1
|
Elseweidy MM, Asker ME, El-Zeiky RR, Elmaghraby AM, Elrashidy RA. Sitagliptin alleviates renal steatosis and endoplasmic reticulum stress in high fat diet-induced obese rats by targeting SREBP-1/CD36 signaling pathway. Eur J Pharmacol 2024; 977:176745. [PMID: 38880220 DOI: 10.1016/j.ejphar.2024.176745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
High fat diet (HFD) consumption can cause dysregulation of glucose and lipid metabolism, coupled with increased ectopic lipid deposition in renal tissue leading to steatosis and dysfunction. Sitagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor clinically used for type II diabetes therapy; however its effect on renal steatosis in obese state is still uncertain. Herein, obesity was induced by feeding male Wistar rats HFD for 18 weeks, thereafter received either drug vehicle, or sitagliptin (10 mg/kg, PO) along with HFD for further 6 weeks and compared with age-matched rats receiving normal chow diet (NCD). After 24 weeks, serum and kidneys were collected for histological and biochemical assessments. Compared to NCD-fed group, HFD-fed rats displayed marked weight gain, increased fat mass, insulin resistance, dyslipidemia, impaired kidney functions and renal histological alterations. Sitagliptin effectively ameliorated obesity and related metabolic perturbations and improved kidney architecture and function. There were increased levels of triglycerides and cluster of differentiation 36 (CD36) in kidneys of obese rats, that were lowered by sitagliptin therapy. Sitagliptin significantly repressed the expression of lipogenesis genes, while up-regulated genes involved in mitochondrial biogenesis and fatty acid oxidation in kidneys of HFD-fed rats. Sitagliptin was found to induce down-regulation of endoplasmic reticulum (ER) stress and apoptotic markers in kidneys of obese rats. These findings together may emphasize a novel concept that sitagliptin can be an effective therapeutic approach for halting obesity-related renal steatosis and CKD.
Collapse
Affiliation(s)
- Mohammed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mervat E Asker
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Reham R El-Zeiky
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa M Elmaghraby
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
Abd-Eldayem AM, Makram SM, Messiha BAS, Abd-Elhafeez HH, Abdel-Reheim MA. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax. Sci Rep 2024; 14:7434. [PMID: 38548778 PMCID: PMC10978894 DOI: 10.1038/s41598-024-57300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.
Collapse
Affiliation(s)
- Ahmed M Abd-Eldayem
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
- Department of Pharmacology, Faculty of Medicine, Merit University, Sohâg, Egypt.
| | | | | | - Hanan H Abd-Elhafeez
- Department of Cell and Tissue, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
3
|
Suleimani YA, Maskari RA, Ali BH, Ali H, Manoj P, Al-Khamiyasi A, Abdelrahman AM. Nephroprotective effects of diminazene on doxorubicin-induced acute kidney injury in rats. Toxicol Rep 2023; 11:460-468. [PMID: 38053572 PMCID: PMC10693989 DOI: 10.1016/j.toxrep.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
This study aimed to investigate the potential protective effects of diminazene, an activator of angiotensin II converting enzyme (ACE2), on kidney function and structure in rats with acute kidney injury (AKI) induced by the anticancer drug doxorubicin (DOX). The impact of diminazene was compared to that of two other drugs: the ACE inhibitor lisinopril and the angiotensin II type 1 (AT1) receptor blocker valsartan. Rats were subjected to a single intraperitoneal injection of DOX (13.5 mg/kg) on the 5th day, either alone or in combination with diminazene (15 mg/kg/day), lisinopril (10 mg/kg/day), or valsartan (30 mg/kg/day) for 8 consecutive days. Various markers related to kidney function, oxidative stress, and inflammation were measured in plasma and urine. Additionally, kidney tissues were assessed histopathologically. DOX-induced nephrotoxicity was confirmed by elevated levels of plasma urea, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL). DOX also led to increased urinary N-acetyl-β-D-glucosaminidase (NAG) activity and decreased creatinine clearance, albumin levels, and osmolality. Moreover, DOX caused a reduction in renal oxidative stress markers, including superoxide dismutase (SOD), glutathione reductase (GR), and catalase activities, while increasing malondialdehyde (MDA) levels. It also raised plasma inflammatory markers, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β). Concurrently administering diminazene significantly mitigated these DOX-induced changes, including histopathological alterations like renal tubule necrosis, tubular casts, shrunken glomeruli, and increased renal fibrosis. Similar protective effects were observed with lisinopril and valsartan. These protective effects, at least in part, appear to result from the anti-inflammatory and antioxidant properties of these drugs. In summary, this study suggests that the administration of diminazene, lisinopril, or valsartan had comparable effects in ameliorating the biochemical and histopathological aspects of DOX-induced acute kidney injury in rats.
