1
|
Lv L, Qian J, Sang J, Li J, Liu T. Protective effects of PIK3CG knockdown against OGD/R-induced neuronal damage via inhibition of autophagy through the AMPK/mTOR pathway. Neuroscience 2025; 565:91-98. [PMID: 39603405 DOI: 10.1016/j.neuroscience.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Ischemic stroke represents an urgent need for more efficacious therapies owing to modest effectiveness of current treatment. METHODS Download data from stroke patients and collect blood samples from clinical patients to analyze phosphatidylinositol-3 kinase catalytic subunit γ (PIK3CG) expression. To establish a brain damage model, oxygen glucose deprivation/reperfusion (OGD/R) was applied to SH-SY5Y cells. Impact of PIK3CG on AMPK/mTOR autophagy pathway was verified treating cells with AMPK activator metformin. Proliferation and apoptosis were identified by CCK8 and flow cytometry. RESULTS Differential expression analysis and clinical testing show that PIK3CG is highly expressed in patients. Prolonged ODG/R exposure increased PIK3CG levels, supressed cell proliferation, and induced apoptosis. KEGG pathway analysis implicated PIK3CG in autophagy pathway. Knockdown of PIK3CG supressed OGD/R-induced reductions in cell proliferation and OGD/R-induced increases in apoptosis and expressions of Beclin 1 and LC3 II. Following OGD/R, AMPK phosphorylation was upregulated while mammalian target of rapamycin (mTOR) phosphorylation was downregulated, indicating AMPK/mTOR autophagy activation. Knockdown of PIK3CG opposed metformin-induced rises in Beclin 1, LC3 II and apoptosis along with decreases in proliferation. CONCLUSION PIK3CG knockdown protects neuronal cells by inhibiting AMPK/mTOR autophagy pathway and further inhibiting autophagy.
Collapse
Affiliation(s)
- Luting Lv
- Department of Neurology,The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jiayi Qian
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Junzhi Sang
- Department of Magnetic Resonance, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jie Li
- Department of Neurology,The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
2
|
Liu J, Zhao W, Kang J, Li X, Han L, Hu Z, Zhou J, Meng X, Gao X, Zhang Y, Gu Y, Liu X, Chen X. Halcinonide activates smoothened to ameliorate ischemic stroke injury. Life Sci 2025; 361:123324. [PMID: 39710062 DOI: 10.1016/j.lfs.2024.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The Shh pathway may shed new light on developing new cell death inhibitors for the therapy of ischemic stroke. We aimed to examine whether the Shh co-reporter SMO or its agonist halcinonide can upregulate Bcl-2 to suppress neuronal cell death, ultimately improving behavioral deficits and reducing cerebral infarction in an ischemic stroke model. METHODS Halcinonide or genetic manipulation of SMO was conducted in PC12 cells to examine their impacts on oxidative or OGD/R stress, and the chemical, along with AAV-SMO or AAV-EGFP were tested in MCAO rats to investigate their potential protective effects against neuronal damages due to cerebral I/R injury. The amounts or activities of L-LA, LDH, ROS, MDA, SOD, MPO, GSSG, and GSH were detected using the corresponding biochemical kits. The levels of TNF-α and IL-6 were analyzed by ELISA. RESULTS The results show that halcinonide alleviated neurological score and cerebral infarction, and the abnormal changes in L-LA, LDH, MDA, SOD, MPO, GSH, GSSG, TNF-α, and IL-6 were also reversed in MCAO rats. Through expression or knockout of SMO, we discovered that SMO worked similarly to halcinonide, protecting neuronal cells from oxidative or OGD/R stress, and AAV-SMO prevented cerebral damages of MCAO rats caused by ischemia and reperfusion. Halcinonide inhibited Bcl-2/Bax-mediated apoptosis, at least partially by promoting the Shh signaling pathway through enhancing SMO expression in vivo and in vitro. CONCLUSION This study identified a new target and a candidate chemical for therapy of ischemic stroke, hopefully reducing its morbidity and mortality.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; School of Basic Medical Sciences, University of South China, Hengyang, Hunan 421001, PR China.
| | - Wenyang Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jia Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiangxiang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Liang Han
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Zhuozhou Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xinrui Meng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoshan Gao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Yixuan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Youquan Gu
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xiaohua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Xinping Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
3
|
Zhu J, Shi Q, Han X, Wang M, Zhang L, Ying H, Yu B. AMPK deficiency inhibits fatty acid oxidation in endothelial progenitor cells to aggravate impaired angiogenesis after ischemic stroke in hyperlipidemic mice. Brain Inj 2024; 38:835-847. [PMID: 38716911 DOI: 10.1080/02699052.2024.2349776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Hyperlipidemia is a risk factor for stroke, and worsens neurological outcome after stroke. Endothelial progenitor cells (EPCs), which become dysfunctional in cerebral ischemia, hold capacity to promote revascularization. OBJECTIVE We investigated the role of dyslipidemia in impairment of EPC-mediated angiogenesis in cerebral ischemic mice. METHODS AND RESULTS The high fat diet (HFD)-fed mice following by ischemic stroke exhibited increased infarct volumes and neurological severity scores, and poorer angiogenesis. Bone marrow-EPCs treated with palmitic acid (PA) showed impaired functions and inhibited activity of AMP-activated protein kinase (AMPK). Notably, AMPK deficiency aggravated EPC dysfunction, further decreased mitochondrial membrane potential, and increased reactive oxygen species level in EPCs with PA treatment. Furthermore, the expression of fatty acid oxidation (FAO)-related genes was remarkably reduced, and carnitine palmitoyltransferase 1A (CPT1A) protein expression was downregulated in AMPK-deficient EPCs. AMPK deficiency aggravated neurological severity scores and angiogenesis in ischemic brain of HFD-fed mice, accompanied by suppressed protein level of CPT1A. EPC transplantation corrected impaired neurological severity scores and angiogenesis in AMPK-deficient mice. CONCLUSION Our findings suggest that AMPK deficiency aggravates poor angiogenesis in ischemic brain by mediating FAO and oxidative stress thereby inducing EPC dysfunction in hyperlipidemic mice.
Collapse
Affiliation(s)
- Jian Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Lu Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huazhong Ying
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Bing Yu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Yang J, Yu B, Zheng J. Natural herbal extract roles and mechanisms in treating cerebral ischemia: A systematic review. Front Pharmacol 2024; 15:1424146. [PMID: 39156109 PMCID: PMC11327066 DOI: 10.3389/fphar.2024.1424146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Stroke has been the focus of medical research due to its serious consequences and sequelae. Among the tens of millions of new stroke patients every year, cerebral ischemia patients account for the vast majority. While cerebral ischemia drug research and development is still ongoing, most drugs are terminated at preclinical stages due to their unacceptable toxic side effects. In recent years, natural herbs have received considerable attention in the pharmaceutical research and development field due to their low toxicity levels. Numerous studies have shown that natural herbs exert actions that cannot be ignored when treating cerebral ischemia. Methods We reviewed and summarized the therapeutic effects and mechanisms of different natural herbal extracts on cerebral ischemia to promote their application in this field. We used keywords such as "natural herbal extract," "herbal medicine," "Chinese herbal medicine" and "cerebral ischemia" to comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and Wanfang databases, after which we conducted a detailed screening and review strategy. Results We included 120 high-quality studies up to 10 January 2024. Natural herbal extracts had significant roles in cerebral ischemia treatments via several molecular mechanisms, such as improving regional blood flow disorders, protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative stress and inflammatory responses. Conclusion Natural herbal extracts are represented by low toxicity and high curative effects, and will become indispensable therapeutic options in the cerebral ischemia treatment field.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Wang X, Yu Z, Dong F, Li J, Niu P, Ta Q, Kan J, Ma C, Han M, Yu J, Zhao D, Li J. Clarifying the mechanism of apigenin against blood-brain barrier disruption in ischemic stroke using systems pharmacology. Mol Divers 2024; 28:609-630. [PMID: 36949297 DOI: 10.1007/s11030-023-10607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 03/24/2023]
Abstract
Currently, recombinant tissue plasminogen activator (rtPA) is an effective therapy for ischemic stroke (IS). However, blood-brain barrier (BBB) disruption is a serious side effect of rtPA therapy and may lead to patients' death. The natural polyphenol apigenin has a good therapeutic effect on IS. Apigenin has potential BBB protection, but the mechanism by which it protects the BBB integrity is not clear. In this study, we used network pharmacology, bioinformatics, molecular docking and molecular dynamics simulation to reveal the mechanisms by which apigenin protects the BBB. Among the 146 targets of apigenin for the treatment of IS, 20 proteins were identified as core targets (e.g., MMP-9, TLR4, STAT3). Apigenin protects BBB integrity by inhibiting the activity of MMPs through anti-inflammation and anti-oxidative stress. These mechanisms included JAK/STAT, the toll-like receptor signaling pathway, and Nitrogen metabolism signaling pathways. The findings of this study contribute to a more comprehensive understanding of the mechanism of apigenin in the treatment of BBB disruption and provide ideas for the development of drugs to treat IS.
