1
|
Wen C, Ye Z, Liu G, Liang L, Liu X, Li Y, Xu X, Zhang J. Isolation, Purification, and Characterization of Lentinus edodes Polysaccharides Extracted With Subcritical Water Enhanced With Deep Eutectic Solvent. Chem Biodivers 2025:e202402658. [PMID: 39825856 DOI: 10.1002/cbdv.202402658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/20/2025]
Abstract
The Lentinus edodes polysaccharide (LEP) was extracted with a new subcritical water extraction (SWE) enhanced with deep eutectic solvent (DES) method and then purified with a DEAE-52 cellulose column and a Sephadex G-100 column. Two purified polysaccharides (LEP1 and LEP2) were obtained, and their structure, antioxidant activity, and immunomodulatory activity were analyzed. LEP1 and LEP2 were composed of mannose, glucose, and galactose with a molar ratio of 1:12.97:7.84 and 1:51.18:5.29, respectively. The molecular weights were 9.878 × 104 and 1.976 × 104 Da, respectively. Interestingly, both LEP1 and LEP2 were mainly composed of →4)-β-d-Glcp-(1→, →6)-β-d-Glcp-(1→ and →6)-α-d-Galp-(1→ with different molar ratio. Besides, both LEP1 and LEP2 had strong DPPH free radical scavenging activity and Fe2+ chelating capacity. Moreover, they could reduce the level of reactive oxygen species (ROS) and regulate the activities of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) in HepG2 cells, demonstrating strong antioxidant activity. Furthermore, both LEP1 and LEP2 could improve the phagocytic capacity, nitric oxide (NO) release, and the content of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) in RAW264.7 cells, exhibiting significant immunostimulatory activity. It was worth noting that LEP2 exhibited stronger biological activities than LEP1. Therefore, the SWE enhanced with DES is an ideal method for extracting polysaccharides, which can be further applied to extract other polysaccharides.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhiqiang Ye
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Bao H, Bao H, Wang Y, Wang F, Jiang Q, He X, Li H, Ding Y, Zhu C. Challenges and Strategies in the Industrial Application of Dendrobium officinale. PLANTS (BASEL, SWITZERLAND) 2024; 13:2961. [PMID: 39519880 PMCID: PMC11548159 DOI: 10.3390/plants13212961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Dendrobium officinale Kimura & Migo (D. officinale) is a well-recognized traditional Chinese medicinal herb that is both medicinal and edible. Contemporary pharmacological studies have revealed that D. officinale contains abundant bioactive compounds, including polysaccharides, flavonoids, alkaloids, and dendrobine, exhibiting diverse pharmacological properties such as antioxidant, anti-inflammatory, and immunomodulatory effects. However, the industrial application of D. officinale faces many problems, such as the scarcity of wild resources, low natural reproduction rate, and slow growth rate as well as the lack of relevant industrial standards. Nevertheless, substantial advancements, including the exploitation of artificial propagation techniques and breeding of new varieties, have been achieved in recent years. These developments have effectively addressed the challenges associated with its low natural reproduction rate and the scarcity of wild resources. This review summarizes the progress in the industrial development, seedling cultivation, and pharmacological exploration of D. officinale in recent years. Furthermore, it analyzes current research inadequacies and offers strategic solutions to enhance its application in healthcare and medicine.
Collapse
Affiliation(s)
- Hexigeduleng Bao
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;
| | - Hainan Bao
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Yu Wang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Feijuan Wang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Qiong Jiang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Xiaoqi He
- Ningbo Industrial Internet Institute Co., Ltd., Ningbo 315000, China;
| | - Hua Li
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| |
Collapse
|
3
|
Zhang J, Xiong X, Li J, Luo C, Su Q, Hao X, Wu Q, Huang W. Valtrate Suppresses TNFSF14-Mediated Arrhythmia After Myocardial Ischemia-Reperfusion by Inducing N-linked Glycosylation of LTβR to Regulate MGA/MAX/c-Myc/Cx43. J Cardiovasc Pharmacol 2024; 84:418-433. [PMID: 39028940 DOI: 10.1097/fjc.0000000000001613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024]
Abstract
ABSTRACT Myocardial ischemia-reperfusion (MIR)-induced arrhythmia remains a major cause of death in patients with cardiovascular diseases. The reduction of Cx43 has been known as a major inducer of arrhythmias after MIR, but the reason for the reduction of Cx43 remains largely unknown. The aim of this study was to find the key mechanism underlying the reduction of Cx43 after MIR and to screen out an herbal extract to attenuate arrhythmia after MIR. The differentially expressed genes in the peripheral blood mononuclear cell (PBMCs) after MIR were analyzed using the data from several gene expression omnibus data sets, followed by the identification in PBMCs and the serum of patients with myocardial infarction. Tumor necrosis factor superfamily protein 14 (TNFSF14) was increased in PBMCs and the serum of patients, which might be associated with the injury after MIR. The toxic effects of TNFSF14 on cardiomyocytes were investigated in vitro . Valtrate was screened out from several herbal extracts. Its protection against TNFSF14-induced injury was evaluated in cardiomyocytes and animal models with MIR. Recombinant TNFSF14 protein not only suppressed the viability of cardiomyocytes but also decreased Cx43 by stimulating the receptor LTβR. LTβR induces the competitive binding of MAX to MGA rather than the transcriptional factor c-Myc, thereby suppressing c-Myc-mediated transcription of Cx43. Valtrate promoted the N-linked glycosylation modification of LTβR, which reversed TNFSF14-induced reduction of Cx43 and attenuated arrhythmia after MIR. In all, valtrate suppresses TNFSF14-induced reduction of Cx43, thereby attenuating arrhythmia after MIR.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/physiopathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Humans
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/genetics
- Connexin 43/metabolism
- Connexin 43/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Male
- Disease Models, Animal
- Glycosylation
- Signal Transduction
- Anti-Arrhythmia Agents/pharmacology
- Mice, Inbred C57BL
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/drug effects
- Heart Rate/drug effects
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Xiaoqi Xiong
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Jun Li
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Changjun Luo
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Qiang Su
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Hao
- Health Mangement Institute, the Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China ; and
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, China
| | - Wanzhong Huang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Bao H, Bao H, Wang Y, Wang F, Jiang Q, Li H, Ding Y, Zhu C. Variations in Cold Resistance and Contents of Bioactive Compounds among Dendrobium officinale Kimura et Migo Strains. Foods 2024; 13:1467. [PMID: 38790767 PMCID: PMC11119086 DOI: 10.3390/foods13101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Dendrobium officinale is a valuable traditional Chinese herbal plant that is both medicinal and edible. However, the yield of wild Dendrobium officinale is limited. Adverse stress affects the growth, development, and yield of plants, among which low temperature is the primary limiting factor for introducing Dendrobium officinale to high-latitude areas and expanding the planting area. Therefore, this study aims to explore the variations in growth ability, cold resistance, and contents of bioactive compounds among different Dendrobium officinale strains. Four strains of Dendrobium officinale were selected as experimental materials and were subjected to low-temperature stress (4 °C). The agronomic traits, physiological indices, as well as the expressions of cold resistance-related genes (HSP70, DcPP2C5, DoCDPK1, and DoCDPK6) in the roots and leaves of Dendrobium officinale, were determined. The contents of bioactive compounds, including polysaccharides, flavonoids, and phenols were also measured. Compared with the other strains, Xianju had the highest seed germination and transplantation-related survival rates. Under low-temperature stress, Xianju exhibited the strongest cold resistance ability, as revealed by the changes in water contents, chlorophyll levels, electrical conductivities, enzyme activities, and expressions of the cold resistance-related genes. Additionally, the polysaccharide content of Xianju increased the most, while the stem flavonoid and leaf phenol contents were elevated in all four strains under cold treatment. Therefore, selecting excellent performing strains is expected to expand the planting area, improve the yield, and increase the economic benefits of Dendrobium officinale in high latitude areas with lower temperatures.
