1
|
Kaynak B, Kolören Z, İlhan H, Ergün S, Aydoğdu G. Expression Analysis of Cyst Specific Protein (CSP21) and Cellulose Synthase II (CSII) Genes in Acanthamoeba castellanii Trophozoites Exposed to Silver Nanoparticles Conjugated with Elaeagnus umbellata. Acta Parasitol 2025; 70:5. [PMID: 39760957 DOI: 10.1007/s11686-024-00947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS. The existence of an agent effective against both cysts and trophozoites has not yet been proven. Drugs used for treatment of Acanthamoeba infrections are still limited. METHOD The present study investigates amoebicidal activites of various concentrations of ethanolic fruit extract of E. umbellata (EU) (40, 20, 10, 5, 2.5, 1.25, 0.625 mM/mL), silver nanoparticles (AgNP) that are synthesized from EU and confirmed with characterization tests (20, 10, 5, 1, 0.5 mM/mL), and lauric acid (LA) in EU detected with gas chromatography-mass spectrometry (GC-MS) against A. castellanii trophozoites. In addition, DNA-preserving activities of EU, AgNP and LA were studied on pBR322 plasmid DNA, following damage induced with hydroxyl radical (-OH). Cytotoxicity of EU over HeLa cells was examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Furthermore, the effects over the expression of SOD and CAT genes, which are coding oxidative stress enzymes in trophozoites, and expression of genes responsible for pseudocyst and cyst formation (CSII and CSP21, respectively) were investigated following methanol-induced stress, with reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). RESULTS At highest concentrations, EU, AgNP and LA showed lethal effects against majority of trophozites at 24 th h and against all trophozoites at 48th hour. EU at 5 mg/mL concentration and LA at 1, 0.8, 0.6, 0.4 mM/mL concentrations prevented DNA damage. A dose-dependent decrease in cell viability was observed, EU was found to be non-cytotoxic for 53.82% of HeLa cells at 72 nd h even at 40 mg/mL concentration. Greatest inhibitory effects were found with EU, AgNP and LA on CSII, EU on CAT, LA on CSP21, and hydrogen peroxide (H2O2) on SOD genes. CONCLUSION The findings of this study show that EU, LA and AgNPs can be used in a controlled manner to combat A. castellanii infections by reducing or blocking the activity of the parasite's antioxidant enzymes (SOD and CAT), without giving the parasite a chance to initiate the process of pseudocyst or proper cyst formation.
Collapse
Affiliation(s)
- Bülent Kaynak
- Department of Molecular Biology and Genetics, Ordu University, Ordu, Turkey
| | - Zeynep Kolören
- Department of Molecular Biology and Genetics, Ordu University, Ordu, Turkey.
| | - Hasan İlhan
- Institute of Biotechnology, Department of Biotechnology, Ankara University, Ankara, Turkey
| | - Sercan Ergün
- Department of Medical Biology, Ondokuz Mayıs University, Samsun, Turkey
| | - Gülizar Aydoğdu
- Department of Molecular Biology and Genetics, Ordu University, Ordu, Turkey
| |
Collapse
|
2
|
Medeiros TS, Bezerra de Lima LE, Alves-Pereira EL, Alves-Silva MF, Dourado D, Fernandes-Pedrosa MDF, Figueiredo RCBQD, da Silva-Junior AA. Cationic and anionic PLGA-cholesterol hybrid nanoparticles as promising platforms to enhance the trypanocidal efficacy of benznidazole and drug delivery in Trypanosoma cruzi-infected cells. Biomed Pharmacother 2025; 183:117782. [PMID: 39755025 DOI: 10.1016/j.biopha.2024.117782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase. Additionally, cases of parasite resistance to treatment and low efficacy in in chronic disease phase have been reported. In this context, nanotechnology formulations for intracellular drug delivery have emerged as a promising alternative to improve the pharmacological properties of BNZ. In this study, we developed and evaluated cationic and anionic PLGA-cholesterol hybrid nanoparticles (HNPs) as innovative drug delivery systems for BNZ. These HNPs, functionalized with polyethyleneimine, were synthesized using a composition-dependent self-assembly method, yielding stable nanosystems with tuneable physicochemical properties. Furthermore, four release kinetic models were applied and Peppas-Sahlin demonstrated the best fit. In vitro assays confirmed the biocompatibility of HNPs with cardiomyoblasts at tested concentrations and revealed significantly enhanced trypanocidal activity against intracellular amastigotes compared to free BNZ. Transmission electron microscopy and fluorescence microscopy analyses highlighted effective nanoparticle internalization, with superior performance trypanocidal observed in anionic HNPs, which can be attributed to the residence of cationic in endo/lysosomal vesicles. Taken together, our results demonstrate the successful development of HNPs, underscoring their potential as a promising platform for the intracellular delivery of therapeutic agents.
Collapse
Affiliation(s)
- Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil; Laboratory of Cellular Biology of Pathogens, Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Lucas Eduardo Bezerra de Lima
- Laboratory of Cellular Biology of Pathogens, Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Eron Lincoln Alves-Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | - Mariana Farias Alves-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | - Douglas Dourado
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | | | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil.
| |
Collapse
|
3
|
da Silva Cirino IC, de Santana CF, Vasconcelos Rocha I, de Souza LIO, Silva MV, Bressan Queiroz de Figueiredo RC, Coutinho HDM, Leal-Balbino TC. The Combinatory Effects of Essential Oil from Lippia macrophylla on Multidrug Resistant Acinetobacter baumannii Clinical Isolates. Chem Biodivers 2024; 21:e202400537. [PMID: 39008435 DOI: 10.1002/cbdv.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
To assess the antibacterial effectiveness of Lippia macrophylla essential oil (LMEO) against multidrug-resistant Acinetobacter baumannii isolates, both as a standalone treatment and in combination with conventional antibiotics. LMEO demonstrated a significant inhibitory effect on the growth of A. baumannii, with a minimum inhibitory concentration (MIC) below 500 μg/mL. Notably, LMEO was capable of reversing the antibiotic resistance of clinical isolates or reducing their MIC values when used in combination with antibiotics, showing synergistic (FICI≤0.5) or additive effects. The combination of LMEO and imipenem was particularly effective, displaying synergistic interactions for most isolates. Ultrastructural analyses supported these findings, revealing that the combination of LMEO+ceftazidime compromised the membrane integrity of the Acb35 isolate, leading to cytoplasmic leakage and increased formation of Outer Membrane Vesicles (OMVs). Taken together our results point for the use of LMEO alone or in combination as an antibacterial agent against A. baumannii. These findings offer promising avenues for utilizing LMEO as a novel antibacterial strategy against drug-resistant infections in healthcare settings, underscoring the potential of essential oils in enhancing antibiotic efficacy.