Collapse
Affiliation(s)
- Xu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - ZiQiao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Fuxiang Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jinjian Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ping Niu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qiyi Ta
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - JunMing Kan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chunyu Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Moxuan Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Junchao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Dexi Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
6
|
Stanzione R, Pietrangelo D, Cotugno M, Forte M, Rubattu S. Role of autophagy in ischemic stroke: insights from animal models and preliminary evidence in the human disease. Front Cell Dev Biol 2024; 12:1360014. [PMID: 38590779 PMCID: PMC10999556 DOI: 10.3389/fcell.2024.1360014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Stroke represents a main cause of death and permanent disability worldwide. The molecular mechanisms underlying cerebral injury in response to the ischemic insults are not completely understood. In this article, we summarize recent evidence regarding the role of autophagy in the pathogenesis of ischemic stroke by reviewing data obtained in murine models of either transient or permanent middle cerebral artery occlusion, and in the stroke-prone spontaneously hypertensive rat. Few preliminary observational studies investigating the role of autophagy in subjects at high cerebrovascular risk and in cohorts of stroke patients were also reviewed. Autophagy plays a dual role in neuronal and vascular cells by exerting both protective and detrimental effects depending on its level, duration of stress and type of cells involved. Protective autophagy exerts adaptive mechanisms which reduce neuronal loss and promote survival. On the other hand, excessive activation of autophagy leads to neuronal cell death and increases brain injury. In conclusion, the evidence reviewed suggests that a proper manipulation of autophagy may represent an interesting strategy to either prevent or reduce brain ischemic injury.
Collapse
Affiliation(s)
| | - Donatella Pietrangelo
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Sun D, Zhang Z, Yu X, Li H, Wang X, Chen L. The mechanism of UNC-51-like kinase 1 and the applications of small molecule modulators in cancer treatment. Eur J Med Chem 2024; 268:116273. [PMID: 38432059 DOI: 10.1016/j.ejmech.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Autophagy is a process of self-renewal in cells, which not only provides the necessary nutrients for cells, but also clears necrotic organelles. Autophagy disorders are closely related to diseases such as cancer. UNC-51-like kinase 1 (ULK1) is a serine/threonine protein kinase that plays a crucial role in receiving input from energy and nutrient sensors, activating autophagy to maintain cellular homeostasis under stressful conditions. In recent years, targeting ULK1 has become a highly promising strategy for cancer treatment. This review introduces the regulatory mechanism of ULK1 in autophagy through the AMPK/mTOR/ULK1 pathway and reviews the research progress of ULK1 activators and inhibitors and their applications in cancer treatment. In addition, we analyze the binding modes between ULK1 and modulators through virtual molecular docking, which will provide a reliable basis and theoretical guidance for the design and development of new therapeutic drugs targeting ULK1.
Collapse
Affiliation(s)
- Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China
| | - Zhiqi Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinbo Yu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Xiaobo Wang
- Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Zhou J, Sun F, Zhang W, Feng Z, Yang Y, Mei Z. Novel insight into the therapeutical potential of flavonoids from traditional Chinese medicine against cerebral ischemia/reperfusion injury. Front Pharmacol 2024; 15:1352760. [PMID: 38487170 PMCID: PMC10937431 DOI: 10.3389/fphar.2024.1352760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a major contributor to poor prognosis of ischemic stroke. Flavonoids are a broad family of plant polyphenols which are abundant in traditional Chinese medicine (TCM) and have beneficial effects on several diseases including ischemic stroke. Accumulating studies have indicated that flavonoids derived from herbal TCM are effective in alleviating CIRI after ischemic stroke in vitro or in vivo, and exhibit favourable therapeutical potential. Herein, we systematically review the classification, metabolic absorption, neuroprotective efficacy, and mechanisms of TCM flavonoids against CIRI. The literature suggest that flavonoids exert potential medicinal functions including suppressing excitotoxicity, Ca2+ overloading, oxidative stress, inflammation, thrombin's cellular toxicity, different types of programmed cell deaths, and protecting the blood-brain barrier, as well as promoting neurogenesis in the recovery stage following ischemic stroke. Furthermore, we identified certain matters that should be taken into account in future research, as well as proposed difficulties and opportunities in transforming TCM-derived flavonoids into medications or functional foods for the treatment or prevention of CIRI. Overall, in this review we aim to provide novel ideas for the identification of new prospective medication candidates for the therapeutic strategy against ischemic stroke.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Yang
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
9
|
Lang J, Luo J, Wang L, Xu W, Jia J, Zhao Z, Lang B. Electroacupuncture Suppresses Oxidative Stress and Ferroptosis by Activating the mTOR/SREBP1 Pathway in Ischemic Stroke. Crit Rev Immunol 2024; 44:99-110. [PMID: 38848297 DOI: 10.1615/critrevimmunol.2024051934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. Electroacupuncture (EA) has been shown to exert a neuroprotective effect in IS. However, its specific anti-IS mechanisms remain to be fully elucidated. By constructing a rat IS (middle cerebral artery occlusion, or MCAO) model and performing EA treatment, neurological deficit score, brain water content, and cerebral infarction were evaluated. ELISA was used to measure the levels of oxidative stress-related molecules (MDA, SOD, GSH, and CAT). Ferroptosis-related proteins (GPX4, SLC7A11, TfR1, L-ferritin, and hepcidin), neurological damage-related proteins (GFAP, Iba-1, and Nestin), α7nAChR, and mTOR pathway-related proteins (mTOR, p-mTOR, and SREBP1) in the rat brain penumbra were assessed by western blotting. Following EA treatment, neurological deficit scores, brain water content, cerebral infarction area, and GFAP, Iba-1, and Nestin expression were reduced. Additionally, EA treatment decreased MDA and increased SOD, GSH, and CAT. Moreover, the rats showed elevated GPX4 and SLC7A11 and lowered TfR1, L-ferritin, and hepcidin. In contrast, a7nAChR, mTOR, p-mTOR, and SREBP1 expression were upregulated. EA treatment inhibited OS and ferroptosis to exert a neuroprotective effect in IS, which might be realized via the activation of mTOR/SREBP1 signaling.
Collapse
Affiliation(s)
- Jiawang Lang
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China
| | - Jianchang Luo
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China
| | - Luodan Wang
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China
| | - Wenbin Xu
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital Affiliated with Fudan University, Shanghai 200040, China
| | - Zhipeng Zhao
- Department of Rehabilitation Medicine, School of Medicine, Taizhou University, Taizhou 318000, China
| | | |
Collapse
|
10
|
Lu W, Chen Z, Wen J. Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells. Biomed Pharmacother 2024; 170:115847. [PMID: 38016362 DOI: 10.1016/j.biopha.2023.115847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Ischemic stroke is one of the most cases worldwide, with high rate of morbidity and mortality. In the pathological process of ischemic stroke, neuroinflammation is an essential process that defines the functional prognosis. After stroke onset, microglia, astrocytes and the infiltrating immune cells contribute to a complicated neuroinflammation cascade and play the complicated roles in the pathophysiological variations of ischemic stroke. Both microglia and astrocytes undergo both morphological and functional changes, thereby deeply participate in the neuronal inflammation via releasing pro-inflammatory or anti-inflammatory factors. Flavonoids are plant-specific secondary metabolites and can protect against cerebral ischemia injury via modulating the inflammatory responses. For instances, quercetin can inhibit the expression and release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, IL-6 and IL-1β, in the cerebral nervous system (CNS). Apigenin and rutin can promote the polarization of microglia to anti-inflammatory genotype and then inhibit neuroinflammation. In this review, we focused on the dual roles of activated microglia and reactive astrocyte in the neuroinflammation following ischemic stroke and discussed the anti-neuroinflammation of some flavonoids. Importantly, we aimed to reveal the new strategies for alleviating the cerebral ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
12
|
Song J, Wang H, Sheng J, Zhang W, Lei J, Gan W, Cai F, Yang Y. Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation. Mol Med 2023; 29:147. [PMID: 37891461 PMCID: PMC10612207 DOI: 10.1186/s10020-023-00735-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) involves a variety of pathological processes, and ferroptosis plays a vital role in CKD progression. Targeting ferroptosis is a promising strategy for the treatment of CKD. However, inhibitors of ferroptosis have not been used in the clinical treatment of CKD. Vitexin is a natural flavonoid with many biological activities and protective effects against various diseases. However, whether vitexin can prevent the progression of CKD is not known. METHODS In vivo, the effect of vitexin on CKD was evaluated by using mouse models of unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion (UIR). Western blotting, Sirius red staining and transmission electron microscopy were used to analyze renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. In vitro, CCK8 assays and lipid peroxidation assays were performed to analyze cell viability and lipid peroxidation in human renal tubular epithelial cells (HK2 cells) induced by erastin. The activation of renal fibroblasts (NRK-49 F cells) was also analyzed. Additionally, an in-silico protein-drug docking model and coimmunoprecipitation were performed to determine the direct substrate of vitexin. RESULTS In vivo, vitexin treatment significantly ameliorated renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. Additionally, our results showed that vitexin significantly attenuated UUO- and UIR-induced ferroptosis in renal tubular epithelial cells by upregulating glutathione peroxidase 4 (GPX4) protein levels and inhibiting lipid peroxidation in mouse kidneys. In vitro, treatment with vitexin inhibited erastin-induced ferroptosis in HK2 cells. Moreover, vitexin inhibited the expression of collagen I and α-SMA (alpha-smooth muscle actin) in NRK-49 F cells induced by the supernatant of erastin-treated HK2 cells. Mechanistically, our results suggested that vitexin could activate the NRF2/heme oxygenase-1 (HO-1) pathway by inhibiting the KEAP1- and ubiquitination-mediated degradation of NRF2, thereby increasing the expression of GPX4, and further inhibiting lipid peroxidation and ferroptosis. Additionally, knockout of NRF2 greatly inhibited the antiferroptotic effects of vitexin. CONCLUSIONS Taken together, our results indicate that vitexin can protect against renal tubular epithelial cell ferroptosis in CKD by activating the KEAP1/NRF2/HO-1 pathway and is a promising drug to treat CKD.
