10.1080/13813455.2019.1633354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the effects of palmatine on gentamicin toxicity. Rats arranged in four groups: 1- Sham, 2- GM, 3- & 4- GM + palmatine (50 & 100 mg/kg). Gentamicin led to increase in plasma AST, ALT, BUN and creatinine. In addition, fractional excretion of Na and K were increased and urine flow rate and creatinine clearance were decreased in gentamicin group. Liver and renal tissues malondialdehyde were increased, and glutathione was decreased in GM group. TUNEL assay showed induction of apoptosis in liver and kidney in GM group. Palmatine treatment caused reduction in plasma AST, ALT, urine flow rate, creatinine clearance, renal and hapatic malondialdehyde, apoptosis and increase in renal and hapatic glutathione, fractional excretion of Na and K, plasma BUN and creatinine in contrast to GM group. Our data showed palmatine reduced hepatotoxicity and nephrotoxicity by inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Mehdi Khaksari
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Samira Esmaili
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reyhane Abedloo
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
24
|
The potential effect of phytochemicals and herbal plant remedies for treating drug-induced hepatotoxicity: a review. Mol Biol Rep 2021; 48:4767-4788. [PMID: 34075538 DOI: 10.1007/s11033-021-06444-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Drug-induced liver injury significantly caused by synthetic drugs, and other xenobiotics contribute to clinical hepatic dysfunction, which has been a substantial challenge for both patients and physicians. Traditional medicines used as an alternative therapy because of their pharmacological benefits, less or no side effects, and enormous availability in nature. Phytochemicals are essential ingredients of plants that reduce necrotic cell death, restore the antioxidant defence mechanism, limit oxidative stress, and prevent the inflammation of tissue and dysfunction of the mitochondria. In this review, we principally focused on the potential effect of the herbal plants and their phytochemicals in treating drug-induced hepatotoxicity.
Collapse
|
25
|
Mirazi N, Baharvand F, Moghadasali R, Nourian A, Hosseini A. Human umbilical cord blood serum attenuates gentamicin-induced liver toxicity by restoring peripheral oxidative damage and inflammation in rats. Basic Clin Pharmacol Toxicol 2021; 128:268-274. [PMID: 32989909 DOI: 10.1111/bcpt.13502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic that despite its antibacterial effects, its use is restricted due to numerous side effects. The umbilical cord serum contains various biomolecules that have protective impacts on the damaged tissues. The aim of this study was to gauge the protective effect of human umbilical cord blood serum (hUCBS) on GM-induced hepatotoxicity. In this experimental study, 28 male Wistar rats, weighing 220 ± 20 g, were randomly categorized into 4 groups including control, GM (100 mg/kg), hUCBS at doses of 1 and 2% along with GM (100 mg/kg) for 10 days, intraperitoneally. Twenty-four hours after the last injection, direct blood sampling was taken from the heart to obtain blood serum and liver enzymes, inflammatory cytokines and liver tissue were examined for histology. GM causes necrosis and inflammation in liver tissue. Liver enzyme and inflammatory cytokine levels were significantly increased in the GM group. Human umbilical cord blood serum significantly decreased liver enzyme and inflammatory cytokines levels in the experimental groups compared to the GM group. GM causes liver damage such as the inflammation and necrosis in liver tissue. Treating the animals with hUCBS reduced the toxic effects of GM in the liver.