Collapse
Affiliation(s)
- Hexigeduleng Bao
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;
| | - Hainan Bao
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Yu Wang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Feijuan Wang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Qiong Jiang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Hua Li
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China; (H.B.); (Y.W.); (F.W.); (Q.J.); (Y.D.); (C.Z.)
| |
Collapse
|
5
|
Yang X, Guo C, Yu L, Lv Z, Li S, Zhang Z. Dendrobium officinale polysaccharide alleviates thiacloprid-induced kidney injury in quails via activating the Nrf2/HO-1 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2655-2666. [PMID: 38224485 DOI: 10.1002/tox.24137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Thiacloprid (THI) is a neonicotinoid insecticide, and its wide-ranging use has contributed to severe environmental and health problems. Dendrobium officinale polysaccharide (DOP) possesses multiple biological activities such as antioxidant and antiapoptosis effect. Although present research has shown that THI causes kidney injury, the exact molecular mechanism and treatment of THI-induced kidney injury remain unclear. The study aimed to investigate if DOP could alleviate THI-induced kidney injury and identify the potential molecular mechanism in quails. In this study, Japanese quails received DOP (200 mg/kg) daily with or without THI (4 mg/kg) exposure for 42 days. Our results showed that DOP improved hematological changes, biochemical indexes, and nephric histopathological changes induced by THI. Meanwhile, THI exposure caused oxidative stress, apoptosis, and autophagy. Furthermore, THI and DOP cotreatment significantly activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, restored antioxidant enzyme activity, and reduced apoptosis and autophagy in quail kidneys. In summary, our study demonstrated that DOP mitigated THI-mediated kidney injury was associated with oxidative stress, apoptosis, and autophagy via activation of the Nrf2/HO-1 signaling pathway in quails.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Hao Y, Lao S, Liu H, Chen X, Ye G, Wang Z, Liao W. Isolation and characterization of a nephroprotective polysaccharide from Dendrobium chrysotoxum Lindl against LPS-induced acute kidney injury mice. Int J Biol Macromol 2023; 253:126614. [PMID: 37652331 DOI: 10.1016/j.ijbiomac.2023.126614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The structure and bioactivity of a novel polysaccharide from Dendrobium Chrysotoxum Lindl (DCP-1) were investigated. The crude polysaccharides of Dendrobium Chrysotoxum Lindl (DCP) were extracted by hot water extraction, and the protein was removed by enzymatic hydrolysis and Sevage. After purification, the chemical structure of polysaccharides was identified by infrared spectroscopy, methylation analysis and nuclear magnetic resonance spectroscopy. Then, a mouse model of acute kidney injury (AKI) was constructed using lipopolysaccharide (LPS), and pretreated with DCP. Structure characterization demonstrated that the number-average molecular weight and mass average molar mass of DCP-1 were 28.43 kDa and 15.00 kDa, respectively. DCP-1 mainly consisted of mannose (37.8 %) and glucose (55.6 %). The main linkage types of DCP-1 were contained 1,4-Linked Manp and 1,4-Linked Glcp. And DCP-1 was demonstrated to be an O-acetylglucomannan with β-ᴅ-configuration in pyranoid form. Besides, the bioactivity of DCP was further investigated. The results showed that DCP exhibited notable anti-inflammatory activity in LPS-induced AKI mice. After treated with DCP, the creatinine (CREA) and urea nitrogen (BUN) in serum were successfully down-regulated in AKI mice. DCP treatment prevented the characteristic morphological changes of LPS-induced renal tubular injury. The results showed that DCP treatment significantly reduced the concentration of oxidative damage indicators (MDA, SOD) and the expression of inflammatory indices (TNF-α, IL-6, MCP-1, COX-2). In general, the newly extracted polysaccharide DCP showed excellent nephroprotective effect, which enabled it to be an ideal natural medicine for kidney diseases therapy.
Collapse
Affiliation(s)
- Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China
| | - Shenghui Lao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China
| | - Hailin Liu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China
| | - Guangying Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zaihua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China.
| |
Collapse
|
7
|
Shi Y, Zhou L, Zheng G, Jing Y, Zhang X, Yuan J, Zhang Q, Li H, Huang S, Xie T, Xiong Q. Therapeutic mechanism exploration of polysaccharides from Dendrobium officinale on unilateral ureteral obstruction operation-induced renal fibrosis based on improving oxidative stress injury mediated by AhR/NOX4 pathway. Int J Biol Macromol 2023; 253:126920. [PMID: 37717864 DOI: 10.1016/j.ijbiomac.2023.126920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Dendrobium officinale polysaccharides (DOP) has been reported to possess remarkable effects on improving renal function, oxidative stress damage and fibrotic diseases. However, the role and mechanism of DOP in preventing and treating renal fibrosis remain unclear. The purpose of this paper was to explore the therapeutic effects and underlying mechanisms of DOP on renal fibrosis. Firstly, renal fibrosis model was induced by unilateral ureteral obstruction operation (UUO) in male BALB/c mice. Subsequently, the anti-renal fibrosis effect of DOP was evaluated. It turned out that DOP significantly attenuated UUO induced renal fibrosis. The beneficial effects of DOP on renal fibrosis were concretely manifested in the relief of clinical symptoms, improvement of renal function, reduction of extracellular matrix collagen aggregation, attenuation of structural damage and inflammation, and decrement of profibrotic factors secretion. Meanwhile, DOP could also alleviate oxidative stress injury and inhibit the AhR/NOX4 pathway proteins expression. Furthermore, multivariate statistical analysis, AhR interference and overexpression experiments showed that the effect of DOP on alleviating renal fibrosis was closely related to the improvement of oxidative stress injury mediated by the AhR/NOX4 pathway. Overall, the data in the present paper indicated that DOP could alleviate renal fibrosis through improving AhR/NOX4 mediated oxidative stress injury.