Collapse
Affiliation(s)
- Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Wen Zhang
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Weihua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China.
| | - Fangfang Cai
- School of Biopharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yunwen Yang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
13
|
Chen R, Qian L, Fu J, Qin J, Chen X, Xu X. Downregulation of Preso protects against ischemic/reperfusion-mediated neuronal injury through regulating PSD95-nNOS/YAP pathways. Neurochem Int 2023; 169:105586. [PMID: 37442439 DOI: 10.1016/j.neuint.2023.105586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Cerebral ischemic/reperfusion (I/R) injury has become a great challenge harming patients' life. This study aims to explore the regulatory role of Preso during cerebral I/R injury and to elucidate the potential mechanism. Here, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an oxygen-glucose deprivation/reoxygenation (OGD/R)-mediated PC12 cell model to evaluate the expression and role of Preso following cerebral I/R injury. Histopathological injury and infarct size were assessed by hematoxylin and eosin (HE) and 2,3,5-Triphenyltertrazolium chloride (TTC) staining. Double immunofluorescence staining was performed to assess neuronal apoptosis in brain tissues. Cell counting kit-8 (CCK-8) and flow cytometry were performed to evaluate cell viability and apoptosis, respectively. The reactive oxygen species (ROS) and nitric oxide (NO) levels were detected using their respective detection kits, and the expression of corresponding proteins was examined adopting Western blot. The results showed that Preso was upregulated in OGD/R-induced PC12 cells and MCAO rats. Preso knockdown significantly reduced OGD/R-caused viability loss, apoptosis and oxidative stress in PC12 cells, and reduced infarct size, attenuated histological injury, and inhibited apoptosis and oxidative stress in the brain tissues from MCAO rats, as well as inhibiting the expression of postsynaptic density protein-95 (PSD95) and nitric oxide synthase (nNOS) and repressing YAP phosphorylation in vitro. In addition, the protective role of Preso knockdown against cerebral I/R injury was partly strengthened by IC87201, the nNOS/PSD95 interaction inhibitor, or weakened by Verteporfin (Vert), an inhibitor of YAP. In conclusion, Perso knockdown might exert a protective role against cerebral I/R injury via regulating PSD95-nNOS and YAP pathways, providing a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Rundong Chen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lei Qian
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jin Fu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiajun Qin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xiaolong Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Chen C, Zhu T, Gong L, Hu Z, Wei H, Fan J, Lin D, Wang X, Xu J, Dong X, Wang Y, Xia N, Zeng L, Jiang P, Xie Y. Trpm2 deficiency in microglia attenuates neuroinflammation during epileptogenesis by upregulating autophagy via the AMPK/mTOR pathway. Neurobiol Dis 2023; 186:106273. [PMID: 37648036 DOI: 10.1016/j.nbd.2023.106273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders. Neuroinflammation involving the activation of microglia and astrocytes constitutes an important and common mechanism in epileptogenesis. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in various inflammation-related diseases. Our previous study demonstrated that Trpm2 knockout exhibits therapeutic effects on pilocarpine-induced glial activation and neuroinflammation. However, whether TRPM2 in microglia and astrocytes plays a common pathogenic role in this process and the underlying molecular mechanisms remained undetermined. Here, we demonstrate a previously unknown role for microglial TRPM2 in epileptogenesis. Trpm2 knockout in microglia attenuated kainic acid (KA)-induced glial activation, inflammatory cytokines production and hippocampal paroxysmal discharges, whereas Trpm2 knockout in astrocytes exhibited no significant effects. Furthermore, we discovered that these therapeutic effects were mediated by upregulated autophagy via the adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in microglia. Thus, our findings highlight an important deleterious role of microglial TRPM2 in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Lifen Gong
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Zhe Hu
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Hao Wei
- Department of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jianchen Fan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Donghui Lin
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Xiaojun Wang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Junyu Xu
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Xinyan Dong
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Yifan Wang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Ningxiao Xia
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Peifang Jiang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| | - Yicheng Xie
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
15
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
16
|
Luo Y, Xia Y, Zhang H, Lin Y, He L, Gong T, Zhang Z, Deng L. Human Serum Albumin-enriched Clopidogrel Bisulfate Nanoparticle Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Pharm Res 2023; 40:1821-1833. [PMID: 37291463 DOI: 10.1007/s11095-023-03543-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Cerebral ischemia-reperfusion (I/R) injury remains a leading cause of mobility and mortality among patients with ischemic stroke. This study aims to develop a human serum albumin (HSA)-enriched nanoparticle platform for solubilizing clopidogrel bisulfate (CLP) for intravenous administration, and to explore the protective effect of HSA-enriched nanoparticles loaded with CLP (CLP-ANPs) against cerebral I/R injury in transient middle cerebral artery occlusion (MCAO) rat model. METHODS CLP-ANPs were synthesized via a modified nanoparticle albumin-bound technology, lyophilized, and then characterized by morphology, particle size, zeta potential, drug loading capacity, encapsulation efficiency, stability and in vitro release kinetics. In vivo pharmacokinetic studies were conducted using Sprague-Dawley (SD) rats. Also, an MCAO rat model was established to explore the therapeutic effect of CLP-ANPs on cerebral I/R injury. RESULTS CLP-ANPs remained spherical particles with a layer of proteins forming protein corona. Lyophilized CLP-ANPs after dispersion displayed an average size of about 235.6 ± 6.6 nm (PDI = 0.16 ± 0.08) with a zeta potential of about - 13.5 ± 1.8 mV. CLP-ANPs achieved sustained release for up to 168 h in vitro. Next, a single injection of CLP-ANPs dose-dependently reversed the histopathological changes induced by cerebral I/R injury possibly via attenuating apoptosis and reducing oxidative damages in the brain tissues. CONCLUSIONS CLP-ANPs represent a promising and translatable platform system for the management of cerebral I/R injury during ischemic stroke.
Collapse
Affiliation(s)
- Yiting Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yunli Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Haonan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yunzhu Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, 610041, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Yang Y, Zhang M, Li Z, He S, Ren X, Wang L, Wang Z, Shu S. Identification and cross-validation of autophagy-related genes in cardioembolic stroke. Front Neurol 2023; 14:1097623. [PMID: 37305740 PMCID: PMC10248509 DOI: 10.3389/fneur.2023.1097623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Objective Cardioembolic stroke (CE stroke, also known as cardiogenic cerebral embolism, CCE) has the highest recurrence rate and fatality rate among all subtypes of ischemic stroke, the pathogenesis of which was unclear. Autophagy plays an essential role in the development of CE stroke. We aim to identify the potential autophagy-related molecular markers of CE stroke and uncover the potential therapeutic targets through bioinformatics analysis. Methods The mRNA expression profile dataset GSE58294 was obtained from the GEO database. The potential autophagy-related differentially expressed (DE) genes of CE stroke were screened by R software. Protein-protein interactions (PPIs), correlation analysis, and gene ontology (GO) enrichment analysis were applied to the autophagy-related DE genes. GSE66724, GSE41177, and GSE22255 were introduced for the verification of the autophagy-related DE genes in CE stroke, and the differences in values were re-calculated by Student's t-test. Results A total of 41 autophagy-related DE genes (37 upregulated genes and four downregulated genes) were identified between 23 cardioembolic stroke patients (≤3 h, prior to treatment) and 23 healthy controls. The KEGG and GO enrichment analysis of autophagy-related DE genes indicated several enriched terms related to autophagy, apoptosis, and ER stress. The PPI results demonstrated the interactions between these autophagy-related genes. Moreover, several hub genes, especially for CE stroke, were identified and re-calculated by Student's t-test. Conclusion We identified 41 potential autophagy-related genes associated with CE stroke through bioinformatics analysis. SERPINA1, WDFY3, ERN1, RHEB, and BCL2L1 were identified as the most significant DE genes that may affect the development of CE stroke by regulating autophagy. CXCR4 was identified as a hub gene of all types of strokes. ARNT, MAPK1, ATG12, ATG16L2, ATG2B, and BECN1 were identified as particular hub genes for CE stroke. These results may provide insight into the role of autophagy in CE stroke and contribute to the discovery of potential therapeutic targets for CE stroke treatment.