Collapse
Affiliation(s)
- Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Fatemeh Baharvand
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
26
|
Alaraj M. Royal Jelly and Aliskiren mutually annul their protective effects against gentamicin-induced nephrotoxicity in rats. Vet World 2021; 13:2658-2662. [PMID: 33487984 PMCID: PMC7811531 DOI: 10.14202/vetworld.2020.2658-2662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Gentamicin (GM) is one of the most effective antibiotics for severe, life-threatening Gram-negative infections. Nevertheless, its clinical use has been restrained because of its nephrotoxic potential. Royal jelly (RJ) and aliskiren (ALK) can individually prevent such toxic effects. The aim of this study was to explore the protective effects of a combination treatment of RJ and ALK on GM-mediated nephrotoxicity. Materials and Methods Thirty-two adult female. Wistar rats were divided equally into four groups: (I) Receiving normal saline; (II) GM (100 mg/kg, intraperitoneal [i.p.] injection); GM (100 mg/kg, i.p. injection) plus ALK (50 mg/kg, i.p. injection); and (IV) GM (100 mg/kg, i.p. injection) plus ALK (50 mg/kg, i.p. injection) in combination with RJ (150 mg/kg, orally). All treatments were administered daily for 10 days. The blood levels of creatinine, urea, uric acid, albumin, and total protein were measured. Then, the animals were sacrificed, and the kidneys were taken for histopathology. Results Compared to normal control rats, GM-injected rats showed significantly (p<0.001) higher serum concentrations of uric acid, urea, and creatinine as well as evidently (p<0.001) lower blood levels of albumin and total protein. Moreover, GM administration was associated with significant renal histopathological changes. All these alterations were considerably (p<0.05) improved in GM-injected rats receiving ALK compared to rats receiving GM alone. However, when RJ was given in combination with ALK to GM-injected rats, it lessened the beneficial nephroprotective effects of both agents. Conclusion The combination treatment of RJ and ALK is not desirable for GM-induced nephrotoxicity. Further studies are crucial to accurately explore the precise mechanism of RJ antagonistic interaction with ALK.
Collapse
Affiliation(s)
- Mohd Alaraj
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| |
Collapse
|
27
|
Bendokas V, Stanys V, Mažeikienė I, Trumbeckaite S, Baniene R, Liobikas J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants (Basel) 2020; 9:E819. [PMID: 32887513 PMCID: PMC7555562 DOI: 10.3390/antiox9090819] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are biologically active water-soluble plant pigments that are responsible for blue, purple, and red colors in various plant parts-especially in fruits and blooms. Anthocyanins have attracted attention as natural food colorants to be used in yogurts, juices, marmalades, and bakery products. Numerous studies have also indicated the beneficial health effects of anthocyanins and their metabolites on human or animal organisms, including free-radical scavenging and antioxidant activity. Thus, our aim was to review the current knowledge about anthocyanin occurrence in plants, their stability during processing, and also the bioavailability and protective effects related to the antioxidant activity of anthocyanins in human and animal brains, hearts, livers, and kidneys.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Ingrida Mažeikienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Baniene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
28
|
Anthocyanin-Enriched Riceberry Rice Extract Inhibits Cell Proliferation and Adipogenesis in 3T3-L1 Preadipocytes by Downregulating Adipogenic Transcription Factors and Their Targeting Genes. Nutrients 2020; 12:nu12082480. [PMID: 32824545 PMCID: PMC7469062 DOI: 10.3390/nu12082480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
Riceberry rice (Oryza sativa L.) is a new pigmented variety of rice from Thailand. Despite its high anthocyanin content, its effect on adipogenesis and adipocyte function remains unexplored. We investigated whether Riceberry rice extract (RBE) impacted cell proliferation by examining viability and cell cycle, using preadipocyte 3T3-L1 cells. To test RBE's effect on adipocyte formation, cells were cultured in adipogenic medium supplemented with extract and adipocyte number and triglyceride levels were quantified. Furthermore, Akt1 phosphorylation along with RT-qPCR and intracellular calcium imaging were performed to obtain an insight into its mechanism of action. The effect of RBE on adipocyte function was investigated using glucose uptake and lipolysis assays. Treatment of cells with RBE decreased preadipocyte number without cytotoxicity despite inducing cell cycle arrest (p < 0.05). During adipogenic differentiation, RBE supplementation reduced adipocyte number and triglyceride accumulation by downregulating transcription factors (e.g., PPARγ, C/EBPα, and C/EBPβ) and their target genes (p < 0.05). The Akt1 phosphorylation was decreased by RBE but insignificance, however, the extract failed to increase intracellular calcium signals. Finally, the treatment of adipocytes with RBE reduced glucose uptake by downregulating Glut4 mRNA expression and enhanced isoproterenol-induced lipolysis (p < 0.05). These findings suggest that RBE could potentially be used in the treatment of obesity by inhibiting adipocyte formation and proliferation.