Collapse
Affiliation(s)
- Yingying Shi
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Li Zhou
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, PR China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Xu Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Qianghua Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Hailun Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, PR China.
| | - Song Huang
- School of Pharmaceutical Science, and Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China.
| |
Collapse
|
8
|
Xu L, Zuo SM, Liu M, Wang T, Li Z, Yun YH, Zhang W. Integrated Analysis of Metabolomics Combined with Network Pharmacology and Molecular Docking Reveals the Effects of Processing on Metabolites of Dendrobium officinale. Metabolites 2023; 13:886. [PMID: 37623830 PMCID: PMC10456568 DOI: 10.3390/metabo13080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Dendrobium officinale (D. officinale) is a precious medicinal species of Dendrobium Orchidaceae, and the product obtained by hot processing is called "Fengdou". At present, the research on the processing quality of D. officinale mainly focuses on the chemical composition indicators such as polysaccharides and flavonoids content. However, the changes in metabolites during D. officinale processing are still unclear. In this study, the process was divided into two stages and three important conditions including fresh stems, semiproducts and "Fengdou" products. To investigate the effect of processing on metabolites of D. officinale in different processing stages, an approach of combining metabolomics with network pharmacology and molecular docking was employed. Through UPLC-MS/MS analysis, a total of 628 metabolites were detected, and 109 of them were identified as differential metabolites (VIP ≥ 1, |log2 (FC)| ≥ 1). Next, the differential metabolites were analyzed using the network pharmacology method, resulting in the selection of 29 differential metabolites as they have a potential pharmacological activity. Combining seven diseases, 14 key metabolites and nine important targets were screened by constructing a metabolite-target-disease network. The results showed that seven metabolites with potential anticoagulant, hypoglycemic and tumor-inhibiting activities increased in relative abundance in the "Fengdou" product. Molecular docking results indicated that seven metabolites may act on five important targets. In general, processing can increase the content of some active metabolites of D. officinale and improve its medicinal quality to a certain extent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Huan Yun
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.X.)
| | | |
Collapse
|
9
|
Li PY, Li L, Wang YZ. Traditional uses, chemical compositions and pharmacological activities of Dendrobium: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116382. [PMID: 36948262 DOI: 10.1016/j.jep.2023.116382] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium is a kind of medicine food homology plant. Dendrobium has long been used to strengthen "Yin" and tonify five viscera. AIM OF THIS REVIEW This paper presents a systematic review of the folk usage, chemical composition and pharmacological activity of Dendrobium, aiming to provide a reference for subsequent in-depth understanding and better exploitation of health food, medicine, and natural products. MATERIALS AND METHODS Available information about the genus Dendrobium was collected via Web of Science, PubMed, Science Direct, Scopus, APA-Psy Articles, Google Scholar, Connected Papers, Springer Search, and KNCI. The keywords for this article are Dendrobium, traditional use, chemical diversity and pharmacological activity. Use the "Dictionary of Chinese Ethnic Medicine" to provide 23 kinds of Dendrobium with medicinal value, the Latin name of Dendrobium is verified by the Flora of China (www.iplant.cn), and its species distribution and related information are collected. RESULTS There are 78 species of Dendrobium in China, 14 of which are endemic to China. At present, 450 compounds including sesquiterpenoids, lignans compounds, phenolic compounds, phenanthrene compounds, bibenzyls, polysaccharides and flavonoids have been isolated and identified from at least 50 species of Dendrobium. Among them, bibenzyls and polysaccharides are the main active components, phenolics and lignans are widely distributed, sesquiterpenes are the most common chemical constituents in genus Dendrobium plants. The most popular research objects are Dendrobium officinale and Dendrobium huoshanense. CONCLUSIONS Based on traditional folk uses, chemical composition and pharmacological studies, Dendrobium is considered a promising medicinal and edible plant with multiple pharmacological activities. In addition, a large number of clinical applications and further studies on single chemical components based on the diversity of chemical structures should be conducted, which will lay the foundation for the scientific utilization of genus Dendrobium.
Collapse
Affiliation(s)
- Pei-Yuan Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China; College of Biological Resources and Environmental Sciences of Hunan Province, Jishou University, Jishou, 416000, China
| | - Li Li
- College of Biological Resources and Environmental Sciences of Hunan Province, Jishou University, Jishou, 416000, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| |
Collapse
|
10
|
Okoro NO, Odiba AS, Yu Q, He B, Liao G, Jin C, Fang W, Wang B. Polysaccharides Extracted from Dendrobium officinale Grown in Different Environments Elicit Varying Health Benefits in Caenorhabditis elegans. Nutrients 2023; 15:2641. [PMID: 37375545 DOI: 10.3390/nu15122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Dendrobium officinale is one of the most widely used medicinal herbs, especially in Asia. In recent times, the polysaccharide content of D. officinale has garnered attention due to the numerous reports of its medicinal properties, such as anticancer, antioxidant, anti-diabetic, hepatoprotective, neuroprotective, and anti-aging activities. However, few reports of its anti-aging potential are available. Due to high demand, the wild D. officinale is scarce; hence, alternative cultivation methods are being employed. In this study, we used the Caenorhabditis elegans model to investigate the anti-aging potential of polysaccharides extracted from D. officinale (DOP) grown in three different environments; tree (TR), greenhouse (GH), and rock (RK). Our findings showed that at 1000 µg/mL, GH-DOP optimally extended the mean lifespan by 14% and the maximum lifespan by 25% (p < 0.0001). TR-DOP and RK-DOP did not extend their lifespan at any of the concentrations tested. We further showed that 2000 µg/mL TR-DOP, GH-DOP, or RK-DOP all enhanced resistance to H2O2-induced stress (p > 0.05, p < 0.01, and p < 0.01, respectively). In contrast, only RK-DOP exhibited resistance (p < 0.01) to thermal stress. Overall, DOP from the three sources all increased HSP-4::GFP levels, indicating a boost in the ability of the worms to respond to ER-related stress. Similarly, DOP from all three sources decreased α-synuclein aggregation; however, only GH-DOP delayed β-amyloid-induced paralysis (p < 0.0001). Our findings provide useful information on the health benefits of DOP and also provide clues on the best practices for cultivating D. officinale for maximum medicinal applications.