Collapse
Affiliation(s)
- Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Raya Al Maskari
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Ali Al-Khamiyasi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Aly M. Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| |
Collapse
|
4
|
Afkhami Fard L, Malekinejad H, Esmaeilzadeh Z, Jafari A, Khezri MR, Ghasemnejad-Berenji M. Protective effects of sitagliptin on methotrexate-induced nephrotoxicity in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:22-35. [PMID: 37010136 DOI: 10.1080/26896583.2023.2186683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methotrexate (MTX), a cytotoxic chemotherapeutic and immunosuppressant agent, is widely used in the treatment of autoimmune diseases and different types of cancers. However, its use has been limited by its life-threatening side effects, including nephrotoxicity and hepatotoxicity. The purpose of this study was to investigate the protective effect of sitagliptin on methotrexate (MTX)-induced nephrotoxicity in rats. Twenty-four rats were divided into four groups: control group, which received the vehicle for 6 days; MTX group, which received a single dose of MTX, followed by five daily doses of vehicle dosing; MTX + sitagliptin group, which received a single dose of MTX 1 h after the first sitagliptin treatment and six daily doses of sitagliptin; and sitagliptin group, which received sitagliptin for 6 days. Both MTX and sitagliptin were given as intraperitoneal injections at a dose of 20 mg/kg body weight. All rats were euthanized on the seventh day of the study. Kidney tissues were harvested and blood samples were collected. Serum levels of blood urea nitrogen (BUN) and creatinine were evaluated. Furthermore, catalase, glutathione peroxidase, superoxide dismutase activities, and malondialdehyde (MDA) levels were determined in kidney tissue. In addition, histopathological analysis was conducted. Histopathological evaluation showed that MTX-induced marked kidney injury. Biochemical analysis revealed a significant increase of BUN and creatinine in the serum of the MTX group. Furthermore, oxidative stress and depressed antioxidant system of the kidney tissues were evident in the MTX group. Sitagliptin did not affect these endpoints when administered alone, but it significantly attenuated the observed MTX-induced effects. These results suggest that sitagliptin exhibits potent anti-oxidant properties against the nephrotoxicity induced by MTX in rats.