Collapse
|
29
|
Lim T, Ryu J, Lee K, Park SY, Hwang KT. Protective Effects of Black Raspberry ( Rubus occidentalis) Extract against Hypercholesterolemia and Hepatic Inflammation in Rats Fed High-Fat and High-Choline Diets. Nutrients 2020; 12:E2448. [PMID: 32824008 PMCID: PMC7468928 DOI: 10.3390/nu12082448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Choline is converted to trimethylamine by gut microbiota and further oxidized to trimethylamine-N-oxide (TMAO) by hepatic flavin monooxygenases. Positive correlation between TMAO and chronic diseases has been reported. Polyphenols in black raspberry (BR), especially anthocyanins, possess various biological activities. The objective of this study was to determine the effects of BR extract on the level of choline-derived metabolites, serum lipid profile, and inflammation markers in rats fed high-fat and high-choline diets. Forty female Sprague-Dawley (SD) rats were randomly divided into four groups and fed for 8 weeks as follows: CON (AIN-93G diet), HF (high-fat diet), HFC (HF + 1.5% choline water), and HFCB (HFC + 0.6% BR extract). Serum levels of TMAO, total cholesterol, and low-density lipoprotein (LDL)-cholesterol and cecal trimethylamine (TMA) level were significantly higher in the HFC than in the HFCB. BR extract decreased mRNA expression of pro-inflammatory genes including nuclear factor-κB (NF-κB), interleukin (IL)-1β, IL-6, and cyclooxygenase-2 (COX-2), and protein expression of NF-κB and COX-2 in liver tissue. These results suggest that consistent intake of BR extract might alleviate hypercholesterolemia and hepatic inflammation induced by excessive choline with a high-fat diet via lowering elevated levels of cecal TMA and serum TMAO in rats.
Collapse
Affiliation(s)
| | | | | | | | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (T.L.); (J.R.); (K.L.); (S.Y.P.)
| |
Collapse
|
30
|
Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020; 25:molecules25133060. [PMID: 32635481 PMCID: PMC7412508 DOI: 10.3390/molecules25133060] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of diverse mechanisms that lead to cytoprotection have been described to date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species signaling is well documented. In this review, we aim to characterize the prospects of influencing cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids (e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids are a family of widely distributed plant secondary metabolites known for their beneficial effects on human health and are widely applied in traditional medicine. Their pharmacological characteristics include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties. Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus, the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis, mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in cytoprotection is outlined.
Collapse
|
31
|
Anuyahong T, Chusak C, Adisakwattana S. Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109571] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Yang Z, Tang Z, Cao X, Xie Q, Hu C, Zhong Z, Tan J, Zheng Y. Controlling chronic low-grade inflammation to improve follicle development and survival. Am J Reprod Immunol 2020; 84:e13265. [PMID: 32395847 DOI: 10.1111/aji.13265] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic low-grade inflammation is one cause of follicle development disturbance. Chronic inflammation exists in pathological conditions such as premature ovarian failure, physiological aging of the ovaries, and polycystic ovary syndrome. Inflammation of the whole body can affect oocytes via the follicle microenvironment, oxidative stress, and GM-CSF. Many substances without toxic side-effects extracted from natural organisms have gradually gained researchers' attention. Recently, chitosan oligosaccharide, resveratrol, anthocyanin, and melatonin have been found to contribute to an improvement in inflammation. This review discusses the interrelationships between chronic low-grade inflammation and follicle development, the underlying mechanisms, and methods that may improve follicle development by controlling the level of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Ziwei Yang
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Zijuan Tang
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Xiuping Cao