Collapse
Affiliation(s)
- Isis Caroline da Silva Cirino
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
- Federal University of Pernambuco, CEP 50670-901, Recife, PE, Brazil
| | - Caroline Ferreira de Santana
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
- Federal University of Pernambuco, CEP 50670-901, Recife, PE, Brazil
| | - Igor Vasconcelos Rocha
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Barbosa BVDDR, Alves JVDO, Costa WK, Aguiar IFDS, Galvão LRL, Silva PMD, Silva LAD, Silva BVSD, Lima JSD, Oliveira AMD, Napoleão TH, Silva MVD, Correia MTDS. Almond fixed oil from Syagrus coronata (Mart.) Becc. has antinociceptive and anti-inflammatory potential, without showing oral toxicity in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118283. [PMID: 38734393 DOI: 10.1016/j.jep.2024.118283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Syagrus coronata, a palm tree found in northeastern Brazil, popularly known as licuri, has socioeconomic importance for the production of vegetable oil rich in fatty acids with nutritional and pharmacological effects. Licuri oil is used in traditional medicine to treat inflammation, wound healing, mycosis, back discomfort, eye irritation, and other conditions. AIM OF THE STUDY The study aimed to evaluate the antinociceptive, anti-inflammatory, and antipyretic effects of treatment with Syagrus coronata fixed oil (ScFO), as well as to determine the safety of use in mice. MATERIALS AND METHODS Initially, the chemical characterization was performed by gas chromatography-mass spectrometry. Acute single-dose oral toxicity was evaluated in mice at a dose of 2000 mg/kg. Antinociceptive activity was evaluated through abdominal writhing, formalin, and tail dipping tests, and the anti-inflammatory potential was evaluated through the model of acute inflammation of ear edema, peritonitis, and fever at concentrations of 25, 50, and 100 mg/kg from ScFO. RESULTS In the chemical analysis of ScFO, lauric (43.64%), caprylic (11.7%), and capric (7.2%) acids were detected as major. No mortality or behavioral abnormalities in the mice were evidenced over the 14 days of observation in the acute toxicity test. ScFO treatment decreased abdominal writhing by 27.07, 28.23, and 51.78% at 25, 50, and 100 mg/kg. ScFO demonstrated central and peripheral action in the formalin test, possibly via opioidergic and muscarinic systems. In the tail dipping test, ScFO showed action from the first hour after treatment at all concentrations. ScFO (100 mg/kg) reduced ear edema by 63.76% and leukocyte and neutrophil migration and IL-1β and TNF-α production in the peritonitis test. CONCLUSION Mice treated with ScFO had a reduction in fever after 60 min at all concentrations regardless of dose. Therefore, the fixed oil of S. coronata has the potential for the development of new pharmaceutical formulations for the treatment of pain, inflammation, and fever.
Collapse
Affiliation(s)
| | | | - Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | | | | | - Paloma Maria da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Luzia Abílio da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | | | - Jucielma Silva de Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil; Programa de Pós-graduação Em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, 58429-500, Brazil
| | | | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | | |
Collapse
|
5
|
Sommo M, de Aguiar LA, Raposo A, Saraiva A, Teixeira-Lemos E, Chaves C, Romão B. Development and Rapid Sensory Descriptive Characterization of Cereal Bars Made with Brazilian Licuri Nut ( Syagrus coronata). Foods 2024; 13:502. [PMID: 38338637 PMCID: PMC10855958 DOI: 10.3390/foods13030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Licuri (Syagrus coronata) is an oilseed fruit common in the Brazilian caatinga and cerrado biomes. This fruit has high socioeconomic importance in the regions where it grows, being incorporated into exported animal feed and also into gastronomic preparations. Cereal bars are ready-to-eat highly consumed products with increased demand, commonly made with cereals and oilseeds such as licuri. In this sense, the incorporation of licuri in cereal bars may increase its socioeconomic value and expand its potential use. Thus, the objective of the study was to analyze acceptance and describe the sensory characteristics of cereal bars incorporated with licuri nuts. This study was conducted in four stages: (1) development of samples; (2) chemical composition analysis; (3) sensory analysis; and (4) statistical analysis. Cereal bars with licuri presented proportionally lower carbohydrate and protein content as the incorporation of licuri nut increased. However, the dietary fiber content increased. Further, 122 untrained panelists participated in the analysis. The results showed that samples with all proportions of incorporation of licuri nuts were acceptable. Furthermore, the sensory descriptors related to the presence of licuri were positively associated with product acceptance. In this way, this study demonstrates yet another possibility for use of the fruit, increasing its socioeconomic potential.