Collapse
Affiliation(s)
- Leila Afkhami Fard
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Ráduly Z, Szabó A, Mézes M, Balatoni I, Price RG, Dockrell ME, Pócsi I, Csernoch L. New perspectives in application of kidney biomarkers in mycotoxin induced nephrotoxicity, with a particular focus on domestic pigs. Front Microbiol 2023; 14:1085818. [PMID: 37125184 PMCID: PMC10140568 DOI: 10.3389/fmicb.2023.1085818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Zsolt Ráduly,
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - Miklós Mézes
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
- Department of Food Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Robert G. Price
- Department of Nutrition, Franklin-Wilkins Building, King’s College London, London, United Kingdom
| | - Mark E. Dockrell
- SWT Institute of Renal Research, London, United Kingdom
- Department of Molecular and Clinical Sciences, St. George’s University, London, United Kingdom
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Zhu L, Yu T, Yang L, Liu T, Song Z, Liu S, Zhang D, Tang C. Polysaccharide from Cordyceps cicadae inhibit mitochondrial apoptosis to ameliorate drug-induced kidney injury via Bax/Bcl-2/Caspase-3 pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Sohaim S, Mohammed S, Amin E, Ali HM, Abdelbakky M. Date palm seed extract and herbal mixture mitigate gentamicin-induced renal injury in mice: Role of Protease-activated receptors (PARs) and Retinoid X receptor alpha (RXR-α). JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Gentamicin (Gen) causes renal toxicity by inhibiting protein synthesis in kidney cells, causing proximal tubule cell necrosis and renal failure. Herein, we examined the nephroprotective effect of date palm seed extract (DPSE) and one herbal mixture (HM; composed of Tribulus terrestris, Aerva lanata, Andrographis paniculata, and Raphanus sativus) against Gen-induced renal toxicity in mice with special reference to the possible role of retinoid X receptor alpha (RXR-α) and protease-activated receptor 2 (PAR-2) in this effect. Methods: Thirty-two male Balb/c mice divided randomly into four groups were either treated with saline, Gen (225 mg/kg/i.p., daily from day 3 to day 10), Gen (225 mg/kg i.p.) daily from day 3 to day 10 and DPSE (100 mg/kg/p.o.) daily for 10 days, or Gen (225 mg/kg i.p.) daily from day 3 to day 10 and HM (100 mg/kg/p.o., daily for 10 days). Mice were sacrificed 24 hours after the last dose administration, and kidney tissues were dissected out, weighed, and subjected to histological, immunofluorescence, and biochemical assays. Results: The Gen-induced renal toxicity group demonstrated a significant decrease in RXR-α and a significant increase in PAR-2 protein expression. Treatment with DPSE or HM significantly improved Gen-induced effects on serum creatinine, blood urea nitrogen (BUN), white blood cells (WBCs), platelets, RXR-α extracellular matrix deposition, and PAR-2. Conclusion: The present study stated the nephroprotective effects of DPSE and HM and revealed, for the first time, the involvement of retinoid receptors and PAR-2 in Gen-induced renal toxicity as well as in the protective effects of the two tested natural products.
Collapse
Affiliation(s)
- Suliman Sohaim
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Salman Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hussein M Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed Abdelbakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| |
Collapse
|
8
|
Nirwan N, Vohora D. Linagliptin in Combination With Metformin Ameliorates Diabetic Osteoporosis Through Modulating BMP-2 and Sclerostin in the High-Fat Diet Fed C57BL/6 Mice. Front Endocrinol (Lausanne) 2022; 13:944323. [PMID: 35928902 PMCID: PMC9343600 DOI: 10.3389/fendo.2022.944323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic osteoporosis is a poorly managed serious skeletal complication, characterized by high fracture risk, increased bone resorption, reduced bone formation, and disrupted bone architecture. There is a need to investigate drugs that can improve bone health along with managing glycemic control. DPP-4 inhibitors and metformin have proven benefits in improving bone health. Here, we investigated the effects of linagliptin, a DPP inhibitor, and metformin alone and in combination to treat diabetic osteoporosis in high-fat-fed mice. METHODS C57BL/6 mice were kept on the high-fat diet (HFD) for 22 weeks to induce diabetic osteoporosis. Linagliptin (10mg/Kg), metformin (150mg/Kg), and their combination were orally administered to the diabetic mice from the 18th-22nd week. Femur and tibial bone microarchitecture together with bone mineral density (BMD) were evaluated using µCT and histopathological changes were assessed. Further, bone turnover biomarkers namely bone morphogenetic protein-2 (BMP-2), sclerostin, tartrate-resistant acid phosphatase (TRAP), osteocalcin, alkaline phosphatase (ALP), calcium, and pro-inflammatory cytokines were assessed. Additionally, metabolic parameters including body weight, fasting blood glucose (FBG), glucose & insulin tolerance, lipids profile, and leptin were measured. RESULTS HFD feeding resulted in impaired bone microarchitecture, reduced BMD, distorted bone histology, and altered bone turnover biomarkers as indicated by the significant reduction in bone ALP, BMP-2, osteocalcin, and an increase in sclerostin, TRAP, and serum calcium. Interestingly, treatment with linagliptin and its combination with metformin significantly reverted the impaired bone architecture, BMD, and positively modulated bone turnover biomarkers, while metformin alone did not exhibit any significant improvement. Further, HFD induced diabetes and metabolic abnormalities (including an increase in body weight, FBG, impaired glucose and insulin tolerance, leptin, triglycerides, cholesterol), and pro-inflammatory cytokines (TNF-alpha and IL-1β) were successfully reversed by treatment with linagliptin, metformin, and their combination. CONCLUSION Linagliptin and its combination with metformin successfully ameliorated diabetic osteoporosis in HFD-fed mice possibly through modulation of BMP-2 and sclerostin. The study provides the first evidence for the possible use of linagliptin and metformin combination for managing diabetic osteoporosis.