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Qi Xie
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Chuan Hu
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
33
|
Elucidation of the Molecular Mechanisms Underlying Sorafenib-Induced Hepatotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7453406. [PMID: 32509153 PMCID: PMC7245685 DOI: 10.1155/2020/7453406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Sorafenib is a small, orally-active multikinase inhibitor that is most frequently used for the management of renal cell carcinoma, hepatocellular carcinoma, and radioactive iodine-resistant thyroid carcinoma. However, recent reports have associated sorafenib with hepatotoxicity that can limit its clinical application, although the mechanism of hepatotoxicity is still to be elucidated. Thus, our study was designed to explore the molecular mechanisms underlying sorafenib-induced hepatotoxicity in an in vivo model. Twenty male adult Wistar rats were randomly placed into two groups; the first group received an oral dose of normal saline (vehicle), and the second received sorafenib (30 mg/kg) once daily for twenty-one consecutive days. After twenty-one days, liver tissues and blood samples were used for gene expression, protein expression, and biochemical analysis. Sorafenib treatment resulted in markedly increased levels of alanine aminotransferase and alkaline phosphatase, which indicate the presence of liver damage. Additionally, sorafenib administration induced the inflammatory and oxidative stress marker NF-κB-p65, while antioxidant enzymes were attenuated. Moreover, sorafenib caused upregulation of both gene and protein for the apoptotic markers cleaved Caspase-3, Bax, and Bid, and downregulation of the antiapoptotic protein Bcl-2. In conclusion, our findings suggest that sorafenib administration is associated with hepatotoxicity, which might be due to the activation of oxidative stress and apoptotic pathways.
Collapse
|
34
|
Ali FEM, Hassanein EHM, Bakr AG, El-Shoura EAM, El-Gamal DA, Mahmoud AR, Abd-Elhamid TH. Ursodeoxycholic acid abrogates gentamicin-induced hepatotoxicity in rats: Role of NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS pathways. Life Sci 2020; 254:117760. [PMID: 32418889 DOI: 10.1016/j.lfs.2020.117760] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
AIM The present study focused on the possible underlying protective mechanisms of UDCA against GNT-induced hepatic injury. METHODS For achieving this goal, adult male rats were allocated into 4 groups: normal control (received vehicle), GNT (100 mg/kg, i.p. for 8 days), UDCA (60 mg/kg, P.O. for 15 days), and GNT + UDCA (received UDCA for 15 days and GNT started from the 7th day and lasted for 8 days). RESULTS The results revealed that UDCA significantly improved GNT-induced hepatic injury, oxidative stress, apoptosis, and inflammatory response. Interestingly, UDCA inhibited apoptosis by marked down-regulation of the Bax gene, Caspase-3, and cleaved Caspase-3 protein expressions while the level of Bcl-xL gene significantly increased. Moreover, UDCA strongly inhibited the inflammatory response through the down-regulation of both NF-κB-p65 and TNF-α accompanied by IL-10 elevation. Furthermore, the obtained results ended with the restored of mitochondria function that confirmed by electron microscopy. Histological analysis showed that UDCA remarkably ameliorated the histopathological changes induced by GNT. SIGNIFICANCE UDCA may be a promising agent that can be used to prevent hepatotoxicity observed in GNT treatment. This effect could be attributed to, at least in part, the ability of UDCA to modulate NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS signaling pathways.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Dalia A El-Gamal
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Anatomy, Unaizah College of Medicine, Qassim University, Unaizah Al Qassim Region, Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
35
|