Collapse
Affiliation(s)
- Maximiliano Sommo
- Instituto de Educação Superior de Brasilia, IESB University Center, Brasília 70200-730, Brazil; (M.S.); (L.A.d.A.)
| | - Lorena Andrade de Aguiar
- Instituto de Educação Superior de Brasilia, IESB University Center, Brasília 70200-730, Brazil; (M.S.); (L.A.d.A.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - Edite Teixeira-Lemos
- CERNAS Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Cláudia Chaves
- ESSV, Centre for Studies in Education and Innovation (CI&DEI), Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Bernardo Romão
- Faculty of Health Sciences, Department of Nutrition, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
6
|
Holanda VN, Brito TGS, de Oliveira JRS, da Cunha RX, da Silva APS, da Silva WV, Araújo TFS, Tavares JF, dos Santos SG, Figueiredo RCBQ, Lima VLM. Potential Effects of Essential Oil from Plinia cauliflora (Mart.) Kausel on Leishmania: In Vivo, In Vitro, and In Silico Approaches. Microorganisms 2024; 12:207. [PMID: 38276192 PMCID: PMC10819817 DOI: 10.3390/microorganisms12010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
In the search for new chemotherapeutic alternatives for cutaneous leishmaniasis (CL), essential oils are promising due to their diverse biological potential. In this study, we aimed to investigate the chemical composition and leishmanicidal and anti-inflammatory potential of the essential oil isolated from the leaves of Plinia cauliflora (PCEO). The chemical composition of PCEO showed β-cis-Caryophyllene (24.4%), epi-γ-Eudesmol (8%), 2-Naphthalenemethanol[decahydro-alpha] (8%), and trans-Calamenene (6.6%) as its major constituents. Our results showed that the PCEO has moderate cytotoxicity (CC50) of 137.4 and 143.7 μg/mL on mice peritoneal exudate cells (mPEC) and Vero cells, respectively. The PCEO was able to significantly decrease mPEC infection by Leishmania amazonensis and Leishmania braziliensis. The value of the inhibitory concentration (IC50) on amastigote forms was about 7.3 µg/mL (L. amazonensis) and 7.2 µg/mL (L. braziliensis). We showed that PCEO induced drastic ultrastructural changes in both species of Leishmania and had a high selectivity index (SI) > 18. The in silico ADMET analysis pointed out that PCEO can be used for the development of oral and/or topical formulation in the treatment of CL. In addition, we also demonstrated the in vivo anti-inflammatory effect, with a 95% reduction in paw edema and a decrease by at least 21.4% in migration immune cells in animals treated with 50 mg/kg of PCEO. Taken together, our results demonstrate that PCEO is a promising topical therapeutic agent against CL.
Collapse
Affiliation(s)
- Vanderlan N. Holanda
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Thaíse G. S. Brito
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - João R. S. de Oliveira
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Rebeca X. da Cunha
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Ana P. S. da Silva
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Welson V. da Silva
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (W.V.d.S.); (R.C.B.Q.F.)
| | - Tiago F. S. Araújo
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco, José de Sá Maniçoba, S/N, Petrolina 56304-917, PE, Brazil;
| | - Josean F. Tavares
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, Rua Tabelião Stanislau Eloy, 41, Castelo Branco III, João Pessoa 58033-455, PB, Brazil;
| | - Sócrates G. dos Santos
- Laboratório de Tecnologia Farmacêutica, Instituto de Pesquisa em Drogas e Medicamentos, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, João Pessoa 58033-455, PB, Brazil;
| | - Regina C. B. Q. Figueiredo
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (W.V.d.S.); (R.C.B.Q.F.)
| | - Vera L. M. Lima
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| |
Collapse
|
7
|
Dos Santos CRB, Sampaio MGV, Vandesmet LCS, Dos Santos BS, de Menezes SA, Portela BYM, Gomes DWR, Correia MTS, Gomez MCV, de Alencar Menezes IR, da Silva MV. Chemical composition and biological activities of the essential oil from Eugenia stipitata McVaugh leaves. Nat Prod Res 2023; 37:3844-3850. [PMID: 36469681 DOI: 10.1080/14786419.2022.2151008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
In the present study, the volatile components and cytotoxic, antibacterial, antioxidant, and antiprotozoal activities of the essential oil obtained from the leaves of Eugenia stipitata McVaugh (Myrtaceae) grown in the Brazilian Northeast region (Araripe) were investigated. The essential oil was obtained by hydrodistillation. The leaves of E. stipitata provided an oil yield of 0.13 ± 0.01% (w/w). The volatile compounds in the essential oil of E. stipitata were analysed using gas chromatography, and the volatile chemical composition was mainly composed of β-eudesmol (15.28%), γ-eudesmol (10.85%), elemol (10.21%) and caryophyllene oxide (6.65%). The essential oil of E. stipitata was highly selective against Leishmania braziliensis and L. infantum promastigotes. The essential oil exhibited good antibacterial activity. E. stipitata essential oil showed low free-radical scavenging activity. Our results suggest that the E. stipitata essential oil is a relevant source of the primary compounds required for the development of antibacterial and antiprotozoal drugs.
Collapse
Affiliation(s)
- Cícero R B Dos Santos
- Biochemistry Department, Biocience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Mariana G V Sampaio
- Biochemistry Department, Biocience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Lilian C S Vandesmet
- Biochemistry Department, Biocience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Bruno S Dos Santos
- Biochemistry Department, Biocience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | | | | | | | - Maria T S Correia
- Biochemistry Department, Biocience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Maria C V Gomez
- Centre for the Development of Scientific Investigation - CEDIC, Fundación Moisés Bertoni/Laboratorios Diaz Gill, Asuncion, Paraguay
| | | | - Márcia V da Silva
- Biochemistry Department, Biocience Center, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Cirino ICDS, de Santana CF, Bezerra MJR, Rocha IV, Luz ACDO, Coutinho HDM, de Figueiredo RCBQ, Raposo A, Lho LH, Han H, Leal-Balbino TC. Comparative transcriptomics analysis of multidrug-resistant Acinetobacter baumannii in response to treatment with the terpenic compounds thymol and carvacrol. Biomed Pharmacother 2023; 165:115189. [PMID: 37481932 DOI: 10.1016/j.biopha.2023.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative opportunistic bacterium that has become a major public health concern and a substantial medical challenge due to its ability to acquire multidrug resistance (MDR), extended-drug resistance, or pan-drug resistance. In this study, we evaluated the antibacterial activity of thymol and carvacrol alone or in combination against clinical isolates of MDR A. baumannii. Additionally, we used RNA-sequency to perform a comparative transcriptomic analysis of the effects of carvacrol and thymol on the Acb35 strain under different treatment conditions. Our results demonstrated that thymol and carvacrol alone, effectively inhibited the bacterial growth of MDR A. baumannii isolates, with a minimum inhibitory concentration (MIC) lower than 500 μg/mL. Furthermore, the combination of thymol and carvacrol exhibited either synergistic (FICI ≤ 0.5) or additive effects (0.5 < FICI ≤ 4), enhancing their antibacterial activity. Importantly, these compounds were found to be non-cytotoxic to Vero cells and did not cause hemolysis in erythrocytes at concentrations that effectively inhibited bacterial growth. Transcriptomic analysis revealed the down-regulation of mRNA associated with ribosomal subunit assemblies under all experimental conditions tested. However, the up-regulation of specific genes encoding stress response proteins and transcriptional regulators varied depending on the experimental condition, particularly in response to the treatment with carvacrol and thymol in combination. Based on our findings, thymol and carvacrol demonstrate promising potential as chemotherapeutic agents for controlling MDR A. baumannii infections. These compounds exhibit strong antibacterial activity, particularly in combination and lower cytotoxicity towards mammalian cells. The observed effects on gene expression provide insights into the underlying mechanisms of action, highlighting the regulation of stress response pathways.