Collapse
Affiliation(s)
- Nkwachukwu Oziamara Okoro
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Yu
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin He
- School of Agriculture and Engineering, Guangxi Vocational and Technical College, Nanning 530226, China
| | - Guiyan Liao
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
11
|
Rao D, Zhao R, Hu Y, Li H, Chun Z, Zheng S. Revealing of Intracellular Antioxidants in Dendrobium nobile by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Metabolites 2023; 13:702. [PMID: 37367860 DOI: 10.3390/metabo13060702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The medicinal plant Dendrobium nobile is an important natural antioxidant resource. To reveal the antioxidants of D. nobile, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed for metabolic analysis. The H2O2-induced oxidative damage was used in human embryonic kidney 293T (H293T) cells to assess intracellular antioxidant activities. Cells incubated with flower and fruit extracts showed better cell survival, lower levels of reactive oxygen species (ROS), and higher catalase and superoxide dismutase activities than those incubated with root, stem, and leaf extracts (p < 0.01). A total of 13 compounds were newly identified as intracellular antioxidants by association analysis, including coniferin, galactinol, trehalose, beta-D-lactose, trigonelline, nicotinamide-N-oxide, shikimic acid, 5'-deoxy-5'-(methylthio)adenosine, salicylic acid, isorhamnetin-3-O-neohespeidoside, methylhesperidin, 4-hydroxybenzoic acid, and cis-aconitic acid (R2 > 0.8, Log2FC > 1, distribution > 0.1%, and p < 0.01). They showed lower molecular weight and higher polarity, compared to previously identified in vitro antioxidants in D. nobile (p < 0.01). The credibility of HPLC-MS/MS relative quantification was verified by common methods. In conclusion, some saccharides and phenols with low molecular weight and high polarity helped protect H293T cells from oxidative damage by increasing the activities of intracellular antioxidant enzymes and reducing intracellular ROS levels. The results enriched the database of safe and effective intracellular antioxidants in medicinal plants.
Collapse
Affiliation(s)
- Dan Rao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Ruoxi Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yadong Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongjie Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Ze Chun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Xiong'an Institute of Innovation, Chinese Academy of Sciences, Baoding 071000, China
| | - Shigang Zheng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
12
|
Yang J, Kuang MT, Yang L, Huang W, Hu JM. Modern interpretation of the traditional application of Shihu - A comprehensive review on phytochemistry and pharmacology progress of Dendrobium officinale. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115912. [PMID: 36351476 DOI: 10.1016/j.jep.2022.115912] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) "Shihu" has a long history of medicinal use in China from some species of Dendrobium. D. officinale is a major source of "Shihu" and is widely cultivated in south of China and listed separately as "Tiepi Shihu" by the Chinese Pharmacopoeia in now time. Traditionally, D. officinale has been widely used in daily health care and the treatment of diabetes and gastrointestinal diseases. AIM OF THIS REVIEW In order to better develop and utilize D. officinale, we conducted this systematic review of previous studies, showed clear structure of all isolates from D. officinale together with pharmacological progress, hoping to provide references for further research and utilization. In addition, specific display of the chemical components and the research progress of related activities can help to better understand the traditional records and modern pharmaceutical applications of the plant medicine. MATERIALS AND METHODS Information on phytochemistry and pharmacological studies of D. officinale was collected from various scientific databases including Web of Science, SciFinder, ACS, Springer, Scopus, PubMed, ScienceDirect, Google Scholar and CNKI. RESULTS More than 180 compounds isolated from D. officinale, including bibenzyls, phenols, phenylpropanoids, lignans, flavonoids and polysaccharides are listed in this review. Furthermore, modern pharmacological researches such as hypoglycemia, immune regulation, antioxidant, cardiovascular regulation and gastrointestinal protection are summarized. CONCLUSION Based on the summary of the research work of D. officinale, we systematically show the chemical composition of the plant, and concluded the relationship of those composition with plant habitat together with the relationship between the structure of chemical components and pharmacological activity. Moreover, we suggest that some of small molecule compounds could also be quality control of D. officinale besides polysaccharides.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Meng-Ting Kuang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Science, Beijing, 100049, China.
| |
Collapse
|
13
|
Peng D, Tian W, An M, Chen Y, Zeng W, Zhu S, Li P, Du B. Characterization of antidiabetic effects of Dendrobium officinale derivatives in a mouse model of type 2 diabetes mellitus. Food Chem 2023; 399:133974. [DOI: 10.1016/j.foodchem.2022.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
|
14
|
Bioactivities and Mechanism of Actions of Dendrobium officinale: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6293355. [PMID: 36160715 PMCID: PMC9507758 DOI: 10.1155/2022/6293355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Dendrobium officinale has a long history of being consumed as a functional food and medicinal herb for preventing and managing diseases. The phytochemical studies revealed that Dendrobium officinale contained abundant bioactive compounds, such as bibenzyls, polysaccharides, flavonoids, and alkaloids. The experimental studies showed that Dendrobium officinale and its bioactive compounds exerted multiple biological properties like antioxidant, anti-inflammatory, and immune-regulatory activities and showed various health benefits like anticancer, antidiabetes, cardiovascular protective, gastrointestinal modulatory, hepatoprotective, lung protective, and neuroprotective effects. In this review, we summarize the phytochemical studies, bioactivities, and the mechanism of actions of Dendrobium officinale, and the safety and current challenges are also discussed, which might provide new perspectives for its development of drug and functional food as well as clinical applications.
Collapse
|
15
|
Prata MF, de Carvalho FMA, Gonçalves‐Júnior WD, Santos TS, Valois RBV, Borges AFS, Guimarães AO, Araújo AAS, Pereira‐Filho RN, Santini A, Cardoso JC, Severino P, Padilha FF, Souto EB, de Albuquerque‐Júnior RLC. Hypolipidemic and anti‐obesity effects of hydroalcoholic extract of Brazilian red propolis in a rodent model of dyslipidemia. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marcelle F. Prata
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- University of Tiradentes (Unit), Postgraduate Program in Health and Environment, Tiradentes University Aracaju Sergipe 49032 490 Brazil
| | - Felipe M. A. de Carvalho
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- University of Tiradentes (Unit), Postgraduate Program in Health and Environment, Tiradentes University Aracaju Sergipe 49032 490 Brazil
| | - Wilson D. Gonçalves‐Júnior
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- University of Tiradentes (Unit), Postgraduate Program in Health and Environment, Tiradentes University Aracaju Sergipe 49032 490 Brazil
| | - Tarsizio S. Santos
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- University of Tiradentes (Unit), Postgraduate Program in Health and Environment, Tiradentes University Aracaju Sergipe 49032 490 Brazil
| | - Rafael B. V. Valois
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
| | - Amanda F. S. Borges
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
| | - Adriana O. Guimarães
- University of Tiradentes (Unit), Postgraduate Program in Health and Environment, Tiradentes University Aracaju Sergipe 49032 490 Brazil
| | - Adriano A. S. Araújo
- Department of Pharmaceutical Sciences Federal University of Sergipe São Cristóvão Sergipe 49000 100 Brazil
| | - Rose N. Pereira‐Filho
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
| | - Antonello Santini
- Department of Pharmacy University of Napoli Federico II Via D. Montesano 49 Napoli 80131 Italy
| | - Juliana C. Cardoso
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- University of Tiradentes (Unit), Biotechnological Postgraduate Program Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
| | - Patricia Severino
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- University of Tiradentes (Unit), Biotechnological Postgraduate Program Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- Tiradentes Institute 150 Mt Vernon St Dorchester Massachusetts 02125 United States
- Center for Biomedical Engineering Department of Medicine Brigham and Women& Hospital, Harvard Medical School 65 Landsdowne Street Cambridge Massachusetts 02139 United States
| | - Francine F. Padilha
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- University of Tiradentes (Unit), Postgraduate Program in Health and Environment, Tiradentes University Aracaju Sergipe 49032 490 Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 Porto 4050–313 Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy University of Porto Rua de Jorge Viterbo Ferreira, 228 Porto 4050–313 Portugal
| | - Ricardo L. C. de Albuquerque‐Júnior
- Institute of Technology and Research (ITP) Nanomedicine and Nanotechnology Laboratory (LNMed) Av. Murilo Dantas, 300 Aracaju 49010–390 Brazil
- University of Tiradentes (Unit), Postgraduate Program in Health and Environment, Tiradentes University Aracaju Sergipe 49032 490 Brazil
| |
Collapse
|
16
|
Yuan Y, Zuo J, Zhang H, Zu M, Yu M, Liu S. Transcriptome and metabolome profiling unveil the accumulation of flavonoids in Dendrobium officinale. Genomics 2022; 114:110324. [PMID: 35247586 DOI: 10.1016/j.ygeno.2022.110324] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 01/14/2023]
Abstract
Dendrobium officinale is a Chinese herbal medicine with a long history of use in China. Flavonoids are known to be an important secondary metabolite in Dendrobium officinale, but very little is known about their molecular regulation mechanism in D. officinale. In this study, we collected one to four years old D. officinale stems for the purpose of RNA-sequencing and mass spectrometry data collection. The results showed that metabolome analysis detected 124 different flavonoid metabolites of which flavonol metabolites were significantly increased in biennial samples. In the transcriptome analysis, 30 different genes involved in the synthesis of flavonoid were identified. The key genes FLS (LOC110101392, LOC110107557, LOC110114894) that regulate the synthesis of flavonols are highly expressed in biennial samples. The present study contributes a new insight into the molecular mechanism of flavonoid accumulation in D. officinale.