Collapse
|
9
|
Thymoquinone, but Not Metformin, Protects against Gentamicin-Induced Nephrotoxicity and Renal Dysfunction in Rats. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Gentamicin (GM) is an antibiotic that is widely used to treat many Gram-negative bacteria, such as those involved in urinary tract infections. However, being nephrotoxic, GM dose adjustment and reno-protective elements must be concurrently administered with GM to minimize kidney damage. Oxidative stress plays a pivotal role in the pathogenesis of GM-induced nephrotoxicity. Thymoquinone (TQ) is a promising therapeutic substance, that is being extensively studied in many diseases, such as diabetes mellitus, cancer, hypertension, and others. The powerful antioxidant properties of TQ may greatly help in minimizing GM nephrotoxicity. Metformin (MF) is a well-known, clinically approved oral hypoglycaemic drug that has many other actions, including antioxidant properties. The aim of this work was to evaluate the possible antioxidant and reno-protective effects of TQ and metformin in GM-induced nephrotoxicity in the same model (rats) at the same time. In addition, we aimed to further understand the effects underlying GM-induced nephrotoxicity. Methods: Twenty male rats were randomly divided into four equal groups: the first group (control) received distilled water; the second group received GM only; the third group received concurrent oral TQ and GM; and the fourth group received concurrent oral MF and GM. After 4 weeks, renal function and histopathology, as well as levels of the oxidative markers glutathione peroxidase-1 (GLPX1), superoxide dismutase (SOD), and malondialdehyde (MDA) in the kidney tissues, were assessed. Results: Compared with the control group, and as expected, the GM-injected rats showed significant biochemical and histological changes denoting renal damage. Compared with GM-injected rats, the concurrent administration of TQ with GM significantly reduced the levels of serum creatinine, serum urea, and tissue MDA and significantly increased the levels of GLPX1 and SOD. Concurrent metformin administration with GM significantly increased the levels of both GLPX1 and SOD and significantly decreased the levels of tissue MDA but had no significant effect on serum creatinine and urea levels. Compared with GM-injected rats, the addition of either TQ or MF resulted in a reduction in endothelial proliferation and mesangial hypercellularity. Conclusions: Both TQ and MF effectively alleviated the oxidative stress in GM-induced nephrotoxicity in rats, with TQ but not MF producing a complete reno-protective effect. Further studies for evaluation of different reno-protective mechanisms of TQ should be conducted.