Collapse
Affiliation(s)
- Yufang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqing Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Ren
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linmei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Prakash R, Vyawahare A, Sakla R, Kumari N, Kumar A, Ansari MM, Jori C, Waseem A, Siddiqui AJ, Khan MA, Robertson AAB, Khan R, Raza SS. NLRP3 Inflammasome-Targeting Nanomicelles for Preventing Ischemia-Reperfusion-Induced Inflammatory Injury. ACS NANO 2023; 17:8680-8693. [PMID: 37102996 DOI: 10.1021/acsnano.3c01760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood-brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen-glucose deprivation (OGD)-treated SH-SY5Y cells, the I/R-damaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Rahul Sakla
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Neha Kumari
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Abu Junaid Siddiqui
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | | | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| |
Collapse
|
19
|
Mustapha M, Mat Taib CN. Beneficial Role of Vitexin in Parkinson's Disease. Malays J Med Sci 2023; 30:8-25. [PMID: 37102042 PMCID: PMC10125247 DOI: 10.21315/mjms2023.30.2.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 04/28/2023] Open
Abstract
Today, Parkinson's disease (PD) is the foremost neurological disorder all across the globe. In the quest for a novel therapeutic agent for PD with a multimodal mechanism of action and relatively better safety profile, natural flavonoids are now receiving greater attention as a potential source of neuroprotection. Vitexin have been shown to exhibit diverse biological benefits in various disease conditions, including PD. It exerts its anti-oxidative property in PD patients by either directly scavenging reactive oxygen species (ROS) or by upregulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhancing the activities of antioxidant enzymes. Also, vitexin activates the ERK1/1 and phosphatidyl inositol-3 kinase/Akt (PI3K/Akt) pro-survival signalling pathway, which upregulates the release of anti-apoptotic proteins and downregulates the expression of pro-apoptotic proteins. It could be antagonistic to protein misfolding and aggregation. Studies have shown that it can also act as an inhibitor of monoamine oxidase B (MAO-B) enzyme, thereby increasing striatal dopamine levels, and hence, restoring the behavioural deficit in experimental PD models. Such promising pharmacological potential of vitexin could be a game-changer in devising novel therapeutic strategies against PD. This review discusses the chemistry, properties, sources, bioavailability and safety profile of vitexin. The possible molecular mechanisms underlying the neuroprotective action of vitexin in the pathogenesis of PD alongside its therapeutic potential is also discussed.
Collapse
Affiliation(s)
- Musa Mustapha
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
20
|
Lu H, Wang Y, Fan H, Wang Y, Fan S, Hu S, Shen H, Li H, Xue Q, Ni J, Fang Q, Chen G. GluA1 Degradation by Autophagy Contributes to Circadian Rhythm Effects on Cerebral Ischemia Injury. J Neurosci 2023; 43:2381-2397. [PMID: 36813576 PMCID: PMC10072305 DOI: 10.1523/jneurosci.1914-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
The mechanisms of many diseases, including central nervous system disorders, are regulated by circadian rhythms. The development of brain disorders such as depression, autism, and stroke is strongly associated with circadian cycles. Previous studies have shown that cerebral infarct volume is smaller at night (active phase) than during the day (inactive phase) in ischemic stroke rodent models. However, the underlying mechanisms remain unclear. Increasing evidence suggests that glutamate systems and autophagy play important roles in the pathogenesis of stroke. Here, we report that GluA1 expression was decreased and autophagic activity was increased in active-phase male mouse models of stroke compared with the inactive-phase models. In the active-phase model, induction of autophagy decreased the infarct volume, whereas inhibition of autophagy increased the infarct volume. Meanwhile, GluA1 expression was decreased following activation of autophagy and increased following inhibition of autophagy. We used Tat-GluA1 to uncouple p62, an autophagic adapter, from GluA1 and found that this blocked the degradation of GluA1, an effect similar to that of inhibition of autophagy in the active-phase model. We also demonstrated that knock-out of the circadian rhythm gene Per1 abolished the circadian rhythmicity of the volume of infarction and also abolished GluA1 expression and autophagic activity in wild-type (WT) mice. Our results suggest an underlying mechanism by which the circadian rhythm participates in the autophagy-dependent regulation of GluA1 expression, which influences the volume of infarction in stroke.SIGNIFICANCE STATEMENT Circadian rhythms affect the pathophysiological mechanisms of disease. Previous studies suggested that circadian rhythms affect the infarct volume in stroke, but the underlying mechanisms remain largely unknown. Here, we demonstrate that the smaller infarct volume after middle cerebral artery occlusion/reperfusion (MCAO/R) during the active phase is related to lower GluA1 expression and activation of autophagy. The decrease in GluA1 expression during the active phase is mediated by the p62-GluA1 interaction, followed by direct autophagic degradation. In short, GluA1 is the substrate of autophagic degradation, which mainly occurs after MCAO/R during the active phase but not the inactive phase.
Collapse
Affiliation(s)
- Haifeng Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Yugang Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| | - Yiqing Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Shenghao Fan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Jianqiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| |
Collapse
|
21
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
22
|
The protection impact of tectoridin on PC12 cell preventing OGD/R-caused damage through PI3K/AKT signaling channel. Eur J Pharmacol 2023; 941:175491. [PMID: 36610685 DOI: 10.1016/j.ejphar.2023.175491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
The present work examined the effect exerted by tectoridin preventing oxygen glucose deprivation/reoxygenation (OGD/R) damage within PC12 cell. We incubated PC12 cells with Na2S2O4 (10 mM) for 2 h, and tectoridin at different concentrations was then added; based on methyl-thiazolyl-tetrazolium (MTT) and lactate dehydrogenase (LDH) tests, the protection impact was tested. 2',7'-dicholorofluorescein diacetate (DCFH-DA), Fluo-3AM, and 5, 5', 6, 6' -tetrachloro-1, 1', 3, 3' -tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting were used for determining reactive oxygen species (ROS) level, intracellular Ca2+ content, mitochondrial membrane potential (MMP) and the related proteins contents. As a result, tectoridin could improve the cell viability and inhibit the release of LDH. In-depth studies demonstrated that tectoridin limited the overproduction of ROS and intracellular Ca2+ content and increased MMP, which showed a close association with ROS-mediated mitochondrial function. Moreover, tectoridin hindered apoptosis based on the up-regulation of the expressions of p-AKT, Bcl-2/Bax and p-mTOR. Furthermore, the level of Nrf2 was also improved by treatment of tectoridin. In addition, the expression of Bcl-2/Bax, p-Akt, p-mTOR, Nrf2, HO-1, NQO1 and GCLM were reduced by LY294002 and the protective role of tectoridin was limited by LY294002. The results unambiguously suggested that tectoridin reduced OGD/R-caused damage to PC12 cells and might ensure neuroprotection by stimulating the PI3K/AKT signaling channel.
Collapse
|
23
|
Liu A, Hu J, Yeh TS, Wang C, Tang J, Huang X, Chen B, Huangfu L, Yu W, Zhang L. Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives. Curr Neuropharmacol 2023; 21:2283-2309. [PMID: 37458258 PMCID: PMC10556387 DOI: 10.2174/1570159x21666230717144752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 09/09/2023] Open
Abstract
Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.
Collapse
Affiliation(s)
- Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tzu-Shao Yeh
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jilong Tang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaohong Huang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Bin Chen
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Liexiang Huangfu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Yin K, Yang J, Wang F, Wang Z, Xiang P, Xie X, Sun J, He X, Zhang X. A preliminary study of the chemical composition and bioactivity of Bombax ceiba L. flower and its potential mechanism in treating type 2 diabetes mellitus using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry and network pharmacology analysis. Front Nutr 2022; 9:1018733. [PMID: 36313078 PMCID: PMC9608341 DOI: 10.3389/fnut.2022.1018733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to preliminary investigate the phytochemistry, bioactivity, hypoglycemic potential, and mechanism of action of Bombax ceiba L. flower (BCF), a wild edible and food plant in China. By using methanol extraction and liquid-liquid extraction, the crude extract (CE) of BCF and its petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (n-BuOH), and aqueous (AQ) fractions were obtained, and their chemical components and biological activities were evaluated. Further high-performance liquid chromatography (HPLC) analysis was carried out to identify and quantify the active constituents of BFC and its five fractions, and the phytochemical composition of the best-performing fraction was then analyzed by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC/Q-TOF-MS). Finally, a network pharmacology strategy based on the chemical profile of this fraction was applied to speculate its main hypoglycemic mechanism. Results revealed the excellent biological activities of BCF, especially the EtOAc fraction. In addition to the highest total flavonoid content (TFC) (367.72 μg RE/mg E) and total phenolics content (TPC) (47.97 μg GAE/mg E), EtOAc showed the strongest DPPH⋅ scavenging ability (IC50 value = 29.56 μg/mL), ABTS⋅+ scavenging ability (IC50 value = 84.60 μg/mL), and ferric reducing antioxidant power (FRAP) (889.62 μg FeSO4/mg E), which were stronger than the positive control BHT. EtOAc also exhibited the second-best α-glucosidase inhibitory capacity and second-best acetylcholinesterase (AChE) inhibitory capacity with the IC50 values of 2.85 and 3.27 mg/mL, respectively. Also, EtOAc inhibited HepG2, MCF-7, Raw264.7, and A549 cell with IC50 values of 1.08, 1.62, 0.77, and 0.87 mg/mL, which were the second or third strongest in all fractions. Additionally, HPLC analysis revealed significant differences in the compounds’ abundance between different fractions. Among them, EtOAc had the most detected compounds and the highest content. According to the results of UPLC/Q-TOF-MS, 38 compounds were identified in EtOAc, including 24 phenolic acids and 6 flavonoids. Network pharmacological analysis further confirmed 41 potential targets of EtOAc in the treatment of type 2 diabetes, and intracellular receptor signaling pathways, unsaturated fatty acid, and DNA transcription pathways were the most possible mechanisms. These findings suggested that BCF was worthwhile to be developed as an antioxidant and anti-diabetic food/drug.