Collapse
Affiliation(s)
- Yingdan Yuan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Jiajia Zuo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hanyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Mengting Zu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Maoyun Yu
- Anhui Tongjisheng Biotechnology Co., Ltd, Lu'an 237000, China.
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Dong X, Zhou M, Li Y, Li Y, Ji H, Hu Q. Cardiovascular Protective Effects of Plant Polysaccharides: A Review. Front Pharmacol 2021; 12:783641. [PMID: 34867415 PMCID: PMC8639026 DOI: 10.3389/fphar.2021.783641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular disease is a kind of heart, brain, and blood vessel injury disease by the interaction of various pathological factors. The pathogenesis of cardiovascular disease is complex with various risk factors, including abnormally elevated blood pressure, glucose, and lipid metabolism disorders, atherosclerosis, thrombosis, etc. Plant polysaccharides are a special class of natural products derived from plant resources, which have the characteristics of wide sources, diverse biological activities, and low toxicity or side effects. Many studies have shown that plant polysaccharides improve cardiovascular diseases through various mechanisms such as anti-oxidative stress, restoring the metabolism of biological macromolecules, regulating the apoptosis cascade to reduce cell apoptosis, and inhibiting inflammatory signal pathways to alleviate inflammation. This article reviews the pharmacological effects and protective mechanisms of some plant polysaccharides in modulating the cardiovascular system, which is beneficial for developing more effective drugs with low side effects for management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xinli Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengze Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yehong Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuxin Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Extraction, characterization and antioxidant activities of an acidic polysaccharide from Dendrobium devonianum. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Chen W, Lu J, Zhang J, Wu J, Yu L, Qin L, Zhu B. Traditional Uses, Phytochemistry, Pharmacology, and Quality Control of Dendrobium officinale Kimura et. Migo. Front Pharmacol 2021; 12:726528. [PMID: 34421620 PMCID: PMC8377736 DOI: 10.3389/fphar.2021.726528] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Dendrobium officinale, a well-known plant used as a medicinal and food homologous product, has been reported to contain various bioactive components, such as polysaccharides, bibenzyls, phenanthrenes, and flavonoids. It is also widely used as a traditional medicine to strengthen “Yin”, nourish heart, tonify five viscera, remove arthralgia, relieve fatigue, thicken stomach, lighten body, and prolong life span. These traditional applications are in consistent with modern pharmacological studies, which have demonstrated that D. officinale exhibits various biological functions, such as cardioprotective, anti-tumor, gastrointestinal protective, anti-diabetes, immunomodulatory, anti-aging, and anti-osteoporosis effects. In this review, we summarize the research progress of D. officinale from November 2016 to May 2021 and aim to better understand the botany, traditional use, phytochemistry, and pharmacology of D. officinale, as well as its quality control and safety. This work presents the development status of D. officinale, analyzes gaps in the current research on D. officinale, and raises the corresponding solutions to provide references and potential directions for further studies of D. officinale.
Collapse
Affiliation(s)
- Wenhua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiemiao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahao Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lilong Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
Chen WH, Wu JJ, Li XF, Lu JM, Wu W, Sun YQ, Zhu B, Qin LP. Isolation, structural properties, bioactivities of polysaccharides from Dendrobium officinale Kimura et. Migo: A review. Int J Biol Macromol 2021; 184:1000-1013. [PMID: 34197847 DOI: 10.1016/j.ijbiomac.2021.06.156] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is used as herbal medicine and new food resource in China, which is nontoxic and harmless, and can be used as common food. Polysaccharide as one of the main bioactive components in D. officinale, mainly composed of glucose and mannose (Manp: Glcp = 2.01:1.00-8.82:1.00), along with galactose, xylose, arabinose, and rhamnose in different molar ratios and types of glycosidic bonds. Polysaccharides of D. officinale exhibit a variety of biological effects, including immunomodulatory, anti-tumor, gastro-protective, hypoglycemic, anti-inflammatory, hepatoprotective, and vasodilating effects. This paper presents the extraction, purification, structural characteristics, bioactivities, structure-activity relationships and analyzes gaps in the current research on D. officinale polysaccharides. In addition, based on in vitro and in vivo experiments, the possible mechanisms of bioactivities of D. officinale polysaccharides were summarized. We hope that this work may provide helpful references and promising directions for further study and development of D. officinale polysaccharides.