Postprandial Glycemia, Insulinemia, and Antioxidant Status in Healthy Subjects after Ingestion of Bread made from Anthocyanin-Rich Riceberry Rice. Nutrients 2020; 12:nu12030782. [PMID: 32188005 PMCID: PMC7146297 DOI: 10.3390/nu12030782] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Riceberry rice, a gluten-free grain, contains many nutrient components, including carbohydrates, proteins, certain fatty acids, and micronutrients, as well as bioactive non-nutrient compounds, such as polyphenolic compounds. This study aimed to evaluate the effect of bread made from anthocyanin-rich Riceberry rice on the postprandial glycemic response, glucagon-like peptide-1 (GLP-1), antioxidant status, and subjective ratings of appetite. In the crossover design, 16 healthy participants (six men and 10 women) completed four sessions involving blood collection in the fasting state and at 30, 60, 90, 120, 150, and 180 min after food consumption (50 g of available carbohydrate) in a randomized order: 1) glucose solution, 2) wheat bread (WB), 3) Riceberry rice bread (RRB), and 4) Hom Mali bread (HMB). Consumption of RRB resulted in significantly lower postprandial plasma glucose concentration at 30 and 60 min when compared to HMB. No difference in postprandial glucose concentration between RRB and WB was observed. In addition, postprandial plasma insulin showed a significant decrease in the group which received RRB at 15 and 60 min, as compared to HMB. In comparison with 50 g of glucose, as a reference, the glycemic index (GI) of RRB, WB, and HMB was 69.3 ± 4.4, 77.8 ± 4.6, and 130.6 ± 7.9, respectively. Interestingly, the ferric-reducing ability of plasma (FRAP) level was shown to significantly increase after consumption of RRB. In the meantime, a significant decrease in the postprandial FRAP level was also observed following an intake of WB and HMB. All breads caused increases in the postprandial plasma protein thiol group and had similar effects on hunger, fullness, desire to eat, and satiety ratings. However, consumption of RBB, WB, and HMB did not change plasma GLP-1 and malondialdehyde (MDA) levels when compared to the baseline. The findings suggest that anthocyanin-rich Riceberry rice can be a natural ingredient for gluten-free bread which reduced glycemic response together with improvement of antioxidant status in healthy subjects.
Collapse
|
36
|
Kemsawasd V, Chaikham P. Effects of Frozen Storage on Viability of Probiotics and Antioxidant Capacities of Synbiotic Riceberry and Sesame-Riceberry Milk Ice Creams. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
According to many recent studies, ice cream was found to be an effective carrier of probiotics along the human gastrointestinal tract. While probiotics have long been known to improve gut health, prebiotic-supplemented ice creams have demonstrated properties that could be linked to various health benefits and improvement of the gut microbiota. In this study, riceberry and sesame-riceberry milk ice creams were supplemented with inulin, Lactobacillus casei 01 and Lactobacillus acidophilus LA5 to examine the changes of probiotic populations in different formulations of ice cream. The survivability of probiotics after 60 days of frozen storage and the level of viable cell tolerance towards the simulated gastrointestinal environment were also assessed, followed by sensory evaluation with 100 untrained panelists and determination of chemical qualities of ice cream samples. Findings revealed L. casei 01 to be more resistant to frozen storage compared to L acidophilus LA5, whereas addition of sesame milk and inulin were shown to minimize levels of viable cell loss following environmental and mechanical stress, suggesting enhanced probiotic activity. Significant reductions in probiotic viability were observed for all ice cream samples, however higher survival rates were observed in prebiotic-supplemented samples prior to and after 60 days of frozen storage. Probiotic cell counts in all samples exceeded the minimum recommended value (6 log CFU/g). In simulated gastric and bile fluid, all samples illustrated a significant change in probiotic levels, which significantly decreased with increase time of exposure to acidic and basic conditions. Probiotic strains in samples containing riceberry, sesame and inulin demonstrated greatest survivability as observed by reduction in pH and increased total acidity, with increased antioxidant and phenolic contents. On the other hand, changes in physicochemical properties of ice cream lowered overall sensory scores in terms of color and flavor. This study contributes to future development and applications of riceberry and sesame for inducement of synbiotic effects in novel probiotic products.