Collapse
Affiliation(s)
- Kehong Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Jinmei Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, China
| | - Xing Xie
- National R&D Center for Freshwater Fish Processing, College of Health, Jiangxi Normal University, Nanchang, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China,*Correspondence: Xuemei He,
| | - Xuechun Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming, China,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China,Xuechun Zhang,
| |
Collapse
|
25
|
Almutairi FM, Ullah A, Althobaiti YS, Irfan HM, Shareef U, Usman H, Ahmed S. A Review on Therapeutic Potential of Natural Phytocompounds for Stroke. Biomedicines 2022; 10:biomedicines10102566. [PMID: 36289828 PMCID: PMC9599280 DOI: 10.3390/biomedicines10102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Stroke is a serious condition that results from an occlusion of blood vessels that leads to brain damage. Globally, it is the second highest cause of death, and deaths from strokes are higher in older people than in the young. There is a higher rate of cases in urban areas compared to rural due to lifestyle, food, and pollution. There is no effective single medicine for the treatment of stroke due to the multiple causes of strokes. Thrombolytic agents, such as alteplase, are the main treatment for thrombolysis, while multiple types of surgeries, such ascraniotomy, thrombectomy, carotid endarterectomy, and hydrocephalus, can be performed for various forms of stroke. In this review, we discuss some promising phytocompounds, such as flavone C-glycoside (apigenin-8-C-β-D-glucopyranoside), eriodictyol, rosamirinic acid, 6″-O-succinylapigenin, and allicin, that show effectiveness against stroke. Future study paths are given, as well as suggestions for expanding the use of medicinal plants and their formulations for stroke prevention.
Collapse
Affiliation(s)
- Farooq M. Almutairi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Aman Ullah
- Saba Medical Center, Abu Dhabi P.O. Box 20316, United Arab Emirates
- Correspondence: (A.U.); (S.A.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | | | - Usman Shareef
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Halima Usman
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Sagheer Ahmed
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (A.U.); (S.A.)
| |
Collapse
|
26
|
Ma Q, Zhou J, Yang Z, Xue Y, Xie X, Li T, Yang Y. Mingmu Xiaoyao granules regulate the PI3K/Akt/mTOR signaling pathway to reduce anxiety and depression and reverse retinal abnormalities in rats. Front Pharmacol 2022; 13:1003614. [PMID: 36278192 PMCID: PMC9579374 DOI: 10.3389/fphar.2022.1003614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: To investigate the effects of Mingmu Xiaoyao granules (MMXY) on the morphology and function of the retina and the mechanism of PI3K/Akt/mTOR pathway-related proteins in rats with anxiety and depression induced by chronic unpredictable mild stress (CUMS). Methods: Fifty-two male Sprague Dawley rats were randomly allocated to either a control (n = 14) or a simulated CUMS group (n = 38). The CUMS model was established successfully at 4 weeks. Six rats in each group were randomly selected to be sacrificed and their retinas isolated for histological examination. At 5 weeks, rats in the CUMS group were randomly allocated to the following groups: Model (CUMS + pure water), MMXY-H (CUMS + MMXY 7.2 g/kg/d), MMXY-L (CUMS + MMXY 3.6 g/kg/d), and CBZ (CUMS + Carbamazepine 20 mg/kg/d), with eight rats in each group. All rats were given the relevant intervention once a day. At 12 weeks, sucrose preference and open field tests were performed to evaluate the anxiety and depression status of rats. In live rats, optical coherence tomography angiography was used to measure retinal thickness and blood flow, while electroretinograms (ERGs) and visual evoked potentials (VEPs) were used to evaluate retinal function. The next day, the specimens were sacrificed for serological, histological, immunofluorescence, Western blot and transmission electron microscopy examinations to explore the mechanism of MMXY in CUMS rats. Results: MMXY improved the anxiety and depression-like behavior of rats. Results of optical coherence tomography angiography showed that MMXY improved retinal inner thickness and blood flow in CUMS rats. MMXY improved the amplitude of a- and b-waves in the scotopic and photopic ERG, as well as N2 and P2 peak time and amplitude in the flash-VEP in CUMS rats. Retinal histological staining and transmission electron microscopy showed that MMXY reversed retinal morphology and ultrastructure in CUMS rats. MMXY reduced the expression of Beclin1 and LC3I/II proteins, regulated the PI3K/Akt/mTOR pathway, inhibited autophagy, and had a protective effect on the retina in CUMS rats. Conclusion: MMXY may effectively improve retinal morphology and function as well as anxiety and depression-like behaviors in CUMS rats by regulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qiuyan Ma
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jian Zhou
- Ophthalmology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinran Xie
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Tiejun Li
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yingxin Yang
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- *Correspondence: Yingxin Yang,
| |
Collapse
|
27
|
Gao Y, Wang C, Jiang D, An G, Jin F, Zhang J, Han G, Cui C, Jiang P. New insights into the interplay between autophagy and oxidative and endoplasmic reticulum stress in neuronal cell death and survival. Front Cell Dev Biol 2022; 10:994037. [PMID: 36187470 PMCID: PMC9524158 DOI: 10.3389/fcell.2022.994037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a dynamic process that maintains the normal homeostasis of cells by digesting and degrading aging proteins and damaged organelles. The effect of autophagy on neural tissue is still a matter of debate. Some authors suggest that autophagy has a protective effect on nerve cells, whereas others suggest that autophagy also induces the death of nerve cells and aggravates nerve injury. In mammals, oxidative stress, autophagy and endoplasmic reticulum stress (ERS) constitute important defense mechanisms to help cells adapt to and survive the stress conditions caused by physiological and pathological stimuli. Under many pathophysiological conditions, oxidative stress, autophagy and ERS are integrated and amplified in cells to promote the progress of diseases. Over the past few decades, oxidative stress, autophagy and ERS and their interactions have been a hot topic in biomedical research. In this review, we summarize recent advances in understanding the interactions between oxidative stress, autophagy and ERS in neuronal cell death and survival.
Collapse
Affiliation(s)
- Yahao Gao
- Clinical Medical School, Jining Medical University, Jining, China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Di Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gang An
- Clinical Medical School, Jining Medical University, Jining, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Junchen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
- *Correspondence: Changmeng Cui, ; Pei Jiang,
| | - Pei Jiang
- Department of Clinical Pharmacy, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Changmeng Cui, ; Pei Jiang,
| |
Collapse
|
28
|
Leonurine Reduces Oxidative Stress and Provides Neuroprotection against Ischemic Injury via Modulating Oxidative and NO/NOS Pathway. Int J Mol Sci 2022; 23:ijms231710188. [PMID: 36077582 PMCID: PMC9456230 DOI: 10.3390/ijms231710188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Leonurine (Leo) has been found to have neuroprotective effects against cerebral ischemic injury. However, the exact molecular mechanism underlying its neuroprotective ability remains unclear. The aim of the present study was to investigate whether Leo could provide protection through the nitric oxide (NO)/nitric oxide synthase (NOS) pathway. We firstly explored the effects of NO/NOS signaling on oxidative stress and apoptosis in in vivo and in vitro models of cerebral ischemia. Further, we evaluated the protective effects of Leo against oxygen and glucose deprivation (OGD)-induced oxidative stress and apoptosis in PC12 cells. We found that the rats showed anxiety-like behavior, and the morphology and number of neurons were changed in a model of photochemically induced cerebral ischemia. Both in vivo and in vitro results show that the activity of superoxide dismutase (SOD) and glutathione (GSH) contents were decreased after ischemia, and reactive oxygen species (ROS) and malondialdehyde (MDA) levels were increased, indicating that cerebral ischemia induced oxidative stress and neuronal damage. Moreover, the contents of NO, total NOS, constitutive NOS (cNOS) and inducible NOS (iNOS) were increased after ischemia in rat and PC12 cells. Treatment with L-nitroarginine methyl ester (L-NAME), a nonselective NOS inhibitor, could reverse the change in NO/NOS expression and abolish these detrimental effects of ischemia. Leo treatment decreased ROS and MDA levels and increased the activity of SOD and GSH contents in PC12 cells exposed to OGD. Furthermore, Leo reduced NO/NOS production and cell apoptosis, decreased Bax expression and increased Bcl-2 levels in OGD-treated PC12 cells. All the data suggest that Leo protected against oxidative stress and neuronal apoptosis in cerebral ischemia by inhibiting the NO/NOS system. Our findings indicate that Leo could be a potential agent for the intervention of ischemic stroke and highlighted the NO/NOS-mediated oxidative stress signaling.