Collapse
Affiliation(s)
- Isis Caroline da Silva Cirino
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil; Department of Genetics, Federal University of Pernambuco, CEP 50670-901 Recife, PE, Brazil
| | | | | | - Igor Vasconcelos Rocha
- Department of Microbiology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, PE, Brazil
| | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Linda Heejung Lho
- College of Business Division of Tourism and Hotel Management, Cheongju University, 298 Daesung-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28503, Republic of Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, Republic of Korea.
| | | |
Collapse
|
9
|
Barbosa DCDS, Holanda VN, Ghosh A, Maia RT, da Silva WV, Lima VLDM, da Silva MV, Dos Santos Correia MT, de Figueiredo RCBQ. Leishmanicidal and cytotoxic activity of essential oil from the fruit peel of Myrciaria floribunda (H. West ex Willd.) O. Berg: Molecular docking and molecular dynamics simulations of its major constituent onto Leishmania enzyme targets. J Biomol Struct Dyn 2022; 40:13001-13016. [PMID: 34632943 DOI: 10.1080/07391102.2021.1978320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cutaneous Leishmaniasis (CL) is a neglected disease characterized by highest morbidity rates worldwide. The available treatment for CL has several limitations including serious side effects and resistance to the treatment. Herein we aimed to evaluate the activity of essential oil from the peel of Myrciaria floribunda fruits (MfEO) on Leishmania amazonensis. The cytotoxic potential of MfEO on host mammalian cells was evaluated by MTT. The in vitro leishmanicidal effects of MfEO were investigated on the promastigote and intracellular amastigote forms. The ultrastructural changes induced by MfEO were evaluated by Scanning Electron Microscopy (SEM). The molecular docking of the major compounds δ-Cadinene, γ-Cadinene, γ-Muurolene, α-Selinene, α-Muurolene and (E)-Caryophyllene onto the enzymes trypanothione reductase (TreR) and sterol 14-alpha demethylase (C14DM) were performed. Our results showed that MfEO presented moderate cytotoxicity for Vero cells and macrophages. The MfEO inhibited the growth of promastigote and the survival of intracellular amastigotes, in a dose- and time- dependent way. The MfEO presented high selectivity towards amastigote forms, being 44.1 times more toxic for this form than to macrophages. Molecular docking analysis showed that the major compounds of MfEO interact with Leishmania enzymes and that δ-Cadinene (δ-CAD) presented favorable affinity energy values over TreR and C14DM enzymes, when compared with the other major constituents. Molecular dynamics (MD) simulation studies revealed a stable binding of δ-CAD with lowest binding free energy values in MMGBSA assay. Our results suggested that δ-CAD may be a potent inhibitor of TreR and C14DM enzymes. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vanderlan Nogueira Holanda
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil.,Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Rafael Trindade Maia
- Centro de Desenvolvimento Sustentável do Semiárido, Universidade Federal de Campina Grande, Sumé, Paraíba, Brazil
| | | | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
10
|
Diniz RM, Fernandes TGF, Mendonça JSP, Silva LDS, Saminez WFDS, de Oliveira PV, Amorim EADF, Figueiredo CSSES, Bezerra Filho CM, Correia MTDS, da Silva MV, de Sá Sousa JC, Zagmignan A, Nascimento da Silva LC. Antimicrobial and anti-inflammatory effects of Eugenia brejoensis essential oil in mice wounds infected by Staphylococcus aureus. Front Pharmacol 2022; 13:999131. [PMID: 36313341 PMCID: PMC9613942 DOI: 10.3389/fphar.2022.999131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Eugenia brejoensis Mazine (Myrtaceae) is source of an essential oil (EbEO) with anti-infective activities against Staphylococcus aureus. This study evaluated the antimicrobial and anti-inflammatory potentials of EbEO in S. aureus-infected skin wounds. The excisional lesions (64 mm2) were induced on Swiss mice back (6 to 8-week-old) that were allocated into 3 groups (n = 12): 1) non-infected wounds (CON); 2) wounds infected with S. aureus ATCC 6538 (Sa); 3) S. aureus-infected wounds and treated with EbEO (Sa + EbEO). The infected groups received approximately 104 CFU/wound. The animals were treated with EbEO (10 µg/wound/day) or vehicle from the 1-day post-infection (dpi) until the 10th dpi. The clinical parameters (wound area, presence of exudate, edema intensity, etc.) were daily analyzed. The levels of inflammatory mediators (cytokines, nitric oxide, VEGF) and bacterial load were measured at the cutaneous tissue at 4th dpi and 10th dpi. Topical application of EbEO accelerated wound contraction with an average contraction of 83.48 ± 11.27 % of the lesion area until 6th dpi. In this period, the rates of lesion contraction were 54.28 ± 5.57% and 34.5 ± 2.67% for CON and Sa groups, respectively. The positive effects of EbEO on wound contraction were associated with significantly (p < 0.05) reduction on bacterial load and the release of inflammatory mediators (IL-6, IL-17A, TNF-α, NO and VEGF). Taken together, these data confirm the antimicrobial potential of EbEO and provide insights into its anti-inflammatory effects, making this essential oil an interesting candidate for the development of new therapeutic alternatives for infected cutaneous wounds.