Collapse
Affiliation(s)
- Varongsiri Kemsawasd
- Institute of Nutrition, Mahidol University, Nakorn Pathom campus, Nakorn Pathom 73170, Thailand
| | - Pittaya Chaikham
- Faculty of Science and Technology, Phranakhon Si Ayutthaya Rajabhat University, Phranakhon Si Ayutthaya Rajabhat 13000, Thailand
| |
Collapse
|
37
|
Ghattamaneni NK, Sharma A, Panchal SK, Brown L. Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. Eur J Nutr 2019; 59:2905-2918. [PMID: 31696323 DOI: 10.1007/s00394-019-02130-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine whether the anthocyanin, pelargonidin 3-glucoside (P3G), attenuates symptoms of inflammatory bowel disease (IBD) and metabolic syndrome in rats. METHODS We tested P3G-enriched strawberry in two models of chronic inflammation in rats, chronic IBD induced by 0.5% dextran sodium sulphate in the drinking water for 12 weeks (D) and metabolic syndrome induced by a high-carbohydrate, high-fat diet (H) for 16 weeks. P3G-enriched strawberry was added to the diet for the final 6 weeks in IBD rats (DP) or 8 weeks in H rats (HP) to provide a dose of 8 mg P3G/kg/day. RESULTS D rats had marked diarrhoea, bloody stools, erosion of mucosal epithelium, crypt atrophy, loss of villi and goblet cells, and inflammatory cell infiltration. These symptoms were reversed by P3G with healthy stools and mucosal lining of ileum and colon including increased villi, crypts and goblet cells and reduced inflammation. H rats developed hypertension, dyslipidaemia, central obesity, increased ventricular stiffness, cardiac and liver inflammation, and steatosis. P3G treatment in H rats improved systolic blood pressure, ventricular stiffness, and cardiac and liver structure, and reduced abdominal fat, abdominal circumference and body weight gain. CONCLUSIONS Our study indicates that dietary P3G decreased inflammation to decrease the symptoms of IBD, and to improve cardiovascular, liver and metabolic functions in metabolic syndrome.
Collapse
Affiliation(s)
- Naga Kr Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Ashwini Sharma
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia. .,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| |
Collapse
|
38
|
Norkaew O, Thitisut P, Mahatheeranont S, Pawin B, Sookwong P, Yodpitak S, Lungkaphin A. Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chem 2019; 294:493-502. [DOI: 10.1016/j.foodchem.2019.05.086] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
|
39
|
Ren W, Badgery W, Ding Y, Guo H, Gao Y, Zhang J. Hepatic transcriptome profile of sheep (Ovis aries) in response to overgrazing: novel genes and pathways revealed. BMC Genet 2019; 20:54. [PMID: 31272371 PMCID: PMC6610972 DOI: 10.1186/s12863-019-0760-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Overgrazing is a major factor that causes steppe degradation in Inner Mongolian, resulting in extensive ecosystem damage. Scarcity of grass means sheep are smaller and therefore mutton and cashmere production is greatly reduced, which has resulted in massive annual economic losses. Liver is the primary metabolic organ in mammals. It is also the key source of energy supply and detoxification of metabolites in animals, has a close relationship with animal growth. However, investigations on the responses of sheep induced by consequence of overgrazing, particularly those relating to liver-related molecular mechanisms and related metabolic pathways, remain elusive. RESULTS The body weight daily gain of sheep, immune organ indices (liver and spleen), and serum parameters related to immune response, protein synthesis and energy supply (IgG, albumin, glucose and non-esterified fatty acid) were significantly lower in the overgrazing group. Other serum parameters including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, blood urea nitrogen and interleukin-6 were significantly higher in the overgrazing group. For the RNA-Seq results, we identified approximately 50 differentially expressed genes, of which half of were up-regulated and the other half were down-regulated (overgrazing group versus light grazing group). Bioinformatics analysis identified two enriched KEGG pathways including peroxisome proliferator-activated receptor (PPAR) signaling pathway (related to lipolysis) and ECM-receptor interaction (related to liver injury and apoptosis). Additionally, several of the down-regulated genes were related to detoxification and immune response. CONCLUSIONS Overall, based on the high-throughput RNA sequencing profile integrated with the results of serum biochemical analyses, consequences of lower forage availability and quality under overgrazing condition induced altered expression levels of genes participating in energy metabolism (particularly lipid metabolism) and detoxification and immune responses, causing lipolysis and impaired health status, which might be key reasons for the reduced growth performance of sheep. This investigation provides a novel foundation for the development of sheep hepatic gene interactive networks that are a response to the degraded forage availability under overgrazing condition.