Collapse
|
29
|
Yao Y, Bade R, Li G, Zhang A, Zhao H, Fan L, Zhu R, Yuan J. Global-Scale Profiling of Differential Expressed Lysine-Lactylated Proteins in the Cerebral Endothelium of Cerebral Ischemia-Reperfusion Injury Rats. Cell Mol Neurobiol 2022:10.1007/s10571-022-01277-6. [PMID: 36030297 DOI: 10.1007/s10571-022-01277-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Acute ischemic stroke (AIS) is a serious threat to human health. Following AIS, cerebral ischemia-reperfusion injury (CIRI) must be treated to improve prognosis. By combining 4D label-free quantitative proteomics with lactylation modification-specific proteomics analysis, we assessed lysine lactylation (Kla) in cortical proteins of a CIRI rat model. We identified a total of 1003 lactylation sites on 469 proteins in this study, gathering quantitative information (PXD034232) on 660 of 310 proteins, which were further classified by cell composition, molecular function, and biological processes. In addition, we analyzed the metabolic pathways, domains, and protein-protein interaction networks. Lastly, we evaluated differentially expressed lysine lactylation sites, determining 49 upregulated proteins and 99 downregulated proteins with 54 upregulated sites and 54 downregulated sites in the experimental group in comparison with the healthy control group. Moreover, we identified the Kla of Scl25a4 and Slc25a5 in the Ca2+ signaling pathway, but the Kla of Vdac1 was eliminated, as confirmed in vivo. Overall, these results provide new insights into lactylation involved in the underlying mechanism of CIRI because this post-translational modification affects the mitochondrial apoptosis pathway and mediates neuronal death. Therefore, this study may enable us to develop new molecules with therapeutic properties, which have both theoretical significance and broad clinical application prospects. A new model of cerebral ischemia-reperfusion injury (CIRI) induced by lactylation through the regulation of key proteins of the Ca2+ signaling pathway.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Rengui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
- Medical College of Neuroscience Institute, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou, 014060, China
| | - Guotao Li
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
| | - Aoqi Zhang
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Haile Zhao
- Inner Mongolia University People's Hospital, Hohhot, 010017, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014060, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Runxiu Zhu
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
| | - Jun Yuan
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, 010017, China.
- Inner Mongolia University People's Hospital, Hohhot, 010017, China.
| |
Collapse
|
30
|
Hypothermia Protects against Ischemic Stroke through Peroxisome-Proliferator-Activated-Receptor Gamma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6029445. [PMID: 35873794 PMCID: PMC9303492 DOI: 10.1155/2022/6029445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Ischemic stroke (IS) remains a global public health burden and requires novel strategies. Hypothermia plays a beneficial role in central nervous system diseases. However, the role of hypothermia in IS has not yet been elucidated. In this study, we determined the role of hypothermia in IS and explored its underlying mechanisms. The IS phenotype was detected based on infarct size, infarct volume, and brain edema in mice. Neuroinflammation was evaluated by the activation of microglial cells and the expression of inflammatory genes after ischemia/reperfusion (I/R) and oxygen-glucose deprivation/reperfusion (OGD/R). Neuronal cell apoptosis, cleaved caspase-3 and Bax/Bcl-2 expressions, cell viability, and lactate dehydrogenase (LDH) release were detected after I/R and OGD/R. Blood–brain barrier (BBB) permeability was calculated based on Evans blue extravasation, tight junction protein expression, cell viability, and LDH release after I/R and OGD/R. The expression of peroxisome proliferator-activated receptor gamma (PPARγ) was assessed after OGD/R. Our results suggested that hypothermia significantly reduced infarct size, brain edema, and neuroinflammation after I/R. Hypothermia increased PPARγ expression in microglial cells after OGD/R. Mechanistic studies revealed that hypothermia was a protectant against IS, including attenuated apoptosis of neuronal cells and BBB disruption after I/R and OGD/R, by upregulating PPARγ expression. The hypothermic effect was reversed by GW9662, a PPARγ inhibitor. Our data showed that hypothermia may reduce microglial cell-mediated neuroinflammation by upregulating PPARγ expression in microglial cells. Targeting hypothermia may be a feasible approach for IS treatment.
Collapse
|
31
|
Enriched Environment-Induced Neuroprotection against Cerebral Ischemia-Reperfusion Injury Might Be Mediated via Enhancing Autophagy Flux and Mitophagy Flux. Mediators Inflamm 2022; 2022:2396487. [PMID: 35795405 PMCID: PMC9252718 DOI: 10.1155/2022/2396487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background Enriched environment (EE) can protect the brain against damages caused by an ischemic stroke; however, the underlying mechanism remains elusive. Autophagy and mitochondria quality control are instrumental in the pathogenesis of ischemic stroke. In this study, we investigated whether and how autophagy and mitochondria quality control contribute to the protective effect of EE in the acute phase of cerebral ischemia–reperfusion injury. Methods We exposed transient middle cerebral artery occlusion (tMCAO) mice to EE or standard condition (SC) for 7 days and then studied them for neurological deficits, autophagy and inflammation-related proteins, and mitochondrial morphology and function. Results Compared to tMCAO mice in the SC group, those in the EE group showed fewer neurological deficits, relatively downregulated inflammation, higher LC3 expression, higher mitochondrial Parkin levels, higher mitochondrial fission factor dynamin-related protein-1 (Drp1) levels, lower p62 expression, and lower autophagy inhibitor mTOR expression. Furthermore, we found that the EE group showed a higher number of mitophagosomes and normal mitochondria, fewer mitolysosomes, and relatively increased mitochondrial membrane potential. Conclusion These results suggested that EE enhances autophagy flux by inhibiting mTOR and enhances mitophagy flux via recruiting Drp1 and Parkin to eliminate dysfunctional mitochondria, which in turn inhibits inflammation and alleviates neurological deficits. Limitations. The specific mechanisms through which EE promotes autophagy and mitophagy and the signaling pathways that link them with inflammation need further study.
Collapse
|
32
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
33
|
Wen B, Zhou K, Hu C, Chen J, Xu K, Liang T, He B, Chen L, Chen J. Salidroside Ameliorates Ischemia-Induced Neuronal Injury through AMPK Dependent and Independent Pathways to Maintain Mitochondrial Quality Control. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1133-1153. [PMID: 35543160 DOI: 10.1142/s0192415x2250046x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salidroside, an active ingredient in Rhodiola rosea, has potent protective activity against cerebral ischemia. However, the mechanisms underlying its pharmacological actions are poorly understood. In this study, we employed a mouse middle cerebral artery occlusion (MCAO) and cellular oxygen and glucose deprivation (OGD) models to test the hypothesis that salidroside may restore mitochondrial quality control in neurons by modulating the relevant signaling. The results indicated that salidroside mitigated almost 40% the ischemia-induced brain infarct volumes in mice and the OGD-decreased viability of neurons to ameliorate the mitochondrial functions. Furthermore, salidroside treatment alleviated the OGD- or ischemia-induced imbalance of mitochondrial fission and fusion, mitophagy and promoted mitochondrial biogenesis in neurons by attenuating the AMPK activity. Moreover, salidroside alleviated 50% the OGD-promoted mitochondrial calcium fluorescence intensity and 5% mitochondria-associated membrane (MAM) area by down-regulating GRP75 expression independent of the AMPK signaling. Finally, similar findings were achieved in primary mouse neurons. Collectively, these data indicate that salidroside effectively restores the mitochondria dynamics, facilitates mitochondrial biogenesis by attenuating the AMPK signaling, and maintains calcium homeostasis in neurons independent of the AMPK activity.
Collapse
Affiliation(s)
- Bin Wen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Keru Zhou
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Caiyin Hu
- Department of Cardiology, Wuhan Red Cross Hospital, Wuhan 430015, P. R. China
| | - Jiehui Chen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan 445400, Hubei, P. R. China
| | - Ling Chen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
34
|
Jing Y, Yang R, Chen W, Ye Q. Anti-Arrhythmic Effects of Sodium-Glucose Co-Transporter 2 Inhibitors. Front Pharmacol 2022; 13:898718. [PMID: 35814223 PMCID: PMC9263384 DOI: 10.3389/fphar.2022.898718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmias are clinically prevalent with a high mortality rate. They impose a huge economic burden, thereby substantially affecting the quality of life. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) is a new type of hypoglycemic drug, which can regulate blood glucose level safely and effectively. Additionally, it reduces the occurrence and progression of heart failure and cardiovascular events significantly. Recently, studies have found that SGLT2i can alleviate the occurrence and progression of cardiac arrhythmias; however, the exact mechanism remains unclear. In this review, we aimed to discuss and summarize new literature on different modes in which SGLT2i ameliorates the occurrence and development of cardiac arrhythmias.