Collapse
Affiliation(s)
- Roseana Muniz Diniz
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brazil
| | - Tatiany Gomes Ferreira Fernandes
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brazil
- Programa de Pós-graduação em Biologia Microbiana, Universidade Ceuma, São Luís, MA, Brazil
| | - Juliana Silva Pereira Mendonça
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brazil
- Programa de Pós-graduação em Biologia Microbiana, Universidade Ceuma, São Luís, MA, Brazil
| | - Lucas dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brazil
- Programa de Pós-graduação em Biologia Microbiana, Universidade Ceuma, São Luís, MA, Brazil
| | | | | | - Erika Alves Da Fonseca Amorim
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brazil
- Programa de Pós-graduação em Odontologia, Universidade Ceuma, São Luís, MA, Brazil
| | | | - Clovis Macêdo Bezerra Filho
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Maria Tereza dos Santos Correia
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Márcia Vanusa da Silva
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Joicy Cortez de Sá Sousa
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brazil
- Programa de Pós-graduação em Biologia Microbiana, Universidade Ceuma, São Luís, MA, Brazil
| | - Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brazil
- Programa de Pós-graduação em Biologia Microbiana, Universidade Ceuma, São Luís, MA, Brazil
| | - Luís Cláudio Nascimento da Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís, MA, Brazil
- Programa de Pós-graduação em Biologia Microbiana, Universidade Ceuma, São Luís, MA, Brazil
- Programa de Pós-graduação em Odontologia, Universidade Ceuma, São Luís, MA, Brazil
- *Correspondence: Luís Cláudio Nascimento da Silva, ,
| |
Collapse
|
11
|
Costa WK, de Oliveira AM, da Silva Santos IB, Guimarães Silva VB, de Aguiar JCRDOF, Navarro DMDAF, Dos Santos Correia MT, Vanusa da Silva M. Influence of seasonal variation on the chemical composition and biological activities of essential oil from Eugenia pohliana DC leaves. Chem Biodivers 2022; 19:e202200034. [PMID: 35864035 DOI: 10.1002/cbdv.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022]
Abstract
The purpose of this study was to analyse the influence of seasonal variation on the chemical composition and antimicrobial, antioxidant and cytotoxicity activities of the essential oil (EO) extracted from the leaves of Eugenia pohliana. Chemical characterisation of the samples- by gas chromatography-mass spectrometry- found 35 and 38 components for summer and winter, respectively, of the EO from E. pohliana leaves, totaling 47 different compounds. Analysis of antioxidant capacity (DPPH, ABTS and TAC) revealed that the summer EO showed greater free radical scavenging capacity than the winter. Similarly, the summer EO exhibited superior antimicrobial potential (MIC=128-512 μg/mL and MMC=128-1024 μg/mL, compared to the winter EO (128-2048 μg/mL and 256-2048 μg/mL, respectively). Results showed that both oils had a low potential to cause haemolysis. This study provides new scientific evidence on the influence of seasonality on the pharmacological properties of E. pohliana leaves and its potential for the development of herbal medicines.
Collapse
Affiliation(s)
- Wendeo Kennedy Costa
- Universidade Federal de Pernambuco, Bioquímica, Avenida Prof. Moraes Rego, 50670-420, Recife, BRAZIL
| | | | | | | | | | | | | | - Márcia Vanusa da Silva
- UFPE: Universidade Federal de Pernambuco, Bioquímica, Avenida Prof. Moraes Rego, Recife, BRAZIL
| |
Collapse
|
12
|
Silva Maiolini TC, Rosa W, de Oliveira Miranda D, Costa-Silva TA, Tempone AG, Pires Bueno PC, Ferreira Dias D, Aparecida Chagas de Paula D, Sartorelli P, Lago JHG, Gomes Soares M. Essential Oils from Different Myrtaceae Species from Brazilian Atlantic Forest Biome - Chemical Dereplication and Evaluation of Antitrypanosomal Activity. Chem Biodivers 2022; 19:e202200198. [PMID: 35485995 DOI: 10.1002/cbdv.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Chagas Disease (CD), caused by flagellate protozoan Trypanosoma cruzi, is a Neglected Tropical Diseases (NTD) that affect approximately seven million people worldwide with a restrict therapeutical arsenal. In the present study, the essential oils from 18 Myrtaceae species were extracted, chemically dereplicated, and evaluated in vitro against T. cruzi. From these, eight essential oils were considered promising (IC50 <10 μg/mL and SI>10) against the protozoan: Eugenia florida, E. acutata, E. widgrenii, Calyptranthes brasilienses, C. widgreniana, Plinia cauliflora, Campomanesia xanthocarpa, and Psidium guajava. Multivariate data analysis pointed out (E)-caryophyllene, α-humulene, limonene, caryophyllene oxide, and α-copaene playing an important role in the anti-T. cruzi activity. The obtained results demonstrated the potential of essential oils of Myrtaceae species as valuable sources of bioactive compounds against T. cruzi.