Collapse
Affiliation(s)
- Wen-Hua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jian-Jun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xue-Fei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie-Miao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Wei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yi-Qi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
21
|
Guo L, Qi J, Du D, Liu Y, Jiang X. Current advances of Dendrobium officinale polysaccharides in dermatology: a literature review. PHARMACEUTICAL BIOLOGY 2021; 58:664-673. [PMID: 32657196 PMCID: PMC7470034 DOI: 10.1080/13880209.2020.1787470] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Context Dendrobium officinale Kimura et Migo (Orchidaceae) is a naturally occurring precious traditional Chinese medicine (TCM) originally used in treating yin-deficiency diseases. The main active substances of Dendrobium officinale are polysaccharides (DOP). Recent findings highlighted the potential of DOP as a promising natural material for medical use with a diversity of pharmaceutical effects. Objective In this review, we provide a systematic discussion of the current development and potential pharmacological effects of Dendrobium officinale polysaccharides in dermatology. Methods English and Chinese literature from 1987 to 2019 indexed in databases including PubMed, PubMed Central, Web of Science, ISI, Scopus and CNKI (Chinese) was used. Dendrobium officinale, Dendrobium officinale polysaccharides, phytochemistry, chemical constituents, biological activities, and pharmacological activities were used as the key words. Results Dendrobium officinale polysaccharides have been found to possess hair growth promoting, skin moisturising and antioxidant effects, which are highly valued by doctors and cosmetic engineers. We highlighted advances in moisturising and antioxidant properties from in vivo and in vitro studies. Dendrobium officinale polysaccharides exhibited strong antioxidant effects by decreasing free radicals, enhancing antioxidant system, inhibiting nuclear factor-kappa B and down-regulating inflammatory response. Conclusions Our review is a foundation to inspire further research to facilitate the application of Dendrobium officinale polysaccharides in dermatology and promote active research of the use of TCM in dermatology.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine, Animal Research Institute, Sichuan University, Chengdu, Sichuan, China.,Department of Dermatology, The First People's Hospital of Zigong, Zigong, Sichuan, China.,Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Anesthesiology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Zhao Y, Wang Y, Zhang M, Gao Y, Yan Z. Protective Effects of Ginsenosides (20R)-Rg3 on H 2 O 2 -Induced Myocardial Cell Injury by Activating Keap-1/Nrf2/HO-1 Signaling Pathway. Chem Biodivers 2021; 18:e2001007. [PMID: 33624427 DOI: 10.1002/cbdv.202001007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
Ginsenosides (20S)-Rg3 and (20R)-Rg3 are famous rare ginsenosides from red ginseng, and their configurations in C-20 are different. This study aimed to investigate the protective mechanism of ginsenosides (20S)-Rg3 and (20R)-Rg3 on H2 O2 -induced H9C2 cells and compare their activity. The results showed that the ginsenosides (20S)-Rg3 and (20R)-Rg3 could increase the cell activity and the levels of GSH-Px, SOD and CAT, and decrease activities of LDH, MDA and ROS. Further studies showed that ginsenosides (20S)-Rg3 and (20R)-Rg3 could prevent oxidative stress injury of H9C2 cells by H2 O2 through the Keap-1/Nrf2/HO-1 pathway. But the ML385 counteracts these effects. Interestingly, among these results, ginsenoside (20R)-Rg3 was superior to (20S)-Rg3, indicating that ginsenoside (20R)-Rg3 have a stronger effect of antioxidative stress. This study reflected that ginsenoside (20R)-Rg3 could be used as a potential Nrf2 activator and a safe effective Chinese herbal monomer in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Min Zhang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Zhaowei Yan
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
23
|
Zeng J, Li D, Li Z, Zhang J, Zhao X. Dendrobium officinale Attenuates Myocardial Fibrosis via Inhibiting EMT Signaling Pathway in HFD/STZ-Induced Diabetic Mice. Biol Pharm Bull 2021; 43:864-872. [PMID: 32378562 DOI: 10.1248/bpb.b19-01073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibrosis is a major contributor for diabetic cardiomyopathy and Dendrobium officinale possessed therapeutic effects on hyperglycemia and diabetic cardiomyopathy. To further investigate the possible mechanisms of the Dendrobium officinale on diabetic myocardial fibrosis in mice. Water-soluble extracts of Dendrobium officinale (DOE) from dry stem was analyzed by HPLC and phenol-sulfuric acid method. Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ) (30 mg/kg) for 4 consecutive days after intragastric administration of a high-fat diet (HFD) for 2 weeks. The groups were as follows: control group, model group, DOE low, medium, high dose group (75, 150, 300 mg/kg) and Metformin positive group (125 mg/kg). The results showed that DOE dose-dependently lower serum insulin, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and grew the high-density lipoprotein cholesterol (HDL-C) after 12 weeks of daily administration with DOE. Hematoxylin-eosin staining and Sirius red staining showed obvious amelioration of cardiac injury and fibrosis. In addition, the result of immunoblot indicated that DOE increased the expression of peroxisome proliferator activated receptor-α (PPAR-α), phosphorylation of insulin receptor substrate 1 (p-IRS1) and E-cadherin and repressed the expression of transforming growth factor β1 (TGF-β1), phosphorylation of c-Jun N-terminal kinase (p-JNK), Twist, Snail1 and Vimentin. The present findings suggested that DOE ameliorated HFD/STZ-induced diabetic cardiomyopathy (DCM). The possible mechanism mainly associated with DOE accelerating lipid transport, inhibiting insulin resistant and suppressing fibrosis induced by epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Jie Zeng
- College of Pharmaceutical Sciences, Southwest University
| | - Dongning Li
- College of Pharmaceutical Sciences, Southwest University
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University
| | - Xiaoyan Zhao
- College of Pharmaceutical Sciences, Southwest University
| |
Collapse
|
24
|
Chen J, Wang L, Liang H, Jin X, Wan J, Liu F, Zhao K, Huang J, Tian M. Overexpression of DoUGP Enhanced Biomass and Stress Tolerance by Promoting Polysaccharide Accumulation in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2020; 11:533767. [PMID: 33312181 PMCID: PMC7703667 DOI: 10.3389/fpls.2020.533767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/07/2020] [Indexed: 05/28/2023]
Abstract
Uridine diphosphate glucose pyrophosphorylase (UDP-glucose pyrophosphorylase, UGPase), as one of the key enzymes in polysaccharide synthesis, plays important roles in the growth and development of plants. In this study, the DoUGP gene of Dendrobium officinale was overexpressed. The expression of DoUGP and genes playing roles in the same and other saccharide synthesis pathways was determined, and the total soluble polysaccharide was also tested in wild-type and transgenic seedlings. We also performed freezing and osmotic stress treatments to determine whether overexpression of DoUGP could influence stress resistance in transgenic seedlings. Results showed that mRNA expression levels of DoUGP and its metabolic upstream and downstream genes in the transgenic seedlings were increased compared to the expression of these genes in wild-type seedlings. Additionally, most CSLA genes involved in the biosynthesis of mannan polysaccharides were significantly upregulated. The total polysaccharide and mannose content of transgenic seedlings were increased compared to the content of wild type, and enhanced stress tolerance was found in the overexpressed seedlings compared to the wild type.