Collapse
|
10
|
Resveratrol reduces gentamicin-induced EMT in the kidney via inhibition of reactive oxygen species and involving TGF-β/Smad pathway. Life Sci 2020; 258:118178. [PMID: 32739468 DOI: 10.1016/j.lfs.2020.118178] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
AIMS Gentamicin (GEN) is one of the most valuable aminoglycoside antibiotics utilized against life-threatening bacterial infections. Unfortunately, GEN-induced nephrotoxicity limited its clinical utility. The pathologic process of nephrotoxicity caused by GEN may involve epithelial to mesenchymal transition (EMT). Resveratrol (RES) is a natural compound was revealed to inhibit EMT in kidney. The present work was conducted to explore the potential renoprotective role of RES on GEN-induced EMT. Moreover, the underlying signaling pathway of this inhibition was investigated. MAIN METHODS Mice were treated with GEN by intraperitoneal (i.p.) route daily for 15 days to identify EMT onset with regard to GEN-induced nephrotoxicity. To assess the ameliorative role of RES against GEN-induced EMT, RES was i.p. administrated in high and low doses before and concurrently with GEN treatment. KEY FINDINGS GEN administration significantly deteriorated kidney functions. In addition, reduced glutathione (GSH) content and catalase (CAT) activity were significantly decreased with a concomitant increase in the content of kidney malondialdehyde (MDA) after GEN treatment. Histological changes and deposition of collagen were extensive in renal corpuscles and tubules. Increased expression of alpha smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) and phosphorylated (p)-Smad2 were observed after GEN administration, while E-cadherin expression was decreased. On the contrary, pretreatment with both doses of RES reversed the modifications caused by GEN administration. SIGNIFICANCE We concluded that EMT contributes to pathogenesis of GEN-induced nephrotoxicity. RES has a protective effect on GEN-induced EMT via suppressing oxidative stress and a possible involvement of TGF-β/Smad signaling pathway.
Collapse
|
11
|
Ogier JM, Lockhart PJ, Burt RA. Intravenously delivered aminoglycoside antibiotics, tobramycin and amikacin, are not ototoxic in mice. Hear Res 2020; 386:107870. [PMID: 31864009 DOI: 10.1016/j.heares.2019.107870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
Many drugs on the World Health Organization's list of critical medicines are ototoxic, destroying sensory hair cells within the ear. These drugs preserve life, but patients can experience side effects including permanent hearing loss and vestibular dysfunction. Aminoglycoside ototoxicity was first recognised 80 years ago. However, no preventative treatments have been developed. In order to develop such treatments, we must identify the factors driving hair cell death. In vivo, studies of cell death are typically conducted using mouse models. However, a robust model of aminoglycoside ototoxicity does not exist. Previous studies testing aminoglycoside delivery via intraperitoneal or subcutaneous injection have produced variable ototoxic effects in the mouse. As a result, surgical drug delivery to the rodent ear is often used to achieve ototoxicity. However, this technique does not accurately model clinical practice. In the clinic, aminoglycosides are administered to humans intravenously (i.v.). However, repeated i.v. delivery has not been reported in the mouse. This study evaluated whether repeated i.v. administration of amikacin or tobramycin would induce hearing loss. Daily i.v. injections over a two-week period were well tolerated and transient low frequency hearing loss was observed in the aminoglycoside treatment groups. However, the hearing changes observed did not mimic the high frequency patterns of hearing loss observed in humans. Our results indicate that the i.v. delivery of tobramycin or amikacin is not an effective technique for inducing ototoxicity in mice. This result is consistent with previously published reports indicating that the mouse cochlea is resistant to systemically delivered aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Jacqueline M Ogier
- Bruce Lefroy Centre, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rachel A Burt
- Bruce Lefroy Centre, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia; School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
12
|
Helmy MM, Mouneir SM. Reno-protective effect of linagliptin against gentamycin nephrotoxicity in rats. Pharmacol Rep 2019; 71:1133-1139. [PMID: 31675669 DOI: 10.1016/j.pharep.2019.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies demonstrated the reno-protective effects of two dipeptidyl peptidase-4 (DPP-4) inhibitors, saxagliptin and sitagliptin, against gentamycin-induced renal injury. However, none of these studies investigated whether renal DPP-4 contributes to the pathogenesis of this nephrotoxicity or not. This prompted us to test this hypothesis and to assess, for the first time, the potential reno-protective effect of linagliptin and whether this action is related or not to DPP-4 inhibition. Lingliptin was chosen since it is mainly excreted through a non-renal pathway and can therefore be used safely in individuals with renal injury. METHODS Male Sprague-Dawley rats were administered gentamycin (100 mg/kg/day, ip for 10 days) alone or combined with linagliptin (3 mg/kg/day, orally for 14 days). Gentamycin was administered once daily during the last ten days of the linagliptin treatment. RESULTS Linagliptin administration ameliorated gentamycin-induced renal injury and restored renal functional, oxidative, inflammatory, apoptotic and histopathological changes. Furthermore, the current study highlighted the role of increased plasma and renal DPP-4 in the pathogenesis of gentamycin renal insults and showed that the potential reno-protective effect of linagliptin is partly, mediated via inhibition of DPP-4, in addition to other antioxidant, anti-inflammatory and anti-apoptotic actions. CONCLUSION Linagliptin may serve as a beneficial adjutant to reduce gentamycin-induced renal injury.