Collapse
Affiliation(s)
| | - Welton Rosa
- Institute of Chemistry, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | | | - Thais A Costa-Silva
- Center of Natural Sciences and Humanities, Universidade Federal do ABC, 09210-580, Santo Andre, SP, Brazil
| | - Andre G Tempone
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, 01246-902, São Paulo, SP, Brazil
| | | | | | | | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09913-030, Diadema, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Universidade Federal do ABC, 09210-580, Santo Andre, SP, Brazil
| | - Marisi Gomes Soares
- Institute of Chemistry, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| |
Collapse
|
13
|
Machine Learning Analysis of Essential Oils from Cuban Plants: Potential Activity against Protozoa Parasites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041366. [PMID: 35209156 PMCID: PMC8878085 DOI: 10.3390/molecules27041366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022]
Abstract
Essential oils (EOs) are a mixture of chemical compounds with a long history of use in food, cosmetics, perfumes, agricultural and pharmaceuticals industries. The main object of this study was to find chemical patterns between 45 EOs and antiprotozoal activity (antiplasmodial, antileishmanial and antitrypanosomal), using different machine learning algorithms. In the analyses, 45 samples of EOs were included, using unsupervised Self-Organizing Maps (SOM) and supervised Random Forest (RF) methodologies. In the generated map, the hit rate was higher than 70% and the results demonstrate that it is possible find chemical patterns using a supervised and unsupervised machine learning approach. A total of 20 compounds were identified (19 are terpenes and one sulfur-containing compound), which was compared with literature reports. These models can be used to investigate and screen for bioactivity of EOs that have antiprotozoal activity more effectively and with less time and financial cost.
Collapse
|
14
|
Crotti AEM, Pagotti MC, Candido ACBB, Marçal MG, Vieira TM, Groppo M, Silva MLA, Ferreira DS, Esperandim VR, Magalhães LG. Trypanocidal Activity of Dysphania ambrosioides, Lippia alba, and Tetradenia riparia Essential Oils against Trypanosoma cruzi. Chem Biodivers 2021; 18:e2100678. [PMID: 34669244 DOI: 10.1002/cbdv.202100678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Despite the current treatments against Chagas Disease (CD), this vector-borne parasitic disease remains a serious public health concern. In this study, we have explored the in vitro and/or in vivo trypanocidal and cytotoxic activities of the essential oils (EOs) obtained from Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) (DA-EO), Lippia alba (Mill.) N.E. Brown (Verbenaceae) (LA-EO), and Tetradenia riparia (Hochst.) Codd (Lamiaceae) (TR-EO) grown in Brazil Southeast. DA-EO was the most active against the trypomastigote and amastigote forms in vitro; the IC50 values were 8.7 and 12.2 μg mL-1 , respectively. The EOs displayed moderate toxicity against LLCMK2 cells, but the DA-EO showed high selectivity index (SI) for trypomastigote (SI=33.2) and amastigote (SI=11.7) forms. Treatment with 20 mg/kg DA-EO, LA-EO, or TR-EO for 20 days by intraperitoneal administration reduced parasitemia by 6.36 %, 4.74 %, and 32.68 % on day 7 and by 12.04 %, 27.96 %, and 65.5 % on day 9. These results indicated that DA-EO, LA-EO, and TR-EO have promising trypanocidal potential in vitro, whereas TR-EO has also potential trypanocidal effects in vivo.
Collapse
Affiliation(s)
- Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Mariana C Pagotti
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Candido
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Maria G Marçal
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Tatiana M Vieira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Milton Groppo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcio L A Silva
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Daniele S Ferreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Viviane R Esperandim
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| |
Collapse
|
15
|
Biological Potential of Products Obtained from Palm Trees of the Genus Syagrus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5580126. [PMID: 34457025 PMCID: PMC8397564 DOI: 10.1155/2021/5580126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Medicinal plants have been used for centuries by communities worldwide, as they have diverse biological properties and are effective against numerous diseases. The genus Syagrus stands out for its versatility and for so many activities presented by these palm trees, mainly due to its rich chemical and fatty acid compositions. The genus has antibacterial potential, has antibiofilm, antiparasitic, antioxidant, prebiotic, antiulcerogenic, anticholinesterase, and hypoglycemic activities, and can produce biodiesel, amid others. Among all species, Syagrus coronata and Syagrus romanzoffiana stand out, presenting the greatest number of activities and applications. The secondary metabolites obtained from these palm trees present high activity even in low concentrations and can be used against infections and chronic diseases. Furthermore, these plants have been used in some communities for years and have presented healing properties, especially in inflammatory processes. Therefore, the Syagrus genus proves to be promising, which shows a lot of therapeutic potential.
Collapse
|
16
|
García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: Promising new drugs, plants and targets. Biomed Pharmacother 2021; 142:112020. [PMID: 34392087 DOI: 10.1016/j.biopha.2021.112020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is treated with only two drugs; benznidazole and nifurtimox. These drugs have some disadvantages, including their efficacy only in the acute or early infection phases, adverse effects during their use, and the resistance that the parasite has developed to their activity. Therefore, it is necessary to identify new, safe and effective therapeutic alternatives to treat Chagas disease, though governments and the pharmaceutical industry have shown a lack of interest in contributing to this solution. Institutions and research groups on the other hand have worked on some strategies that can help to address the problem. Some of these include the modification of conventional drug dosages, drug repurposing, and combined therapy. Plants and derived compounds with antiparasitic effects have also been studied, taking advantage of traditional medicinal knowledge. Others have studied the parasite to identify essential genes that can be used as therapeutic targets to design new, targeted drugs. Some of these studies have generated promising results, but few reach clinical phase studies. Institutions and research groups should be encouraged to unify efforts and cover all aspects of drug development according to resources and knowledge availability. In the end, this exchange of knowledge would lead to the development of new therapeutic alternatives to treat Chagas disease and benefit the populations it affects.