Collapse
Affiliation(s)
- Weibo Ren
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China
| | - Warwick Badgery
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, 2800, Australia
| | - Yong Ding
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China
| | - Huiqin Guo
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Yang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130018, Jilin, China
| | - Jize Zhang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China.
| |
Collapse
|
40
|
Thiranusornkij L, Thamnarathip P, Chandrachai A, Kuakpetoon D, Adisakwattana S. Comparative studies on physicochemical properties, starch hydrolysis, predicted glycemic index of Hom Mali rice and Riceberry rice flour and their applications in bread. Food Chem 2019; 283:224-231. [DOI: 10.1016/j.foodchem.2019.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022]
|
41
|
Bustos PS, Deza-Ponzio R, Páez PL, Cabrera JL, Virgolini MB, Ortega MG. Flavonoids as protective agents against oxidative stress induced by gentamicin in systemic circulation. Potent protective activity and microbial synergism of luteolin. Food Chem Toxicol 2018; 118:294-302. [PMID: 29758313 DOI: 10.1016/j.fct.2018.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
The flavonoids effect on gentamicin (GEN)-induced oxidative stress (OS) in systemic circulation was evaluated in terms of reactive oxygen species (ROS) production, enzymatic antioxidant defenses superoxide dismutase (SOD) and catalase (CAT), and lipid peroxidation (LP) in vitro on human leukocytes and in vivo on rat whole blood. The inhibitory activity of ROS was ATS < QTS < isovitexin < vitexin < luteolin. Luteolin, the most active, showed more inhibition in ROS production than vitamin C (reference inhibitor) in mononuclear cells and a slightly lower protective behavior compared to this inhibitor in polymorphonuclear cells. In both cellular systems, luteolin tends to level SOD and CAT activities modified by GEN, reaching basal values and preventing LP. In Wistar rats, GEN plus luteolin can suppress ROS generation, collaborate with SOD and CAT and diminish LP produced by GEN at therapeutic doses. Finally, luteolin and antibiotic association was evaluated on the antimicrobial activity in S. aureus and E. coli showing a synergism between GEN and luteolin on S. aureus ATCC and an additive effect on E. coli ATCC. Therefore, simultaneous administration of luteolin and GEN could represent a potential therapeutic option capable of protecting the host against OS induced by GEN in the systemic circulation while enhancing the antibacterial activity of GEN.
Collapse
Affiliation(s)
- Pamela Soledad Bustos
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
| | - Romina Deza-Ponzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Paulina Laura Páez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA-CONICET), Córdoba, Argentina
| | - José Luis Cabrera
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
| | - Miriam Beatriz Virgolini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - María Gabriela Ortega
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina.
| |
Collapse
|
42
|
Dias ALDS, Pachikian B, Larondelle Y, Quetin-Leclercq J. Recent advances on bioactivities of black rice. Curr Opin Clin Nutr Metab Care 2017; 20:470-476. [PMID: 28858891 DOI: 10.1097/mco.0000000000000417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW Black rice has been consumed for centuries in Asian countries such as China, Korea or Japan. Nowadays, extracts and derivatives are considered as beneficial functional foods because of their high content in several bioactive molecules such as anthocyanins, other phenolics and terpenoids. The purpose of this review is to summarize and discuss recent developments on black rice bioactivities. RECENT FINDINGS Some sterols and triterpenoids with potential anticancer properties already tested in vitro and in vivo have been isolated and identified from bran extracts of black rice. Protection against osteoporosis has been suggested for the first time for black rice extracts. Because of its antioxidant and anti-inflammatory properties, black rice also protects liver and kidney from injuries. One clinical study reported the interest of black rice in case of alcohol withdrawal. SUMMARY Several advances have been recently achieved on the understanding of the potential biological effects of black rice and its derivatives. They further confirm that black rice should be considered as a promising source of health-promoting functional foods targeting a large set of noninfectious diseases. However, more clinical studies are needed to support the findings highlighted in this review.
Collapse
Affiliation(s)
- Aécio L de S Dias
- aCollege of Biotechnology, Universidade Federal do Pará & Centre for Valorization of Amazonian Bioactive Compounds, Belém-PA, Brazil bCenter of Investigation in Clinical Nutrition, Université catholique de Louvain, Louvain-la-Neuve, Belgium cLife Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium dPharmacognosy research group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|