Collapse
|
35
|
Ong WY, Herr DR, Sun GY, Lin TN. Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans. Molecules 2022; 27:molecules27113607. [PMID: 35684542 PMCID: PMC9182488 DOI: 10.3390/molecules27113607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies with different extracts, there is increasing interest to understand the properties of these components, especially regarding their ability to exert anti-inflammatory effects on cells and tissues. A major focus for this review is to obtain information on the effects of C. nutans extracts and its phytochemical components on inflammatory signaling pathways in the peripheral and central nervous system. Particular emphasis is placed on their role to target the Toll-like receptor 4 (TLR4)-NF-kB pathway and pro-inflammatory cytokines, the antioxidant defense pathway involving nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1); and the phospholipase A2 (PLA2) pathway linking to cyclooxygenase-2 (COX-2) and production of eicosanoids. The ability to provide a better understanding of the molecular targets and mechanism of action of C. nutans extracts and their phytochemical components should encourage future studies to develop new therapeutic strategies for better use of this herb to combat inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore 119260, Singapore
- Correspondence:
| | - Deron R. Herr
- Department of Pharmacology, National University of Singapore, Singapore 119260, Singapore;
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
36
|
Noor KK, Ijaz MU, Ehsan N, Tahir A, Yeni DK, Neamul Kabir Zihad SM, Uddin SJ, Ashraf A, Simal-Gandara J. Hepatoprotective role of vitexin against cadmium-induced liver damage in male rats: A biochemical, inflammatory, apoptotic and histopathological investigation. Biomed Pharmacother 2022; 150:112934. [PMID: 35421786 DOI: 10.1016/j.biopha.2022.112934] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022] Open
Abstract
Cadmium (Cd) is one of the potent occupational and environmental toxicants, which induces oxidative stress to the multiple organs of the body, including liver. The present investigation was planned to evaluate the protective role of vitexin against Cd-prompted hepatotoxicity in rats. 24 male rats were divided into 4 groups viz. control, Cd-induced group (5 mg/kg), Cd + vitexin-treated group (2 mg/kg + 30 mg/kg), and vitexin-treated group (30 mg/kg). After 30 days of treatment, it was indicated that Cd escalated the level of liver function enzymes namely alanine transaminase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) as well as total bilirubin. Whereas the levels of albumin and total proteins were decreased in the rats. Additionally, it reduced the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR) and glutathione-S-transferase (GST), in addition to glutathione (GSH) content, whereas levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were escalated. Furthermore, level of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) as well as the activity of cyclooxygenase-2 (COX-2) were increased. Besides, the level of Bax, caspase-9 and caspase-3 were elevated, while the Bcl-2 level was reduced following the Cd intoxication. Histopathological observation revealed significant hepatic tissue damage in Cd-administered rats. However, treatment of rats with vitexin significantly (p < 0.05) improved the Cd-induced disruptions in biochemical parameters as well as histological damages. Therefore, it is concluded that vitexin could be used as a therapeutic agent to counter the Cd-generated hepatic toxicity in rats owing to its anti-oxidant, anti-apoptotic and anti-inflammatory potential.
Collapse
Affiliation(s)
- Kiran Kousar Noor
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Derya Kertas Yeni
- Veterinary Control Central Research Institute, Bacterial Disease Laboratory, Ankara 06000, Turkey
| | - S M Neamul Kabir Zihad
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| | | | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense E32004, Spain.
| |
Collapse
|
37
|
Arruri V, Vemuganti R. Role of autophagy and transcriptome regulation in acute brain injury. Exp Neurol 2022; 352:114032. [PMID: 35259350 PMCID: PMC9187300 DOI: 10.1016/j.expneurol.2022.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular system that routes distinct cytoplasmic cargo to lysosomes for degradation and recycling. Accumulating evidence highlight the mechanisms of autophagy, such as clearance of proteins, carbohydrates, lipids and damaged organelles. The critical role of autophagy in selective degradation of the transcriptome is still emerging and could shape the total proteome of the cell, and thus can regulate the homeostasis under stressful conditions. Unregulated autophagy that potentiates secondary brain damage is a key pathological features of acute CNS injuries such as stroke and traumatic brain injury. This review discussed the mutual modulation of autophagy and RNA and its significance in mediating the functional consequences of acute CNS injuries.
Collapse
Affiliation(s)
- Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
38
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
39
|
HPLC analysis of vitexin and isovitexin content changes during mung bean germination. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
41
|
Wen B, Xu K, Huang R, Jiang T, Wang J, Chen J, Chen J, He B. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol Med Rep 2022; 25:165. [PMID: 35293600 PMCID: PMC8941507 DOI: 10.3892/mmr.2022.12681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Ischemic stroke is a life-threatening disease, which is closely related to neuron damage during ischemia. Mitochondrial dysfunction is essentially involved in the pathophysiological process of ischemic stroke. Mitochondrial calcium overload contributes to the development of mitochondrial dysfunction. However, the underlying mechanisms of mitochondrial calcium overload are far from being fully revealed. In the present study, middle cerebral artery obstruction (MCAO) was performed in vivo and oxygen and glucose deprivation (OGD) in vitro. The results indicated that both MCAO and OGD induced significant mitochondrial dysfunction in vivo and in vitro. The mitochondria became fragmented under hypoxia conditions, accompanied with upregulation of the heat shock protein 75 kDa glucose-regulated protein (GRP75). Inhibition of GRP75 was able to effectively ameliorate mitochondrial calcium overload and preserve mitochondrial function, which may provide evidence for further translational studies of ischemic diseases.
Collapse
Affiliation(s)
- Bin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Huang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Teng Jiang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Jian Wang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| |
Collapse
|
42
|
da Luz JRD, Barbosa EA, do Nascimento TES, de Rezende AA, Ururahy MAG, Brito ADS, Araujo-Silva G, López JA, Almeida MDG. Chemical Characterization of Flowers and Leaf Extracts Obtained from Turnera subulata and Their Immunomodulatory Effect on LPS-Activated RAW 264.7 Macrophages. Molecules 2022; 27:1084. [PMID: 35164352 PMCID: PMC8839466 DOI: 10.3390/molecules27031084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
The anti-inflammatory properties of Turnera subulata have been evaluated as an alternative drug approach to treating several inflammatory processes. Accordingly, in this study, aqueous and hydroalcoholic extracts of T. subulata flowers and leaves were analyzed regarding their phytocomposition by ultrafast liquid chromatography coupled to mass spectrometry, and their anti-inflammatory properties were assessed by an in vitro inflammation model, using LPS-stimulated RAW-264.7 macrophages. The phytochemical profile indicated vitexin-2-O-rhamnoside as an important constituent in both extracts, while methoxyisoflavones, some bulky amino acids (e.g., tryptophan, tyrosine, phenylalanine), pheophorbides, and octadecatrienoic, stearidonic, and ferulic acids were detected in hydroalcoholic extracts. The extracts displayed the ability to modulate the in vitro inflammatory response by altering the secretion of proinflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines and inhibiting the PGE-2 and NO production. Overall, for the first time, putative compounds from T. subulata flowers and leaves were characterized, which can modulate the inflammatory process. Therefore, the data highlight this plant as an option to obtain extracts for phytotherapic formulations to treat and/or prevent chronic diseases.
Collapse
Affiliation(s)
- Jefferson Romáryo Duarte da Luz
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
| | - Eder A. Barbosa
- Laboratory of Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, Darcy Ribeiro University Campus, University of Brasilia, Brasília 70910-900, DF, Brazil;
| | - Thayse Evellyn Silva do Nascimento
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Adriana Augusto de Rezende
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Marcela Abbott Galvão Ururahy
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Adriana da Silva Brito
- Faculty of Health Sciences of Trairi (FACISA/UFRN), R. Passos de Miranda, Santa Cruz 59200-000, RN, Brazil;
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Amapá State University (UEAP), Av. Presidente Vargas, s/n, Centro, Macapá 68900-070, AP, Brazil;
| | - Jorge A. López
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
| | - Maria das Graças Almeida
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| |
Collapse
|
43
|
Chen L, Ma S, Shi M, Wang Q, Miao Y. A new nitronyl nitroxide radical with salicylic acid framework attenuates blood-brain barrier disruption and oxidative stress in a rat model of middle cerebral artery occlusion. Neuroreport 2022; 33:129-136. [PMID: 35139058 PMCID: PMC8812414 DOI: 10.1097/wnr.0000000000001764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES A new nitronyl nitroxide radical with a salicylic acid framework (SANR) has been demonstrated to exert antioxidant effects in the previous study by our team. The current study has assessed the protective effect of SANR on cerebral ischemia and reperfusion (I/R) in rat models. METHODS Sprague-Dawley rats were randomly divided into four groups: sham, I/R, 10, and 20 mg/kg SANR + I/R groups. A total of 120 min of middle cerebral artery occlusion (MCAO) caused cerebral ischemia. Survival rates were calculated, and neurological deficits were evaluated by a blinded experimenter. Cerebral infarct area, apoptosis cells, and blood-brain barrier (BBB) leakage were measured by 2,3,5-triphenyltetrazolium chloride staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling, and Evans blue assay, respectively. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and 8-hydroxy-2-deoxyguanosine (8-OHdG) also were detected to assess oxidation damage caused by cerebral I/R. RESULTS Treatment with SANR significantly promoted survival of rats with cerebral I/R injury. SANR meliorated neurologic deficit and infarct area, improved BBB permeability, and reduced neuronal apoptosis. SANR also reduced ROS levels and the content of MDA and increased SOD and GSH-Px activity in a dose-dependent manner. Furthermore, SANR could inhibit the expression of 8-OHdG. CONCLUSION Our results suggested that SANR has a neuroprotective effect against cerebral I/R injury, and its effect mechanism is related to the antioxidant function.