Collapse
Affiliation(s)
| | - Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia.
| |
Collapse
|
17
|
Bridi H, de Carvalho Meirelles G, Lino von Poser G. Subtribe Hyptidinae (Lamiaceae): A promising source of bioactive metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113225. [PMID: 32763419 PMCID: PMC7403033 DOI: 10.1016/j.jep.2020.113225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The subtribe Hyptidinae contains approximately 400 accepted species distributed in 19 genera (Hyptis, Eriope, Condea, Cantinoa, Mesosphaerum, Cyanocephalus, Hypenia, Hyptidendron, Oocephalus, Medusantha, Gymneia, Marsypianthes, Leptohyptis, Martianthus, Asterohyptis, Eplingiella, Physominthe, Eriopidion and Rhaphiodon). This is the Lamiaceae clade with the largest number of species in Brazil and high rates of endemism. Some species have been used in different parts of the world mainly as insecticides/pest repellents, wound healing and pain-relief agents, as well as for the treatment of respiratory and gastrointestinal disorders. AIM OF THE REVIEW This review aims to discuss the current status concerning the taxonomy, ethnobotanical uses, phytochemistry and biological properties of species which compose the subtribe Hyptidinae. MATERIALS AND METHODS The available information was collected from scientific databases (ScienceDirect, Pubmed, Web of Science, Scopus, Google Scholar, ChemSpider, SciFinder ACS Publications, Wiley Online Library), as well as other literature sources (e.g. books, theses). RESULTS The phytochemical investigations of plants of this subtribe have led to the identification of almost 300 chemical constituents of different classes such as diterpenes, triterpenes, lignans, α-pyrones, flavonoids, phenolic acids and monoterpenes and sesquiterpenes, as components of essential oils. Extracts, essential oils and isolated compounds showed a series of biological activities such as insecticide/repellent, antimicrobial and antinociceptive, justifying some of the popular uses of the plants. In addition, a very relevant fact is that several species produce podophyllotoxin and related lignans. CONCLUSION Several species of Hyptidinae are used in folk medicine for treating many diseases but only a small fraction of the species has been explored and most of the traditional uses have not been validated by current investigations. In addition, the species of the subtribe appear to be very promising as alternative sources of podophyllotoxin-like lignans which are the lead compounds for the semi-synthesis of teniposide and etoposide, important antineoplastic agents. Thus, there is a wide-open door for future studies, both to support the popular uses of the plants and to find new biologically active compounds in this large number of species not yet explored.
Collapse
Affiliation(s)
- Henrique Bridi
- Universidade Federal Do Rio Grande Do Sul, Programa de Pós-Graduação Em Ciências Farmacêuticas, Avenida Ipiranga 2752, Porto Alegre, Brazil
| | - Gabriela de Carvalho Meirelles
- Universidade Federal Do Rio Grande Do Sul, Programa de Pós-Graduação Em Ciências Farmacêuticas, Avenida Ipiranga 2752, Porto Alegre, Brazil
| | - Gilsane Lino von Poser
- Universidade Federal Do Rio Grande Do Sul, Programa de Pós-Graduação Em Ciências Farmacêuticas, Avenida Ipiranga 2752, Porto Alegre, Brazil.
| |
Collapse
|
18
|
Aniba rosaeodora (Var. amazonica Ducke) Essential Oil: Chemical Composition, Antibacterial, Antioxidant and Antitrypanosomal Activity. Antibiotics (Basel) 2020; 10:antibiotics10010024. [PMID: 33396612 PMCID: PMC7824638 DOI: 10.3390/antibiotics10010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Aniba rosaeodora is one of the most widely used plants in the perfumery industry, being used as medicinal plant in the Brazilian Amazon. This work aimed to evaluate the chemical composition of A. rosaeodora essential oil and its biological activities. A. rosaeodora essential oil presented linalool (93.60%) as its major compound. The A. rosaeodora essential oil and linalool showed activity against all the bacteria strains tested, standard strains and marine environment bacteria, with the lower minimum inhibitory concentration being observed for S. aureus. An efficient antioxidant activity of A. rosaeodora essential oil and linalool (EC50: 15.46 and 6.78 µg/mL, respectively) was evidenced by the inhibition of the 2,2-azinobis- (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical. The antitrypanosomal activity of A. rosaeodora essential oil and linalool was observed at high concentrations against epimatigote forms (inhibitory concentration for 50% of parasites (IC50): 150.5 ± 1.08 and 198.6 ± 1.12 µg/mL, respectively), and even higher against intracellular amastigotes of T. cruzi (IC50: 911.6 ± 1.15 and 249.6 ± 1.18 µg/mL, respectively). Both A. rosaeodora essential oil and linalool did not exhibit a cytotoxic effect in BALB/c peritoneal macrophages, and both reduced nitrite levels in unstimulated cells revealing a potential effect in NO production. These data revealed the pharmacological potential of A. rosaeodora essential oil and linalool, encouraging further studies.
Collapse
|
19
|
Synthesis, characterization and cytotoxicity of the Eugenia brejoensis essential oil inclusion complex with β-cyclodextrin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
de Morais MC, de Souza JV, da Silva Maia Bezerra Filho C, Dolabella SS, de Sousa DP. Trypanocidal Essential Oils: A Review. Molecules 2020; 25:molecules25194568. [PMID: 33036315 PMCID: PMC7583723 DOI: 10.3390/molecules25194568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Trypanosomiases are diseases caused by parasitic protozoan trypanosomes of the genus Trypanosoma. In humans, this includes Chagas disease and African trypanosomiasis. There are few therapeutic options, and there is low efficacy to clinical treatment. Therefore, the search for new drugs for the trypanosomiasis is urgent. This review describes studies of the trypanocidal properties of essential oils, an important group of natural products widely found in several tropical countries. Seventy-seven plants were selected from literature for the trypanocidal activity of their essential oils. The main chemical constituents and mechanisms of action are also discussed. In vitro and in vivo experimental data show the therapeutic potential of these natural products for the treatment of infections caused by species of Trypanosoma.