Collapse
Affiliation(s)
- Mai M Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Samar M Mouneir
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
13
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS. Vinpocetine Improves Oxidative Stress and Pro-Inflammatory Mediators in Acute Kidney Injury. Int J Prev Med 2019; 10:142. [PMID: 31516683 PMCID: PMC6710925 DOI: 10.4103/ijpvm.ijpvm_5_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background: Gentamicin-induced-acute kidney injury (AKI) is a multifaceted phenomenon which previously linked to the oxidative stress only. Vinpocetine prevents reactive free radical generation which contributed in reduction of damage. Therefore, objective of the present study was to investigate the renoprotective effect of vinpocetine on gentamicin-induced-AKI in rats. Methods: Thirty Sprague Dawley Male rat were divided into three groups. Control group (n = 10): Rats treated with distilled water + intra-peritoneal injection of normal saline 2 ml/kg/day. Gentamicin group (n = 10): Rats treated with distilled water + intra-peritoneal injection of gentamicin 100 mg/kg/day. Vinpocetine group (n = 10): Rats treated with vinpocetine + intra-peritoneal injection of gentamicin 100 mg/kg/day. Blood urea and serum creatinine were estimated by auto-analyzer. Serum malondialdehyde (MDA), superoxide dismutase (SOD), Neutrophil Gelatinase Associated Lipocalin (NGAL), kidney injury molecules (KIM-1), and Cystatin-c were measured by ELISA kit methods. Results: Vinpocetine led to significant renoprotective effect on gentamicin induced-AKI through amelioration of blood urea and serum creatinine compared with gentamicin group P < 0.01. Vinpocetine improved oxidative stress through reduction of MDA serum level and elevation of SOD significantly compared with gentamicin group P = 0.001 and P = 0.03, respectively. Indeed, vinpocetine reduced glomerular and renal tubular injury via reduction of inflammatory biomarkers including KIM-1, NGALand Cystatin-c sera levels significantly P < 0.01 compared to gentamicin group. Conclusions: Vinpocetine leads to significant attenuation of gentamicin-induced-AKI through modulation of oxidative stress and pro-inflammatory pathway.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Marwa S Al-Nami
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
14
|
Amelioration of renal and hepatic function, oxidative stress, inflammation and histopathologic damages by Malva sylvestris extract in gentamicin induced renal toxicity. Biomed Pharmacother 2019; 112:108635. [DOI: 10.1016/j.biopha.2019.108635] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
|
15
|
Abdelrahman AM, Suleimani YA, Za'abi MA, Ashique M, Manoj P, Hartmann C, Nemmar A, Schupp N, Ali BH. The renoprotective effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on adenine-induced kidney disease in rats. Biomed Pharmacother 2019; 110:667-676. [DOI: 10.1016/j.biopha.2018.11.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022] Open
|