Collapse
Affiliation(s)
- Lei Chen
- School of Medicine, Xi’an Peihua University
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University
| | - Min Shi
- School of Medicine, Xi’an Peihua University
| | | | - Yi Miao
- Department of Anesthesia and Perioperative Medicine, Affiliated Children Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
44
|
Zhu L, Ding S, Xu L, Wu Z. Ozone treatment alleviates brain injury in cerebral ischemic rats by inhibiting the NF-κB signaling pathway and autophagy. Cell Cycle 2022; 21:406-415. [PMID: 34985377 PMCID: PMC8855843 DOI: 10.1080/15384101.2021.2020961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stroke is the most frequent cause of disability in developed countries. A common phenomenon of stroke, cerebral ischemia, is threatening many lives worldwide. In addition, ozone treatment was previously reported to exert functions in relieving brain injury. In the current study, the therapeutic effects of ozone on cerebral ischemia are investigated. A rat model of middle cerebral artery occlusion (MCAO) was established. The brain water content was calculated by weighing brain tissues, and the 2, 3, 5-triphenyltetrazolium chloride staining was performed to measure brain infarction volume in rats. A colorimetric assay was conducted to examine expression levels of malondialdehyde, superoxide dismutase, catalase, and glutathione in the rat hippocampus. Reverse transcription quantitative polymerase-chain reaction and Western blot analyses were employed to evaluate expression levels of Beclin1, LC3B, p62, and critical factors implicated in the NF-κB signaling pathway. We found that ozone significantly improved the survival rate of MCAO model rats, reduced the cerebral water content, and decreased the neurological scores of ischemic rats. Ozone markedly reduced cerebral ischemia-induced infarction in ischemic rats. Ozone decreased MDA levels and increased SOD, catalase, and GSH levels in the hippocampus of rats. Ozone significantly inhibited autophagy by decreasing Beclin1 and LC3B expression and increasing p62 expression. The ozone inactivated the NF-κB signaling pathway by decreasing the protein levels of TLR4, p-IKKβ, p-IKBα, and p-p65. We conclude that ozone treatment alleviates the brain injury in ischemic rats by suppressing autophagy and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Shengyang Ding
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Lingshan Xu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Zhouquan Wu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,CONTACT Zhouquan Wu Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, 68 Gehu Middle Road, Wujin District, Changzhou, Jiangsu, China
| |
Collapse
|
45
|
Wang X, Li J, Zhao D, Li J. |Therapeutic and preventive effects of apigenin in cerebral ischemia: a review. Food Funct 2022; 13:11425-11437. [DOI: 10.1039/d2fo02599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
APG can exert various protective effects against cerebral ischemia. Moreover, APG has shown a highly promising ability to prevent cerebral ischemia in terms of regulating blood glucose, blood pressure, lipids and gut microbes.
Collapse
Affiliation(s)
- Xu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jinjian Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Dexi Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
46
|
Yang H, Tu Z, Yang D, Hu M, Zhou L, Li Q, Yu B, Hou S. Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci Lett 2021; 769:136389. [PMID: 34896256 DOI: 10.1016/j.neulet.2021.136389] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Previous investigations have shown that exosome secretion from hypoxic pre-treated adipose-derived stem cells (ADSCs) affect ischemic injury treatment; however, the therapeutic effect relative to circRNA delivery is unclear. METHODS In the present investigation inflammatory factors, nerve injury, and cognitive function were assessed using a middle cerebral artery occlusion mouse model. The isolated exosomes were identified using transmission electron microscopy and further tested by leveraging exosome particles in a nanoparticle tracking approach. Differences in circRNA expression between exosomes and hypoxic pre-treated ADSC exosomes were analyzed by high-throughput sequencing. The phenotypic transformation of microglia was detected by immunofluorescence. The circRNA and downstream target were analyzed by bioinformatics, RT-qPCR, and luciferase report. RESULTS Exosomes from hypoxic pre-treated ADSCs improved cognitive function by reducing neuronal damage in the hippocampus after cerebral infarction. Exosomes from hypoxic pre-treated ADSCs improved cognitive function via delivery of circ-Rps5. SIRT7 and miR-124-3p were circ-Rps5 downstream targets, which was confirmed by luciferase report analysis. miR-124-3p overexpression or SIRT7 downregulation reversed the circ-Rps5-mediated M2 microglial shift under LPS conditions. Circ-Rps5-modified ADSC exosome improved cognitive function by decreasing neuronal damage and shifting microglia from an M1 to M2 phenotype in the hippocampus. CONCLUSION The study showed that exosomes from hypoxic pre-treated ADSCs attenuated acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promoted M2 microglia/macrophage polarization.
Collapse
Affiliation(s)
- Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Dan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Mengting Hu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Lili Zhou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Qinghua Li
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China.
| |
Collapse
|
47
|
Wang ZY, Xiong H, Duan LY, Wang CF, Du YL, Hong X, Zha HH, Pan HF. UPLC-Q-TOF-MS based metabolomics study of hawthorn leaves in different geographical regions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5458-5466. [PMID: 34734931 DOI: 10.1039/d1ay01150b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The quality evaluation of hawthorn leaves in different geographical regions derived from the dried leaves of Crataegus pinnatifida Bge. Var. Major N.E.Br. or Crataegus pinnatifida Bge., a common blood-activating and stasis-eliminating traditional Chinese medicine, has hardly been reported. In this study, the chemical comparison of 40 batches of hawthorn leaf samples collected from Hebei, Liaoning, Shandong and Shanxi Provinces was performed using an ultra-high performance liquid chromatography with electrospray ionization-tandem mass spectrometry-based metabolic profile and pattern recognition analysis approach. A total of 233 compounds were determined. Among them, 40 compounds were selected as potential metabolites responsible for the differential clustering, and the differential metabolite-based evaluation model was applied to well distinguish the origin of seven batches of hawthorn leaves sold on the market. Further analysis of the KEGG pathway showed that five core metabolites containing flavonoids and lignins were mainly involved in flavonoid biosynthesis, flavone and flavonol biosynthesis, and stilbenoid, diarylheptanoid and gingerol biosynthesis. Taking the content of flavonoids, core markers, as the evaluation basis, it was found that the quality of hawthorn leaves in Hebei and Liaoning was better. The study provides a reference for the rational utilization of hawthorn leaves, and highlights that the metabolomics-driven analysis method is more suitable for the quality evaluation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Hui Xiong
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Li-Ying Duan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Chen-Feng Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Yi-Long Du
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Xia Hong
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Hai-Hong Zha
- SCIEX, Analytical Instrument Trading Co., Ltd, Shanghai, 200335, PR China
| | - Hai-Feng Pan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| |
Collapse
|
48
|
Ozturk H, Yorulmaz N, Durgun M, Basoglu H. In silicoinvestigation of Alliin as potential activator for AMPA receptor. Biomed Phys Eng Express 2021; 8. [PMID: 34724652 DOI: 10.1088/2057-1976/ac351c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 11/12/2022]
Abstract
Natural products from plants, such as flavonoids, arouse immense interest in medicine because of the therapeutic and many other bioactive properties. The molecular docking is a very useful method to screen the molecules based on their free binding energies and give important structural suggestions about how molecules might activate or inhibit the target receptor by comparing reference molecules. Alliin and Allicin differ from many other flavonoids because of containing no benzene rings and having nitrogen and sulfur atoms in their structure. In this study Alliin and Allicin affinity on AMPA, NMDA and GABA-A receptors were evaluated in the central nervous system by using the molecular docking method. Both Alliin and Allicin indicated no inhibitory effects. However Alliin showed significant selectivity to human AMPA receptor (3RN8) as an excitatory. The binding energy of glutamate to 3RN8 was -6.61 kcal mol-1, while the binding energy of Allin was -8.08 kcal mol-1. Furthermore Alliin's affinity to the other AMPA and NMDA receptors is quite satisfactory compared to the reference molecule glutamate. In conclusion based on the molecular docking study, Alliin can be useful for synaptic plasticity studies whereas might be enhance seizure activity because of the increased permeability to cations. It also can be beneficial to improve learning and memory and can be used as a supportive product to the hypofunction of NMDA associated problems.
Collapse
Affiliation(s)
- Hilal Ozturk
- Karadeniz Technical University, Faculty of Medicine, Department of Biophysics, Trabzon-Turkey.,Istanbul University-Cerrahpasa , Faculty of Medicine, Department of Biophysics, Istanbul-Turkey
| | - Nuri Yorulmaz
- Harran University, Faculty of Science, Department of Physics, Sanliurfa-Turkey
| | - Mustafa Durgun
- Harran University, Faculty of Science, Department of Chemistry, Sanliurfa-Turkey
| | - Harun Basoglu
- Karadeniz Technical University, Faculty of Medicine, Department of Biophysics, Trabzon-Turkey
| |
Collapse
|
49
|
Gravandi MM, Fakhri S, Zarneshan SN, Yarmohammadi A, Khan H. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab Brain Dis 2021; 36:1501-1521. [PMID: 33988807 DOI: 10.1007/s11011-021-00750-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 01/29/2023]
Abstract
As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
50
|
Varshney M, Kumar B, Rana VS, Sethiya NK. An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer's and Parkinson's diseases: a critical analysis on mechanistic insight. Crit Rev Food Sci Nutr 2021; 63:2749-2772. [PMID: 34590507 DOI: 10.1080/10408398.2021.1980761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|