Collapse
Affiliation(s)
- Ji Chen
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Li Wang
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Huan Liang
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Xiaowan Jin
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Jian Wan
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Fan Liu
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Mengliang Tian
- Institute for New Rural Development, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
25
|
Zhang X, Zhao R, Zheng S, Chun Z, Hu Y. Dendrobium liquor eliminates free radicals and suppresses cellular proteins expression disorder to protect cells from oxidant damage. J Food Biochem 2020; 44:e13509. [PMID: 33025642 DOI: 10.1111/jfbc.13509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Dendrobium liquor obtained by soaking Dendrobium in Chinese liquor is considered as a health drink in China. Here, we found the pretreatment of extract of Dendrobium nobile Lindl. liquor (DNLE) attenuated the oxidative damage to cells caused by H2 O2 , while the abilities of DNLE of eliminating extracellular free radicals and promoting the activities of intracellular antioxidant enzymes were observed. Quantitative proteomics identified 375 differentially expressed proteins caused by H2 O2 treatment in 293T cells. However, only 12 differentially expressed proteins were found in DNLE-pretreated cells which under the same oxidative damage. This suggested that the pretreatment of DNLE could suppress the disorder of protein expressions caused by oxidative stress which could induce cell death. Besides, DNLE was helpful for avoiding the unfolded protein response (UPR) and cell cycle disorder caused by oxidative stress. Taken together, these results demonstrated that Dendrobium liquor could be a healthy herbal drink with antioxidant function. PRACTICAL APPLICATIONS: Dendrobium is used as an edible herb and a tonic food in traditional Chinese medicine. Dendrobium liquor obtained by soaking Dendrobium with Chinese liquor is also regarded as a nourishing health drink. However, there is rare research data on biological activity of Dendrobium liquor. Our current results demonstrated that the extract of Dendrobium nobile Lindl. liquor (DNLE) possessed the ability of eliminating free radicals in/out the human cells. More importantly, DNLE could help cells to resist the interference on cell life activities caused by oxidative stress. Since many evidences suggested that oxidative stress is linked to human disease and aging, and chemical antioxidant has some side effects on health, Dendrobium liquor can serve as a natural health drink with antioxidant function. Furthermore, the active ingredients in DNLE also possess the potential to be developed as natural antioxidant additive in food and cosmetics.
Collapse
Affiliation(s)
- Xueqin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxi Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shigang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ze Chun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yadong Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
26
|
Shi P, Geng Q, Chen L, Du T, Lin Y, Lai R, Meng F, Wu Z, Miao X, Yao H. Schisandra chinensis bee pollen's chemical profiles and protective effect against H 2O 2-induced apoptosis in H9c2 cardiomyocytes. BMC Complement Med Ther 2020; 20:274. [PMID: 32912207 PMCID: PMC7487998 DOI: 10.1186/s12906-020-03069-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background Schisandra chinensis (Turcz.) Baill bee pollen extract (SCBPE) is often used as a functional food in China due to its good antioxidant property. However, its chemical compositions and effects on H9c2 cardiomyocytes against H2O2-induced cell injury still lacks of reports thus far. This study aimed to characterize the main components of SCBPE and investigate its protective effects against H2O2-induced H9c2 cardiomyocyte injury. Methods The main components of SCBPE were analyzed via ultraperformance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UPLC–QTOF MS/MS). The three main nucleosides in SCBPE were quantitatively analyzed via ultraperformance liquid chromatography–diode array detection. Furthermore, the potential mechanism by which SCBPE exerts protective effects against H2O2-induced H9c2 cardiomyocyte injury was explored for the first time via cell survival rate measurements; cell morphological observation; myocardial superoxide dismutase (SOD) activity and malondialdehyde (MDA) and glutathione (GSH) level determination; flow cytometry; and quantitative polymerase chain reaction. Results Two carbohydrates, three nucleosides, and nine quinic acid nitrogen-containing derivatives in SCBPE were identified or tentatively characterized via UPLC–QTOF MS/MS. The nine quinic acid nitrogen-containing derivatives were first reported in bee pollen. The contents of uridine, guanosine, and adenosine were 2.4945 ± 0.0185, 0.1896 ± 0.0049, and 1.8418 ± 0.0157 μg/mg, respectively. Results of in vitro experiments showed that cell survival rate, myocardial SOD activity, and GSH level significantly increased and myocardial MDA level significantly decreased in SCBPE groups compared with those in H2O2 group. Cell morphology in SCBPE groups also markedly improved compared with that in H2O2 group. Results indicated that SCBPE protected H9c2 cardiomyocytes from H2O2-induced apoptosis by downregulating the mRNA expressions of Bax, cytochrome C, and caspase-3 and upregulating the Bcl-2 mRNA expression. Conclusions This study is the first to report that SCBPE could protect against oxidative stress injury and apoptosis in H2O2-injured H9c2 cells. Results indicated that the nucleosides and quinic acid nitrogen-containing derivatives could be the main substances that exert protective effects against H2O2-induced H9c2 cardiomyocyte injury.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianqian Geng
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lifu Chen
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyu Du
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Lin
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongcai Lai
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Meng
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Wu
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqing Miao
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
27
|
Dracocephalum moldavica L. Extracts Protect H9c2 Cardiomyocytes against H 2O 2-Induced Apoptosis and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8379358. [PMID: 32462021 PMCID: PMC7222556 DOI: 10.1155/2020/8379358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Materials and Methods The petroleum ether (petrol), dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butyl alcohol (n-BuOH) fractions were isolated from alcohol extracts of D. moldavica L. Total phenolic and flavonoid contents and in vitro antioxidant activities of different fractions were evaluated. H9c2 cells were then treated with D. moldavica L. extracts before challenging with H2O2. Cell viability was determined by colorimetric assay, and ELISA was used to measure the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD). Apoptosis levels and mitochondrial membrane potential were measured by flow cytometry. The expressions of cell apoptosis regulatory proteins caspase-3, Bax, and Bcl-2 were determined by western blotting. Results Our results demonstrated that the EtOAc fraction from D. moldavica L. ethanol extract, which is rich in phenolic and flavonoid active constituents, had the strongest free radical scavenging activity. Additionally, this fraction increased H2O2-induced reduction in cell viability, SOD activity, and mitochondrial membrane potential. It also reduced H2O2-induced elevation in ROS production, contents of LDH and MDA, and H9c2 apoptosis. We further found that the EtOAc fraction increased Bcl-2 expression, while it decreased caspase-3 and Bax expressions induced by H2O2 in H9c2 cells. Conclusions Our data revealed that the EtOAc fraction from D. moldavica L. ethanol extract ameliorates H2O2-induced cardiotoxicity via antiapoptotic and antioxidant mechanisms.