Collapse
Affiliation(s)
- Mayara Castro de Morais
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil; (M.C.d.M.); (J.V.d.S.); (C.d.S.M.B.F.)
| | - Jucieudo Virgulino de Souza
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil; (M.C.d.M.); (J.V.d.S.); (C.d.S.M.B.F.)
| | - Carlos da Silva Maia Bezerra Filho
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil; (M.C.d.M.); (J.V.d.S.); (C.d.S.M.B.F.)
| | - Silvio Santana Dolabella
- Laboratory of Entomology and Tropical Parasitology, Department of Morphology, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil;
| | - Damião Pergentino de Sousa
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil; (M.C.d.M.); (J.V.d.S.); (C.d.S.M.B.F.)
- Correspondence: ; Tel.: +55-83-3216-7347
| |
Collapse
|
21
|
Bezerra Filho CM, da Silva LCN, da Silva MV, Løbner-Olesen A, Struve C, Krogfelt KA, Correia MTDS, Vilela Oliva ML. Antimicrobial and Antivirulence Action of Eugenia brejoensis Essential Oil in vitro and in vivo Invertebrate Models. Front Microbiol 2020; 11:424. [PMID: 32265869 PMCID: PMC7096383 DOI: 10.3389/fmicb.2020.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
Eugenia brejoensis L. (Myrtaceae) is an endemic plant from caatinga ecosystem (brazilian semi-arid) which have an E. brejoensis essential oil (EbEO) with reported antimicrobial activity. In this work, in vitro and in vivo models were used to characterize the inhibitory effects of EbEO in relation to Staphylococcus aureus. EbEO inhibited the growth of all tested S. aureus strains (including multidrug resistance isolates) with values ranging from 8 to 516 μg/mL. EbEO also synergistically increased the action of ampicillim, chloramphenicol, and kanamycin. The treatment with subinhibitory concentrations (Sub-MIC) of EbEO decreased S. aureus hemolytic activity and its ability to survive in human blood. EbEO strongly reduced the levels of staphyloxanthin (STX), an effect related to increased susceptibility of S. aureus to hydrogen peroxide. The efficacy of EbEO against S. aureus was further demonstrated using Caenorhabditis elegans and Galleria mellonella. EbEO increased the lifespan of both organisms infected by S. aureus, reducing the bacterial load. In addition, EbEO reduced the severity of S. aureus infection in G. mellonella, as shown by lower levels of melanin production in those larvae. In summary, our data suggest that EbEO is a potential source of lead molecules for development of new therapeutic alternatives against S. aureus.
Collapse
Affiliation(s)
- Clovis Macêdo Bezerra Filho
- Biochemistry Department, Federal University of Pernambuco, Recife, Brazil.,Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Carsten Struve
- Department of Bacteria, Parasites and Fungi, Staten Serum Institut, Copenhagen, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Staten Serum Institut, Copenhagen, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
22
|
Trypanocidal Mechanism of Action and in silico Studies of p-Coumaric Acid Derivatives. Int J Mol Sci 2019; 20:ijms20235916. [PMID: 31775321 PMCID: PMC6928761 DOI: 10.3390/ijms20235916] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma species are responsible for chronic and systemic infections in millions of people around the world, compromising life quality, and family and government budgets. This group of diseases is classified as neglected and causes thousands of deaths each year. In the present study, the trypanocidal effect of a set of 12 ester derivatives of the p-coumaric acid was tested. Of the test derivatives, pentyl p-coumarate (7) (5.16 ± 1.28 μM; 61.63 ± 28.59 μM) presented the best respective trypanocidal activities against both epimastigote and trypomastigote forms. Flow cytometry analysis revealed an increase in the percentage of 7-AAD labeled cells, an increase in reactive oxygen species, and a loss of mitochondrial membrane potential; indicating cell death by necrosis. This mechanism was confirmed by scanning electron microscopy, noting the loss of cellular integrity. Molecular docking data indicated that of the chemical compounds tested, compound 7 potentially acts through two mechanisms of action, whether by links with aldo-keto reductases (AKR) or by comprising cruzain (CZ) which is one of the key Trypanosoma cruzi development enzymes. The results indicate that for both enzymes, van der Waals interactions between ligand and receptors favor binding and hydrophobic interactions with the phenolic and aliphatic parts of the ligand. The study demonstrates that p-coumarate derivatives are promising molecules for developing new prototypes with antiprotozoal activity.
Collapse
|
23
|
Evaluation of bio-guided fraction from Laminaria japonica as a natural food preservative based on antimicrobial activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6587150. [PMID: 30881596 PMCID: PMC6387720 DOI: 10.1155/2019/6587150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
The term neglected diseases refers to a group of infections caused by various classes of pathogens, including protozoa, viruses, bacteria, and helminths, most often affecting impoverished populations without adequate sanitation living in close contact with infectious vectors and domestic animals. The fact that these diseases were historically not considered priorities for pharmaceutical companies made the available treatments options obsolete, precarious, outdated, and in some cases nonexistent. The use of plants for medicinal, religious, and cosmetic purposes has a history dating back to the emergence of humanity. One of the principal fractions of chemical substances found in plants are essential oils (EOs). EOs consist of a mixture of volatile and hydrophobic secondary metabolites with marked odors, composed primarily of terpenes and phenylpropanoids. They have great commercial value and were widely used in traditional medicine, by phytotherapy practitioners, and in public health services for the treatment of several conditions, including neglected diseases. In addition to the recognized cytoprotective and antioxidative activities of many of these compounds, larvicidal, insecticidal, and antiparasitic activities have been associated with the induction of oxidative stress in parasites, increasing levels of nitric oxide in the infected host, reducing parasite resistance to reactive oxygen species, and increasing lipid peroxidation, ultimately leading to serious damage to cell membranes. The hydrophobicity of these compounds also allows them to cross the membranes of parasites as well as the blood-brain barrier, collaborating in combat at the second stage of several of these infections. Based on these considerations, the aim of this review was to present an update of the potential of EOs, their fractions, and their chemical constituents, against some neglected diseases, including American and African trypanosomiasis, leishmaniasis, and arboviruses, specially dengue.
Collapse
|
25
|
Chemical composition and antibacterial activity of Eugenia brejoensis essential oil nanoemulsions against Pseudomonas fluorescens. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|