Collapse
|
28
|
Shu Z, Yang Y, Ding Z, Wang W, Zhong R, Xia T, Li W, Kuang H, Wang Y, Sun X. Structural characterization and cardioprotective activity of a novel polysaccharide from Fructus aurantii. Int J Biol Macromol 2020; 144:847-856. [DOI: 10.1016/j.ijbiomac.2019.09.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
|
29
|
Zhu Y, Yu J, Jiao C, Tong J, Zhang L, Chang Y, Sun W, Jin Q, Cai Y. Optimization of quercetin extraction method in Dendrobium officinale by response surface methodology. Heliyon 2019; 5:e02374. [PMID: 31517114 PMCID: PMC6732668 DOI: 10.1016/j.heliyon.2019.e02374] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/11/2019] [Accepted: 08/22/2019] [Indexed: 11/26/2022] Open
Abstract
Ultrasonic-assisted extraction of quercetin from Dendrobium officinale was optimized by response surface methodology (RSM) using high-performance liquid chromatography as a separative method. Based on single-factor experiments and two-level factorial analysis, the ethanol concentration, solid-to-liquid ratio and ultrasonic power were selected as significant response factors. The amount of quercetin that we extracted from Dendrobium officinale was 2.506-2.594 μg/g under the extraction conditions, which showed that optimization could improve the extration rate of quercetin from Dendrobium officinale. Quercetin was extracted and detected within 12 consecutive months after the germination of Dendrobium officinale by optimizing the extraction process to analyze the accumulation of quercetin. The UV-B exposure experiments showed that the Dendrobium officinale leaves have different responses to low- and high-dose UV light. The results showed that the quercetin content in Dendrobium officinale could be changed by UV-B radiation, and the response of distinct tissue parts to varying intensities of UV-B radiation was different.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Jin
- College of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yongping Cai
- College of Life Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| |
Collapse
|
30
|
Cao XY, Liu D, Bi RC, He YL, He Y, Liu JL. The protective effects of a novel polysaccharide from Lentinus edodes mycelia on islet β (INS-1) cells damaged by glucose and its transportation mechanism with human serum albumin. Int J Biol Macromol 2019; 134:344-353. [DOI: 10.1016/j.ijbiomac.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
|
31
|
Wang M, Wang R, Xie X, Sun G, Sun X. Araloside C protects H9c2 cardiomyoblasts against oxidative stress via the modulation of mitochondrial function. Biomed Pharmacother 2019; 117:109143. [PMID: 31387189 DOI: 10.1016/j.biopha.2019.109143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Araloside C (AsC) has potential cardioprotective properties. However, the underlying mechanism of AsC-mediated cardioprotection, especially the role of mitochondrial function, remains largely unknown. Here, we used H9c2 cardiomyocytes to study the cardioprotective mechanisms of AsC through H2O2-induced oxidative stress. Cell viability, lactate dehydrogenase release, mitochondrial functions and bioenergetics were evaluated. Western blot analysis was used to measure the protein expression levels of apoptosis and the phosphorylation of AMP-activated protein kinase (AMPK). Results revealed that AsC increased cell viability, improved mitochondrial membrane potential disruption, decreased mitochondrial reactive oxygen species level, elevated cellular ATP levels and alleviated impaired mitochondrial respiration in H2O2-induced H9c2 cardiomyoblasts injury. Furthermore, AsC modulated apoptosis-associated protein expression and AMPK pathway in H9c2 cells under oxidative stress. In conclusion, AsC potentially protects H9c2 cardiomyoblasts against oxidative stress by regulating mitochondrial function and AMPK activation. AsC may be an effective therapeutic agent for the prevention of oxidative stress in cardiac injury.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Ruiying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Xueheng Xie
- Harbin University of Commerce, Harbin, 150076, Heilongjiang, PR China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
32
|
Guan W, Liu Y, Liu Y, Wang Q, Ye HL, Cheng YG, Kuang HX, Jiang XC, Yang BY. Proteomics Research on the Protective Effect of Mangiferin on H9C2 Cell Injury Induced by H 2O 2. Molecules 2019; 24:molecules24101911. [PMID: 31109015 PMCID: PMC6572523 DOI: 10.3390/molecules24101911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide. Mangiferin is a natural glucosylxanthone with antioxidant and anti-inflammatory properties, which has been confirmed to protect cardiac cells from myocardial infarction and myocardial ischemia reperfusion injury (MIRI); however, the underlying mechanism is still unclear. As oxidative stress is a major pathogenesis of MIRI, an H9C2 cell injury induced by hydrogen peroxide (H2O2) was established to simulate MIRI in vitro. Herein, the protective effect of mangiferin against MIRI was evaluated and the isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics was applied to explore the underlying molecular mechanism. In this research, mangiferin markedly ameliorated the oxidative imbalance by increasing the antioxidative capacity of the H9C2 cell. Moreover, proteomics analysis revealed that mangiferin pretreatment brought twenty differently-expressed proteins back to normal, most of which were related to glucose and fatty acid metabolism. Glycolysis, citrate cycle, and fatty acid degradation pathways were highlighted by Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis. Western blot validation of six cardiac metabolism-related proteins were consistent with the proteomics analysis. Taken together, mangiferin protected the cardiomyocytes from MIRI by enhancing the antioxidant capacity and increasing the activities of glycolysis, citrate cycle, and fatty acid degradation pathways.
Collapse
Affiliation(s)
- Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150036, China.
| | - Hong-Liang Ye
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yan-Gang Cheng
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xi-Cheng Jiang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
33
|
Liu H, Fang C, Zhang T, Guo L, Ye Q. Molecular authentication and differentiation of Dendrobium species by rDNA ITS region sequence analysis. AMB Express 2019; 9:53. [PMID: 31004252 PMCID: PMC6474905 DOI: 10.1186/s13568-019-0767-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/23/2019] [Indexed: 11/16/2022] Open
Abstract
Owing to their significant medicinal and edible values, the natural Dendrobium species have underdone over-collection and habitat destruction, and cultivated species emerged for candidates. However, these Dendrobium plants are similar in shape to be easily confused, leading to extreme difficulties for identification based on their morphological and chemical features. In this study, the rDNA ITS region sequence analysis was developed for rapid and accurate identification of thirteen wild and cultivated Dendrobium species belonging to two sections Formosae and Chrysotoxae. By cloning and sequencing the rDNA ITS region genes from 13 Dendrobium species, the phylogenetic relationships among them were analyzed. Results showed that the variation of the ITS region, together with the lengths and Guanine and Cytosine contents of ITS, 5.8s rDNA, ITS1 and ITS2 sequences occurred in the tested Dendrobium species, and which from section Chrysotoxae was higher than that from section Formsae. Phylogenetic analysis based on neighbor-joining and maximum p-arsimony trees indicated that the Dendrobium species of sections Formosae and Chrysotoxae could be well divided into two groups. A majority of Dendrobium species exhibited distinctive ITS2 secondary structures, while for those with close genetic relationships were similar. Therefore, the ITS2 region sequence analysis is simple, quick, and highly reliable that can be used as an effective tool for molecular identification and classification, as well as the reconstruction of the phylogeny of wild and cultivated Dendrobium species belonging to different sections.
Collapse
|
34
|
Wu YY, Liang CY, Liu TT, Liang YM, Li SJ, Lu YY, Liang J, Yuan X, Li CJ, Hou SZ, Lai XP. Protective roles and mechanisms of polysaccharides from Dendrobium officinal on natural aging-induced premature ovarian failure. Biomed Pharmacother 2018; 101:953-960. [DOI: 10.1016/j.biopha.2018.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023] Open
|